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1 Introduction

The possibility of explaining the observed baryon asymmetry in the Universe as associated

with the dynamics of electroweak symmetry breaking has a long history [1–4]. Underpin-

ning this endeavour is the chiral anomaly in the electroweak sector of the Standard Model

(SM), which establishes a relation between the Chern-Simons number of the SU(2) gauge

fields and the baryon number of the fermions coupled to them [5, 6]. Any dynamical process

whereby the Chern-Simons number changes in time will, therefore, be a candidate model

for baryogenesis.

Easily the most popular scenario on the table is to extend the SM by additional degrees

of freedom [7–12], thereby allowing the symmetry breaking process to be a strongly first

order finite temperature phase transition. To such a transition are associated bubbles of

the low-temperature phase embedded in, and expanding into, the high-temperature phase

background. These bubbles then grow, collide, and eventually the fields thermalise. As the

bubbles expand into the ambient plasma, SM fermions scatter off the bubble wall leaving

C and CP asymmetric densities in front of the progressing wall. These asymmetries bias

the sphaleron transitions causing more baryons to be created than anti-baryons, and then

the expanding bubble wall consumes this region of baryon over-density [4, 13].

An alternative scenario that has received some attention is to instead postulate that

interactions beyond the SM result in a cold state prior to symmetry breaking. Instead of

a finite temperature phase transition driven by the expansion and cooling of the Universe,
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symmetry breaking could instead be a spinodal transition1 [14–18], triggered by the dynam-

ics of Beyond-SM degrees of freedom. A number of realisations of this Cold Electroweak

Baryogenesis scenario exist [19–23], and also a substantial body of work on computing the

ensuing baryon asymmetry in different extensions of the SM [24–33].

One attractive possibility is for the BSM degree of freedom to be the inflaton, a scalar

degree of freedom thus providing both accelerating expansion in the early Universe, the

fluctuations in the Cosmic Microwave Background and the origin of electroweak symmetry

breaking. It turns out that engineering a potential able to support all the observational

requirements simultaneously is a challenge, and fine-tuning at the level of mw/Mpl is re-

quired [17, 20, 34, 35]. This is true if the end of inflation coincides with the time of

symmetry breaking (such as in standard Hybrid inflation models), but also if the two pro-

cesses are separate events and the slow-roll inflation stage is completed long before the

electroweak transition is triggered.

Relaxing the requirements on the BSM degree of freedom opens up model-building op-

tions. It could be a spectator field during inflaton responsible only for the CMB (a curvaton)

or not restricted by the inflationary observables at all [19, 21]. Recently, the possibility

of supercooling the SM to sub-GeV temperatures prior to electroweak symmetry breaking

was discussed, in the context of a 5-D dilaton model effectively dialing the QCD scale.

The most well-studied numerical implementation of the scenario involves the bosonic

part of the electroweak sector, which comprises SU(2) and U(1) gauge fields as well as

the Higgs field. In addition, CP-violation is introduced through a bosonic dimension six

operator, which one would generically expect to arise from integrating out the fermionic

degrees of freedom (see, however, [36, 37]). In a series of papers, the main features of this

model were pinned down: that an asymmetry is created; that it is directly proportional to

the dimensionless coefficient of the CP-violating term [24, 32, 33]; and that the asymmetry

is sensitively dependent on the Higgs mass (which has since been fixed by experiment) [24].

The asymmetry generated is also very sensitive to the speed of the symmetry breaking

quench. For very fast quenches, the asymmetry has the opposite sign compared to slow

quenches [29]; the maximum asymmetry occurs for quenches lasting 10–20 m−1
H [32]. The

asymmetry is also affected, by a factor of 2–3, by the inclusion of U(1) hypercharge fields

in the dynamics in addition to the SU(2)-Higgs fields [33].

In all previous simulations that included CP-violation explicitly, the symmetry break-

ing transition was triggered “by hand” (see [31, 38–40] for dynamical symmetry breaking,

but in a CP-even model). In these, the mass parameter µ in the Higgs potential was dialled

to first provide a single minimum at φ = 0, and then the symmetry breaking was gradually

switched on to give a potential minimum at the finite zero-temperature expectation value of

246 GeV. Ultimately, in a given model, the time-dependence of this mass parameter should

be replaced by the dynamics of another degree of freedom, coupled to the Higgs field. Most

likely the baryon asymmetry is model dependent, and the by-hand approach has the ad-

vantage of remaining agnostic about this. However, the dynamics of the new degree of

freedom may introduce new effects and behaviours, badly captured by the non-dynamical

triggering of the mass parameter, and that is what we explore in the following.

1In the context of the end of inflation, this is the process of tachyonic preheating.
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In the present work, we will expand the model considered in [32] by adding a real

scalar singlet with a simple quadratic potential. A quartic “portal” coupling to the Higgs

field provides dynamical symmetry breaking. We will see that, in a particular limit, we

reproduce approximately the results of the by-hand approach, while for general choices of

singlet parameters a number of other phenomena may arise.

