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Guy Leonard1, Aurélie Labarre1, David S. Milner1, Adam Monier1,
Darren Soanes1, Jeremy G. Wideman1, Finlay Maguire1, Sam Stevens1,
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Eukaryotic microbes have three primary mechanisms for obtaining nutrients

and energy: phagotrophy, photosynthesis and osmotrophy. Traits associated

with the latter two functions arose independently multiple times in the eukar-

yotes. The Fungi successfully coupled osmotrophy with filamentous growth,

and similar traits are also manifested in the Pseudofungi (oomycetes and

hyphochytriomycetes). Both the Fungi and the Pseudofungi encompass a

diversity of plant and animal parasites. Genome-sequencing efforts have

focused on host-associated microbes (mutualistic symbionts or parasites),

providing limited comparisons with free-living relatives. Here we report the

first draft genome sequence of a hyphochytriomycete ‘pseudofungus’; Hypho-
chytrium catenoides. Using phylogenomic approaches, we identify genes of

recent viral ancestry, with related viral derived genes also present on the gen-

omes of oomycetes, suggesting a complex history of viral coevolution and

integration across the Pseudofungi. H. catenoides has a complex life cycle

involving diverse filamentous structures and a flagellated zoospore with a

single anterior tinselate flagellum. We use genome comparisons, drug sensi-

tivity analysis and high-throughput culture arrays to investigate the ancestry

of oomycete/pseudofungal characteristics, demonstrating that many of the

genetic features associated with parasitic traits evolved specifically within

the oomycete radiation. Comparative genomics also identified differences

in the repertoire of genes associated with filamentous growth between the

Fungi and the Pseudofungi, including differences in vesicle trafficking sys-

tems, cell-wall synthesis pathways and motor protein repertoire,

demonstrating that unique cellular systems underpinned the convergent

evolution of filamentous osmotrophic growth in these two eukaryotic groups.
1. Introduction
Stramenopiles [1] (also known as heterokonts [2]) are a highly diverse branch of

protists that encompass a multitude of biological forms including: huge multi-

cellular kelps (seaweeds), abundant marine micro-algae and a variety of

microbial parasites, some of which (e.g. oomycetes) feed and grow like fungi
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and cause important diseases of animals, algae and plants

[3,4]. The stramenopiles are a phylogenetically robust group

(e.g. [5]) defined by the presence of two motile flagella, a

‘standard’ smooth posterior flagellum and a ‘tinselate’

anterior flagellum with a tripartite rigid tubular mastigoneme

(hairs) [2]. However, secondary flagellum loss has occurred

during the radiation of this group, for example in the

hyphochytrids like Hyphochytrium catenoides [6], which have

lost a smooth posterior flagellum but retained a tinselate

anterior flagellum.

Environmental sequencing, specifically of marine

environments (e.g. [7]), has increased the known phyloge-

netic diversity of the stramenopiles, suggesting that this

group is one of the most diverse higher-level groups within

the eukaryotes [8]. Representatives of these groups remain

uncultured with little gene/genome sampling. Furthermore,

genome-sequencing efforts in the stramenopiles have largely

focused on photosynthetic algae (e.g. [9,10]) or oomycete

parasites (e.g. [11,12]), leaving the diversity of heterotrophic

free-living stramenopiles undersampled. Here, we describe

the sequencing and comparative genomic analysis of H. cate-
noides (ATCC 18719) originally isolated by D. J. Barr from

pine tree pollen in Arizona, USA (however, we note that

there is no direct reference in ATCC that accompanies this

culture [13]). We propose this organism and associated

genome data as a tool to investigate the evolution of strame-

nopile characteristics and for the purpose of comparing

and contrasting the evolution of traits between free-living

and parasitic Pseudofungi.

Hyphochytrium catenoides is a free-living hyphochytrid

protist that forms hyphal-like networks and spores with

only a single anterior tinselate flagellum (figure 1a) [6,14].

The hyphochytrids are thought to branch sister to the oomy-

cetes [4,15], and both these groups grow as filamentous/

polarized cells feeding osmotrophically by extracellular

secretion of digestive enzymes coupled to nutrient uptake

[4,6,14]. These characteristics mean that they ‘resemble’

fungi [4]. Here, we use genome sequence data to confirm

the phylogenetic position of the hyphochytrids, investigate

characters shared with oomycete parasites and identify the

genes involved in cellular characteristics shared with fungi

that characterize filamentous/osmotrophic growth. We also

use the genome data to investigate the protein repertoire

putatively associated with loss of the posterior flagellum in

the hyphochytrids. These data provide a unique genome

sample of a free-living stramenopile in order to facilitate

further evolutionary and cellular research.
2. Results and discussion
2.1. Genome assembly and gene model prediction
Using a range of methods, we assembled and tested the com-

pleteness of the H. catenoides genome (see Material and

methods). Comparisons measuring the fraction of transcrip-

tome data that aligned to the genome with BLAST, along

with CEGMA and BUSCO v.1.2, demonstrated that the

genome assembly was predicted to be, respectively, 97.8%,

91.5% and 52% complete in terms of gene sampling (for

further analysis and discussion of genome ‘completeness’

analysis, see electronic supplementary material, figure S1).

Both CEGMA and BUSCO (v. 1.2) are likely to underestimate
the completeness of genomes, as the core gene list is derived

from a subset of genomes that does not fully sample a diverse

collection of eukaryotic genomes (e.g. BUSCO v. 1.2 only

samples fungal and metazoan genomes), which inevitably

gives a much lower estimation of completion. A full set of

tRNAs was identified in the Hyphochytrium genome, includ-

ing an additional tRNA for selenocysteine. The �1 kbp

scaffold assembly along with the predicted proteome has

been submitted as a draft genome to the EMBL EBI (BioStu-

dies: S-BSST46). Details comparing the assembly with other

eukaryotic genome sequences are described in figure 1b.

Analysis using REPEATMASKER [16] determined that the

�1 kbp genome assembly comprised 9.53% repeat regions

of which 1.79% were assigned to transposable elements.

The protocol used for genome contamination assessment,

genome assembly and identification of putative protein-

coding genes and their predicted proteins are provided in

the Material and methods. This approach identified 18 481

putative gene models (406 of these gene models demonstrated

evidence of multiple splice forms according to MAKER [17]), a

total gene count similar to the mean (15 946) for other

sequenced stramenopiles (figure 1b). The number of introns

and exons reported by the program GENOME ANNOTATION

GENERATOR (GAG) was 67 332 and 85 813, respectively, with

an average of 3.64 introns per gene and an average exon

length of 228 and intron length of 208 bp.

Using the genome assembly, we were able to identify and

assemble a hypothetical circular mitochondrial chromosome

(electronic supplementary material, figure S2). Further analysis

did not identify a candidate relic plastid genome (electronic

supplementary material, figure S3), while phylogenomic

analysis identified only four genes that, under certain scen-

arios for gene ancestry, could represent genes acquired

as part of the endosymbiosis that gave rise to the plastid orga-

nelle present in photosynthetic stramenopiles (electronic

supplementary material, figure S3).
2.2. Genome size, ploidy and evidence of sexual
reproduction

K-mer counting [18] was used to predict a haploid genome

size of between 54.1 and 68.6 Mbp with follow-up analysis

focusing specifically on the �1 kbp assembly suggesting a

genome size of 65.7 Mbp across 4758 scaffolds and a scaffold

N50 size of 35.57 kbp (L50 of 399). The average sequencing

coverage of the total assembly was estimated to be 312�,

and the average coverage over the �1 kbp scaffolds is 610�.

Extraction and purification of long strands of DNA was not

achieved using multiple DNA extraction protocols, preventing

sequencing using a long-read technology and/or pulsed-field

gel electrophoresis to estimate chromosome number. We

used a RT-PCR method for estimation of genome size [19]

that indicated a haploid genome size of 46.9 Mb (s.e.m. ¼ 1.5).

As mentioned in the methods, the N50 of the genome

assembly was much improved by the use of Platanus—an

assembly algorithm optimized for multi-ploidy genomes.

To further investigate evidence of ploidy in our H. catenoides
culture, we mapped approximately 101 million reads to the

65.7 Mbp assembly identifying 1 393 505 single nucleotide

polymorphisms (SNPs) with 1 332 610 (96%) of the SNPs

identified consisting of a two-way nucleotide polymorphism

(i.e. 58.8/41.2% mean character split). We also took all

http://rsob.royalsocietypublishing.org/
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Figure 1. Developmental characteristics of H. catenoides and genome statistics of representative stramenopiles. Sketches of a subset of different stages of
H. catenoides life cycle, adapted and redrawn from [6,14] showing: (i – iii) different views of zoospores (including magnification of tinselate flagellum i), (iv) ger-
mination stage of large spore, (v) primary enlargement or primary sporangium, (vi,vii) thallus development on substrate, (viii) unusual extensive branched thallus,
which consists of separated sporangia at different stages of maturity (e.g. xii,xiv), connected by long, tubular, septate, hyaline and empty hyphae (x,xi), sometimes
with enlargements without sporangia (e.g. ix). Zoospores may fail to swim coming to rest near exit tube (xiii). (b) Table of genome statistics for a range of different
stramenopiles. Asterisk indicates k-mer estimation of genome size (column 2). All numbers are from the respective genome datasets (see electronic supplementary
material, table S12). Numbers in italics (contigs, column 5) are inferred from the scaffolded data. CEGMA: C, complete; P, partial recovered gene models. BUSCO: C,
complete; D, duplicated; F, fragmented; M, missing gene models.
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scaffolds and plotted SNP frequency against scaffold size.

The majority of the scaffolds are clustered around a SNP fre-

quency of approximately 0.0275 (electronic supplementary

material, figure S4), suggesting that this variation is consist-

ent and not specific to a subset of chromosomes, for

example, in the case of aneuploidy. Interestingly, this analysis

showed two large scaffolds with very low SNP frequency

compared with the rest of the assembly. These scaffolds con-

tain a number of genes with high sequence identity to genes

found on large DNA viruses, suggesting the presence of a

viral genome or evidence of a recent viral introgression, dis-

cussed further below. K-mer mapping [18] showed two peaks

in coverage frequency, which is consistent with the reads

mapping to a diploid genome (electronic supplementary

material, figure S5).

