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  Abstract 35	
OBJECTIVES: With an increasing aging population, it is important to gain a better 36	
understanding of biological markers of aging. Subcortical volume is known to differ with 37	
age; additionally considering shape-related characteristics may provide a better index of 38	
age-related differences in subcortical structure. Recently fractal dimensionality has been 39	
shown to be more sensitive to age-related differences, but this measure is borne out of 40	
mathematical principles, rather than quantifying a neurobiologically relevant 41	
characteristic directly. We considered four distinct measures of shape and how they relate 42	
to aging and fractal dimensionality: surface-to-volume ratio, sphericity, long-axis 43	
curvature, and surface texture. METHODS: Structural MRIs from two samples, with a 44	
combined sample size of over 600 healthy adults across the adult lifespan, were used to 45	
measure age-related differences in the structure of the thalamus, putamen, caudate, and 46	
hippocampus. For each structure, volume and fractal dimensionality were calculated, as 47	
well as each of the four distinct shape measures. These measures were then examined in 48	
their utility in explaining age-related variability in brain structure. RESULTS: The four 49	
shape measures were able to account for 80-90% of the variance in fractal 50	
dimensionality, indicating that these measures were sensitive to the same shape 51	
characteristics. Of the distinct shape measures, surface-to-volume ratio was the most 52	
sensitive aging biomarker. CONCLUSION: Though volume is often used to characterize 53	
inter-individual differences in subcortical structures, our results demonstrate that 54	
additional measures can be useful complements to volumetry. Our results indicate that 55	
shape characteristics of subcortical structures are useful biological markers of healthy 56	
aging. 57	
 58	
Keywords: structural MRI; brain morphology; fractal dimensionality; volume; thalamus; 59	
caudate; radiomics 60	
  61	
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1. Background and Objectives 62	

As the world’s aging population continues to increase, it is important to gain a better 63	

understanding of biological markers of aging. A variety of markers have been found to be 64	

useful in this regard—including epigenetic, physiological, neuroanatomical, and 65	

cognitive measures (Bae et al. 2013; Chen et al., 2015; Hannum et al., 2013; Horvath, 66	

2013; Reagh & Yassa, 2017; Salthouse, 2011; Small et al., 2011; Walhovd et al., 2011). 67	

With respect to the brain, it is well established that there are age-related differences in the 68	

volume of subcortical structures (Allen et al., 2005; Goodro et al., 2012; Inano et al., 69	

2013; Long et al., 2012; Potvin et al., 2016; Raz et al., 2005; Tamnes et al., 2013; 70	

Walhovd et al., 2005, 2011; Yang et al., 2016). However, it is important to acknowledge 71	

that volume is a summary statistic of the three-dimensional segmented structure and that 72	

it may be neglecting other facets of the structure that also vary with age, such as 73	

morphological (i.e., shape-related) characteristics. More directly, it is relatively unlikely 74	

that volumetric changes in subcortical structures would change without concurrent 75	

changes in the shape of the structure—that is, for a structure to maintain the same general 76	

form and merely ‘scale’ in size. As such, any inter-individual characteristic associated 77	

with volumetric differences, such as aging or neurodegenerative diseases, would likely be 78	

identified by simultaneously considering both volumetric and morphological properties 79	

(additional measures, such as neuropsychological tests and genetic risk factors would also 80	

be beneficial). It is an open question, however, as to what measure could be used along 81	

with volume to characterize these morphological properties, which are also 82	

neurobiologically relevant. Here we sought to examine the sensitivity of different 83	
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morphological measures in indexing healthy age-related differences in subcortical 84	

structures and serving as more robust neuroanatomical markers of aging.  85	

A recent study by Madan and Kensinger (2017a) suggested that fractal 86	

dimensionality, a measure of structural complexity, might be such a measure. In their 87	

study, fractal dimensionality indexed age-related differences better than volume, 88	

corrected for intracranial volume (i.e., ICV-corrected). Fractal dimensionality measures 89	

the volumetric properties across different spatial scales (i.e., resolution; see Figures 1 and 90	

