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Summary Recent research has emphasized that permanent changes in the innovation
variance (caused by structural shifts or an integrated volatility process) lead to size distortions
in conventional unit root tests. It has been shown how these size distortions can be resolved
using the wild bootstrap. In this paper, we first derive the asymptotic power envelope for the
unit root testing problem when the non-stationary volatility process is known. Next, we show
that under suitable conditions, adaptation with respect to the volatility process is possible, in
the sense that non-parametric estimation of the volatility process leads to the same asymptotic
power envelope. Implementation of the resulting test involves cross-validation and the wild
bootstrap. A Monte Carlo experiment shows that the asymptotic results are reflected in finite
sample properties, and an empirical analysis of real exchange rates illustrates the applicability
of the proposed procedures.

Keywords: Adaptive testing, Non-parametric estimation, Power envelope, Unit root, Wild
bootstrap.

1. INTRODUCTION

Over the past decade, a large amount of research has been devoted to the effect of
heteroscedasticity on unit root tests. When the heteroscedasticity follows a stationary GARCH-
type specification, such that the unconditional variance is well-defined and constant, then
the invariance principle guarantees that the usual Dickey–Fuller (DF) tests remain valid
asymptotically. This was illustrated using Monte Carlo simulations by Kim and Schmidt (1993).
However, subsequent research has indicated that in such cases more powerful tests for a unit root
may be obtained from a likelihood analysis of a model with GARCH innovations; see Seo (1999)
and Ling et al. (2003), based on Ling and Li (1998), inter alia.

In empirical applications, the assumption that the variation in volatility effectively averages
out over the relevant sample is often questionable. On the one hand, in applications involving
daily financial prices (interest rates, exchange rates), the degree of mean reversion in the volatility
is usually so weak that the volatility process shows persistent deviations from its mean over
the relevant time-span (often ten years or less). On the other hand, in applications involving

C© 2017 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society. Published by
John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA, 02148, USA.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits
use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or
adaptations are made.

http://creativecommons.org/licenses/by-nc-nd/4.0/


2 H. P. Boswijk and Y. Zu

macro-economic time series observed at a lower frequency but over a longer time-span, one
often finds level shifts in the volatility, instead of volatility clustering. Intermediate cases (slowly
mean-reverting volatility with changing means) may also occur.

In the presence of such persistent variation in volatility, the invariance principle cannot
be expected to apply, such that the null distribution of unit root tests will be affected. The
resulting size distortions have been investigated by Boswijk (2001) for the case of a near-
integrated GARCH process, and by Kim et al. (2002) and Cavaliere (2004) for the case of a
deterministic volatility function. Cavaliere and Taylor (2008) develop a wild bootstrap version of
the standard DF tests, and show that this leads to tests with a correct asymptotic size. Cavaliere
and Taylor (2007) and Beare (2016) provide two alternative solutions, in the form of non-
parametric corrections that lead to statistics with the usual asymptotic null distributions.

There is no guarantee that these approaches to deliver tests with correct asymptotic size will
also yield tests with the highest possible power. In particular, in the presence of heteroscedasticity
we can expect higher power from a method that gives the highest weight to observations with the
lowest volatility, and this is not the case for the tests discussed above.1

In this paper, we address this issue by deriving the asymptotic power envelope; that is, the
maximum possible power against a sequence of local alternatives to the unit root, for a given and
known realization of the volatility process. This allows us to evaluate the power loss of various
tests, and to construct a class of admissible tests, that have a point of tangency with the envelope.
For the empirically more relevant case where the volatility function is not observed, we show
that under suitable conditions, adaptation with respect to the volatility process is possible, in
the sense that non-parametric estimation of the volatility process leads to the same asymptotic
power envelope. Similar adaptivity results were obtained for stable (auto-)regressions by Hansen
(1995), Xu and Phillips (2008) and Patilea and Raı̈ssi (2012). The test statistics that come out of
this analysis have an asymptotic null distribution that depends on the realization of the volatility
process. Therefore, we cannot construct tables with critical values, but the null distribution and
hence p-value may be recovered either by Monte Carlo simulation of the limiting distribution
with estimated volatility process, or by using the wild bootstrap, analogously to Cavaliere and
Taylor (2008).

The plan of the paper is as follows. In Section 2, we present the model, and we obtain some
preliminary asymptotic results. In Section 3, we characterize the power envelope (conditional
on the volatility process) and we illustrate the power gain possibilities in four examples. In
Section 4, we discuss non-parametric estimation of the volatility process, and its use in the
construction of a class of adaptive tests; we also discuss various bootstrap implementations of
the tests. In Section 5, we extend the test to allow for deterministic components and short-run
dynamics. The finite-sample behaviour of these tests is investigated in a Monte Carlo experiment
in Section 6; simulation results are reported in the online Appendix. In Section 7, we discuss an
empirical application, and in Section 8 we provide some concluding remarks. Proofs are given
in Appendix A.

Throughout the paper, we use the notation Xn
p→ X and Xn

d→ X to denote convergence
in probability and convergence in distribution, respectively, for sequences of random variables

or vectors. We let Xn(u)
d→ X(u), u ∈ [0, 1] denote weak convergence in D[0, 1], the space

of right-continuous functions with finite left limits, under the Skorohod metric, and Xn
d→pX

1 An exception is Kim et al. (2002), who consider GLS-based testing for a unit root in case of a single break in the
volatility.
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denotes weak convergence in probability; see Giné and Zinn (1990). The notation �x� is used for
the largest integer less than or equal to x.

2. THE MODEL AND PRELIMINARY RESULTS

Consider the heteroscedastic first-order autoregressive model

�Xt = θXt−1 + εt , t = 1, . . . , n, (2.1)

εt = σtzt , (2.2)

E[zt |Ft−1] = 0, E[z2
t |Ft−1] = 1, (2.3)

whereX0 = 0, and where {Ft }t≥1 is the filtration generated by {εt }t≥1. Extensions to models with
deterministic components and higher-order autoregressions are considered in Section 5. The null
hypothesis of interest is the unit root hypothesis H0 : θ = 0.

We assume that {σt }t≥1 is a deterministic sequence, such that {εt }t≥1 is a martingale difference
sequence, with conditional (and unconditional) variance {σ 2

t }t≥1 and hence volatility {σt }t≥1. The
theory developed here can be extended to allow for an exogenous stochastic volatility process, in
which case the results would hold conditionally on this process. Furthermore, the analysis could
be extended to the case where {zt }t≥1 is a stationary GARCH-type process, but this will not be
considered explicitly.

If the variation in {σ 2
t }t≥1 averages out over subsamples (i.e., if (un)−1∑�un�

t=1 σ
2
t → σ̄ 2 > 0

as n → ∞, for all u ∈ [0, 1]), then under additional technical conditions, {εt }t≥1 satisfies an
invariance principle. This implies that conventional DF tests for a unit root will be asymptotically
valid, even though more powerful tests can be obtained by explicitly modelling the volatility
process; see, e.g., Seo (1999) and Ling et al. (2003).

In contrast, in this paper we are concerned with cases where the volatility displays permanent
shifts or trends. We do not assume a particular parametric specification, but instead require the
following.

ASSUMPTION 2.1. In the model (2.1)–(2.3): (a) defining σn(u) = σ�un�+1 for u ∈ [0, 1) and
σn(1) = σn, as n → ∞, σn(·) → σ (·) in D[0, 1] where σ (·) is strictly positive; (b) the sequence
{zt }t≥1 satisfies an invariance principle, i.e., as n → ∞,

Wn(u) := n−1/2
�un�∑
t=1

zt
d→ W (u), u ∈ [0, 1], (2.4)

where W (·) is a standard Brownian motion.

REMARK 2.1. Assumption 2.1(a) preserves persistent changes in the volatility as n → ∞. It is
closely related to the assumption σt = σ (t/n), considered, inter alia, by Cavaliere (2004) and
Cavaliere and Taylor (2007, 2008) (note that σt = σn((t − 1)/n)). It implies that σt , and hence
εt and Xt , are in fact triangular arrays {(Xnt , εnt , σnt ), t = 1, . . . , n; n = 1, 2, . . .}. However, we
suppress the double index notation for simplicity. The assumption is also similar in spirit to
the analysis of Hansen (1995), who assumes that σ 2

t is a smooth positive transformation of a
near-integrated autoregression, converging to an Ornstein–Uhlenbeck process. Hansen considers
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the effect of such volatility specifications on ordinary least-squares (OLS), generalized least-
squares (GLS) and adaptive estimation, when the regressor is a linear process with non-stationary
volatility. The analysis in this paper can be interpreted as a generalization of these results to the
case of a (near-) integrated regressor.

REMARK 2.2. The invariance principle for zt would follow if the martingale difference
assumption is strengthened to an independent and identically distributed (i.i.d.) assumption, or
augmented with a (conditional) Lindeberg condition.