Using reciprocal BLAST searches, we confirmed that

H. catenoides encodes and expresses putative homologues of

all seven eukaryotic meiosis-specific gene families [20] in

the culture conditions used to grow H. catenoides (see elec-

tronic supplementary material, table S1). To our knowledge,

sexual recombination has only been observed once in Hypho-

chytriomycota cultures, with Johnson [21] identifying cellular
forms suggestive of zygote production as a result of fusion in

the resting spore development of Anisolpidium ectocarpii [21].

However, a range of different sexual reproduction systems

have been identified in the oomycetes (e.g. [22]); collectively

these data suggest meiosis is present in representative taxa

across the wider Pseudofungi.

2.3. Phylogenetic position of Hyphochytrium
Hyphochytrium has previously been shown to branch as a

sister-group to the oomycetes in rRNA gene phylogenies

(e.g. [3,15]). Using a suite of concatenated multiple amino

acid sequence alignment approaches (supermatrix and per

gene partitioned approaches) and a gene tree coalescence

approach [23], we investigated the phylogenetic relationship

of Hyphochytrium to other eukaryotes by building on previous

phylogenomic analyses (e.g. [24–26]). We generated a concate-

nated amino acid alignment of 325 orthologues (128 taxa and

90 230 amino acid sites) including a comprehensive sampling

of eukaryotic taxa based on previously published analyses

[24]. We used this alignment to calculate a eukaryote-wide

phylogeny using a maximum likelihood (ML) approach with

http://rsob.royalsocietypublishing.org/
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Figure 2. A subsection of the 325 gene (90 230 amino acid) phylogeny of eukaryotes (electronic supplementary material, figure S6a) demonstrating the branching
position of Hyphochytrium. Hyphochytrium highlighted in magenta. The ML tree was built using a supermatrix approach in IQ-TREE under the site heterogeneous
model of evolution, LG þ G4 þ FMIX(empirical, C60) þ PMSF. Values at nodes are ML bootstrap (MLBS) (100 real BS replicates in IQ-TREE LG þ G4 þ
FMIX(emprical, C60) þ PMSF), MLBS under the partitioned dataset using the LG þ G4 model of evolution per partition (1000 ultrafast BS replicates) and 100
ASTRAL coalescence multilocus bootstrap replicates, respectively. Bootstrap values below 50% are denoted as an asterisk. Circles denote 99% or above values
from all tree topology support analyses. Cartoons of cells indicate change in stramenopile flagellum morphology. Figures highlighted in blue and in parentheses
after taxon names are the numbers returned by CEGMA for the complete/partial predicted frequency of 248 CEGs.
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100 ‘standard’ bootstrap replicates using the IQ-TREE soft-

ware [27,28] under the site heterogeneous model

LGþG4þFþFMIX (empirical, C60) þ PMSF [29] (figure 2;

electronic supplementary material, figure S6a shows the

wider tree topology). To obtain additional topology support

values, we inferred a tree based on this supermatrix with a

per gene partitioned model in IQ-TREE with 1000 ultrafast

bootstraps replicates (figure 2). Furthermore, using a gene

tree coalescence approach in ASTRAL [23] we inferred a

species tree with 100 multilocus bootstrap replicates

(figure 2). Previously, genes with higher relative tree certainty
(RTC) values were shown to improve the overall robustness of

phylogenomic analyses [30]. In order to examine the effect of

orthologues selected for multi-gene tree analysis, we inferred

the RTC for each of the 325 orthologues using RAxML [31],

with 100 rapid bootstrap replicates under the LG þ G4 model

of evolution. The orthologues were ranked, and the top 50%

with the highest RTC scores were selected and multiple gene

phylogenies were calculated as above (electronic supplementary

material, figure S6b).

The resulting tree topology (figure 2) demonstrates that

H. catenoides forms a sister-branch to the oomycete radiation

http://rsob.royalsocietypublishing.org/
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with �99% support from all methods used for both the 325

multi-gene analysis and the orthologues ranked in the top

50% according to RTC scores (electronic supplementary

material, figure S6b). The internode certainty (IC) [30,32]

scores of nodes within both analyses showed this phyloge-

netic relationship was moderately supported across the

alignment data matrix (electronic supplementary material,

figure S7a,b), consistent with the possibility of mixed signal

for this branching relationship in our ‘orthologue’ gene sets.

Nonetheless, these results are consistent with the Pseudo-

fungi hypothesis, i.e. the hyphochytriomycetes and the

oomycetes are monophyletic and share a common evolution-

ary trend towards fungal-like osmotrophic feeding and

polarized cell growth [3,4].

Our tree places the Pseudofungi as a sister-group to the

photosynthetic stramenopiles (i.e. the Ochrophyta) plus

Developayella. This has some consistencies with previously

published phylogenetic analysis based on three nuclear

encoded genes [33] and wider phylogenomic analysis

[24,34], and in contradiction to analyses of mitochondrial

gene phylogenies (concatenation of 10 genes, 7479 positions),

which have demonstrated that a separate stramenopile group,

the Labyrinthulida (i.e. Bigyra), forms a sister-group to the

oomycetes [35]. We note, however, this phylogeny demon-

strates a different branching relationship with Developayella
which is shown here to be sister to the Ochrophyta, a relation-

ship very weakly supported in the internode consistency

analyses (electronic supplementary material, figure S7a,b)

[32]. The tree recovered here has some similarities to that

reported by Derelle et al. [34], which uses a large phylogeno-

mic dataset from different taxa. This work argues for

monophyly of Bigyra (e.g. Blastocystis þ Aplanochytrium and

Schizochytrium), although our tree shows that this group is

paraphyletic, a relationship also shown in Noguchi et al.
[24]. Derelle et al. [34] also recovered paraphyly of this

group in a subset of their Bayesian analysis and in their ML

analysis, but then went on to demonstrate that this relation-

ship is likely due to a long branch attraction artefact (e.g.

[36]) associated with the Blastocystis branch and which can

lead to the misplacement of Opalozoa (e.g. Blastocystis). Inter-

estingly, sisterhood of the Pseudofungi and Ochrophyta

implies a minimum of two losses of photosynthesis [34]

and independent specialization of ‘osmotrophic lifestyles’

in the Bigyra (e.g. Aplanochytrium and Schizochytrium) and

the Pseudofungi (e.g. Hyphochytrium and Phytophthora)

within the stramenopiles. However, this scenario implies

that the stramenopile lineage was ancestrally photosynthetic

[37], a subject of debate [38,39] (electronic supplementary

material, figure S3).

2.4. Shared derived traits across the Pseudofungi
Given the placement of H. catenoides as a sister-branch to the

oomycetes, we were interested in investigating the conserva-

tion of cellular, biochemical and genetic traits shared across

pseudofungal taxa. Oomycete plant parasites, e.g.

Phytophthora spp., are sterol auxotrophs and appear to have

lost the enzymes involved in sterol biosynthesis [40]. The

sterol biosynthesis pathway has been predicted to function

in Saprolegnia, and a putative CYP51 sterol-demethylase

encoding gene was identified from the Saprolegnia parasitica
genome and transcriptome data [12,41]. The protein encoded

by this gene is a target of antimicrobial drugs such as
clotrimazole and, therefore, has been suggested as a thera-

peutic target for treatment of Saprolegnia infections of fish

[42]. Reciprocal BLASTp searches and phylogenetic analyses

demonstrated that H. catenoides also possesses a putative

orthologue (Hypho2016_00003038; electronic supplementary

material, figure S8a) of the S. parasitica CYP51 sterol-

demethylase, which appears to be lost in plant parasitic

oomycetes. To confirm that this is a viable drug target we

grew H. catenoides in the presences of two azole ‘antifun-

gals’—clotrimazole and fluconazole—to assess effectiveness

of these compounds in inhibiting H. catenoides growth. Both

‘antifungal’ agents were able to inhibit growth of H. catenoides
(MIC100: clotrimazole 0.25 mg ml21; fluconazole 4 mg ml21;

electronic supplementary material, figure S8b), indicating that

the H. catenoides is susceptible to azole compounds, consistent

with H. catenoides having a functional CYP51 enzyme.

There has been considerable effort to sequence a number

of oomycete genomes, which has largely focused on parasitic

taxa (e.g. [11,12,43–46]). This work has also, in part, focused

on identifying candidate effector proteins (secreted proteins

that perturb host function for the benefit of the invading

parasite [47] and which often contain N-terminal RxLR

amino acid motifs [48–50]) or lectin proteins that bind host

molecules. Searches of the H. catenoides genome demonstrate

there is only one putative protein of unknown function with a

candidate RxLR motif (table 1). In addition, H. catenoides
lacked several gene families linked with the evolution of

plant parasitic traits in the oomycetes, i.e. NPP1 or NEP-

like proteins (necrosis-inducing Phytophthora protein

[51,52]), elicitin proteins [53], cutinase [54], pectin esterase

and pectin lyase [55,56]. The animal parasite S. parasitica
was noted to show enrichment of Notch proteins and Ricin

lectins, as well as presence of other galactose-binding lectins

and the bacterial toxin-like gene family (haemolysin E) [12].

While the Notch protein and Ricin lectin gene families are

present in H. catenoides, they show no evidence of enrichment

comparable to S. parasitica. The galactose-binding lectin and

haemolysin E gene families are absent. Protease gene families

show no general enrichment in comparison with other

stramenopiles (table 1).