2 of Madan & Kensinger, 2016), allowing for a scale invariant calculation of 91	

morphological characteristics. This measure was found to be generally more sensitive to 92	

age-related variability in the subcortical structures than volume—it has been 93	

demonstrated to be a useful mathematical approach to characterizing complex structures 94	

in many domains (Di Ieva et al., 2014, 2015; Lopes & Betrouni, 2009). However, it is 95	

unlikely that fractal dimensionality is directly related to neuroanatomical changes—that 96	

is, the brain is not changing in fractal dimensionality with age, but rather that there are 97	

not-yet-understood systematic changes that fractal dimensionality is sensitive to 98	

detecting. If we accept that subcortical structures vary in volume in relation to aging, one 99	

must consider how this occurs within the brain as constrained by biology. If the thalamus 100	

is decreasing in volume due to age atrophy, it cannot simply ‘scale’ in-place while 101	

keeping the same relative shape. First, subcortical structures share boundaries with other 102	

structures—gaps do not appear throughout the brain due to these volumetric decreases—103	

so the shape of structures must be inter-related. Second and relatedly, it is likely that the 104	

large-scale structural properties of these subcortical structures must also change in their 105	

broad curvature. 106	
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Examining the differences in explained variability (R2) reported in Madan and 107	

Kensinger (2017a, Figure 2) for volume and fractal dimensionality, as well as the 108	

relationship between volume and fractal dimensionality (Madan and Kensinger, 2017a, 109	

Figure 5) it appears that fractal dimensionality is particularly beneficial, beyond volume, 110	

in measuring age-related differences in the structure of the thalamus, putamen, caudate, 111	

and hippocampus (see Figure 1 for visualizations of these structures). Here we consider 112	

four measures that would each be indexed by fractal dimensionality, but would not be 113	

detected by volume: surface-to-volume ratio, sphericity, long-axis curvature, and surface 114	

texture. Each of these discretizes shape-related information based on the relative scale of 115	

potential structural complexity characteristics. 116	

 (1) The ratio of surface area to volume can be used as a coarse measure of a 117	

structure’s compactness and has long been used in characterizing the properties of 3D 118	

structures (i.e., stereology) (Lewis, 1976; Weibel et al., 1966). This ratio value will be 119	

relatively small for compact structures, but will be markedly larger for a structure that is 120	

more flattened or otherwise spread out.  121	

(2) Sphericity, a measure of how closely a shape resembles a sphere, measured as 122	

the ratio of the surface area of a sphere with the same volume as the structure, relative to 123	

the actual surface area of the structure (Wadell, 1932, 1935; Wentworth, 1933).  124	

(3) Long-axis curvature was measured by first determining the ‘mean meridian’, a 125	

curved line that went through the central mass of the structure, and has a long-standing 126	

history in the characterization of biological structures (Blum, 1973; Yushkevich et al., 127	

2006, 2007). Long-axis curvature was operationalized as the ratio between the lengths of 128	

a curved line (spline) that travels along the mean meridian of the structure, connecting the 129	
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most extended ends of the structure and traveling through the central mass of the 130	

structure, and a line that connects the two ends of the structure using the shortest straight-131	

line distance.  132	

(4) A remaining morphological feature is the surface texture or roughness of the 133	

structure. This measure would correspond higher-frequency in the structure’s shape and 134	

has previously been investigated in relation to fractal dimensionality in other fields of 135	

research (e.g., Gårding, 1988; Lespessailles et al., 2006; Lopes et al., 2011; Pentland, 136	

1985; Sarker & Chaudhuri, 1992; Thomas et al., 1999). Here we quantified the surface 137	

texture of a structure by reconstructing the subcortical structure’s topological frequency 138	

using spherical harmonics (SPHARM) (Chung et al., 2008; Gerig et al., 2001a,b; Madan 139	

& Kensinger, 2017b; Shen et al., 2007, 2009), based on Fourier series mathematics. 140	

SPHARM has also been related to the fractal dimensionality of brain structures (Madan 141	

& Kensinger, 2017b; Yotter et al., 2011). By comparing the surface area between 142	