The following lemma characterizes the limiting behaviour of the process {Xt } under a near-
integrated parameter sequence Hn : θn = c/n, with c ∈ R a fixed constant.

LEMMA 2.1. Consider the model (2.1)–(2.3) under Assumption 2.1. Under Hn : θn = c/n, and
as n → ∞,

n−1/2X�un�
d→ Xc(u) =

∫ u

0
ec(u−s)σ (s)dW (s), u ∈ [0, 1],

jointly with (2.4), where Xc(·) satisfies

dXc(u) = cXc(u)du+ σ (u)dW (u). (2.5)

All proofs are given in the Appendix. The lemma has direct consequences for the asymptotic
properties of the conventional DF tests. In particular, let DFn denote the t-statistic for θ = 0
in the first-order autoregression �Xt = θXt−1 + εt . As shown by Cavaliere (2004), Lemma 2.1
implies, under the null hypothesis c = 0,

DFn
d→
(∫ 1

0
σ (u)2du

∫ 1

0
X0(u)2du

)−1/2 ∫ 1

0
X0(u)σ (u)dW (u). (2.6)

The distribution of the expression on the right-hand side of (2.6) does not coincide with
the usual DF null distribution, unless σ (u) = σ (constant), such that X0(·) = σW (·). Thus, the
DF tests are not robust to persistent variation in σt , leading to a non-constant σ (·). As shown
by Cavaliere and Taylor (2008), this problem can be resolved by the use of the so-called wild
bootstrap. Alternatively, Cavaliere and Taylor (2007) use the fact that an Itô process such as
X0(·), with deterministic volatility σ (·), can be expressed as a time-deformed Brownian motion.
This can be used to define a sampling scheme, where Xt is observed at a lower frequency when
the volatility is low, and at a higher frequency when σ (u) is high. The application of the DF
(or Phillips–Perron) test to these skip-sampled observations leads to a statistic with the usual
asymptotic null distribution (albeit with a different power function than under homoscedasticity).
Yet another approach was developed by Beare (2016), who applies the DF/Phillips–Perron test
to the cumulative sum of reweighted increments of Xt , i.e., to X∗

t = ∑t
i=1�Xi/σ̂i , where σ̂t is

obtained by kernel estimation. This again leads to a test with the same asymptotic null distribution
as the DF test under homoscedasticity.

The focus of this paper is not on solving the size distortions caused by non-stationary
volatility, but on developing tests with higher power. In the next section, we derive the maximum
possible asymptotic power of any test of the unit root null against local alternatives, for the
(infeasible) case where σt is observed, and zt is an i.i.d. N (0, 1) sequence. Next, we show that
the asymptotic volatility function σ (·) is consistently estimable, and this can be used to construct
a family of point optimal tests that reach the Gaussian asymptotic power envelope. The resulting
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tests are adaptive, in the sense that there is no loss of asymptotic efficiency or power caused by
estimating σt .

3. POWER ENVELOPE AND INFEASIBLE LIKELIHOOD RATIO TEST

In this section, we derive the Gaussian asymptotic power envelope for the unit root hypothesis
in the model (2.1)–(2.3), with {σt }nt=1 known. This power envelope will then be compared to the
asymptotic power of the DF test, and of the likelihood ratio (LR) test based on known {σt }nt=1
(which, in practice, when {σt }nt=1 is not observed, will be infeasible).

Under Gaussianity, the log-likelihood is given by

�n(θ ) = −1

2

n∑
t=1

(
log 2πσ 2

t + (�Xt − θXt−1)2

σ 2
t

)
.

Define the log-likelihood ratio of θn = c/n relative to θ = 0:

�n(c) := �n(θn) − �n(0) = cSn − 1

2
c2Jn,

where

Sn = 1

n

n∑
t=1

Zt−1
�Xt

σt
, Jn = 1

n2

n∑
t=1

Z2
t−1,

with Zt−1 = Xt−1/σt .
The envelope is based on the power of the Neyman–Pearson test in a limit experiment that

provides an asymptotic approximation of the model in a neighbourhood of the null hypothesis.
This limit experiment is locally asymptotically quadratic (LAQ); see, e.g. Jeganathan (1995) and
Le Cam and Yang (1990). Because of the Gaussianity assumption, the log-likelihood ratio is
a quadratic function. Theorem 3.1 gives its limiting behaviour under the null hypothesis and
local alternatives, and characterizes the log-likelihood as locally asymptotically quadratic; see
Jeganathan (1995).

THEOREM 3.1. Consider the model (2.1)–(2.3), under Assumption 2.1. Let

Zc(u) = σ (u)−1Xc(u) =
∫ u

0
ec(u−s)

σ (s)

σ (u)
dW (s).

Under Hn : θn = c/n, we have as n → ∞,

(
Sn
Jn

)
d→
(
Sc
Jc

)
=

⎛⎜⎜⎝
∫ 1

0
Zc(u)dW (u) + c

∫ 1

0
Zc(u)2du∫ 1

0
Zc(u)2du

⎞⎟⎟⎠ , (3.1)

and hence, for fixed c̄ ∈ R,

�n(c̄) = c̄Sn − 1

2
c̄2Jn

d→ c̄Sc − 1

2
c̄2Jc =: �c(c̄). (3.2)
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REMARK 3.1. As usual in a likelihood analysis, the asymptotic distributions and hence power
functions derived below will continue to hold when the Gaussianity assumption is violated, as
long as {zt }t≥1 satisfies an invariance principle. However, the optimality claims in the results to
follow critically depend on its validity: if the actual density zt differs from the Gaussian density,
then more powerful tests can be constructed from a likelihood function derived from the actual
density. In an earlier working paper version of this paper, we considered the power envelope for
an arbitrary but known density p(z); see Boswijk (2005).

REMARK 3.2. A similar remark applies to the possible presence of conditional heteroscedasticity
in zt , i.e., when E[z2

t |Ft−1] = ht , where ht follows a stationary GARCH specification with
E[ht ] = 1. Under suitable additional conditions, the asymptotic properties derived below will
continue to hold, but more powerful testing procedures can be obtained from a likelihood
analysis of the model under a parametric specification for ht , analogous to Ling and Li
(1998). A different situation arises in the case of near-integrated GARCH processes, i.e., when
h�un�, u ∈ [0, 1] converges weakly to a stochastic process in D[0, 1]; see Boswijk (2001). We
do not consider this case explicitly, but we conjecture that the procedures developed below will
retain their validity, provided that the limiting volatility process is independent of the Brownian
motion W .

REMARK 3.3. Note that in (3.2), c refers to the true data-generating process (the
probability measure Pθn,n with θn = c/n), whereas c̄ characterizes a chosen local alternative.
Therefore, setting c = 0 gives the asymptotic null distribution of the Neyman–Pearson
test statistic for H0 : θ = 0 against Hn : θn = c̄/n, whereas setting c = c̄ gives the
asymptotic distribution under local alternatives, and hence can be used to evaluate local
power.

REMARK 3.4. An interpretation of Theorem 3.1 is that the model En = (Rn,A, {Pθ,n}θ∈R) is
locally approximated, for θn = c/n, by the limit experiment G = (R2,B, {Qc}c∈R}), where A
and B are the relevant Borel σ -fields, and where Qc is the distribution of (Sc, Jc), with log-
likelihood ratio �c(c̄) = log dQc̄/dQ0. An interpretation of this limit experiment is that we
observe Xc(u), u ∈ [0, 1], generated by (2.5), to make inference on c. The limit experiment is
a curved exponential model with one parameter c and two sufficient statistics (Sc, Jc). Note that
the information Jc is not ancillary, since its distribution under Qc depends on c. This implies
that the log-likelihood ratio is not locally asymptotically mixed normal (LAMN), but locally
asymptotically Brownian functional (LABF); see Jeganathan (1995).

The power of the Neyman–Pearson test for c = 0 against c = c̄, which rejects for large values
of �n(c̄), defines the asymptotic power envelope (conditional on σ (·)) for testing H0 : θ = 0
against Hn : θn = c̄/n. We evaluate this power envelope by Monte Carlo simulation, for −c ∈
{0, . . . , 20}, and for four different volatility functions, inspired by the simulations in Cavaliere
(2004).

1. σ1(u) = 1[0,0.9)(u) + 5 · 1[0.9,1](u); this represents a level shift in the volatility from 1 to 5
at time t = (9/10)n (i.e., late in the sample).

2. σ2(u) = 1[0,0.1)(u) + 5 · 1[0.1,1](u); an early level shift from 1 to 5.
3. σ3(u) = exp((1/2)H (u)), where dH (u) = −10H (u)du+ 10dB(u), with B(·) being a

standard Brownian motion, independent of W (·); this represents a realization of a
stochastic volatility process, with a low degree of mean-reversion and a fairly high
volatility-of-volatility.

C© 2017 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.
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4. σ4(u) = exp((1/2)H (u)), where H (u) = 5B(u); a realization of a stochastic volatility
process with no mean-reversion and a lower volatility-of-volatility.