Comparative analysis of candidate secreted proteins

defined by in silico identification of putative N-terminal

secretion sequences demonstrated that H. catenoides contains

a lower proportion of secreted proteins compared with

many other stramenopiles, comparable with the paraphyletic

obligate biotrophs Albugo laibachii and Hyaloperonospora
arabidopsidis (figure 3). The H. catenoides predicted proteome

contains a moderate-to-low proportion of carbohydrate

active enzymes [57] relative to other stramenopiles. Interest-

ingly, H. catenoides has very few secreted carbohydrate

active enzymes in comparison with other stramenopiles,

suggesting that H. catenoides has a low diversity of extracellu-

lar carbohydrate processing functions and is, therefore,

dependent on a limited subset of extracellular sources of

fixed carbon (figure 3). To test this observation, we grew

H. catenoides cultures in 190 different carbon sources using

OmniLog PM1 and PM2 plates, which allows investigation

of growth and respiration rate across a diversity of different

carbon sources [58]. These data demonstrated (electronic

supplementary material, figure S9a,b) a significant increase

in respiration rate compared with the controls upon the

addition of: a- or b-cyclodextrin ( p ¼ 0.01 and 0.01), dextrin

( p ¼ 0.02), Tween 40 or 80 ( p ¼ 0.03 and 0.03) or melibionic

http://rsob.royalsocietypublishing.org/


Table 1. Comparison of pseudofungal/stramenopile genes with generalized function.

gene families

Hyphochytrium

catenoides

Albugo

laibachii

Hyaloperonospora

arabidopsidis

Phytophthora

infestans

Phytophthora

ramorum

Phytophthora

sojae

Pythium

ultimum

Saprolegnia

parasitica

Ectocarpus

siliculosus

Thalassiosira

pseudonana

RXLR 1 0 23 317 102 106 0 0 0 0

NPP1-like

proteins

0 0 21 27 62 74 7 0 0 0

elicitin 0 9 14 43 47 53 44 25 0 0

plant cell wall

degrading

cutinase 0 3 2 4 4 16 0 0 0 0

glycosyl

hydrolases

357 384 242 533 838 1208 436 415 282 264

pectin methyl

esterases

0 0 4 11 13 19 0 0 0 0

pectate lyase 0 0 8 36 25 24 16 0 0 0

polygalacturonase 0 3 3 24 17 25 6 3 0 0

lectins

PAN lectin 4 3 2 5 8 5 11 6 1 0

ricin lectin 1 1 3 5 9 10 5 57 0 1

jacalin lectin 2 0 8 15 23 15 3 4 1 0

galactose lectin 0 0 1 1 1 1 1 1 1 1

leguminous

lectin

2 1 0 2 1 1 2 0 2 1

legume-like

lectin

2 3 3 3 3 3 3 3 3 0

protease

functions

protease

inhibitors

13 11 14 51 35 46 30 28 15 15

proteases, all 428 379 324 450 541 602 482 630 361 367

serine proteases 166 84 106 170 182 189 200 248 112 140

metalloproteases 92 91 80 98 100 91 107 129 88 101

cysteine

proteases

115 124 92 140 116 113 121 208 117 85

others

ABC transporters 81 36 49 148 171 175 158 138 70 58

protein kinases 243 305 217 423 398 430 232 690 330 160

Notch protein 3 0 1 1 1 1 1 18 11 2

haemolysin E 0 0 0 0 0 0 0 5 0 0
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acid ( p ¼ 0.03). Of note, dextrin/cyclodextrins are products

of enzymatic activity upon starch, a typical component of

H. catenoides growth medium (YpSs), and may be indicative

of the environment in which this organism is typically

found. The addition of Tween 40 or Tween 80 has been

shown to improve yield in other organisms [59] and may

result from direct accumulation of fatty acids, or altered

membrane permeability affecting nutrient uptake. In contrast

to many oomycetes (e.g. [60]), H. catenoides demonstrates a

limited utilization of diverse carbon sources. These data are

consistent with the hypothesis that the evolution of a wide

diversity of secreted carbohydrate active enzymes is associated

with evolution of parasitic lifestyle within the oomycete

lineages (e.g. [12,61–63]), although this pattern could also be

the product of secondary loss in the H. catenoides branch.

Seidl et al. [64] detected 53 domain architectures that were

unique and conserved across the oomycetes P. infestans,

P. ramorum, P. sojae and Hy. arabidopsidis. Domain architec-

tures are often recombined by a process of gene fusion

and/or domain ‘shuffling’ [65]. Such gene fusion characters,

although subject to sources of homoplasy (such as gene fis-

sion [66]), can represent synapomorphic traits useful for
polarizing phylogenetic relationships. We searched the H.
catenoides genome for evidence of the 53 gene fusions pre-

viously identified in oomycetes [64] and found that 12 of

these domain architectures were also present in H. catenoides
(electronic supplementary material, table S2). Of note, we

found a fusion gene of a putative b-glucan synthase

enzyme domain and a putative membrane transporter gene

(electronic supplementary material, table S2 and GenBank

‘nr’ protein database) shared across the Pseudofungi,

suggesting that domain fusion has led to a unique coupling

of substrate transportation and enzymatic processing prior

to the radiation of this group. Theoretically, however, with-

out proteomic data we cannot exclude the possibility that

this novel domain combination may be the product of a

conserved operon-like gene structure.

Using OrthoMCL [67] combined with a custom pipeline we

identified nine Pseudofungi-specific orthologues, with five of

these orthologues representing additional Pseudofungi-specific

domain combinations (electronic supplementary material,

table S3). Of note, these combined results (electronic sup-

plementary material, table S2 and S3) demonstrate a novel

diversification of the serine/threonine kinase gene families,

http://rsob.royalsocietypublishing.org/
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Figure 3. Comparison of secreted proteome and putative carbohydrate active proteins across the Pseudofungi including photosynthetic stramenopile taxa as an
outgroup. The schematic phylogeny at the top indicates the relationship between different oomycete species with the ‘lifestyle’ of each species indicated by
text colour; green (Phytophthora species) indicates plant hemibiotroph, blue (Hyaloperonospora and Albugo) obligate plant biotroph, teal (Pythium) plant necrotroph,
orange (Saprolegnia) animal saprotroph/necrotroph and black indicates putatively free living (e.g. Hyphochytrium, Ectocarpus and Thalassiosira). The first heat map in
white/purple indicates the proportion of proteome of each organism which was identified as belonging to a particular CAZY (www.cazy.org) category using BLASTp
with an expectation of 1 � 1025. The number listed is the proportion, and the colour relates to magnitude of the listed number (as shown by scale bar). The
second heat map, in blue/yellow, indicates the proportion of the secretome ( predicted via a custom pipeline https://github.com/fmaguire/predict_secretome/tree/
refactor) that is identified as belonging to each of these CAZY categories. Auxiliary activities (AA) cover redox enzymes that act in conjunction with CAZY enzymes.
The bar chart at the bottom shows the proportion of the proteome for each organism which is predicted to be secreted.
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consistent with expansions of kinase encoding gene families

present in oomycete genomes [12].
2.5. Protein repertoire changes associated with loss of
the posterior flagellum

The stramenopiles (also known as Heterokonta, meaning

possessing two unequal flagella) were formally described

as a phylum based on the presence of two motile flagella:

a ‘standard’ smooth posterior flagellum and an anterior
flagellum with tripartite rigid tubular mastigonemes (tinse-

late) [2]. Hyphochytrium builds only a single, anterior

tinselate flagellum [6] while the oomycetes build the strame-

nopile flagella pair. Therefore, the posterior smooth

flagellum was lost in the ancestor of the hyphochytrids

(figure 2). To explore the consequence of the loss of this

organelle in H. catenoides, in terms of gene/protein reper-

toire, we used a comprehensive list of proteins putatively

associated with flagellar function [68] to survey the Hypho-
chytrium genome. This list comprises 592 amino acid

sequences, 355 of which are found in both the major eukary-

otic phylogenetic groupings of Opimoda and Diphoda [69],

http://www.cazy.org
https://github.com/fmaguire/predict_secretome/tree/refactor
https://github.com/fmaguire/predict_secretome/tree/refactor
https://github.com/fmaguire/predict_secretome/tree/refactor
http://rsob.royalsocietypublishing.org/
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suggesting they are universal flagellar proteins (UFPs; elec-

tronic supplementary material, table S4, figure 4a); 330 of

the 355 UFPs are also present in the predicted proteome of

H. catenoides, suggesting that the majority (93%) of the
UFPs have been retained and are likely to encode a function

associated with the anterior tinselate flagellum.

Flagellum-specific proteomic analysis of the stramenopile

brown alga Colpomenia bullosa identified 14 proteins specific

http://rsob.royalsocietypublishing.org/


Figure 4. (Overleaf ) Comparative genomic analysis of H. catenoides flagellum proteome and motor protein repertoire. (a) Heat map showing sequence identity
profiles for flagella proteins with putative homologues present across the eukaryotes (see, electronic supplementary material, table S4 for full dataset). The heat map
identifies 29 proteins present in the oomycetes but absent in H. catenoides, suggesting that this gene had been lost at the same proximate point to the loss of the
posterior flagellum. The analysis also shows 12 proteins (marked as *) identified as posterior flagellum specific in C. bullosa that are retained in H. catenoides and
therefore putatively function in the anterior flagellum. Three C. bullosa anterior flagellum specific proteins are also retained in H. catenoides. The putative radial
spoke proteome also shows numerous losses similar to Ho. sapiens (**), this includes the loss of RSP7 (***). Only changes in flagella cytology relevant to the
evolution of the stramenopiles are sketched on the top tree. (b) Shows a cartoon of the radial spoke protein complex identified in Chlamydomonas with each shape
number referring to the RPS number [70]. Black shapes illustrate proteins of the spoke complex conserved across the eukaryotes sampled, grey are non-conserved
proteins (showing evidence of mosaic loss), while the white complex refers to RPS7 which, although absent in Ho. sapiens and other eukaryotes, has been lost
separately and is consistent with the loss of the posterior flagellum in the ancestor of H. catenoides. (c) Distribution of major kinesin paralogue families. Kinesin-2,
-9, -16 and -17 have been suggested to have function associated with the flagellum [71]. (d ) Distribution of major dynein paralogue families. Paralogues are
grouped according to the class of component: dynein heavy chain (DHC), intermediate chain (IC), light-intermediate chain (LIC) and intraflagellar transport
(IFT), and coloured according to function (red, cytoplasmic; magenta, IFT; dark blue, axonemal outer-arm; light blue, axonemal inner-arm; green, axonemal
single-headed). (e) Distribution of major myosin paralogue families focusing on variation between Fungi and Pseudofungi.
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to the posterior flagellum and three specific to the anterior fla-

gellum [68]. BLAST searches suggest that the three anterior

flagellum proteins are also present in H. catenoides, as are 12

of the 14 posterior flagellum proteins identified from C. bullosa.

Conservation of these ‘posterior-specific’ proteins suggests

that they have functions associated with the anterior tinselate

flagellum in H. catenoides (figure 4a). One of the C. bullosa
posterior-specific flagellum proteins absent in H. catenoides
and the oomycetes is the PAS/PAC sensor hybrid histidine

kinase (also known as a helmchrome, CBJ26132.1), a putative

photo-sensor associated with a swelling in the posterior

flagellum of brown algae [68], discussed further below.