The paper is structured as follows: we start in section 2 by introducing a simplified

Higgs-singlet model, and discuss the types of behaviour one may expect from dynamical

symmetry breaking. In section 3, we then embed this two-scalar model into the electroweak

sector of the Standard Model, giving a SU(2)×U(1)-Higgs-singlet model with effective CP-

violation. We review the observables and parameters in play, and describe the simulations

to be performed. In section 4 we present simulations of the case where the initial singlet

energy is relatively small, and we match this limit to the by-hand method. In section 5 we

extend our simulations to also include higher energy singlet initial conditions, and describe

the dynamics and asymmetry created in this case. As an aside, in section 6 we present and

model the behaviour of the Ncs,SU(2) at intermediate and late times in the simulations. We

conclude in section 7.

2 Quench dynamics

We will consider the bosonic part of the electroweak sector of the Standard Model, extended

by a real scalar singlet. In later sections and in all of our simulations, we will include gauge

fields and CP-violation, but setting aside these complications for the moment, we first

consider the following action of two coupled scalar fields in order to better understand the

dynamics of the process,

S=−
∫
dtd3x

[
∂µφ

†∂µφ−µ2φ†φ+λ(φ†φ)2+
1

2
∂µσ∂

µσ+
m2

2
σ2+ξ2σ2φ†φ+V0

]
, (2.1)

where σ is a real gauge singlet and φ is the Higgs SU(2) doublet. The parameters λ

and µ are fixed by experiment to be µ = mH/
√

2 = 88.4 GeV and λ = µ2/v2 = 0.13,

where v = 246 GeV is the Higgs vacuum expectation value (vev). The arbitrary constant

V0 = µ4/(4λ) is chosen so that the potential is zero in the global minimum. In addition,

we have introduced two parameters, the BSM scalar’s mass parameter m and the scalar-

Higgs coupling ξ. They are a priori free, although experimental collider constrains may be

imposed, for instance on the singlet mass in the zero temperature vacuum [41],

m2
σ = m2 + ξ2v2. (2.2)

Also, there are constraints on the mixing between the Higgs and the σ (see for instance [11]),

but since in this model 〈σ〉 = 0, the mass matrix in the zero temperature vacuum is diagonal

and there is no mixing. Mixing constraints would come into play, when allowing for a cubic

coupling of the type σφ†φ.

The structure of the potential is such that for σ > σc = µ/ξ the Higgs symmetry is

unbroken (φ = 0), while for smaller σ the Higgs field acquires a non-zero vev, tuned such
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that for vanishing σ we reach the standard vacuum value for φ, φvac = (0, v/
√

2). The

potential for the singlet has a single minimum at σ = 0, and so the system will inevitably

evolve to the usual Higgs vacuum, along with a vanishing vev for the singlet. We imagine

that the conditions after inflation are such, that σ(0) = σ0 > σc = µ/ξ, so the Higgs is

initially in the symmetric phase, φ = 0. This may come about if the σ is in fact the inflaton

field itself, slow-rolling down some potential [20]. Or, if it is a spectator field, one may

argue that stochastically it will have a non-zero value at the end of inflation [42–46].

We expect that the singlet σ is homogeneous as a result of the inflationary expansion.

This means that the initial condition can be described by σ0 and σ̇(0) = σ̇0. Without loss

of generality, we may set σ̇0 = 0, since any non-zero value at some σ0 corresponds to zero

initial speed but from some other (larger) σ0. Since σ is initialised at a finite value, as

σ rolls down towards zero, symmetry breaking and the spinodal transition is triggered at

the critical value σc. For this analysis we will ignore the expansion of the Universe, since

for electroweak energies the Hubble time H−1 is much longer than the time scale of the

dynamics m−1
W .

In our model, we are left with three free parameters: m, ξ and σ0, and in principle

one could simply compute the baryon asymmetry, scanning through these. However, for

reasons to become clear below, we will reparametrise this 3-dimensional space. We first

express σ0 in terms of σc as σ0 = Aµ/ξ, which defines the dimensionless parameter A.

Second, we introduce the total initial energy and use it to define neq

Etot = V0 +
m2

2
σ2

0 = V0

(
1 +

m2

m2
H

4A2λ

ξ2

)
≡ V0

(
1 +

1

n2

)
, n =

√
ξ2

4A2λ

mH

m
. (2.3)

This allows us to scan the parameter space in terms of the physically more intuitive di-

mensionless parameters mH/m, n and A. First, we will explain how these quantities are

constrained by the scenario, and how they are related to the by-hand quench of [32].

2.1 Simple constraints

1. We will be initialising the Higgs field with free-field quantum vacuum fluctuations,

to seed the spinodal growth (see [16, 18, 38]). These depend on the initial mass of

the Higgs field which is then

µ2
eff(0) = ξ2σ2

0 − µ2 = (A2 − 1)µ2 =
1

2

(
A2 − 1

)
m2
H . (2.4)

In [32], we used A2 = 2, corresponding to µ2
eff(0) = µ2. We will do the same below,

although in principle one may choose any value A > 1.