Figure 1 depicts the volatility paths σ1(·)–σ4(·) that we use in our simulations. The two
stochastic volatilities σ3 and σ4 have been obtained by discretizing the relevant Brownian motions
and integrals over 5000 equidistant time points in the unit interval. Because these realizations are
kept fixed in repeated draws, they can be thought of as deterministic. All computations have been
performed in OX; see Doornik (2013).

The power envelopes are based on Monte Carlo simulations of �(c̄) under Qc, with c ∈
{0, c̄}. The simulations of�(c̄) underQ0 provide 5% critical values for the test, and the rejection
frequencies under Qc̄ then indicate the maximum possible power against c = c̄. Figure 2 depicts
the power envelopes for the four volatility functions, as well as the asymptotic power curves of
the one-sided LR test and the DF test. The one-sided LR test rejects for small values of the signed
LR test statistic for H0 : θ = 0 against H1 : θ < 0, given by

LRn = sgn(̂cn)
√

2�n (̂cn) = J−1/2
n Sn,

where ĉn = arg maxc �n(c) = J−1
n Sn, so that the maximum likelihood estimator is θ̂n = ĉn/n.

From these figures, we observe that the power of the LR test is close to the envelope, but
not equal to it, especially in case of stochastic volatility. Furthermore, in most cases (with the
exception of σ2), the power of the DF test is substantially less than that of the LR test (and hence
the envelope). Therefore, reweighting observations indeed has an important effect on the power
of unit root tests. It should be emphasized that we have chosen fairly extreme volatility functions;
for more realistic volatility paths, the power differences will be smaller.

Figure 1. Realization of volatility processes σ1–σ4. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 2. Asymptotic power envelope and power curves for σ1–σ4. [Colour figure can be viewed at
wileyonlinelibrary.com]

4. ADAPTIVE LIKELIHOOD RATIO TEST AND BOOTSTRAP

In the previous section, we have studied the power of procedures that assume that {σt }nt=1 is
known and observed. In practice, this is not the case, and σt will have to be estimated. One option
is to specify a parametric model for σt , such as a GARCH model, and then to consider maximum
likelihood estimation of that model. However, it is desirable to have a testing procedure that is not
too sensitive to deviations from such an assumption, and that will also work well, for example,
in the case of (gradual) changes in the level of the volatility.

Therefore, inspired by Hansen (1995), we consider non-parametric estimation of {σt }nt=1. Let

k : [−1, 1] → [0, 1] be a continuous kernel function satisfying 0 <
∫ 1
−1 k(x)dx < ∞, and we

consider the kernel estimator

σ̂n(u) = σ̂�un�+1, u ∈ [0, 1), σ̂n(1) = σ̂n,

where

σ̂ 2
t =

∑N
j=−N k(j/N )1{1≤t−j≤n}̂ε2

t−j∑N
j=−N k(j/N )1{1≤t−j≤n}

, t = 1, . . . , n.

Here N is a window width and ε̂t = �Xt is the restricted residual.2 The estimator is a weighted
average of leads and lags of ε̂2

t−j , with weights summing to 1. For t < N , the estimator is
determined by leads more than by lags and, for t > n−N , the relative weight of the lags is larger.

2 We could also use the OLS residual ε̂t = �Xt − θ̂nXt−1 here; the asymptotic results will not change.
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The estimator proposed by Hansen (1995) involves only lags, and hence can be interpreted as a
filtered volatility, whereas the double-sided version considered here can be seen as the smoothed
volatility. Preliminary Monte Carlo experiments have revealed that the use of the double-sided
weighted average leads to better finite-sample behaviour of the adaptive test considered below.

To prove uniform consistency of σ̂n(·), we need the following assumptions.

ASSUMPTION 4.1. σ (·) is continuous on [0, 1] (i.e., σ ∈ C[0, 1]).

ASSUMPTION 4.2. For some r > 2, supt E[|zt |2r ] < ∞.

LEMMA 4.1. Consider the model (2.1)–(2.3), under Assumptions 2.1, 4.1 and 4.2. If N = anb

for some a and b satisfying 0 < a < ∞ and b ∈ (2/r, 1), then both under H0 : θ = 0 and under
Hn : θn = c/n, as n → ∞,

sup
u∈[0,1]

∣∣̂σn(u)2 − σ (u)2
∣∣ p→ 0.

REMARK 4.1. Uniform consistency of the kernel estimator requires continuity of σ (·)
(Assumption 4.1). Hence we exclude level shifts in σ (·), as considered in some of the examples in
the previous section. Such level shifts can be approximated arbitrarily well by a smooth transition
function, such as the logistic function; but it is expected that the non-parametric estimator will
perform relatively badly around the change point. As noted later in Remark 4.6, it is possible
to develop the main result of this section allowing for a finite number of discontinuities in σ (·),
bypassing Lemma 4.1. This is not considered explicitly, for simplicity.

REMARK 4.2. The lemma involves a trade-off between the existence of moments and the window
width; for distributions with relatively fat tails, such that extreme observations occur with some
frequency, more smoothing is needed to obtain consistency.

REMARK 4.3. A simple example of an implementation of the kernel estimator is that
of an exponentially weighted (double-sided) moving average. Take k(x) = e−5|x|, where the
coefficient 5 is chosen such that k(1) = k(−1) ≈ 0. Then, letting λN = k(1/N ) = e−5/N , we
have k(j/N ) = λ

j

N , and
∑N

j=−N k(j/N ) ≈ (1 + λN )/(1 − λN ), such that σ̂ 2
t ≈ (1 + λN )−1(1 −

λN )
∑N

j=−N λ
j

N ε̂
2
t−j . For N = 100, this corresponds to a smoothing parameter of λN ≈ 0.95. As

the sample size increases, λN would have to converge to 1 to guarantee consistency, at the rate
determined by Lemma 4.1.

REMARK 4.4. In practice, the window width can be chosen by a leave-one-out cross-validation
procedure, which involves minimizing

CV(N ) =
n∑
t=1

(
ε̂2
t − σ̂ 2

t (N )

1 − wtt (N )

)2

, wtt (N ) = k (0)∑N
j=−N k (j/N) 1{1≤t−j≤n}

,

over N ; see Wasserman (2006).3 As discussed by Patilea and Raı̈ssi (2012), a formal analysis of
post-selection consistency requires the result of Lemma 4.1 to hold uniformly overN ∈ [Nl,Nu]
with Nl and Nu satisfying the rate requirement of the lemma. In non-parametric estimation
problems, leave-one-out cross-validation has been shown to lead to a window width that

3 Note that {wtt (N )}nt=1 are the diagonal elements of the smoothing matrix that maps the vector (̂ε2
1, . . . , ε̂

2
n)′ to the

vector (̂σ 2
1 , . . . , σ̂

2
n )′, corresponding to Lii in Wasserman (2006).

C© 2017 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.
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minimizes the mean integrated squared error. However, to our knowledge no optimality theory is
available when the estimated volatility is used in the construction of a test; the results to follow
only require consistency of the volatility estimator. Preliminary Monte Carlo simulations have
indicated that this method of selecting the window width leads to better finite sample behaviour
of the resulting testing procedures than other ad hoc methods of choosing a and b in the rate
N = anb; therefore, we use cross-validation in the Monte Carlo simulations and the empirical
application considered below.

The consistency of the kernel estimator σ̂n(·) can be used for constructing tests for a unit root
as follows. First, we can estimate the asymptotic score Sc and information Jc by

Ŝn = 1

n

n∑
t=1

Xt−1�Xt

σ̂ 2
t

, Ĵn = 1

n2

n∑
t=1

X2
t−1

σ̂ 2
t

.

These equations can be used to construct approximate point-optimal test statistics �̂n(c̄) = c̄Ŝn −
(1/2)c̄2Ĵn, or a one-sided LR statistic L̂Rn = Ĵ

−1/2
n Ŝn. Consistency of (Ŝn, Ĵn) is considered in

the next theorem.

THEOREM 4.1. Consider the model (2.1)–(2.3), under Assumptions 2.1, 4.1 and 4.2. Under
Hn : θn = c/n, we have as n → ∞, (

Ŝn
Ĵn

)
d→
(
Sc
Jc

)
.

REMARK 4.5. This theorem implies that we may asymptotically recover (in a weak convergence
sense) the likelihood ratio �(c) by non-parametric estimation of the infinite-dimensional
nuisance parameter σ (·), meaning that adaptive estimation and testing is possible. Note that the
result applies both when c = 0 (i.e., under the null hypothesis) and when c < 0. A formal analysis
of adaptivity involves finding a so-called least-favourable parametric submodel {Pθ,φ,n}θ∈R,φ∈�,
where φ ∈ � is a parameter vector characterizing {σt }; see Chapter 25 of Van der Vaart
(1998). Adaptivity requires block-diagonality of the information matrix in this model, which is
guaranteed by the Gaussianity assumption. To see this, note that the log-likelihood of the model
now becomes

�n(θ, φ) = −1

2

n∑
t=1

(
log 2πσ 2

t (φ) + (�Xt − θXt−1)2

σ 2
t (φ)

)
,

such that

∂2�n

∂θ∂φ
(θ, φ) = −

n∑
t=1

Xt−1(�Xt − θXt−1)

σ 4
t (φ)

∂σ 2
t (φ)

∂φ
,

and this will have mean zero when evaluated at the true value.