Twenty-nine of the UFPs (8%) were present in oomycetes

and other eukaryotic groups but absent in H. catenoides. These

may represent genuine gene losses, although absences in our

draft genome may also be due to incomplete genome sequen-

cing and assembly. If these are genuine losses, it suggests

they represent UFP losses that correlate with loss of the pos-

terior flagellum without the function of these UFPs being

integrated into the anterior tinselate flagellum (figure 4a).
These losses include a putative homologue of the Dynein

Regulatory Complex 1 (DRC1) protein, which regulates

inner dynein motor activity in Homo sapiens and Chlamydomo-
nas reinhardtii [72], and Radial Spoke Protein 7 (RSP7), a

protein that functions in flagellum structure and beating in

Ch. reinhardtii [70]. Further, analysis of the radial spoke

protein repertoire encoded by H. catenoides identified a

number of other components of the radial spoke complex

which are putatively absent in H. catenoides. However, RSP7

was the only radial spoke proteome loss specific to the loss

of the posterior flagellum in the Hyphochytrium lineage

(figure 4a,b); this protein is putatively encoded in the oomy-

cetes but has been separately lost within the Opisthokonta

(e.g. Ho. sapiens). In Chlamydomonas [70], RSP11 and RSP7

have been shown to contain a RIIa domain [73]. Association

between RIIa and AKAP domains and RSP3 at the spoke

stalk is suggested to be important for flagellar function [70].

Interestingly, comparative analysis suggests that neither

RSP7 nor RSP11 are conserved across flagellum-bearing eukar-

yotes with only Chlamydomonas, Batrachochytrium and H.
catenoides retaining RSP11 in our comparative dataset

(figure 4a,b). Domain analysis [74] of the putative H. catenoides
RSP3 and RSP11 confirmed these proteins contain an AKAP

and a RIIa domain, respectively, suggesting that H. catenoides
has retained only RSP3–RSP11 protein–protein interaction at

the base of the radial spoke, proximate to the outer doublet

(figure 4b).
Phylogenomic analysis of motor protein repertoire, specifi-

cally kinesins and dyneins (figure 4c,d ), confirmed that the H.
catenoides genome assembly has retained many of the motor

proteins associated with flagellum function. These include

representatives of all seven axonemal dynein heavy chain

families (plus their associated intermediate and light-inter-

mediate chains) [75], both the retrograde (DYNC2) and

anterograde (Kinesin-2) motors used in intraflagellar transport

(IFT), and non-motor components of the IFT particles

(figure 4c). Also identifiable are members of Kinesin-9 and

-16 families, which are present in organisms which build

motile flagella [71] (figure 4d ). This motor repertoire is similar

to that seen in oomycetes and shows that the modified tinselate

H. catenoides anterior flagellum has retained most functions

associated with flagellar motors. Wickstead & Gull have also

proposed that the Kinesin-17 family has a flagellar function

based on its phylogenetic distribution [71]. Our analysis

suggests that H. catenoides has lost Kinesin-17 (unlike in the

oomycetes). This may be associated with the loss of the pos-

terior smooth flagellum, but may also be due to missing

sections of the genome in the draft assembly.

2.6. Photoreceptors
Stramenopile species have been shown to encode a range of

photoreceptor proteins and to initiate a series of responses to

light including phototaxis [76]. Specifically, the zoospores of

some stramenopile algae can show positive and negative photo-

taxis [77] associated with a flavoprotein photoreceptor [78],

putatively the ‘helmchrome’ located in the posterior flagellum

[68] and associated with ‘flagellar swelling’ and a stigma [77].

Consistent with the loss of the anterior flagellum, H. catenoides
(figure 4; electronic supplementary material, S10) also lacks a

gene putatively encoding a helmchrome protein.

A number of additional putative photo-responsive proteins

have also been reported from Ectocarpus [10]. Using these data

and other seed sequences (e.g. [68,79]), we searched the

H. catenoides genome for putative homologues of photo-

responsive proteins. Reciprocal BLAST searches demonstrated

that the H. catenoides genome contained putative homologues

of the flavoproteins Cryptochrome (Hypho2016_00016188),

Cryptochrome DASH (Hypho2016_00004514) and Photolyase

(Hypho2016_00002462) gene families (electronic supple-

mentary material, figure S10a), and transcriptome data

demonstrate that these genes are transcribed. This analysis

also identified three putative type I (microbial) rhodopsins

(Hypho2016_00006030, Hypho2016_00006031 and Hypho2016_

http://rsob.royalsocietypublishing.org/
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00010050), the first putative representative of this gene family

from a stramenopile (electronic supplementary material,

figure S10a,b). The three rhodopsins all contain a conserved

11-cis-retinal binding pocket, specifically the lysine residue

site of the Schiff base where the retinal is covalently linked

(electronic supplementary material, figure S10c). Further-

more, reciprocal BLAST searches of both the genome and

the transcriptome sequence datasets confirmed the presence

of genes putatively encoding the latter two steps of the retinal

biosynthesis pathway (e.g. a putative b-carotene-15, 150-diox-

ygenase (Hypho2016_00004122) and a putative retinol

dehydrogenase (Hypho2016_00000702). These genes encode

the pathway steps that convert the vitamin b-carotene into

11-cis-retinal, the critical cofactor for rhodopsin to function

as a light-responsive protein.
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2.7. Gene families encoding hallmarks of fungal
characteristics in the Pseudofungi

One of the main purposes for sequencing the H. catenoides
genome was to investigate conservation and/or loss of

genes that underpin the fungal/pseudofungal lifestyle.

Many fungi grow as filamentous cells, reinforced by robust

cell walls composed of polysaccharides such as chitin.

These characters are not unique to the Fungi but are typical

in many fungal lineages [80]. A suite of cellular systems

allow fungi to grow as polarized cells, laying down cell

wall and feeding on extracellular substrates by a combination

of exocytosis of enzymes and cell-wall material combined

with endocytosis and transporter protein mediated uptake

of target nutrients. Fungal filamentous structures such as

hyphae grow almost exclusively from the tip of the hyphal

structure [81], allowing fungi to ‘grow as they feed’. This fea-

ture combined with a robust cell wall means they can

generate high turgor pressures, ramify into recalcitrant

material, feed osmotrophically and maximize metabolic

rates [80,82,83]. Homologous cellular systems also drive

bud growth in Saccharomyces cerevisiae, allowing researchers

to use S. cerevisiae to study proteome function involved in

polarized growth (for reviews, see [81,84]). The proteins that

are known to control this system are illustrated in figure 5a
and involve key complexes, the exocyst and the polarisome.

These systems are important for establishing the temporal

and spatial control of polarized cell growth in fungi [81,84].

Comparative analyses show the exocyst and Sec4 orthologues

are conserved across a diversity of eukaryotes including H.
catenoides, while the polarisome and associated proteins are

specific to the Fungi, given current taxon sampling (figure

5c). Comparative analysis demonstrates that specific elements

of polarized cell growth control are not present in Pseudo-

fungi, suggesting these filamentous microbes accomplish

polarized growth using different proteome functions.

Motor protein evolution has been suggested to be an impor-

tant factor in the acquisition of filamentous growth phenotypes

in the fungi, with a specific focus on myosin and kinesin genes

that encode functions involved in polarized cell growth, ves-

icle-transit and chitin synthesis [95–97]. Phylogenomic

analysis of the motor head domain of all three motor types

(figure 4c–e) demonstrates no expansion in motor paralogues

uniquely shared by the Fungi and Pseudofungi. In addition,

Pseudofungi lack the Myosin V and XVII shown to be important

in fungal growth and chitin synthesis [96] (figure 4e). The lack of
shared/unique motor repertoire between Fungi and Pseudo-

fungi is consistent with the idea that these groups evolved

filamentous polarized growth characteristics separately and

based on different cellular systems. It has been noted that oomy-

cetes contain a diverse complement of myosin paralogues [98].

The analyses reported here demonstrate that elements of this

oomycete motor protein gene family expansion are also present

in H. catenoides, specifically; Myosin XXX and XXI and Kinesin

14 and 20 show high degrees of expansion by duplication

specific to the Pseudofungi (figure 4c,e), suggesting these

motor proteins may be linked to filamentous polarized growth

characteristics present in this group.

Like fungi [99] and many other eukaryotes [100–106],

H. catenoides also produces chitin as cell-wall material [107].

Oomycetes have also been shown to produce chitin in their

cell walls [108]. This is consistent with previous data that

suggest that chitin synthesis and deposition as a cell-wall

material predates the diversification of many major lineages

of the eukaryotes [80,107]. H. catenoides has a similar reper-

toire of chitin synthesis and digestion as found in the

oomycetes (i.e. chitin synthase division I), while another

group of stramenopiles, the diatoms, which also produce

chitin [109], have a variant chitin gene repertoire, namely

chitin synthase division II and a chitinase (GH19) not present

in Pseudofungi (figure 6). This suggests that chitin pro-

duction as a cell-wall component is universal and anciently

acquired in the eukaryotes, but the genes that control the syn-

thesis and remodelling of this structural polysaccharide have

been reconfigured numerous times. Specifically, Pseudofungi

seem to lack all chitin synthase division II genes (figure 6c),

which are numerous and diversified in fungi, suggesting

another key difference between the Fungi and Pseudofungi.

2.8. Viral integration across the Pseudofungi
The comparative genomic analysis of Pseudofungi

demonstrated that H. catenoides, Phytophthora cinnamomi,
Phytophthora parasitica and Pythium ultimum harbour genes

putatively encoding viral major capsid proteins (MCP) (elec-

tronic supplementary material, table S5). These proteins have

high sequence identity with each other and branch together

with MCP proteins from African swine fever virus (Asfarvir-

idae, a lineage of the nucleocytoplasmic large DNA viruses—

NCLDVs), but which are divergent when compared with

other NCLDV MCP proteins (figure 7a). Exploring the

H. catenoides genome assembly to determine the presence of

viral-like genes, we identified 45 candidate viral-derived

genes, 38 of which are present on two scaffolds which were

shown to have very low SNP frequency in the assembly (elec-

tronic supplementary material, table S5). All of these 38 genes

showed highest similarity to NCLDV families such as Mimi-

viridae, Marseilleviridae, Phycodnaviridae, Asfarviridae and

Poxviridae (electronic supplementary material, table S5). The

genome assembly in these regions was confirmed by nested

PCR and sequencing from both the 50 and 30 ends of the

polB, mcp, mg96 genes of viral ancestry (electronic supplemen-

tary material, table S6). The viral-like genes were found in

linkage with genes of H. catenoides/pseudofungal ancestry.