2. Secondly, a basic requirement for Cold Electroweak Baryogenesis is that the tem-

perature after the transition and thermalisation should be less than the equilibrium

electroweak phase transition temperature of ' 160 GeV [47–53]. Assuming that the

singlet σ counts as a relativistic degree of freedom after the transition, this means

that distributing all the available energy, we have

V0

(
1 +

1

n2

)
=
π2

30
g∗T 4, (2.5)
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with an effective number of degrees of freedom g∗ = 107.75, corresponding to the

full Standard Model plus a real singlet.2 Requiring that T < 160 GeV, using

mH = 125 GeV and λ = 0.13, we find n > 0.07, or equivalently Etot < 200V0. In

the limit n → ∞, T = 43 GeV. We note that in the simulations, only 13 degrees

of freedom are present, so that the final temperature is somewhat higher. But the

time-scales of the simulations will not allow us to reach thermal equilibrium.

3. Thirdly, we can make the connection to the by-hand transition of [32], where instead

of a dynamically evolving field σ, the Higgs field experienced a mass quench through

the replacement

− µ2 → µ2
eff(t) = µ2

(
1− 2t

τq

)
, 0 < t < τq, (2.6)

and −µ2 for t > τq. The quench is then parametrized by a quench time τq. We note

that µ2
eff(0) = +µ2, corresponding to the choice A2 = 2 made above. We may define

a quench speed as the dimensionless speed at the time where µ2
eff goes through zero

and symmetry breaking is triggered:

u =
1

2µ3

dµ2
eff(t)

dt
|µ2

eff=0 = − 1

µτq
. (2.7)

Similary, we may compute this for the dynamical case with µ2
eff(t) = ξ2σ2(t)− µ2

u =
1

2µ3

dµ2
eff(t)

dt
|µ2

eff=0 =
1

µ

σ̇c
σc
, (2.8)

with σc = µ/ξ. In the limit where only the quadratic σ-potential contributes,

σ(t) =
Aµ

ξ
cos(mt)→ u = −m

µ

√
A2 − 1. (2.9)

Hence, for A2 = 2, it is tempting to make the identification τq = m−1. Once the Higgs

field starts to evolve away from zero, the true potential of σ is somewhat different,

and so this identification is not exact. As will see below, there is a proportionality

constant of order one.

Since we are mostly interested in the quench time dependence, we will in the following

set A2 = 2, and vary mH/m for a few values of n. For example, in section 4 we will examine

n = 8, corresponding to a very “cold” σ, where the energy in the system is simply 1.02V0,

finding that in this case the behaviour and baryon asymmetry produced is very similar

to the by-hand quench. In section 5 we consider fast quenches, mH/m = 4, for different

values of n in the interval 1→ 8.

2Depending on the final temperature after the transition, the heaviest degrees of freedom may no longer

contribute. Removing Top quark and W, Z and Higgs bosons from the sum only changes the final temper-

ature by a few percent.
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3 The quenched SU(2)×U(1)-Higgs-singlet model with CP-violation

After having surveyed the quench mechanism, we can now embed the two-field model in

the full electroweak sector of the Standard Model. This is composed of a Higgs doublet

coupled to SU(2) and U(1) gauge fields, and in addition the new scalar singlet. Instead of

adding the entire fermion sector dynamically [54], we will imagine having integrated out

all the other degrees of freedom, and that any SM and BSM CP-violation is retained in an

effective dimension-six term [36, 37, 55, 56]. The classical action reads

S = −
∫
dt d3x

[
1

2
TrWµνWµν +

1

4
BµνBµν +

3δcpg
2

16π2m2
W

φ†φTrWµνW̃µν

+ (Dµφ)†Dµφ− µ2φ†φ+ λ(φ†φ)2 +
1

2
∂µσ∂

µσ +
m2

2
σ2 +

1

2
ξσ2φ†φ

]
. (3.1)

The field strength tensors are Wµν for SU(2) and Bµν for U(1). The gauge couplings are g

and g′, respectively, and we have the Higgs self-interaction λ and mass parameter µ as be-

fore. The latter two can be replaced by the observed values of the Higgs vev and Higgs mass

m2
H = 2µ2 = 2λv2. (3.2)

The covariant derivative Dµ is given by

Dµφ =

(
∂µ + i

1

2
g′Bµ − igW a

µ

σa
2

)
φ, (3.3)

with the U(1) gauge field Bµ and the SU(2) gauge field denoted by Wµ. We have used that

the Higgs field hypercharge Y = −1/2.