REMARK 4.6. Xu and Phillips (2008) show that adaptivity with respect to an unknown volatility
process can also be established when the volatility process has a finite number of discontinuities.
If σ (u) is not continuous at u = s ∈ (0, 1), then σ̂n(s) will converge to a weighted average of
σ (s−) = limu↑s σ (u) and σ (s+) = limu↓s σ (u), so that the result of Lemma 4.1 will not hold.
However, because this occurs at a set of points of Lebesgue measure 0, the result of Theorem 4.1
can still be shown to hold in such cases, which shows that the continuity assumption can be
avoided, at the cost of a slightly more involved proof.
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Theorem 4.1 implies that the limiting null distribution of adaptive tests will be affected by
nuisance parameters, just like the DF test – see (2.6). This means that critical values for such
tests cannot be tabulated, and should be generated on a case-by-case basis. One possibility is to
simulate the asymptotic null distribution of (S0, J0), with σ (·) replaced by σ̂n(·). If the simulated
continuous-time processes involved in the limiting distributions are discretized on a grid u ∈
{ut = t/n}ni=0, then

X0(ut ) =
∫ t/n

0
σ̂n(u)dW (u) =

t∑
i=1

σ̂i(W (ui) −W (ui−1)) = n−1/2X∗
t ,

where X∗
t = ∑t

i=1 σ̂iz
∗
i , with z∗t = n1/2(W (ut ) −W (ut−1)) an i.i.d. N (0, 1) sequence. From this

it can be shown that simulating the asymptotic null distribution based on σ̂n(·) can be interpreted
as a ‘volatility bootstrap’ procedure, where the bootstrap is based on the model under the null
and uses bootstrap errors ε∗

t = σ̂t z
∗
t .

An alternative is given by the wild bootstrap; see Liu (1988) and Mammen (1993). The
application of the wild bootstrap to unit root tests in the presence of non-stationary volatility
was analysed first by Cavaliere and Taylor (2008); in subsequent research it has been shown to
be widely applicable in unit root and cointegration analysis. The particular implementation we
propose is to generate bootstrap samples from

X∗
t =

t∑
i=1

ε∗
t =

t∑
i=1

ε̂t z
∗
t ,

where ε̂t = �Xt (the restricted residual) and z∗t ∼ i.i.d. N(0, 1), independent of the data. Next,
the bootstrap test statistics are constructed from

Ŝ∗
n = 1

n

n∑
t=1

X∗
t−1�X

∗
t

σ̂ 2
t

, Ĵ ∗
n = 1

n2

n∑
t=1

X∗2
t−1

σ̂ 2
t

.

Note that we do not propose to re-estimate σ 2
t for each bootstrap replication, for the simple reason

that ε∗2
t = ε̂2

t + ε̂2
t (z

∗2
t − 1), so that a kernel estimator applied to ε∗2

t would have an additional
noise term relative to σ̂ 2

t .
Let L̂Rn = Ĵ

−1/2
n Ŝn, the adaptive one-sided LR statistic, and let L̂R

∗
n = (Ĵ ∗

n )−1/2Ŝ∗
n , its

bootstrap version (either the volatility bootstrap or the wild bootstrap).

THEOREM 4.2. Consider the model (2.1)–(2.3), under Assumptions 2.1, 4.1 and 4.2. Under both
H0 : θ = 0 and Hn : θn = c/n, we have as n → ∞,

(
Ŝ∗
n

Ĵ ∗
n

)
d→p

⎛⎜⎜⎝
∫ 1

0
Z0(u)dW (u)∫ 1

0
Z0(u)2du

⎞⎟⎟⎠ ,
so that

L̂R
∗
n

d→p

(∫ 1

0
Z0(u)2du

)−1/2 ∫ 1

0
Z0(u)dW (u).
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The theorem implies that the (wild or volatility) bootstrap is asymptotically valid, in the
sense that the bootstrap p-value, defined as Pr[L̂R

∗
n < L̂Rn|{Xt }nt=1], is asymptotically uniformly

distributed on the unit interval under the null hypothesis. Because L̂R
∗
n has the same limiting null

distribution under Hn with c �= 0 as under H0, it follows that the bootstrap test has the same
asymptotic power function as the test based on the true but unknown critical values.

5. EXTENSIONS

The first-order autoregression with a known zero mean and a zero starting value is too restrictive
in many empirical applications. Therefore, in this section we discuss how the adaptive test
derived in the previous section can be extended in these directions.

Suppose, first, that the observed data are

Yt = μ′dt +Xt, t = 1, . . . , n, (5.1)

where Xt satisfies the same assumptions as in the previous sections, and dt is a vector of
deterministic functions of t , with μ being a conformable parameter vector. As usual in the unit
root literature, we focus on the cases dt = 1 (constant mean μ) and dt = (1, t)′ (linear trend
μ′dt = μ1 + μ2t). Maintaining the assumption that X0 = 0, this implies that the point-optimal
invariant test for θ = 0 against θn = c̄/n, with observed {σt }nt=1, follows as a straightforward
extension of the analysis of Elliott et al. (1996). In particular, let μ̂(c̄) be the OLS estimator of μ
in the regression

Y1

σ1
= μ′ d1

σ1
+ z1,

�Yt − (c̄/n)Yt−1

σt
= μ′�dt − (c̄/n)dt−1

σt
+ zt , t = 2, . . . , n.

Using the notational convention Y0 = 0 and d0 = 0, so that �Y1 = Y1 and �d1 = d1, we have

μ̂(c̄) =
(

n∑
t=1

1

σ 2
t

(
�dt − c̄

n
dt−1

)(
�dt − c̄

n
dt−1

)′
)−1

×
n∑
t=1

1

σ 2
t

(
�dt − c̄

n
dt−1

)(
�Yt − c̄

n
Yt−1

)
. (5.2)

Next, let Xdt (c̄) = Yt − μ̂(c̄)′dt . Then the point-optimal invariant test rejects for large values of

�d
n(c̄) = −1

2

n∑
t=1

(�Xdt (c̄) − (c̄/n)Xdt−1(c̄))2

σ 2
t

+ 1

2

n∑
t=1

�Xdt (0)2

σ 2
t

= c̄Sdn (c̄) − 1

2
c̄2J dn (c̄) − 1

2
Adn(c̄),

where, defining Zdt−1(c̄) = Xdt−1(c̄)/σt ,

Sdn (c̄) = 1

n

n∑
t=1

Zdt−1(c̄)
�Xdt (c̄)

σt
,
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J dn (c̄) = 1

n2

n∑
t=1

Zdt−1(c̄)2,

Adn(c̄) =
n∑
t=1

�Xdt (c̄)2 −�Xdt (0)2

σ 2
t

.

The asymptotic distribution of �d
n(c̄) is given next.

THEOREM 5.1. Consider the model defined by (2.1)–(2.3) and (5.1), under Assumptions 2.1, 4.1
and 4.2. (a) If dt = 1 (constant mean), then under Hn : θn = c/n, as n → ∞,⎛⎜⎝ S

d
n (c̄)

J dn (c̄)

Adn(c̄)

⎞⎟⎠ d→

⎛⎜⎝ S
d
c (c̄)

J dc (c̄)

Adc (c̄)

⎞⎟⎠ =
⎛⎝ScJc

0

⎞⎠ ,
where (Sc, Jc) are as in Theorem 3.1; (b) if dt = (1, t)′ (linear trend), then under Hn : θn = c/n,
as n → ∞,

⎛⎜⎝ S
d
n (c̄)

J dn (c̄)

Adn(c̄)

⎞⎟⎠ d→

⎛⎜⎝ S
d
c (c̄)

J dc (c̄)

Adc (c̄)

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∫ 1

0
σ (u)−2Xdc,c̄(u)dXdc,c̄(u)∫ 1

0
σ (u)−2Xdc,c̄(u)2du

(M(c̄) −M(0))2

∫ 1

0
σ (u)−2du

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where Xdc,c̄(u) = Xc(u) −M(c̄)u, and

M(c̄) =
(∫ 1

0

(
1 − c̄u

σ (u)

)2

du

)−1 ∫ 1

0

1 − c̄u

σ (u)2
(dXc(u) − c̄Xc(u)du) . (5.3)

Analogously to Elliott et al. (1996), for a given choice of c̄ we can define a GLS-detrended
LR test statistic as LRn(c̄) = J dn (c̄)−1/2Sdn (c̄). As indicated by Jansson and Nielsen (2012), we can
also optimize over the parameter c̄, i.e., use minc̄≤0 LRn(c̄) as test statistic. Adaptive bootstrap
versions (with σt estimated) are defined entirely analogously to the case with no deterministic
components discussed in the previous section.