For example, the genome assembly demonstrated that the

viral-like mcp gene was on the same DNA contig as a puta-

tively native H. catenoides histone-encoding gene (electronic

supplementary material, figure S11). To confirm this assem-

bly and linkage between ‘host’ and viral gene we
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conducted a bridging PCR resulting in an amplicon of

2837 bp and sequenced this amplicon, confirming that the

mcp and histone genes are linked and on the same stretch

of DNA (electronic supplementary material, table S6).

One hundred and forty-five predicted genes were identified

in the two contigs that contain a high number of viral genes.

BLASTx analyses suggest that the two contigs contained 37

(26%) and 18 (12%) genes of highest identity to genes of

known viral genomes (electronic supplementary material,

table S7). The BLASTx results for the remaining 235 putative
genes showed a wide variation of top scoring hits including

both prokaryotic- and eukaryotic-like genes. The frequency of

putative exons for the two contigs was 1.62 and 1.49, respect-

ively, a lower intron/exon frequency than observed for the

wider genome (intron frequency ¼ 3.64), thus suggesting that

genes encoded on viral gene-containing contigs have introns.

Indeed, multiple viral-like genes show evidence of introns

suggesting these genes have been: incorrectly modelled, subject

to intronization or exon-like shuffling during integration, or

these genes are undergoing pseudogenization and are therefore

http://rsob.royalsocietypublishing.org/
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broken ORFs, which are being reported as intron/exon struc-

tures. However, we note that gene of viral provenance

Hypho2016_00000945-RA (scaffold 5419) contains multiple

putative coding regions present in our transcriptome data.

The low SNP frequency of these contigs suggests they represent

a unique haploid portion of the genome, a viral genome cap-

tured in our assembly, or alternatively a site of viral

introgression in the H. catenoides genome. We currently

favour the hypothesis that this is a site of viral introgression

due to the presence of putative introns in the contig and the

low relative proportion of genes of clear viral provenance.

Products from polB, mg96 and rps3 were detected by RT-

PCR in our culture conditions, suggesting that viral-like

genes are transcriptionally active (figure 7b). By contrast, a

lack of transcript from the mcp gene suggests that a complete

virus or a viral factory is not being manufactured in the
culture conditions tested (figure 7b). Electron microscopy

also failed to observe icosahedral structures typical of

NCLDV particles or an intracellular viral factory (see elec-

tronic supplementary material, figure S12).

These data combined with evidence of viral genes present

in oomycete genome assemblies (figure 7a) [111] suggest a

hitherto unsampled diversity of large DNA viruses found

infecting or integrated within the genomes of Pseudofungi.

This is consistent with other data suggesting the Pseudofungi

have been subject to viral transduction [111]. It has also been

shown that many different lineages of the stramenopiles have

similarly retained fragments of viral genomes [112], suggesting

a wider and undersampled diversity of stramenopile-infecting

large DNAviruses. It is tempting to speculate that this may be a

mechanism driving horizontal gene transfer (HGT) seen in the

oomycetes [113], given that NCLDVs have been shown to
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harbour host-derived and foreign genes [114,115] and that

fragments of large DNA viruses have now been shown to be

present in fungi [111], a group shown to be a donor of HGT

genes to the oomycetes [63,113]. Consistent with this, we

note that the two contigs containing the viral derived genes

also contain two genes with top BLASTx hits to fungal genes

(electronic supplementary material, table S7).

The Pseudofungi are thought to lack the capabilities to

perform phagotrophy [4], a mechanism hypothesized to be
important for HGT in eukaryotes [116]. However, there is evi-

dence of gene transfer into the oomycetes from both fungi

and prokaryotes [54,63,117–121]. The extent of ancient

HGTs in eukaryotes has recently been questioned [122].

Yet, Ku et al. [122] also identified genes uniquely present in

oomycetes and bacteria which are described as ‘recent lineage

specific acquisitions’ (see fig. 1 in [122], marked as b).

Evidence of viral introgression within the Pseudofungi,

therefore, identifies a possible mechanism driving HGT in
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the Pseudofungi, which cannot perform phagotrophy. It is

important to note that viral transduction as a vector for

HGT in the eukaryotes would be likely to produce a very

different profile of gene transfer compared with mechanisms

such as phagocytosis (in eukaryotes) [116], transformation

(prokaryotes and eukaryotes) [123] or conjugation (prokar-

yotes and eukaryotes) [124,125]. This is because gene

transfer via a virus would be likely to transfer a lower

number and lower diversity of gene families for two reasons:

(i) genes carried by the virus would have been passaged by

selection within the viral lineage and (ii) the limited DNA

carrying capacity of the viroid. Such a mechanism of HGT

is, therefore, consistent with the results of Ku et al. [122],

which suggest HGT is less frequent in eukaryotes compared

with prokaryotes. However, this does not exclude the possi-

bility that infrequent HGTs can lead to the acquisition of

novel and/or positively selected traits.
3. Conclusion
The draft genome of the free-living stramenopile pseudofun-

gus H. catenoides provides an important reference for

comparative biology specifically with a view to understand-

ing the evolution of filamentous growth and osmotrophic

feeding. H. catenoides branches sister to the oomycetes that

contains many important parasitic groups. These data

demonstrate that H. catenoides does not encode many of the

gene families found in oomycetes that have been associated
with parasitic function, suggesting that these characteristics

are more recent adaptations/acquisitions within the oomy-

cetes (table 1). Our data also demonstrates that H.
catenoides, and the Pseudofungi more widely, possess the

genes that encode a range of features associated with filamen-

tous growth and osmotrophic feeding in fungi. These include

the exocyst vesicle trafficking system, sterol biosynthesis

pathway and a repertoire of chitin cell-wall synthesis systems

common to fungi. By contrast, Pseudofungi do not possess

the genes encoding a polarisome complex, chitinase I, chitin

synthase II/Myosin V or Myosin XVII, identifying clear

differences between these two filamentous osmotrophic

groups. Figure 8 summarizes how various features associated

with filamentous growth and osmotrophic feeding arose

relative to the branching position of the Fungi and the

Pseudofungi. We hope the H. catenoides draft genome will

provide a useful dataset for comparative biology within

the Pseudofungi and across the eukaryotes, especially

with regards to understanding the evolution of filamentous

osmotrophic characteristics.
4. Material and methods
4.1. Cell culture in preparation for sequencing
Hyphocytrium catenoides (ATCC 18719) was inoculated onto

Emerson YpSs agar. Cell mass was prepared for DNA and

RNA extraction as described previously [63]. DNA samples
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were checked for contamination using an environmental DNA

SSU PCR approach [63] using both eukaryotic 18S PCR pri-

mers 1F (CTGGTTGATCCTGCCAG) and 1520R

(CTGCAGGTTCACCTA) (e.g. [126]), which produced a clean

chromatogram of a Hyphochytrium 18S sequence, and prokar-

yotic 16S PCR primers PA (AGAGTTTGATCCTGGCTCAG)

and PH (AAGGAGGTCATCCAGCCGCA) which were

negative (e.g. [127]).
hing.org
Open

Biol.8:170184
4.2. Genome and transcriptome sequencing, assembly
and validation and ORF calling

One lane of paired-end (100 bp) Illumina HiSeq data was gen-

erated along with two lanes of paired-end (76 bp) Illumina

GAiix at the Exeter Sequencing Service producing 2� 212

760 559 HiSeq reads along with 2� 15 266 599 and 2� 16 274

715 GAiix reads. After trimming and cleaning (using TAGCLEA-

NER [128] and PRINSEQ [129]) of the data, we subsequently

digitally normalized it with KHMER [130] in order to discard

redundant data and sampling variation and remove errors.

This reduced the number of reads to 415 241 668 HiSeq

along with 28 964 302 and 30 961 514 GAiix, a reduction of

13 436 262 reads in total. The raw reads are deposited in

NCBI and EBI with accessions as: Illumina GAiix ¼

SRX033129 and Illumina HiSeq ¼ ERS1151585 respectively.

An initial assembly, using the program RAY v.2.2.1 [131] was gen-

erated (see https://github.com/guyleonard/hyphochytrium/

tree/master/manuscript/data for details of commands used),

and produced 29 448 scaffolds, with a total of 107 387 882 bp,

and an N50 of 8 746 bp.

Next, we investigated the possibility that H. catenoides was

a diploid using an assembly program that allows for multiple

ploidy. The program PLATANUS v.1.2.1 was used to produce an

assembly with 53 358 scaffolds incorporating 68 330 525 bp

and an N50 of 29 450 bp (see https://github.com/guyleo-

nard/hyphochytrium/tree/master/manuscript/data for

details of commands used).

The Platanus assembly was subsequently filtered into four

datasets; all scaffolds, scaffolds �10 kbp, scaffolds �5 kbp and

scaffolds �1 kbp in order to test the effects of the N50 statistic

and gene recovery rate by removing short and erroneous scaf-

folds/contigs (electronic supplementary material, figure S1).

We determined that the set of scaffolds � 1 kbp did not affect

our predicted proteome complement and increased the N50.

The filtered �1 kbp Platanus assembly, along with the mito-

chondrial genome assembly, are deposited in EBI with the

accessions: Study ID, PRJEB13950; Scaffolds, FLMG01000001-

FLMG01004758; and Mitochondria, LT578416. The full assem-

bly and other filtered datasets can be accessed at https://

github.com/guyleonard/hyphochytrium or https://www.ebi.

ac.uk/biostudies/studies/S-BSST46.

K-mer counting analysis was conducted using JELLYFISH

along with two publically available scripts (estimate_gen-

ome_size.pl and the website GenoScope, see https://github.

com/josephryan/estimate_genome_size.pl and [132]). The

average sequencing coverage of this assembly was estimated

using the ‘estimate_genome_size.pl’ tool for the total assem-

bly and using the ‘genomeCoverageBed’ from BEDTOOLS

[133] for the �1 kbp subset of scaffolds.