This leaves, as before, two parameters in the Higgs-scalar sector, m, ξ as well as the

σ initial condition σ0. We also have the parameter determining the strength of the CP-

violation, δcp. The dependence of the baryon asymmetry on δcp has been determined in a

series of works [32, 33], with the result that it is linear for reasonably small values δcp . 10,

as we will confirm below. For numerical reasons (to see the numerical signal clearly), it is

convenient to use a fairly large value of δcp, and we use 3δcp = 20 unless explicitly stated

otherwise. We also use the physical values mH = 125 GeV, v = 246 GeV, mW = 80 GeV

and mZ = 91 GeV, therefore g = 0.65 and g′ = 0.35.

3.1 Simulations of Cold Electroweak Baryogenesis

Details of Cold Electroweak Baryogenesis may be found elsewhere [18], but, in short, the

mechanism is based on the fact that as a Higgs symmetry-breaking is triggered, Higgs field

modes with k < µ become unstable and grow exponentially, a process known as tachyonic

preheating or spinodal decomposition. This is a strongly out-of-equilibrium process, with

all the power in the infra-red (IR), and in the presence of CP-violation a net baryon

asymmetry is created.

In our strictly bosonic model, we invoke the chiral anomaly to make the identification

B(t)−B(0) = 3
[
Ncs,SU(2)(t)−Ncs,SU(2)(0)

]
, (3.4)
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where Ncs,SU(2) is the SU(2) Chern-Simons number3 [5, 6]. In the specific context of

Cold Electroweak Baryogenesis, the anomaly was explicitly confirmed in simulations with

dynamical fermions [54]. In addition, it turns out that because of the violent nature of the

transition, and the rather long thermalisation times, it is convenient to make the further

identification

Ncs,SU(2)(t)−Ncs,SU(2)(0) ' Nw(t)−Nw(0), (3.5)

where Nw is the Higgs field winding number. The reason is that Nw is an integer (up to

lattice discretization errors), and therefore a much cleaner observable than Ncs,SU(2). Also,

whereas Ncs,SU(2) oscillates for a long time, Nw settles very early in the simulation. At very

late times (as we checked) Ncs,SU(2) → Nw. We will discuss the behaviour of Ncs,SU(2) in

some detail in section 6. Hence, although in our simulations we monitor several observables,

including Ncs,SU(2), we will ultimately infer B = 3Nw.

On a more technical note, we will follow the procedure in [25, 57], and average our

observables over an explicitly CP-even ensemble of random classical initial conditions. This

is achieved by taking pairs of initial conditions, so that for every realisation we also include

its CP-conjugate in the ensemble. This implies that for δcp = 0, the baryon asymmetry is

identically zero. In this work, the ensembles count 200–400 such CP-conjugate pairs.

From a simulation perspective, we need to have a lattice resolution fine enough to

convincingly represent the UV dynamics and compute observables accurately (notably the

Higgs winding number). We use a lattice spacing a, so that amH = 0.375. We also need

a large enough spatial volume such that the relevant dynamics fits inside the box. This

requires that the linear size of the lattice, L, is big enough, and we use LmH = 24. This

also ensures that the number of unstable tachyonic modes is large enough to mimic a

continuum of modes. Finally, we must ensure that also the dynamics of the σ field is well

contained. Trivially, Lm = 24(m/mH), and even for m/mH ' 4 one may worry that this

is too small. Fortunately, the mass of the σ field is not m once the tachyonic transition is

triggered but rather given by eq. (2.2), allowing us to rewrite

Lmσ = LmH
m

mH

√
1 + 4n2. (3.6)

Hence for n = 8, even mH/m up to 30–40 is probably reliable. For n = 1, we should not

trust mH/m larger than around 6. We have tested somewhat larger volumes to confirm

these estimates give the correct scales at which our dynamics converges. We also see that

the masses, in lattice spacing units, follows a similar relation

amσ = amH
m

mH

√
1 + 4n2. (3.7)

With amH = 0.375 and n = 8, we find amσ ' 6m/mH , at least at the end of the

simulation when the σ field settles. Our fastest quench of mH/m = 4 therefore comes with

some reservations, although we will see that the results are consistent with other mH/m.

Conversely, for n = 1 and mH/m, amσ < amH , and all is well under control.

3There is also a contribution from the U(1) Chern-Simons number, but it does not lead to a permanent

change in baryon number, as it is zero in the vacuum/at late times.
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Figure 1. Left: the average Higgs field in time, for n = 8 and different quench rates mH/m. Black

horizontal lines indicate the first Higgs minimum, used to define the quench time T1. Right: the σ

field for the same simulations.