In general, the first-order autoregressive model for Yt might be misspecified. Therefore,
the testing procedures can be extended to higher-order dynamics as follows. Suppose that we
maintain (5.1) for the observed time series Yt , but now (2.1) is replaced by

�Xt = θXt−1 + φ(L)−1εt , t = 1, . . . , n, (5.4)

with X0 = 0, where L is the lag operator and φ(z) = 1 −∑p−1
j=1 φjz

j has all roots outside the
unit circle. This corresponds to the AR(p) model

φ(L)(1 − (1 + θ )L)(Yt − μ′dt ) = εt , (5.5)

where the errors εt are still assumed to satisfy (2.2)–(2.3) and Assumption 2.1.
Generalizing the approach of Elliott et al. (1996), we can (from an asymptotic point of view)

ignore the short-term dynamics in constructing the GLS-detrended time series. Therefore, let
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14 H. P. Boswijk and Y. Zu

Xdt (c̄) = Yt − μ̂(c̄)′dt with μ̂(c̄) as defined in (5.2). Then, a test that rejects for small values of
the t-statistic of δ in the weighted least-squares regression

�Xdt (c̄)

σt
= δ

Xdt−1(c̄)

σt
+

p−1∑
j=1

γj
�Xdt−j (c̄)

σt
+ zt , t = p + 1, . . . , n, (5.6)

is a natural extension of the DF–GLS test of Elliott et al. (1996). In combination with a
non-parametric volatility estimator and the wild bootstrap, this leads to the following testing
procedure.

ALGORITHM 5.1. (ADAPTIVE WILD BOOTSTRAP UNIT ROOT LR TEST IN AR(p) MODEL)

STEP 1. Estimate σt based on OLS residuals ε̂t in an AR(p − 1) for �Yt (i.e. an AR(p)
for Yt with a unit root imposed), including a constant if dt = (1, t)′.

STEP 2. Construct Xdt (c̄) = Yt − μ̂(c̄)′dt , with μ̂(c̄) as in (5.2), with σt replaced by σ̂t .
STEP 3. Calculate the t-statistic L̂Rn for δ = 0 in (5.6) with σt replaced by σ̂t .
STEP 4. Construct bootstrap errors ε∗

t = ε̂t z
∗
t , and generate bootstrap observations Y ∗

t

from the same estimated AR(p) model under the unit root restriction as in Step 1
(using starting values (Y ∗

1 , . . . , Y
∗
p ) = (Y1, . . . , Yp)); construct bootstrap statistics L̂R

∗
n

by applying Steps 2 and 3 to Y ∗
t , and use these to calculate the bootstrap p-value.

In practice, the first step will have to be preceded by a lag order selection procedure, based on
information criteria, residual autocorrelation tests, or a combination of both. In the next theorem,
we assume that this has led to a selected autoregressive order p that is (larger than or) equal to
the true order.

THEOREM 5.2. Consider the model defined by (5.4), (2.2), (2.3) and (5.1), under Assumptions
2.1, 4.1 and 4.2. Then, under Hn : θn = c/n, as n → ∞,

L̂Rn
d→
{
J

−1/2
c Sc, dt = 1,

J dc (c̄)−1/2Sdc (c̄), dt = (1, t)′,

where (Sc, Jc) are as in Theorem 3.1, and (Sdc (c̄), J dc (c̄)) are as in Theorem 5.1. Under both
H0 : θ = 0, and Hn : θn = c/n, we have as n → ∞,

L̂R
∗
n

d→p

{
J

−1/2
0 S0, dt = 1,

J d0 (c̄)−1/2Sd0 (c̄), dt = (1, t)′,

so that bootstrap p-values are asymptotically uniformly distributed on [0, 1] under H0.

6. MONTE CARLO RESULTS

In this section, we compare the finite-sample behaviour of the adaptive one-sided LR test
for a unit root with that of the DF-type t-test in a Monte Carlo experiment. We consider
four data-generating processes, corresponding to the volatility functions σ1(·)–σ4(·) considered
in Section 3; i.e., for any sample size n, we set σjt = σj ((t − 1)/n) for j = 1, . . . , 4. The
innovations {zt }nt=1 are generated as i.i.d. N (0, 1). The lag length is fixed at 1, both in the data-
generating process and in the test regressions. Both tests allow for an unknown mean, removed
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by GLS demeaning with c̄ = −7 – so that DF is in fact the DF–GLSμ test of Elliott et al.
(1996). The sample sizes considered are n ∈ {100, 250, 500}, and we use the exponential kernel
k(x) = e−5|x|, with the window width N selected by leave-one-out cross-validation. The choice
of kernel function is arbitrary, in this case inspired by its relation to double-sided exponential
smoothing as discussed in Remark 4.3. As usual in kernel-based estimation, we expect the choice
of the window width to have a much bigger impact on the results than the choice of the kernel.

The volatility smoother uses restricted residuals in all the scenarios. For both test statistics,
we consider two approaches to obtain their critical values. For the adaptive LR statistic, we
compare the wild bootstrap implementation to a test based on simulated asymptotic critical
values, replacing the unknown σ (·) with the estimate σ̂n(·) (i.e., the volatility bootstrap). For the
DF statistic, we compare the wild bootstrap implementation with a version using the standard
asymptotic critical values (which are valid only in case of unconditional homoscedasticity). All
results are based on 10,000 Monte Carlo replications and 999 bootstrap replications (which is
also the number of replications used for simulating the asymptotic p-value of the LR test). Both
the wild bootstrap DF test and the wild bootstrap LR test use the restricted OLS residuals to
generate the bootstrap samples.

The simulation results are provided in the online Appendix. They show that the wild bootstrap
is an effective way of correcting size distortions. As the sample size grows, the adaptive LR test
realizes an increasing part of the power gain potential over the DF test, as predicted by the power
envelope. Although our assumptions do not allow for it, the adaptive LR test has good power in
case of a discontinuous change in the volatility process. This supports our claim that such abrupt
changes in volatility are not a problem for the test in practice.

7. EMPIRICAL APPLICATION: EU REAL EXCHANGE RATES, 1973–2015

In this section, we apply the adaptive LR test developed in this paper to study the validity of
the purchasing power parity (PPP) hypothesis in 16 EU countries. The PPP hypothesis states
that in a well-functioning world market, foreign currencies should have the same purchasing
power in the long run, which implies that the real exchange rate should exhibit stationary, mean-
reverting properties. Macro-economists often use classical unit root tests with real exchange rate
data to test the PPP hypothesis, where a rejection of the unit root hypothesis is used as evidence
to support the PPP hypothesis; see, e.g., Froot and Rogoff (1995). However, empirical studies
often fail to reject the unit root hypothesis, which is sometimes attributed to the low power of
classical unit root tests; see Taylor et al. (2001). Because macro-economic time series often
display persistent changes in volatility, we conjecture that our LR test designed to account for
non-stationary volatility could provide stronger evidence for the PPP hypothesis.

For 16 EU member countries, we analyse their real effective exchange rate (REER), i.e., the
average of the bilateral real exchange rates of their trading partners, weighted by the respective
trade shares of each partner. The use of REERs provides a test of the multi-country version of
PPP; rejection of the unit root hypothesis based on REERs can be viewed as stronger evidence
for PPP to hold than tests using bilateral rates; see Bahmani-Oskooee et al. (2007). We focus
on the post-Bretton Woods floating exchange rate period, and apply the tests to monthly log-
REER observations, 1973:1–2015:12, obtained from the web site of the Bank for International
Settlements.4

4 http://www.bis.org/statistics/eer.htm
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16 H. P. Boswijk and Y. Zu

Figure 3. Log-real effective echange rates for 16 EU countries, 1973:1–2015:12. [Colour figure can be
viewed at wileyonlinelibrary.com]

The data are depicted in Figure 3. For almost all countries, we do not observe a clear pattern
of strong mean reversion: the REERs can persistently deviate from their mean for a large number
of years. This illustrates the common empirical difficulty to find strong evidence supporting PPP.

The results are based on AR(p) models with an unknown mean for each of the 16 time
series. The autoregressive orders p have been chosen to obtain residuals with no significant
autocorrelation.

Figure 4 displays the non-parametric kernel estimate of the volatility (monthly percentage
standard deviation) of the 16 real exchange rate series, where we have used the exponential
kernel k(x) = e−5|x|, with the window width N selected by the leave-one-out cross-validation
method. The volatility estimator is based on the OLS residuals from the selected AR(p) model
under the unit root restriction, in agreement with Algorithm 5.1.

It is observed that the volatility of most series decreases gradually, although with different
patterns, in the sample period considered; exceptions are Norway, Switzerland and the UK,
which display an increase volatility around the financial crisis. The volatility paths suggest that
the constant volatility assumption in classical unit root tests might be violated, and it seems
reasonable to entertain the possibility of non-stationary volatility.