Gene prediction was conducted by using CEGMA to pre-

dict which of the 246 core genes are present in our

Hyphochytrium �1 kbp scaffolds; these predicted CEGs are
then used in the training step of the program SNAP (see

http://korflab.ucdavis.edu/software.html) to generate a set

of ab initio gene models. The program GENEMARK-ES [134]

was also run independently on the �1 kbp scaffold data,

which produced another set of gene models. Both these sets

of gene models are in the form of a hidden Markov model

(HMM). A first pass of the pipeline MAKER was then run

with the default settings, incorporating the gene models

from SNAP and GENEMARK-ES while also deriving alignment

statistics from the 454-transcriptome assembly with tBLASTn,

REPEATMASKER [135] and EXONERATE [136]. The output is a set of

gene models in GFF3 format. A second round of SNAP was

then performed with the new predictions (after the GFF3

has been converted to a HMM) and the program AUGUSTUS

[137] is run in ab initio mode using the MAKER first pass pre-

dictions (i.e. AUGUSTUS default gene models were not used

as they are generated from distantly related taxa). Both

outputs of SNAP (run 2) and AUGUSTUS are then fed

back into MAKER for a second run with stricter settings

(gene predictions are available here: https://github.

com/guyleonard/hyphochytrium/tree/master/gene_pre-

dictions). The final output is a GFF3 file, transcripts and

protein FASTA files. The resulting gene predictions were

then BLAST searched against the SwissProt database along

with INTERPROSCAN to assign putative annotations. The results

were then used with the program ANNIE [138] to provide the

correct format of annotation information to the program

GAG [139] for database deposition. The resulting genome

data is submitted as an update of a prior BioProject sequence

submission [63]; to do this we used the ‘gff3toembl’ program

from PROKKA [140].

Previously, we had sequenced a transcriptome from the

same culture strain of Hyphochytrium [63] using 454 FLX

sequencing of cDNA reads and assembled it with NEWBLER

2.5 [141] using the default cDNA settings. We removed 70

sequences from this assembly of less than 100 bp in length

(excluding the polyA regions) and/or contigs that consisted

of predominantly repeat motifs. This resulted in 6202

transcript sequences assembled in NEWBLER 2.5 using the stan-

dard settings for cDNA. The reads were also assembled in

TRINITY but resulted in significantly more (nearly double)

contigs.
4.3. Assessment of contamination of the genome
sequence

To identify any prokaryotic contamination in the �1 kbp

scaffold assembly, we first conducted BLASTn searches of

the assembly using prokaryotic SSU and LSU rDNA

sequences as search seeds (Escherichia coli taken from

[CP012802] and Sulfolobus acidocaldarius [NR_043400 &

NR_076363]). This analysis only returned sequences of simi-

larity to the H. catenoides mitochondria genome assembly,

suggesting that no, or very limited, prokaryotic sequence

contamination was present. To support this, we subjected

all 4758 genome scaffolds to a BLASTx analysis against a

database of 65 eukaryotic and 164 representative prokaryotic

complete predicted proteomes (electronic supplementary

material, table S8) with a gathering threshold of 1 � 10210.

This approach did not identify any scaffolds that did not

have at least one top hit to a eukaryotic genome for a subsec-

tion of the scaffold. Indeed, only 87 of the scaffolds had

https://github.com/guyleonard/hyphochytrium/tree/master/manuscript/data
https://github.com/guyleonard/hyphochytrium/tree/master/manuscript/data
https://github.com/guyleonard/hyphochytrium/tree/master/manuscript/data
https://github.com/guyleonard/hyphochytrium/tree/master/manuscript/data
https://github.com/guyleonard/hyphochytrium/tree/master/manuscript/data
https://github.com/guyleonard/hyphochytrium/tree/master/manuscript/data
https://github.com/guyleonard/hyphochytrium
https://github.com/guyleonard/hyphochytrium
https://github.com/guyleonard/hyphochytrium
https://www.ebi.ac.uk/biostudies/studies/S-BSST46
https://www.ebi.ac.uk/biostudies/studies/S-BSST46
https://www.ebi.ac.uk/biostudies/studies/S-BSST46
https://github.com/josephryan/estimate_genome_size.pl
https://github.com/josephryan/estimate_genome_size.pl
https://github.com/josephryan/estimate_genome_size.pl
http://korflab.ucdavis.edu/software.html
http://korflab.ucdavis.edu/software.html
https://github.com/guyleonard/hyphochytrium/tree/master/gene_predictions
https://github.com/guyleonard/hyphochytrium/tree/master/gene_predictions
https://github.com/guyleonard/hyphochytrium/tree/master/gene_predictions
https://github.com/guyleonard/hyphochytrium/tree/master/gene_predictions
http://rsob.royalsocietypublishing.org/


rsob.royalsocietypublishing.org
Open

Biol.8:170184

16

 on March 22, 2018http://rsob.royalsocietypublishing.org/Downloaded from 
greater than 50% of the subsections with a top BLAST hit to a

prokaryotic genome and only 20 of the scaffolds had greater

than 70% of their top BLAST hits to a prokaryotic genome.

These 20 scaffolds were inspected manually; 11 of these

showed the presence of putative spliceosomal introns and/

or other genes more similar to other eukaryotic genes. For

the remaining nine scaffolds (totalling 31.8 kbp), we could

not exclude them as possible prokaryotic contamination

(listed in electronic supplementary material, table S9).

Comparisons of GC content versus read coverage coupled

with BLASTn analysis to identify likely aberrant genomic

affiliation of assembly scaffolds (e.g. ‘blobology’ [142]) has

emerged as useful tool for identifying contamination of

genome-sequencing projects [143]. We undertook this

approach on both the �1 kbp scaffold assembly and the

total assembly, and the graphs did not identify any suspect

traces of contamination; however, they do show the presence

of the mitochondrial genome as an aberrant cluster of ‘blobs’,

i.e. with lower than average GC content (electronic

supplementary material, figure S13a–d).

A fourth round of checks for contamination were con-

ducted by using tetramer counting of the �1 kbp scaffold

dataset for the building of Emergent Self Organising Maps

[144]. These use similarities in the 4-mer frequencies to

build, by way of an artificial neural network, an emergent

‘map’ of the input space properties of the data. Two runs of

the software developed by Dick et al. [144] were completed

(see electronic supplementary material, figure S14a,b): (i)

the Hyphochytrium scaffolds only and (ii) the Hyphochytrium
scaffolds along with the scaffolds from eight ‘small’ genomes

which were added to the tetramer frequency dataset, (Bacteria

(blue): E. coli, Mycobacterium tuberculosis; Archaea (grey):

Methanococcus vanniellii, S. solfataricus; Fungi (purple): Encepha-
litozoon intestinalis, Saccharomyces cerevisiae; Archaeplastida

Ostreococcus tauri; Protist (red): Cryptosporidium hominis). The

maps produced in the electronic supplementary material,

figure S14 show no indication of overlap or features indicative

of contamination.
4.4. Hyphochytrium catenoides genome qPCR size
estimation

The haploid genome size of H. catenoides was estimated using

a qPCR-based method [19]; 50 ml of a H. catenoides culture,

grown in YpSs for 7 days at 258C, was centrifuged for

3 mins at 3200g. The supernatant was removed and genomic

DNA was extracted from the remaining cells using a Power-

Soil DNA isolation kit (MO BIO Laboratories). An rps3 PCR

standard was amplified using primers Hcat_rps3_F

(CGAGGGCTACATGGTCAAGA) and Hcat_rps3_R CCTT

TGGCTCGATGATGGTG). Each 25 ml reaction consisted

of 0.5 U Phusion polymerase (New England Biolabs), 1�
HF buffer, 400 mM dNTPs, 2 mM each primer and 1 ml

H. catenoides genomic DNA (11.6 ng ml21). Cycling con-

ditions consisted of an initial denaturation of 5 min at 988C,

followed by 30 cycles of 10 s at 988C, 30 s at 61.08C and

30 s at 728C, then a final extension of 5 min at 728C. The

185 bp PCR product was purified by gel extraction

(Thermo Scientific GeneJET Gel Extraction kit) and eluted

using elution buffer. Concentration of the purified product

was determined using a Qubit dsDNA HS assay kit

(Thermo Fisher Scientific). Real-time PCR was used to
quantify the number of copies of rps3 present in each geno-

mic DNA sample. Quantitative PCR was performed in a

StepOnePlus real-time PCR system (Thermo Fisher Scienti-

fic). Reaction conditions were optimized using a gradient

PCR and a standard curve was determined using dilutions

of H. catenoides genomic DNA and analysed using STEPONE

software v. 2.3 (slope: 23.367; y-intercept: 33.841; efficiency:

98.15%). Each 20 ml PCR contained 10 ml PowerUp SYBR

Green Master Mix (Thermo Fisher Scientific), 500 nM each

primer (Hcat_rps3_F and Hcat_rps3_R, sequences as above)

and 1 ml template DNA. Template was either H. catenoides
genomic DNA or the PCR standard. Standards were diluted

(1021 to 1027) from an initial concentration of 24.7 ng ml21

and run in triplicate, while three independent genomic DNA

samples were run in quintuplicate. Cycling conditions were

as follows: UDG activation for 2 min at 508C and DNA poly-

merase activation for 2 min at 958C, followed by 40 cycles of

15 s at 958C and 1 min at 608C. ROX was used as a reference

dye for analysis of CT values. Each reaction was followed by

melt-curve analysis, with a temperature gradient of 60–958C
at 0.38C s21, to ensure presence of only a single amplicon.

The PCR standards were used to create a calibration curve

(y ¼ 8 � 1010 � 1020.67x; R2 ¼ 0.99992); CT values from ampli-

fications of genomic DNA templates were then applied to this

curve and the ‘mass’ of the haploid genome was calculated

[19]. This value was then used to calculate the haploid

genome size, using 615.8771 g mol21 as the mean molar

mass of a base pair [145].