SPHARM surfaces with differing maximum numbers of degrees we can measure the 143	

surface texture (roughness) of structures. This ratio is essentially a comparison between 144	

the surface area of a smoothed version of the structure that nonetheless captures the 145	

global shape, relative to the surface area of a mesh that does capture the nuances and 146	

local features of the structure. The difference between these two sets of coordinates 147	

effectively represents a ‘displacement map’ (Blinn, 1978; Lee et al., 2000). 148	

 149	
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 150	
Figure 1. Illustration of the process used to calculate the surface mesh and texture. 151	
Glass brain 3D reconstruction constructed based on Madan (2015). 152	
 153	

 By characterizing these distinct morphological measures of subcortical structures, 154	

we sought to both attain a better understanding of the shape-related features that were 155	

indexed by fractal dimensionality, as well as potentially determine a more precise 156	

measure of morphology that is further sensitive to as a neuroanatomical marker of aging. 157	

Here we evaluated these measures in explaining age-related variability in brain structure, 158	

and their relation to fractal dimensionality, using two open-access magnetic resonance 159	
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imaging (MRI) datasets with a combined sample size of over 600 healthy adults across 160	

the lifespan. 161	

 162	

2. Research Design and Methods 163	

2.1. Datasets 164	

Sample 1 (OASIS) consisted of 314 healthy adults (196 females), aged 18-94, from the 165	

publicly available Open Access Series of Imaging Studies (OASIS) cross-sectional 166	

dataset (Marcus et al., 2007; http://www.oasis-brains.org). Participants were recruited 167	

from a database of individuals who had (a) previously participated in MRI studies at 168	

Washington University, (b) were part of the Washington University Community, or (c) 169	

were from the longitudinal pool of the Washington University Alzheimer Disease 170	

Research Center. Participants were screened for neurological and psychiatric issues; the 171	

Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR) were 172	

administered to participants aged 60 and older. To only include healthy adults, 173	

participants with a CDR above zero were excluded; all remaining participants scored 25 174	

or above on the MMSE. Multiple T1 volumes were acquired using a Siemens Vision 1.5 175	

T with a MPRAGE sequence; only the first volume was used here. Scan parameters were: 176	

TR=9.7 ms; TE=4.0 ms; flip angle=10°; voxel size=1.25×1×1 mm. Volumetric and 177	

fractal dimensionality analyses from the OASIS dataset were previously reported in 178	

Madan and Kensinger (2017a). 179	

 180	

Sample 2 (DLBS) consisted of 315 healthy adults (198 females), aged 20-89, from wave 181	

1 of the Dallas Lifespan Brain Study (DLBS), made available through the International 182	
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Neuroimaging Data-sharing Initiative (INDI; Mennes et al., 2013) and hosted on the the 183	

Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC; Kennedy et al., 184	

2016) (http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html). Participants were 185	

screened for neurological and psychiatric issues. No participants in this dataset were 186	

excluded. All participants scored 26 or above on the MMSE. T1 volumes were acquired 187	

using a Philips Achieva 3 T with a MPRAGE sequence. Scan parameters were: TR=8.1 188	

ms; TE=3.7 ms; flip angle=12°; voxel size=1×1×1 mm. See Kennedy et al. (2015) and 189	

Chan et al. (2014) for further details about the dataset. 190	

 191	

2.2. Segmentation and volumetric analyses 192	

All structural MRIs were processed using FreeSurfer 5.3.0 on a machine running CentOS 193	

6.6 (Fischl, 2012; Fischl & Dale, 2000; Fischl et al., 2002). FreeSurfer’s standard 194	

pipeline was used (i.e., recon-all). Segmented volumes from all participants were 195	

visually inspected but no manual edits were made. Data from two additional participants 196	

were excluded from Sample 1 (OASIS) due to poor reconstructions; none were excluded 197	

from Sample 2 (DLBS). Visual inspections were conducted using Mindcontrol 198	

(Keshavan et al., in press).  199	

FreeSurfer’s segmentation procedure produces labels for the subcortical structures 200	

within a common segmentation volume (Fischl et al., 2002, 2004). Volumes for 201	

subcortical structures were obtained directly from FreeSurfer. Validation studies have 202	

shown that this automated segmentation procedure corresponds well with manual tracing 203	