Table 1 reports wild bootstrap p-values of the DF and adaptive LR tests. For comparison,
the asymptotic p-values of the DF test (valid only in case of unconditional homoscedasticity)
are also provided; the difference with the bootstrap p-values is small in most cases. We observe
that the p-values of the adaptive LR test may be both lower and higher than those of the DF test,
and are often in the same order of magnitude. Most remarkable is the result for Italy: using a 5%
significance level, the unit root hypothesis is not rejected based on the DF test, but application of
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Figure 4. Non-parametric volatility estimate (percentage) for 16 EU countries, 1973:1–2015:12. [Colour
figure can be viewed at wileyonlinelibrary.com]

Table 1. Asymptotic and wild bootstrap p-values of DF and adaptive LR test.

DF asy p-value DF WB p-value LR WB p-value p

Austria 0.697 0.718 0.799 12
Belgium 0.086 0.101 0.060 1
Denmark 0.050 0.062 0.059 12
Finland 0.046 0.034 0.299 11
France 0.140 0.141 0.252 10
Germany 0.060 0.056 0.069 10
Greece 0.160 0.166 0.219 12
Ireland 0.197 0.208 0.338 13
Italy 0.215 0.229 0.038 1
Netherlands 0.009 0.005 0.006 12
Norway 0.020 0.019 0.022 1
Portugal 0.097 0.123 0.161 12
Spain 0.519 0.492 0.799 1
Sweden 0.757 0.785 0.752 1
Switzerland 0.604 0.628 0.440 1
United Kingdom 0.131 0.130 0.062 12

Note: The table reports asymptotic and wild bootstrap p-values for the DF–GLSμ, and wild bootstrap p-values for the
adaptive LR tests, for the real effective exchange rate of 16 EU countries; p refers to the autoregressive order used in the
test regressions.

C© 2017 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.



18 H. P. Boswijk and Y. Zu

the adaptive LR test leads to a clear rejection, with a p-value of around 4%. To a lesser extent,
similar conclusions apply to Belgium and the UK. In summary, the example illustrates that the
use of the more powerful adaptive LR test can indeed provide stronger evidence for the PPP
hypothesis than using conventional tests, which confirms its useful role in the empirical analysis
of macro-economic data.

8. DISCUSSION

In this paper, we have demonstrated that substantial power differences of unit root tests can arise
in models with non-stationary volatility. We have shown that it is possible to construct a class
of tests that have asymptotic power close to the envelope. The tests are based on non-parametric
volatility estimation, and therefore do not require very specific assumptions on the parametric
form of the volatility process. This approach can be extended in various directions.

First, for uniform consistency of the non-parametric volatility estimator, the volatility process
needs to have continuous sample paths. This means that sudden level shifts are excluded. In
practice, one might argue that these can be approximated arbitrarily well by smooth transition
functions; furthermore, as shown by Xu and Phillips (2008), adaptive testing might be possible
even in the presence of a finite number of discontinuities. The Monte Carlo experiment in this
paper suggests that the procedure might perform quite well for level shifts in the volatility.

Secondly, the analysis is based on a deterministic volatility sequence. The asymptotic theory
and the bootstrap method could be extended to allow for an exogenous volatility process, as
long as it is independent of the Brownian motion defined from the standardized innovations.
Hence, this excludes non-stationary volatility processes with statistical leverage effects, which
are relevant in applications to equity prices. Note that our approach does not allow for stationary
(GARCH-type) conditional heteroscedasticity, with or without leverage effects. It would be of
interest to extend the analysis in this direction, leading to further possibilities for higher power.

The analysis in this paper can be extended to the multivariate case. The non-parametric
volatility estimator has a very obvious extension to an estimator of a time-varying variance
matrix; as long as the same kernel and window width is used for all variances and covariances, the
resulting estimator will be positive semi-definite by construction. This can be used to construct
more efficient cointegration tests or adaptive estimators of cointegrating vectors in the presence
of non-stationary volatility. We are currently exploring this possibility; see Boswijk and Zu
(2016).
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APPENDIX A: PROOFS OF RESULTS

Proof of Lemma 2.1: Let αn = 1 + θn, and note thatXt = αnXt−1 + σtzt , such thatXt = ∑t−1
i=0 α

i
nσt−izt−i

(as X0 = 0) and hence

n−1/2X�un� = fn(u)
∫ u

0
gn(s)dWn(s), (A.1)

where fn(u) = α�un�
n and gn(u) = α−�un�−1

n σn(u). It follows that fn(u) = (1 + c/n)�un� → ecu, and gn(u) →
e−cuσ (u), both in D[0, 1]. The required result

n−1/2X�un�
d→
∫ s

0
ec(u−s)σ (s)dW (s)

then follows from the continuous mapping theorem (as the integrand is non-stochastic).
The stochastic differential equation for Xc(u) follows from the fact that Yc(u) = e−cuXc(u) satisfies

dYc(u) = e−cuσ (u)dW (u), and applying Itô’s lemma to Xc(u) = ecuYc(u) = f (u, Yc(u)), leading to

dXc(u) = cecuYc(u)du+ ecudYc(u) = cXc(u)du+ σ (u)dW (u). (A.2)

�

Proof of Theorem 3.1: Write Jn as

Jn = 1

n2

n∑
t=1

σ−2
t X2

t−1 =
∫ 1

0
σn(u)−2Xn(u)2du,

where Xn(u) = n−1/2X�un�. Lemma 2.1, Assumption 2.1 (including strict positivity of σ (·)) and the
continuous mapping theorem together imply

Jn
d→ Jc =

∫ 1

0
σ (u)−2Xc(u)2du =

∫ 1

0
Zc(u)2du.

For Sn, we have

Sn − cJn = 1

n

n∑
t=1

σ−1
t Xt−1zt =

∫ 1

0
σn(u)−1Xn(u)dWn(u).

Using (σn(·), Xn(·),Wn(·)) d→ (σ (·), Xc(·),W (·)), and E[z2
t ] = 1, it follows from Theorem 2.1 of Hansen

(1992) that

Sn
d→
∫ 1

0
σ (u)−1Xc(u)dW (u) + cJc =

∫ 1

0
Zc(u)dW (u) + cJc.

�
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Proof of Lemma 4.1: The proof is adapted from Hansen (1995), Theorem 2.1. We first show the result:

max
1≤t≤n

∣∣̂σ 2
t − σ 2

t

∣∣ p→ 0. (A.3)

Let

wjN =
( N∑
j=−N

k

(
j

N

)
1{1≤t−j≤n}

)−1

k

(
j

N

)
1{1≤t−j≤n},

such that σ̂ 2
t = ∑N

j=−N wjN ε̂
2
t−j , with

∑N

j=−N wjN = 1. We have

σ̂ 2
t − σ 2

t = Rat + σ 2
t R

b
t + Rct + Rdt , (A.4)

where

Rat =
N∑

j=−N
wjN (σ 2

t−j − σ 2
t ), Rbt =

N∑
j=−N

wjN (z2
t−j − 1),

Rct =
N∑

j=−N
wjN (σ 2

t−j − σ 2
t )(z2

t−j − 1), Rdt =
N∑

j=−N
wjN (̂ε2

t−j − ε2
t−j ).

Hansen’s proof that max1≤t≤n |Rat |
p→ 0, max1≤t≤n |σ 2

t R
b
t |

p→ 0 and max1≤t≤n |Rct |
p→ 0 can be directly

extended to the present case. For the fourth term, we note that ε̂t = εt + (c/n)Xt−1. Therefore,∣∣∣∣ N∑
j=−N

wjN (̂ε2
t−j − ε2

t−j )
∣∣∣∣ ≤ 2 |c|

∣∣∣∣ 1n
N∑

j=−N
wjNεt−jXt−1−j

∣∣∣∣
+ c2

∣∣∣∣ 1

n2

N∑
j=−N

wjNX
2
t−1−j

∣∣∣∣. (A.5)

When c = 0, the right-hand side is identically zero; when c �= 0, analogous to Hansen (1995), p. 1130, it
follows that

max
1≤t≤n

∣∣∣∣ 1n
N∑

j=−N
wjNεt−jXt−1−j

∣∣∣∣ p→ 0, (A.6)

max
1≤t≤n

∣∣∣∣ 1

n2

N∑
j=−N

wjNX
2
t−1−j

∣∣∣∣ = Op

(
N 2

n2

)
p→ 0, (A.7)

such that max1≤t≤n
∣∣Rdt ∣∣ p→ 0. This proves (A.3).