4 Cold quenches, n = 8

We first consider the case where there is little energy in the σ-potential, and take n = 8 to

represent the large-n limit, giving a total energy of 1.02×V0. We now introduce a definition

of the “quench time” T1, as the time it takes for the Higgs field to reach its first minimum

in its oscillations as shown in figure 1 (left panel). Also in figure 1 (right panel), we show

the σ field in the same simulations. As discussed above, in previous work [32] the transition

was triggered by flipping the sign of the Higgs mass coefficient over a timescale τq. We may

use the same definition for the duration T1 in that case. In figure 2, we show the mHT1 as

a function of mH/m (right vertical axis) and as a function of mHτq (left vertical axis). We

see that there is clear proportionality, and that the relation may be written

τq ' 1.3m−1. (4.1)

Having calibrated the dynamical-σ simulations against the by-hand simulations we can

proceed with computing our primary observable 〈Nw〉 as a proxy for the baryon asymmetry,

and uncover the consequences of allowing the electroweak symmetry to break dynamically,

rather than quenching by hand. In figure 3 (left) we show the asymmetry in 〈Nw〉 for n = 8

dynamical quench simulations, as well as for by-hand simulations, where we have rescaled

to mHT1 to make the comparison.

We see that there is a qualitative agreement, in the sense that for very fast quenches, the

asymmetry is negative and of order 〈Nw〉 = 0.03; while for slower quenches the asymmetry

becomes positive with one (by-hand) or two (dynamical) maxima. The maximum by-hand

asymmetry is around 〈Nw〉 = 0.1. For the dynamical simulations, the asymmetry peaks at

values of 〈Nw〉 = 0.25 and 0.35. This suggests that the by-hand simulations, in particular

for fast quenches, are really the large-n limit of dynamical quench simulations. That is the

limit where the total energy is essentially the initial Higgs potential.
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Figure 2. The relation between quench time T1 and τq and m−1, respectively. Even when the

mass flip is instantaneous, the Higgs takes a finite time (about 10 m−1H ) to complete the transition.
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Figure 3. Left: the final asymmetry (in Nw) for the dynamical (black) and by-hand (red) sim-

ulations. Right: the value of the Higgs field (squared) at the first minimum. Note the strong

correlation between a low Higgs minimum and a large asymmetry.

The peak structure was observed before for the by-hand quench [29, 32] and can be

traced to the larger abundance of local zeros of the Higgs field, allowing Higgs winding to

occur. This, in the presence of CP-violation, leads to a baryon asymmetry. In figure 3

(right) we clearly see a strong correlation between the obtained asymmetry and the value

of the average Higgs field at the first minimum (where we also define T1). A low minimum

corresponds to many local Higgs zeros.

An explanation why there are more Higgs zeros at certain values of the quench time

is more subtle. Qualitatively, it follows from the shape of the Higgs potential at the time

of the first Higgs minimum, and the speed of the quench. In essence, it is a question of

whether the Higgs field can “slosh back up” the Higgs potential, either because it has large

speed (by-hand peak and first dynamical peak), or because the potential is shallower at

that moment (second dynamical peak).
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Figure 4. Left: the time of the first Higgs minimum and first σ minimum for different quench

times. Right: the energy components in an n = 8, mH/m = 28 simulation (B is U(1) gauge field, W

is SU(2). φ and σ the two scalar fields. Dashed lines denote the expected equipartition asymptotics.

As concerns the latter, figure 4 (right) shows the time of the first Higgs maximum

and the first |σ| maximum as a function of mH/m. The second dynamical peak in the

asymmetry occurs precisely when the two coincide (mH/m = 30) which turns out also

to be when the maximum |σ| is largest. This corresponds to the Higgs potential being

shallower than in the global minimum, and this generates many Higgs zeros and hence the

second dynamical peak. Had |σ| been even larger > σc, the symmetry of the potential

would have been restored, and the transition halted.

Accepting the matching in terms of quench time T1, one may conclude that the inclu-

sion of dynamical symmetry breaking makes the maximum asymmetry occur at somewhat

slower quenches. But that the negative sign of the asymmetry at the fastest quenches is a

robust prediction, and not an artefact of triggering the quench by-hand.

4.1 Where does the energy go?

Another point to make is that in the by-hand simulations, energy is extracted from the

system, because of the time-dependence of µ2. Since the only explicit time-dependence in

the Hamiltonian is through µ2
eff(t), It is easy to see that the energy loss is

∆E =

∫
d3x

∫ τq

0

dµ2
eff(t)

dt
φ†φ(x, t) = −2µ2

τq

∫ τq

0
dt d3xφ†φ(x, t), (4.2)

which for the quenches in [32] was as much as 60%. As a result of a different effect, energy

is also extracted from the gauge-Higgs system in a large-n dynamical quench. At late

times, energy equipartition assigns a certain fraction of the total energy to the σ degree

of freedom. Simple counting of all the degrees of freedom reveals that 1/13 ends up in

the σ field. In figure 4 we show the time evolution of the different energy components,

with dashed lines indicating their expected asymptotic values. Note that the distribution

between gauge and Higgs degrees of freedom may have some gauge dependence. In this

incomplete, temporal gauge choice, it seems that the energy from the shared modes is
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mostly in the Higgs field (4 d.o.f. rather than just 1 Higgs mode) and not in the gauge

field (massless fields, 6 d.o.f., rather than massive, 9 d.o.f.). We expect 1/13 of the energy

to go into the σ field. Because n = 8, the initial energy in the σ field is less than its

equipartition value, and so qualitatively (this effect is not quench-time dependent), for this

n, the effect of including the dynamical quench is not to add, but to extract energy from

the gauge-Higgs system. This adds to the understanding why the by-hand approach works

reasonably well.