(e.g., Fischl et al., 2002; Keller et al., 2012; Lehmann et al., 2010). FreeSurfer has been 204	

used in a large number of studies investigating age-differences in subcortical structures 205	
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(e.g., Inano et al., 2013; Long et al., 2012; Madan & Kensinger, 2017a; Potvin et al., 206	

2016; Tamnes et al., 2013; Walhovd et al., 2005, 2011; Yang et al., 2016). Intracranial 207	

volume (ICV) was also estimated using FreeSurfer (Buckner et al., 2004), which has also 208	

been shown to correspond well with manual tracing (Sargolzaei et al., 2015). 209	

 210	

2.3. Fractal dimensionality (FD) analyses 211	

The complexity of each structure was calculated using the calcFD toolbox (Madan & 212	

Kensinger, 2016; http://cmadan.github.io/calcFD/). This toolbox calculates the ‘fractal 213	

dimensionality’ of a three-dimensional (3D) structure, and is specifically designed to use 214	

intermediate files from the standard FreeSurfer analysis pipeline, here 215	

aparc.a2009s+aseg.mgz. The toolbox has previously been used with parcellated 216	

cortical and subcortical structure, as well as validated using test-retest data (Madan & 217	

Kensinger, 2016, 2017a,b).  218	

We use fractal dimensionality as a measure of the complexity of a 3D structure, 219	

i.e., a subcortical structure. Unlike volume, which corresponds to the ‘size’ of any 3D 220	

structure, fractal dimensionality measures shape information and is scale invariant 221	

(Madan & Kensinger, 2016, 2017a). In other words, two structures of the same shape 222	

could be different in size and still have the same fractal dimensionality. In fractal 223	

geometry, several approaches have been proposed to quantify the ‘dimensionality’ or 224	

complexity of natural structures; the approach here calculates the Minkowski–Bouligand 225	

or Hausdorff dimension (Kennedy & Lin, 1986; Mandelbrot, 1967). See Madan and 226	

Kensinger (2016, 2017a) for further details on applying fractal dimensionality to 227	

characterize cortical and subcortical structures. 228	
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 229	

2.4. Morphological measures of interest 230	

A series of steps were necessary to calculate the four shape measures used here. The 231	

voxel-based segmented structure was read into MATLAB from FreeSurfer’s ‘aseg’ 232	

volume. The triangulated surface mesh (‘isosurface’) for each subcortical structure was 233	

then estimated using the marching cubes algorithm (Lorenson & Cline, 1987). The mesh 234	

was subsequently smoothed and re-parameterized relative to a sphere using an isotropic 235	

heat diffusion algorithm, as implemented by Chung (Chung 2013, 2014; Chung et al., 236	

2008, 2010), over five iterations. A first-order ellipsoid was then fit to the surface 237	

vertices to determine a registration of the structure to standardized orientation—rather 238	

than being oriented based on native space (Cong et al., 2014; Huang et al., 2007; Shen et 239	

al., 2007, 2009), by means of a principal components analysis. The orientation of each 240	

structure was then rotated such that the long-axis corresponded to the major axis of the 241	

first-order ellipsoid. With the structure parameterized relative to a sphere, the vertex 242	

coordinates of the mesh were parameterized consistently with Euler angle conventions, 243	

with θ (theta) corresponding to the position relative to the poles of sphere [0, π] (akin to 244	

latitude) and φ (phi) corresponding to the position along the equator [0, 2π] (akin to 245	

longitude), as shown in Figure 1. This re-parameterization of a 3D closed surface to a 246	

sphere was conducted consistently with prior work (Brechbühler et al., 1995; Chung et 247	

al., 2008; Shen & Makedon, 2006; Staib & Duncan, 1996). As noted earlier, the poles of 248	

the coordinates were defined based on the long-axis of the structure, irrespective of the 249	

orientation of the structure within the brain, based on the fitted first-order ellipsoid (see 250	