Next, (A.3) can be strengthened to uniform consistency of σ̂n(·)2 as follows. Assumption 2.1 implies
that supu∈[0,1] |σn(u)2 − σ (u)2| → 0 as n → ∞, where σn(u) = σ�un�+1 for u ∈ [0, 1) and σn(1) = σn. This
definition implies that σ̂n(u)2 − σn(u)2 = σ̂ 2

t − σ 2
t for u ∈ [(t − 1)/n, t/n). This in turn implies that

sup
u∈[0,1]

∣∣̂σn(u)2 − σ (u)2
∣∣ ≤ sup

u∈[0,1]

∣∣̂σn(u)2 − σn(u)2
∣∣+ sup

u∈[0,1]

∣∣σn(u)2 − σ (u)2
∣∣

= max
1≤t≤n

∣∣̂σ 2
t − σ 2

t

∣∣+ sup
u∈[0,1]

∣∣σn(u)2 − σ (u)2
∣∣

p→ 0.

�
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Proof of Theorem 4.1: Consistency of Ĵn follows directly from Lemma 2.1 and 4.1 and the continuous
mapping theorem. For Ŝn, we use

Ŝn − cĴn = 1

n

n∑
t=1

σ̂−2
t Xt−1σtzt =

∫ 1

0
σ̂n(u)−2σn(u)dUn(u),

where

Un(u) := n−1/2
�un�∑
t=1

Xt−1zt =
∫ u

0
Xn(s)dWn(s).

Because (Xn(·),Wn(·)) d→ (Xc(·),W (·)), and E[z2
t ] = 1, it follows from Theorem 2.1 of Hansen (1992)

that Un(u)
d→ U (u) := ∫ u

0 Xc(s)dW (s). Combining this with Lemma 4.1, and the fact that σ (·) is strictly
positive and non-stochastic, we find

Ŝn
d→
∫ 1

0
σ (u)−1dU (u) + cJc =

∫ 1

0
Zc(u)dW (u) + cJc = Sc.

�

Proof of Theorem 4.2: Define X∗
n(u) = n−1/2X∗

�un� and

Ŵ ∗
n (u) = n−1/2

�un�∑
t=1

�X∗
t

σ̂t
.

We prove the following joint convergence:⎛⎜⎝ X∗
n(u)

Ŵ ∗
n (u)

σ̂n(u)

⎞⎟⎠ d→p

⎛⎜⎝X0(u)

W (u)

σ (u)

⎞⎟⎠ , (A.8)

with X0(u) = ∫ u
0 σ (s)dW (s). Using the continuous mapping theorem, it then follows that

Ĵ ∗
n =

∫ 1

0
σ̂n(u)−2X∗

n(u)2du
d→p

∫ 1

0
σ (u)−2X0(u)2du =

∫ 1

0
Z0(u)2du = J0, (A.9)

and analogously to the proof of Theorem 4.1,

Ŝ∗
n =

∫ 1

0
σ̂n(u)−1X∗

n(u)dŴ ∗
n (u)

d→p

∫ 1

0
Z0(u)dW (u),

jointly with (A.9). This will prove the theorem, noting that the result for L̂R
∗
n = (Ĵ ∗

n )−1/2Ŝ∗
n follows easily

from the continuous mapping theorem.
To prove (A.8) for the wild bootstrap, note that(

X∗
n(u)

Ŵ ∗
n (u)

)
= n−1/2

�un�∑
t=1

htz
∗
t , ht =

(
ε̂t
ε̂t /σ̂t

)
. (A.10)

Because {z∗
t }t≥1 is i.i.d. N (0, 1), independent of the data, it follows that conditionally on the data, this is

a bivariate Gaussian process with covariance kernel Ĉn(u, s) = V̂n(u ∧ s), where V̂n(u) := n−1
∑�un�

t=1 hth
′
t .

Defining h(s) = (σ (s), 1)′, we prove that

V̂n(u)
p→
∫ u

0
h(s)h(s)′ds =: V (u), (A.11)
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uniformly in u ∈ [0, 1]. This will imply(
X∗
n(u)

Ŵ ∗
n (u)

)
d→p

(
X0(u)
W (u)

)
,

because the right-hand side is a Gaussian process with covariance kernel C(u, s) = V (u ∧ s). The joint
convergence (A.8) then holds trivially, because of Lemma 4.1 and because conditionally on the data, σ̂n(u)
has a degenerate distribution.

To prove (A.11), we start with the first diagonal element V̂11,n(u) of V̂n(u):

V̂11,n(u) = 1

n

�un�∑
t=1

ε̂2
t = 1

n

�un�∑
t=1

ε2
t + c2

n3

�un�∑
t=1

X2
t−1 + 2

c

n2

�un�∑
t=1

εtXt−1.

For the first term,

1

n

�un�∑
t=1

ε2
t = 1

n

�un�∑
t=1

σ 2
t z

2
t

p→
∫ u

0
σ 2(s)ds = V11(u),

uniformly in u ∈ [0, 1], which is (a special case of) the classical uniform convergence in probability result
for the quadratic variation of a semimartingale. The second and third terms are both 0 under H0 : θ = 0;
under Hn : θn = c/n, they are both Op(n−1) = op(1), as

(
n−2

�un�∑
t=1

X2
t−1, n

−1
�un�∑
t=1

εtXt−1

)
d→
(∫ u

0
Xc(s)

2ds,

∫ u

0
Xc(s)σ (s)dW (s)

)
by the continuous mapping theorem and weak convergence to the stochastic integral, respectively. Next,

V̂22,n(u) = 1

n

�un�∑
t=1

ε̂2
t

σ̂ 2
t

=
∫ u

0
σ̂n(s)

−2dV̂11,n(s)
p→
∫ u

0
σ (s)−2dV11(s) = u = V22(u),

by the continuous mapping theorem. Analogously,

V̂12,n(u) = n−1
�un�∑
t=1

ε̂2
t /σ̂t

p→
∫ u

0
σ (s)ds = V12(u).

This proves (A.11) and hence (A.8), and hence the theorem.
An analogous result obtains for the volatility bootstrap, based on ε∗

t = σ̂t z
∗
t . In this case, ht in (A.10) is

replaced by ht = (̂σt , 1), so that Lemma 4.1 directly implies (A.11). �

Proof of Theorem 5.1: Consider, first, the case of a constant mean, dt = 1. Because�d1 = 1 and�dt = 0
for t = 2, . . . , n, it follows that under Hn,

μ̂(c̄) =
(

1

σ 2
1

+ c̄2

n2

n∑
t=2

1

σ 2
t

)−1 (
Y1

σ 2
1

− c̄

n

n∑
t=2

�Yt − (c̄/n)Yt−1

σ 2
t

)
= Y1 +Op(n−1/2),

and henceXd
t (c̄) = Yt − Y1 +Op(n−1/2) = Xt −X1 +Op(n−1/2). From this, and the proof of Theorem 3.1,

it easily follows that (
Sdn (c̄)

J dn (c̄)

)
d→
(
Sc
Jc

)
,
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with (Sc, Jc) as defined in Theorem 3.1. Furthermore, as �Xd
t (c̄) = �Xd

t (0) = �Xt for t = 2, . . . , n and
�Xd

1 (c̄) = �Xd
1 (0) +Op(n−1/2), it follows that

Adn(c̄) =
n∑
t=1

�Xd
t (c̄)2 −�Xd

t (0)2

σ 2
t

= �Xd
1 (c̄)2 −�Xd

1 (0)2

σ 2
1

p→ 0.

In case of a linear trend, we have

�d1 = d1 =
(

1
1

)
, �dt =

(
0
1

)
, t = 2, . . . , n,

which yields

μ̂(c̄) − μ =
(

1

σ 2
1

d1d
′
1 +

n∑
t=2

1

σ 2
t

(
(c̄/n)2 −(c̄/n) (1 − (c̄/n)(t − 1))

−(c̄/n) (1 − (c̄/n)(t − 1)) (1 − (c̄/n)(t − 1))2

))−1

×
(
X1

σ 2
1

d1 +
n∑
t=2

1

σ 2
t

( −(c̄/n)(�Xt − (c̄/n)Xt−1)
(1 − (c̄/n)(t − 1)) (�Xt − (c̄/n)Xt−1)

))
.

Next,

n−1/2Xd
�un�(c̄) = n−1/2X�un� − n−1/2(μ̂(c̄) − μ)′DnD

−1
n d�un�,

where Dn = diag(1, n1/2) is chosen such that Dn(μ̂(c̄) − μ) has a non-degenerate distribution:

Dn(μ̂(c̄) − μ) =
(

1/σ 2
1 0

0 n−1
∑n

t=2 (1 − (c̄/n)(t − 1))2 /σ 2
t

)−1

×
(

X1/σ
2
1

n−1/2
∑n

t=2 (1 − (c̄/n)(t − 1)) (�Xt − (c̄/n)Xt−1)/σ 2
t

)
+ op(1)

d→
(
X1

M(c̄)

)
,

with M(c̄) defined in (5.3). Noting that n−1/2D−1
n d�un� → (0, u)′, this yields n−1/2Xd

�un�(c̄)
d→ Xd

c,c̄(u), and hence the limit results for Sdn (c̄) and Jn(c̄). Finally, with μ̂2(c̄) denoting the second
component of μ̂(c̄), we have

Adn(c̄) =
n∑
t=1

�Xd
t (c̄)2 −�Xd

t (0)2

σ 2
t

=
n∑
t=2

(�Xt − μ̂2(c̄))2 − (�Xt − μ̂2(0))2

σ 2
t

= n(μ̂2(c̄)2 − μ̂2(0)2)n−1
n∑
t=2

1

σ 2
t

− 2n1/2(μ̂2(c̄) − μ̂2(0))n−1/2
n∑
t=2

�Xt

σ 2
t

d→ (M(c̄)2 −M(0)2)
∫ 1

0
σ (u)−2du− 2(M(c̄) −M(0))

∫ 1

0
σ (u)−2dXc(u)

= (M(c̄) −M(0))2

∫ 1

0
σ (u)−2du.