5 Warmer, and fast quenches: n = 1→ 8, mH/m = 4 (mHτq ' 5)

We now proceed to consider other values of n, for which the results depart significantly

from the by-hand simulations. Smaller n means that more energy is present in the system,

as we see from (2.3), and initially it is stored in the initial potential energy of the σ field.

Hence, as n reduces we expect the dynamics to inject more and more energy into the SM

sector. Related to our prior discussion of equipartition, the σ has more initial energy than

its fair share of 1/13, when n <
√

12. But we have also seen that at intermediate times,

the energy distribution may deviate substantially from equipartition.

We will restrict ourselves to the range n = 1 → 8, corresponding to energies between

V0 and 2V0. Considering again all the degrees of freedom of the whole SM, this in turn

corresponds to reheating temperatures of Treh = 51 → 43 GeV, so is still deep in the

broken phase.

In figure 5 we first confirm the linear dependence of the asymmetry on δcp, us-

ing four different CP-odd observables. This is a relation established before for by-hand

quenches [32], but for these warmer simulations, we found it prudent to check once more.

The results are taken for n = 2, mH/m = 4, and are snapshots at time mHt = 400. As

we will discuss in detail in section 6, this is asymptotically late for the observable Nw (top

left), but not for the other CP-odd observables Ncs,SU(2) (top right), Ncs,U(1) (bottom left)

and magnetic helicity4 (bottom right). The dependence on the magnitude is clearly linear

(blue line), and for illustration we have added the next-to-leading order fit, including a

term ∝ δ3
cp (green dashed). All other simulations in this work are performed at the largest

δcp included in these plots, 20/3.

In figure 6 we show the time histories of the winding number Nw (top) and the average

Higgs (bottom left) and σ fields (bottom right) for five different n, at mH/m = 4. We see

that smaller n gives a larger (negative) asymmetry, and that this asymmetry is created

during the first few oscillations of the Higgs field as before.

Finally in figure 7 we show the asymmetry as a function of 1/n2 (or, equivalently,

Vinitial/V0 − 1). Overlaid is an exponential fit of the form (see also insert, with a

log-linear scale).

〈Nw〉 = (−0.026± 0.009) exp

(
(3.3± 0.4)

n2

)
. (5.1)

4We will not be so concerned about this observable here. Please see [32] for a discussion and the precise

lattice definition.
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Figure 5. The dependence of all the CP-odd observables on δcp. Clockwise from top left: Nw,

Ncs,SU(2), Magnetic helicity, Ncs,U(1).

We see that in the limit n → ∞, the asymmetry is just Nw = −0.026, while for very

small n, one may get very large asymmetries, indeed. We certainly do not expect that this

exponential behaviour will continue indefinitely, but we see no reason why 1/n2 = 2 or

larger would not hold, as they still represent fairly cold reheating temperatures. We are

however challenged by the required numerical effort to reach such small n.

6 The behaviour of Ncs,SU(2)

The chiral anomaly relates the baryon asymmetry to the SU(2) Chern-Simons number

Ncs,SU(2). As described above, we have used the Higgs winding number Nw to represent the

asymptotic value of the asymmetry, because dynamically it settles first, and also because

it is an integer. Also recall that at low temperature, near the vacuum, the gauge field is

pure gauge, and Ncs,SU(2) = Nw. We can attach a few more comments to this statement.

In figure 8 we show the early evolution of both Chern-Simons number and Higgs

winding, as well as the Higgs expectation value. All observables are averaged over an

initially CP-even ensemble. We see that because of the CP-violating term, Ncs,SU(2) is

first biased to become positive during the transition, after which is bounces back towards a
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negative value. Only after this initial behaviour does the winding number change. The final

asymmetry in Nw depends sensitively on the evolution of Ncs,SU(2) and on the availability

of local Higgs zeros, and so on the oscillation of φ†φ (see also the discussions in [29]).

The Higgs winding number then essentially settles, but the Chern-Simons number does

not immediately drift to the same value. In fact, we see that it tends to overshoot to a

larger positive value than Nw. This is due to the presence of the CP-violating term, and

still converging, but not yet constant, evolution of φ†φ.

We can attempt to construct a model of this effect by postulating that the effective po-

tential for the Chern-Simons number near a gauge-Higgs vacuum can be written in the form

V [Ncs,SU(2)] = α[1− cos(2πNcs,SU(2))]− βδcp
˙(φ†φ)Ncs,SU(2). (6.1)

The first term is the classical periodic sphaleron-like potential, with some constant α

parametrizing the potential barrier. Along the lowest-energy path between vacua, the

height of the barrier is just the sphaleron energy [58], α = Esph/2. For a general path in

configuration space, the precise value of α is less obvious, much less so at finite temperature

or out of equilibrium.