4.5. Mitochondrial genome assembly
Contigs of putative mitochondrial origin, from both assemblies,

were identified by BLAST searches against the mitochon-

drial genome of Phytophthora infestans (NC_002387.1). The

contigs from the genome assemblies were visualized, linked

and edited using the program SEQUENCHER (https://

www.genecodes.com), resulting in two contigs. However, we

were unable to circularize the genome using these two frag-

ments. Therefore, regions spanning the gaps in the mtDNA

super-contigs were amplified by polymerase chain reaction

(PCR) with primers specific to the flanking sequences. Purified

PCR products were sequenced using Sanger chemistry (exter-

nally at Eurofins Genomics, Ebersberg). This allowed the two

contigs to be joined, resulting in a linear genome flanked on

one end with rpl16 and atp8 on the other. These genes were

identical to the other rpl16 and atp8 genes found in the

assembled mitochondrial genome; we therefore inferred that

these represented the beginning and end of a 19 kb inverted

repeat (electronic supplementary material, figure S2). Mito-

chondrial genes were identified and annotated using MFANNOT

(http://megasun.bch.umontreal.ca/cgi-bin/mfannot/mfanno-

tInterface.pl, last accessed 20 June 2017) followed by manual

inspection. The putatively circular genome was visualized

using CGVIEW [146]. Results and discussion of the mitochon-

drial data can be found in the electronic supplementary

material, figure S2.

4.6. Search for Hyphochytrium catenoides
representatives of key oomycete gene families

Using Pfam searches (Pfam release 29.0) with default defined

e-value cut-offs, we searched the H. catenoides predicted
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proteome for: NPP1-like proteins (Pfam domain: PF05630),

elicitin (PF00964), cutinase (PF01083), pectin methyl esterases

(PF01095), pectate lyase (PF03211), polygalacturonase

(PF00295) PAN lectin (PF00024), ricin lectin (PF00652), jacalin

lectin (PF01419), galactose-binding lectin (PF00337), legume

lectin (PF00139), legume-like lectin (PF03388), ABC transpor-

ters (PF00005), protein kinase (PF00069 & PF07714), notch

protein (PF00066) and haemolysin E (PF06109). In addition,

the H. catenoides predicted proteome was searched against

the MEROPS database (https://merops.sanger.ac.uk/) to

identify putative protease inhibitors and proteases and the

CAZymes analysis [147] toolkit (using Pfam) at http://

mothra.ornl.gov/cgi-bin/cat/cat.cgi?tab=PFAM1 to identify

putative carbohydrate interacting proteins. Predicted proteins

containing putative RxLR motifs and Crinkler domains were

identified using the pipelines described in the literature

[148,149].

4.7. Secretome analysis
Putatively secreted proteins were predicted using a custom

pipeline (https://github.com/fmaguire/predict_secretome/

tree/refactor) which identifies sequences predicted to have

a signal peptide (via SIGNALP 4.1 [150]), no TM domains in

their mature peptide (via TMHMM 2.0c [151,152]), a signal

peptide that targets for secretion (via TARGETP [153]) and

belonging to the extracellular ‘compartment’ (as predicted

by WoLFPSORT 0.2 [154]). The CAZY database [155] was

downloaded, converted into a BLAST-DB and searched

using the predicted proteome and secretomes using

BLASTp with an expectation of 1 � 1025. Hit tallies were

then summed, proportions calculated and data plotted in

Python via the PANDAS and SEABORN packages (figure 3).

4.8. Phylogenetic analysis of individual gene families
Unless otherwise stated in the figure legends all phylogenetic

analyses were conducted using the following protocols.

Using BLASTp we used the seed sequence to identify putative

homologues across a locally maintained database of eukaryotic

and prokaryotic genome-derived protein datasets (electro-

nic supplementary material, table S10) with a gather

threshold of 1 � 10210. The Multiple Sequence Comparison

by Log-Expectation (MUSCLE) program (v. 3.8.31) [156] was

used to produce a multiple sequence alignment for each set

of proteins. Alignments were then manually corrected and

masked in SEAVIEW (v. 4.2.4) [157]. Sequences that required a

high level of site exclusion (due to the sequence not aligning

or not masking well) or where they formed long branches in

preliminary analysis were removed. The phylogenies were cal-

culated using RAxML [31] with 1000 (non-rapid) bootstrap

replicates and using the substitution matrix and gamma distri-

bution identified using PROTTEST3 (v. 3.2.1). In some cases,

the invariant sites parameter was also included in the model

(if indicated in the PROTTEST3 analysis).

To identify putative orthologues that arose at the base of

the Pseudofungi, gene clusters identified from 74 genomes

(electronic supplementary material, table S11) were mapped

onto the species phylogeny using a pipeline described at

https://github.com/guyleonard/orthomcl_tools and http://

dx.doi.org/10.5281/zenodo.51349. Putative pseudofungal

specific orthologues were individually tested by conducting

gene phylogeny, as described above, combined with
additional BLAST searches of NCBI and JGI databases to test

and improve taxon sampling (see electronic supplementary

material, table S3 for the resulting set of pseudofungal specific

orthologues).

4.9. Multi-gene concatenated phylogenetic analysis to
identify the branching position of Hyphochytrium
catenoides

Using previously established methods [25,158], we built a

concatenated amino acid alignment of 325 orthologues result-

ing in a masked data matrix of 128 taxa consisting of 90 203

amino acid sites constructed from previously identified seed

alignments [25].This dataset encompassed a wide sampling

of eukaryotes as well as a broad sampling of stramenopiles

available in public databases (e.g. [24,25]). Single gene trees

were inferred in RAxML under the PROTCAT þ LG model

with 100 rapid bootstraps. To examine the effect of the genes

used in our phylogenomic analyses we estimated the RTC

(i.e. the average of all internode confidence (IC) values for

each single gene tree given the bootstrap replicate trees

[30,32]). These were calculated in RAxML v. 8.2.6 [31] by com-

paring the best tree bipartitions to those in the bootstrap trees.

The average RTC value for all single gene trees was 0.263.

Using the RTC values of all single gene trees, we identified

and extracted the top 50% orthologue trees (162 genes, ranging

in RTC values from 0.608 to 0.260—named as 162-50RTC data-

set). The 162-50RTC genes were concatenated into a supermatrix

(128 taxa, 60 059 amino acids) and analysed also in a partitioned

and coalescence framework (electronic supplementary material,

figure S6b), as with the 325-gene dataset.

Using these alignments (325 gene and 162 gene

(162-50RTC) datasets), we calculated a ML with 100 real boot-

strap replicates using the IQ-TREE software [27,28] and with

the site heterogenous model of evolution LGþG4þC60þFþ
PMSF (posterior mean site frequencies) substitution model

[29]. The full phylogeny for each are shown in the electronic

supplementary material, figure S6a and b. Partitioned phylo-

genomic species trees were inferred using IQ-TREE v. 1.5.5,

allowing each partition to have its own model and evolution-

ary rates. Each partition was independently analysed under

the LGþG4 model of evolution. This analysis encompassed

1000 ultrafast bootstrap replicates. For summary-coalescent

species tree estimation, we employed ASTRAL [23] with

default settings and with species tree topology and node

support estimated with ASTRAL multilocus bootstrapping

(100 replicates). For this coalescence tree, ASTRAL was

given all single gene RAxML (PROTCATLGF) best ML phy-

logenies and 100 rapid bootstrap replicates for each single

gene alignment. IC was calculated for the IQ-TREE superma-

trix ML tree (LGþG4þC60þFþPMSF) for both datasets (325

and the 162-50RTC). These were calculated in RAxML v.8.2.6

[31] by comparing the overall ML bipartitions to those in the

best individual ML gene trees. These IC along with the TC

(Tree certainty) values are mapped on the phylogeny

shown in the electronic supplementary material, figure S7a

and b.

4.10. Identification of genes of plastid ancestry
We constructed a database of taxonomically diverse represen-

tative genomes (electronic supplementary material, table S11)
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and clustered the respective proteomes into putative ortholo-

gue groups using OrthoMCL [67], retaining only the groups

containing H. catenoides genes. Next, we resampled sequences

from a wider database of 1205 taxa (electronic supplementary

material, table S10) using BLASTp searches [159] to recover

up to three sequences from each genome using a gathering

threshold of 1 � 10210. We then filtered these clusters, identi-

fying only those containing both a H. catenoides gene and

genes from photosynthetic or ancestrally-photosynthetic

eukaryotic taxa. These sequences were then aligned using

MAFFT [160], masked using TRIMAL [110] and a phylogeny

was calculated from the data matrix using FASTTREE2 [160].

The resulting phylogenies were manually inspected for a

phylogeny that showed H. catenoides/pseudofungal/strame-

nopile genes which: (a) branched within the Archaeplastida

radiation, (b) branched with genes of photosynthetic eukar-

yotes and within a bacterial radiation or (c) branched with

cyanobacterial genes. This process required re-running of

the phylogenetic pipeline for many gene clusters, either redu-

cing gene sampling or removing long-branch sequences.

A subset of 101 gene cluster phylogenies putatively showed

a phylogenetic relationship consistent with criteria (a)–(c)

described above. The alignments from these clusters were

then manually refined, the taxon sampling checked using

manual BLAST searches of the NCBI nr database and phyloge-

nies recalculated using the RAxML approach described above.

The results of this analysis identified four candidate plastid

endosymbiosis acquired genes; these are presented and

discussed in the electronic supplementary material, figure S3.
4.11. Testing for CYP51 sterol-demethylase drug
sensitivity

Azole susceptibility was assessed using a modification of the

protocol reported in Warrilow et al. [42]. Briefly, fluconazole

and clotrimazole were dissolved in dimethyl sulfoxide

(DMSO) to a stock concentration of 25.6 mg ml21. Dilutions

were then made with DMSO to prepare 100� stock solutions.

These stocks were diluted in PYG (1.25 g l– 1 peptone, 1.25 g

l– 1 yeast extract, 3 g l–1 glucose) medium to a final volume

of 5 ml, each containing 100 ml of H. catenoides liquid culture

(grown in YpSs at 258C shaking for 7 days) to achieve final

azole concentrations of 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5 and

0.25 mg ml21, and with control samples containing 1% (v/v)

DMSO. Cultures were incubated, in triplicate, for 7 days at

258C with 200 r.p.m. shaking, and MIC100 was scored manu-

ally by assessing for presence/absence of hyphal growth

(see electronic supplementary material, figure S8 for the

results of the CYP51 and drug treatment analysis).
4.12. OmniLog ‘phenotype microarrays’
Measures of 100 ml H. catenoides culture were grown in PYG in

baffled flasks, at 258C with 170 r.p.m. shaking to minimize

aggregation. Cells were recovered by centrifugation at 3200g,

washed twice with water and re-suspended in PYG (as

above, no carbon-source) to a final concentration of approxi-

mately 1.5 � 103 cells ml21. Cells were allowed to recover at

258C with shaking for 30 min before Dye mix D (Biolog) was

added to a 1� final concentration. A measure of 100 ml of

cells was inoculated into each well of PM1 and PM2 carbon-
source plates and incubated for 7 days at 258C. Each growth

assay was performed in triplicate from independent cultures.