�
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Proof of Theorem 5.2: We will follow the steps of Algorithm 5.1.

STEP 1. Consistency of σ̂t . The restricted residuals ε̂t are obtained from the OLS regression

�Yt = (γ0+)γ1�Yt + . . .+ γp−1�Yt−p+1 + εt

= γ ′
Yt−1 + εt ,

where the intercept γ0 is only included in the model with a linear trend, dt = (1, t)′, and where the regressor
vector Yt−1 and coefficient vector γ are implicitly defined. Under H0, this regression is of the type studied in
Phillips and Xu (2006), and it follows directly from their Theorem 1 that (γ̂n − γ ) = Op(n−1/2). Under Hn,
the regression error needs to absorb the omitted variable, so that the error becomes εt + (c/n)Xt−1. Here,
we use the fact that in the above regression, we can replace �Yt−j by �Xt−j because they are identical in
the model with only a constant, and they differ by a constant in the model with a trend, which in that case is
corrected for by the intercept. Because

∑n

t=p+1 Yt−1εt = Op(n1/2) and
∑n

t=p+1 Yt−1(c/n)Xt−1 = Op(n1/2),
this does not change the rate of consistency of γ̂n. Using ε̂t = εt + (c/n)Xt−1 − (γ̂n − γ )′Yt−1, it now
follows analogously to (A.5)–(A.7) that

N∑
j=−N

wjN ε̂
2
t−j =

N∑
j=−N

wjNε
2
t−j + op(1),

which leads to uniform consistency following the proof of Lemma 4.1.

STEP 2. Limiting representation of adaptive GLS-detrended series. Define ψ(z) := φ(z)−1 = ∑∞
j=0 ψjz

j ,
and use the decomposition ψ(z) = ψ(1) + ψ∗(z)(1 − z), with ψ∗(z) = ∑∞

j=0 ψ
∗
j z

j , ψ∗
j = −∑∞

j=i+1 ψi .
This leads to

ut := φ(L)−1εt = ψ(1)εt + ηt − ηt−1,

where ηt = ψ∗(L)εt . Because the coefficients ψ∗
j are exponentially decaying, it follows that

n−1/2
�un�∑
t=1

ut = ψ(1)n−1/2
�un�∑
t=1

utεt + n−1/2(η�un� − η0)
d→ ψ(1)

∫ u

0
σ (s)dW (s).

Now, because �Xt = (c/n)Xt−1 + ut , we find that n−1/2X�un�
d→ ψ(1)Xc(u), analogously to the proof of

Lemma 2.1, where Xc(·) is the same as in that lemma. The steps of the proof of Theorem 5.1 can now be
followed to show that with known σ 2

t ,

n−1/2Xd
�un�(c̄)

d→
{
ψ(1)Xc(u), dt = 1,

ψ(1)Xd
c,c̄(u), dt = (1, t)′,

whereXd
c,c̄(·) is the same as defined in Theorem 5.1. Finally, the consistency of σ̂ 2

t as analysed above implies
that the same limit applies when the estimated σ 2

t are used in the construction of the GLS-detrended time
series.

STEP 3. Limiting distribution of adaptive t-statistic L̂Rn. Assume first that σt is known, so that the test is
based on the regression yt = β ′xt + zt , where yt = �Xd

t (c̄)/σt ,

x ′
t =

(
Xd
t−1(c̄)

σt
,
�Xd

t−1(c̄)

σt
, . . . ,

�Xd
t−p+1(c̄)

σt

)
= (x1t , x

′
2t ),

and β = (δ, γ1, . . . , γp−1)′ = (δ, γ ′)′. Let Dn = diag(n, n1/2Ip−1), and use the representation

Dn(β̂n − β) =
(

n(̂δn − δ)
n1/2(γ̂n − γ )

)
=
(
D−1
n

n∑
t=p+1

xtx
′
tD

−1
n

)−1

D−1
n

n∑
t=p+1

xtzt .
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For dt = 1, we have

D−1
n

n∑
t=p+1

xtx
′
tD

−1
n

d→
(
ψ(1)2

∫ 1
0 σ (u)−2Xc(u)2du 0

0 �

)
, (A.12)

D−1
n

n∑
t=p+1

xtzt
d→
(
ψ(1)

∫ 1
0 σ (u)−1Xc(u)dW (u)

U

)
, (A.13)

where � is a positive definite stochastic matrix, and U is a random vector. The first diagonal element of
(A.12) and the first element of (A.13) follow from the continuous mapping theorem and the results derived
in Step 2. An expression for � and U can be obtained from the proof of Theorem 1 of Xu and Phillips
(2008). Note that Xu and Phillips (2008) consider a stable autoregression, and therefore their results are
directly applicable only under H0; but under Hn, the additional terms entering x2t will be of lower order

such that n−1
∑n

t=p+1 x2t x
′
2t

d→ � and n−1
∑n

t=p+1 x2t zt
d→ U . The off-diagonal block in (A.12) follows

from the other results as

n−3/2
n∑

t=p+1

Xd
t−1(c̄)�Xd

t−j (c̄) = n−3/2
n∑

t=p+1

Xd
t−j−1(c̄)�Xd

t−j (c̄)

+ n−3/2
j−1∑
i=1

n∑
t=p+1

�Xd
t−i(c̄)�X

d
t−j (c̄)

= op(1).

For the linear trend case dt = (1, t)′ it is easy to see that (A.12) and (A.13) continue to hold but with
Xc(u) replaced by Xd

c,c̄(u). Consistency of σ̂ 2
t implies that the same results hold when σ 2

t is replaced by its
estimate.

Because the errors in the adaptive GLS regression already have variance 1, the t-statistic can be defined
as L̂Rn = δ̂/ŝδ , where ŝδ is the square root of the first diagonal element of (D−1

n

∑n

t=p+1 xtx
′
tD

−1
n )−1.

Realizing that the autoregressive polynomial satisfies

(1 − z) − δz−
p−1∑
j=1

γj z
j (1 − z) = φ(z)(1 − (1 + c/n)z),

we find that δ = δn = φ(1)c/n, so that (using ψ(1) = 1/φ(1))

L̂Rn

d→ ψ(1)
∫ 1

0 σ (u)−1Xc(u)dW (u)√
ψ(1)2

∫ 1
0 σ (u)−2Xc(u)2du

+ φ(1)c
ψ(1)2

∫ 1
0 σ (u)−2Xc(u)2du√

ψ(1)2
∫ 1

0 σ (u)−2Xc(u)2du

=
∫ 1

0 σ (u)−2Xc(u)dXc(u)√∫ 1
0 σ (u)−2Xc(u)2du

= Sc√
Jc
,

for the case d = 1; in the linear trend model, the same steps lead to L̂Rn

d→ J dc (c̄)−1/2Sdc (c̄).

STEP 4. Bootstrap validity. The bootstrap observations are generated from

�Y ∗
t = (γ̂0+)γ̂1�Y

∗
t−1 + . . .+ γ̂p−1�Y

∗
t−p+1 + ε̂t z

∗
t ,

and hence Y ∗
t = Y1 +∑t

i=2 �Y
∗
i . As before, the intercept is included only in the model with a linear trend;

that would generate a linear trend in the bootstrap data, but because we apply GLS detrending to obtain
Xd∗
t (c̄), this trend will be eliminated from the observations. DefineXd∗

n (u) = n−1/2Xd∗
�un�(c̄) (the dependence
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of the left-hand side on c̄ is left implicit for notational convenience), and Ŵn(u) = n−1/2
∑�un�

t=1 ε̂t z
∗
t /σ̂t .

Consistency in the least-squares estimators γ̂j implies that(
Xd∗
n (u)

Ŵn(u)

)
d→p

(
ψ(1)Xd

0,c̄(u)

W (u)

)
,

where Xd
0,c̄(u) reduces to X0(u) if dt = 1. To prove this result, we follow the same steps as the proof of

Step 2 given above, in combination with to the proof of Theorem 4.2. Using this fact, and the fact that
�Y ∗

t−j follows a stable autoregression, we obtain the required result, noting that δ = 0 in the bootstrap
data. �
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