We get the second term in (6.1) by partial integration of the CP-violating term in

the action (3.1), as well as the quite strong assumption that φ(x) is homogeneous. This

gives a term proportional to Ncs,SU(2) and ˙(φ†φ), the size of which we will parametrize by

the coefficient β [32]. This means that the minimum of the potential is biased away from

integer values whenever δcp 6= 0 and the Higgs field is not static. A fair representation of

the Higgs field evolution is the form

φ†φ =
v2

2
(1− e−γt + ε sin m̃t)2, (6.2)
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for some values of m̃, ε � 1 and γ. We can now proceed to find the minimum of the

Ncs,SU(2) potential, by inserting (6.2) into (6.1), to find

Nmin
cs,SU(2) =

1

2π
sin−1

[
βδcpm̃v

2

8π2α
e−2 γ

m̃
(2π+m̃t)

(
1−e4π γ

m̃ +2e
γ
m̃

(2π+m̃t)(e2π γ
m̃−1)(1+εsin(m̃t))

)]
.

(6.3)

We have averaged over one period of the Higgs field oscillation (set t→ t+ t′, average over

t′ ∈ [0, 2π/m̃]). Setting now ε ' 0, or doing it from the beginning and not averaging, gives

essentially the same result for m̃t� 2π. The expression setting ε = 0 initially leads to

Nmin
cs,SU(2) =

1

2π
sin−1

[
βδcpγv

2

2πα
e−2γt(eγt − 1)

]
. (6.4)

The amplitude is controlled by δcp and β/α. The shift is substantial (∼ 0.2), and so a linear

approximation is not necessarily very accurate. This has implications for how large δcp can

be allowed to be in the simulation. It should probably not be such that the intermediate-

time minimum is shifted by more than 1
2 , since that would blur the distinction between

adjacent potential minima in the original, CP-even potential.

Since the CP-even part of the potential is periodic, and Nw takes integer values for

each of the ensemble configurations, we can think of the CP-violation as shifting all the

minima of the Ncs,SU(2)-potential away from these integer value, all in the same direction.

This means that such a shift is conserved under ensemble averaging, whereas the overall

asymmetry includes a cancellation between positive and negative integer flips.

The lattice implementation used here of the observable Ncs,SU(2), is notoriously sensi-

tive to UV fluctuations [59]. In equilibrium at finite temperature, it is completely essential

to cool the configuration, in order to reliably measure the Chern-Simons number. For Cold

Electroweak Baryogenesis, the dynamics is in the far IR modes, and the rescattering of

power into the UV is quite slow [18, 60].

In figure 9 we show the Chern-Simons number computed as a discretized sum in time,

during the simulation

Ncs,SU(2)(t)−Ncs,SU(2)(0) =

∫
dt d3x

1

16π2
TrWµνW

µν , (6.5)

and as a local-in-time expression

Ncs,SU(2)(t) = − g2

32π2

∫
d3xεijk

(
W a
i W

a
jk −

g

3
εabcW a

i W
b
jW

c
k

)
. (6.6)

We show this for two different lattice spacings amH , 0.375 and 0.5, but with the same

physical volume (LmH)3 = 243. We see that computing Ncs,SU(2) without cooling is un-

problematic for the first 200–250 hundred time units. For later times, a procedure based

on a discretized time integral of the Chern-Simons current becomes less and less reliable,

and then we must use the local-in-time approach. For even later times, 500–600, we must

likely also abandon that way of calculating it, as the UV becomes populated.

In figure 10, we show in the top panel the Higgs field φ†φ as a function of time, with

a fit of the form
2

v2
φ†φ =

(
0.96− 0.069e−0.0024mH t

)2
, (6.7)

to give us a value for the exponent γ, which we will name γφ.
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volume. The local-in-time definition performs best and is less lattice spacing dependent.

We then attempt to fit Ncs,SU(2) based on the form (6.4)

Ncs,SU(2) = A+
1

2π
sin−1

[
Be−γt − Ce−2γt

]
. (6.8)

According to our model, we would expect A = Nw, B = C and γ = γφ. It turns out

to be difficult to satisfy all three constraints in a single fit, which then has only one free

parameter B = C. Such a fit is shown in the bottom left-hand panel of figure 10. The value

of B = C is 3.84. Clearly our model is too crude to capture all the features of the dynamics.

On the other, if we allow A, B, C and γφ to be free, a much better fit is possible, shown

in the bottom right-hand panel of figure 10. In this case we find A = −0.024, B = 4.18,

C = 6.53 and γ = 0.0043. Any intermediate scheme of partial fixing of parameters gives

interpolating fits between the two shown.