OmniLog Phenotype Microarray outputs were analysed

using OPM [162]. Data were aggregated using the ‘opm-

fast’ method, analysed using the A parameter (maximum

value of OmniLog units reached) and tested by t-test. Signifi-

cant p-values were extracted if they resulted in increased

respiration rate in comparison with the negative control

well A01 (see electronic supplementary material, figure S9

for the results of the OmniLog analysis).

4.13. Confirmation of viral genes in the Hyphochytrium
catenoides assembly and reverse-transcriptase PCR
of viral genes

To confirm that the viral genes were assembled correctly and

were resident in the H. catenoides genome, PCRs across the 30

and 50 junctions of the putative viral open reading frame for

three of the viral genes polB, MCP and mg96 were performed.

PCR reactions (25 ml; 1� Phusion HF buffer, 400 mM dNTP

mix, 200 nM each primer, 0.5 U Phusion polymerase) were

performed with the following cycling conditions: initial dena-

turation of 5 min at 988C, followed by 30 cycles of 10 s at

988C, 30 s at 56–648C and 1 min at 728C, then a final exten-

sion of 5 min at 728C. These were purified using a GeneJET

PCR Purification Kit or GeneJET Gel Extraction kit (Thermo

Scientific) and sequenced to confirm that each product

matched the expected amplicon. To confirm that the mcp
gene was on the same contig as the histone H3 gene, we per-

formed a PCR across these two genes (expected amplicon of

2837 bp) using the same conditions as above, except with an

annealing temperature of 648C and with a 3-min extension.

The PCR product was purified and A-tailed using Taq poly-

merase, then cloned using the StrataClone PCR Cloning Kit

(Agilent Technologies). The resulting vector was sequenced

using T3/T7 primers, with primer-walking to confirm the

entire 2.8 kb sequence.

To investigate if the viral derived genes are actively tran-

scribed in our culture conditions, we conducted RT-PCR of

the polB, mcp, mg96 and rps3 virus confirming polB, mg96
and rps3 are expressed in our culture conditions and

suggesting that the viral-like genes are transcriptionally

active. RNA was extracted from H. catenoides using RNA

PowerSoil Total RNA Isolation (MoBio). Residual genomic

DNA was removed using RQ1 RNase-Free DNase (Promega)

and Taq PCR was performed to confirm absence of DNA.

Reverse-transcriptase PCR (RT-PCR) was then performed

using a Qiagen OneStep kit according to the manufacturer’s

instructions, alongside genomic DNA positive and no-tem-

plate controls. The following cycling conditions were used:

reverse transcriptase of 30 min at 508C and initial denaturation

of 15 min at 948C, followed by 32 cycles of 1 min at 948C, 1 min

at 508C and 1 min at 728C, then a final extension of 10 min at

728C. Samples were then analysed on a 2% (w/v) agarose gel.

4.14. WGA staining
Hyphochytrium catenoides was grown for 7 days at 258C and

100 ml of mycelial growth was removed and suspended in

1 ml PBS, then 5 mg ml21 calcofluor white (Fluka) and

10 mg ml21 WGA, Alexa Fluor 488 conjugate (Invitrogen)

were added and cells were incubated for 30 min in the
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dark. Cells were washed twice in PBS and imaged using an

Olympus IX73 microscope on a 40� objective. Unstained

cells were also checked to confirm the absence of

autofluorescence.
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L J. 2005 Complete mitochondrial genomes of the
three brown algae (Heterokonta: Phaeophyceae)
Dictyota dichotoma, Fucus vesiculosus and
Desmarestia viridis. Curr. Genet. 49, 47 – 58. (doi:10.
1007/s00294-005-0031-4)

36. Philippe H. 2000 Opinion: long branch attraction
and protist phylogeny. Protist 151, 307 – 316.
(doi:10.1078/S1434-4610(04)70029-2)

37. Cavalier-Smith T. 2000 Membrane heredity and
early chloroplast evolution. Trends Plant Sci. 5,
174 – 182. (doi:10.1016/S1360-1385(00)01598-3)

38. Stiller JW, Huang J, Ding Q, Tian J, Goodwillie C.
2009 Are algal genes in nonphotosynthetic protists
evidence of historical plastid endosymbioses? BMC
Genomics 10, 484. (doi:10.1186/1471-2164-10-484)

39. Dorrell RG et al. 2017 Chimeric origins of
ochrophytes and haptophytes revealed through an
ancient plastid proteome. Elife 6, e23717. (doi:10.
7554/eLife.23717)

40. Gaulin E, Bottin A, Dumas B. 2010 Sterol
biosynthesis in oomycete pathogens. Plant Signal
Behav. 5, 258 – 260. (doi:10.4161/psb.5.3.10551)

41. Gaulin E, Madoui M, Bottin A, Jacquet C, Mathe C,
Couloux A, Wincker P, Dumas B. 2008 Transcriptome
of Aphanomyces euteiches: new oomycete putative
pathogenicity factors and metabolic pathways. PLoS
ONE 3, e1723. (doi:10.1371/journal.pone.0001723)

42. Warrilow AGS, Hull CM, Rolley NJ, Parker JE, Nes
WD, Smith SN, Kelly DE, Kelly SL. 2014 Clotrimazole
as a potent agent for treating the oomycete fish
pathogen Saprolegnia parasitica through inhibition
of sterol 14a-demethylase (CYP51). Appl. Environ.
Microbiol. 80, 6154 – 6166. (doi:10.1128/AEM.
01195-14)

43. Baxter L et al. 2010 Signatures of adaptation to
obligate biotrophy in the Hyaloperonospora
arabidopsidis genome. Science 330, 1549 – 1551.
(doi:10.1126/science.1195203)

44. Raffaele S, Win J, Cano L, Kamoun S. 2010 Analyses
of genome architecture and gene expression reveal
novel candidate virulence factors in the secretome
of Phytophthora infestans. BMC Genomics 11, 637.
(doi:10.1186/1471-2164-11-637)

45. Levesque CA et al. 2010 Genome sequence of the
necrotrophic plant pathogen Pythium ultimum
reveals original pathogenicity mechanisms and
effector repertoire. Genome Biol. 11, R73. (doi:10.
1186/gb-2010-11-7-r73)

46. Haas B et al. 2009 Genome sequence and analysis
of the Irish potato famine pathogen Phytophthora
infestans. Nature 461, 393 – 398. (doi:10.1038/
nature08358)

47. Birch P, Rehmany A, Pritchard L, Kamoun S, Beynon
J. 2006 Trafficking arms: oomycete effectors enter
host plant cells. Trends Microbiol. 14, 8 – 11.
(doi:10.1016/j.tim.2005.11.007)

48. Birch P et al. 2009 Towards understanding the
virulence functions of RXLR effectors of the
oomycete plant pathogen Phytophthora infestans.
J. Exp. Bot. 60, 1133 – 1140. (doi:10.1093/jxb/
ern353)

49. Dou D, Kale S, Wang X, Jiang R, Bruce N,
Arredondo F, Zhang X, Tyler B. 2008 RXLR-
mediated entry of Phytophthora sojae effector
Avr1b into soybean cells does not require
pathogen-encoded machinery. Plant Cell 20,
1930 – 1947. (doi:10.1105/tpc.107.056093)

50. Dou D et al. 2008 Carboxy-terminal motifs common
to many oomycete RXLR effectors are required for
avirulence and suppression of BAX-mediated
programmed cell death by Phytophthora sojae
effector Avr1b. Plant Cell 20, 1118 – 1133. (doi:10.
1105/tpc.107.057067)

51. Qutob D et al. 2006 Phytotoxicity and innate
immune responses induced by Nep1-like proteins.
Plant Cell 18, 3721 – 3744. (doi:10.1105/tpc.106.
044180)

52. Fellbrich G et al. 2002 NPP1, a Phytophthora-
associated trigger of plant defense in parsley and
Arabidopsis. Plant J. 32, 375 – 390. (doi:10.1046/j.
1365-313X.2002.01454.x)

53. Yu LM. 1995 Elicitins from Phytophthora and basic
resistance in tobacco. Proc. Natl Acad. Sci. USA 92,
4088 – 4094. (doi:10.1073/pnas.92.10.4088)

54. Belbahri L, Calmin G, Mauch F, Andersson J. 2008
Evolution of the cutinase gene family: evidence for
lateral gene transfer of a candidate Phytophthora
virulence factor. Gene 408, 1 – 8. (doi:10.1016/j.
gene.2007.10.019)

55. Kemen E et al. 2011 Gene gain and loss
during evolution of obligate parasitism in the
white rust pathogen of Arabidopsis thaliana. PLoS
Biol. 9, e1001094. (doi:10.1371/journal.pbio.
1001094)

56. Blackman LM, Cullerne DP, Hardham AR. 2014
Bioinformatic characterisation of genes encoding cell
wall degrading enzymes in the Phytophthora
parasitica genome. BMC Genomics 15, 1 – 24.
(doi:10.1186/1471-2164-15-785)

57. Lombard V, Golaconda Ramulu H, Drula E, Coutinho
PM, Henrissat B. 2014 The carbohydrate-active
enzymes database (CAZy) in 2013. Nucleic Acids Res.
42, D490 – D495. (doi:10.1093/nar/gkt1178)

58. Bochner BR, Gadzinski P, Panomitros E. 2001
Phenotype microarrays for high-throughput phenotypic
testing and assay of gene function. Genome Res. 11,
1246 – 1255. (doi:10.1101/gr.186501)

59. Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S,
Hayashi M. 2011 Effect of Tween 80 on the growth,
lipid accumulation and fatty acid composition of
Thraustochytrium aureum ATCC 34304. J. Biosci. Bioeng.
111, 420– 424. (doi:10.1016/j.jbiosc.2010.12.010)

60. Khalil S, Alsanius BW. 2009 Utilisation of carbon
sources by Pythium, Phytophthora and Fusarium
species as determined by Biolog(w) microplate
assay. Open Microbiol. J. 3, 9 – 14. (doi:10.2174/
1874285800903010009)

61. Adhikari BN, Hamilton JP, Zerillo MM, Tisserat N,
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