One further prediction of our model, is that the shift of Ncs,SU(2) from Nw at any time

later than, say mHt = 200 should be approximately linear in δcp. In figure 11 we show

Ncs,SU(2) −Nw at time mHt = 400 as a function fo δcp, showing a clear linear dependence.

We conclude that we have a qualitative, and even semi-quantitative understanding

of the behaviour of Ncs,SU(2) up to a time mHt ' 500, and that for longer times, lattice

artefacts start becoming important, as power shifts into the UV. It is tempting to conclude

that lattice artefacts from the UV play a dominant role for larger times. It is also possible

that the coefficient α, parametrising the depth of the sphaleron potential is time-dependent

as the spectrum changes from IR-only to a more equilibrated state. We must again conclude

that the time-integrated way of computing Chern-Simons number, Ncs,t is not reliable for

times larger than mHt = 200–250.

We also conclude that our strategy of using Nw to represent the final asymmetry is

sound, as the winding number settles completely by time mHt = 200.
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2 and mH/m = 4.

7 Conclusion

In this work we have examined the impact of adding a scalar singlet to the Standard

Model in the context of Cold Electroweak Baryogenesis, building on earlier work where the

electroweak symmetry was broken by hand over some timescale τq [32]. In the limit where

the initial energy was dominated by the Higgs potential energy we were able to present a

clear match between the case where the extra singlet was added, and the dynamics of the

by-hand quench, finding that the quench timescale τq was related to the singlet mass by

τq ' 1.3m−1, matching naive expectations.

One observation coming from the quench simulations of [29] and [32] was that the final

asymmetry in Nw was largest for the quench time that led to the smallest value of 〈φ†φ〉
during the first oscillation of the Higgs field. This was explained by noting that a small

value of 〈φ†φ〉 at this stage allows for more Higgs-zeroes, and so increases the chances of

Higgs winding events. In the simulations of this paper we have been able to extend this

observation to the case where the symmetry breaking is fully dynamical, and brought about

by the scalar singlet σ, finding that the asymmetry is maximised for mH/m ' 30.
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Figure 11. The difference between Ncs,SU(2) and Nw as a function of δcp at time mHt = 400 with

n = 2 and mH/m = 4.

From a model-building point of view, BSM scalar singlets are likely to be heavier than

the Higgs field, and we therefore expect most viable realisations to generate a fast quench

mH/m ≤ 1. In that regime we find that the asymmetry has the opposite sign compared to

the slower quenches, but of the same order of magnitude. This is true for dynamical and

by-hand quenches alike.

Earlier work on the quench dynamics showed that the final Chern-Simons number

Ncs,SU(2) depends linearly on δcp [32], and this also applies to the other CP-odd observables,

Nw, Ncs,U(1) and the magnetic helicity [33]. Since these are not explicitly biased by the

CP-violating term, we regard them as secondary asymmetries, sourced by their coupling to

the Chern-Simons number. The simulations in this paper show that this property persists

when the electroweak symmetry is broken dynamically by a singlet scalar.

Not everything is the same between the by-hand and dynamical symmetry breaking

quenches. For example we find larger final Nw for the slower quenches in the simulations

that use the scalar singlet, figure 3. We are also able to examine the effect on Nw of placing

more of the initial energy in σ. This was done by reducing n in (2.3), with the results of

figure 7 showing that Nw increases exponentially, at least over the range considered, as n

decreases (5.1).

We have no detailed understanding of this behaviour. In the case of equilibrium dy-

namics of sphaleron or sphaleron-like configurations, an exponential suppression at low

temperature is natural. But here, we have an asymmetry generated by incidental flipping

of the winding number, in a CP-breaking gauge field background, as a semi-coherent Higgs

field oscillation produces more or less local Higgs field zeroes. The asymmetry is clearly

correlated with the number of zeros, with the magnitude of CP-violation, and it seems

sensible that additional energy and a faster σ would produce a larger asymmetry. But that

it would be very closely exponential is surprising.
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Future work should consider more closely this exponential dependence of Nw on 1/n2.

Smaller values of n correspond to the scalar singlet having more energy initially, and are

quite challenging numerically, but it would be interesting to see how far the exponential

behaviour persists. The fact that secondary asymmetries are produced in the background

of a primary asymmetry in Ncs, suggests on the other hand, that a secondary asymmetry

could be produced in Ncs in the case where the primary CP-violation is realised in another

way (say through the U(1) field). This is under investigation.

Finally, the space of σ initial conditions and parameters (and even choices of potntial)

is vast, allowing for very non-linear behaviour of two-scalar oscillations. This includes cases

where the σ field oscillates with large amplitude, continually restoring and breaking the

Higgs field symmetry as it passes above and below σc. Only as the σ kinetic energy is

transferred to the Higgs field (or itself, in the case of self-interactions) does the amplitude

decrease enough that symmetry breaking completes. We have made sample runs of these,

but because the phenomenology is very rich, including effects akin to parametric resonance,

we postpone the detailed investigation to future work.
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