Shen & Makedon, 2006).  251	
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For three of the measures (all except for sphericity), values were subsequently 252	

log-transformed. Additionally, since potential hemispheric differences were not of 253	

interest here, measures were averaged into a single value per structure and individual, 254	

collapsing across hemisphere. 255	

 256	

2.4.1. Surface-to-volume ratio (SV). Here we simply divided the surface area of the 257	

constructed surface mesh of the structure by the volume of the structure as a coarse 258	

measure of the compactness of the structure.  259	

 260	

2.4.2. Sphericity (Sph). The ratio of the surface area of a sphere with the same volume as 261	

the structure, relative to the actual surface area of the structure (Wadell, 1935), defined 262	

as: 263	

 264	

where V represents the volume, S represents the surface area, and Ψ (Psi) represents the 265	

structure’s sphericity.  266	

 267	

2.4.3. Long-axis curvature (LAc). A three-dimensional (3D) smoothing spline was fit to 268	

the mean vertex coordinates of the structure, based on grouping vertices into 50 bins, 269	

with bins based on percentiles of θ values. The length of this spline in 3D space served as 270	

the length of the mean meridian of the structure. A second line was calculated as the 271	

straight line between the start and end points of the spline. As such, if the points along the 272	

mean-meridian spline lay perfectly along this straight line, the structure would have no 273	

long-axis curvature.  274	

 =
⇡

1
3 (6V )

2
3

S
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 275	

2.4.4. Surface texture (Tex).  276	

Using the Euler angle parameterization of the structure, we computed a weighted 277	

spherical harmonics (SPHARM) representation to characterize the structure across 278	

different topological frequencies (Chung 2013, 2014; Chung et al., 2008, 2010). This 279	

approach also attenuates the Gibbs phenomenon (ringing artifact) that is otherwise 280	

introduced by fitting Fourier series to discontinuous data. Here we calculated the surface 281	

texture as the ratio between the surface areas of a detailed mesh that includes high-282	

frequency topological properties (maximum SPHARM degree 30) and a relatively 283	

smooth surface that only characterizes low-frequency topology (maximum SPHARM 284	

degree 5). A degree of 5 was selected as an appropriate threshold for low-frequency 285	

shape characteristics based on the surfaces examined in prior studies (Chung, 2013; 286	

Chung et al., 2008; Madan & Kensinger, 2017b). Examples of these two representations 287	

for the thalamus of a representative young adult are shown in Figure 1.  288	

 289	

2.5. Data analyses 290	

Age differences in the subcortical structures was first assessed using regression models 291	

examining the relationships between age and volume (or fractal dimensionality) of the 292	

structure, with the amount of variance explained (i.e., R2) and Bayesian Information 293	

Criterion (BIC) as the model fitness statistic. A spline regression was used as Fjell et al. 294	

(2010, 2013) demonstrated that age-related differences in structural measures are not 295	

explained well by linear and quadratic models. A smoothing spline regression was used 296	

(smoothing parameter set to 0.1), and in the case of several structural measures (i.e., the 297	
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‘Shape’ model, described below), a multiple smoothing-spline regression procedure was 298	

used, as implemented in the Prism toolbox (Madan, 2016). All regression models 299	

reported controlled for the main effect of sex. All regressions with age were conducted 300	

such that the age was the dependent variable, rather than the independent variable (i.e., 301	

unlike Madan & Kensinger, 2017a; Walhovd et al., 2011). The ‘Shape’ model is the 302	

result of a multiple spline regression including the four distinct shape measures: surface-303	

to-volume ratio (SV), sphericity (Sph), long-axis curvature (LAc), and shape texture 304	

(Tex). A set of regression models combining measures across all four subcortical 305	

structures was also included to provide both an over-arching set of regression models 306	

across the structures, as well as show the independence vs. collinearity of the age-related 307	

differences across structures. 308	

Volume was ICV-corrected prior to conducting the regression analyses. ICV-309	

corrected measurements were calculated as the residual after the measure was regressed 310	

for ICV (as in Madan & Kensinger, 2017a; Walhovd et al., 2011). All shape measures—311	

fractal dimensionality, surface-to-volume ratio, sphericity, long-axis curvature, and shape 312	

texture—are scale invariant and thus were not ICV-corrected. 313	

 For each regression model, we report both R2, with age (or fractal dimensionality) 314	

as the dependent measure, as well as the Bayesian Information Criterion (BIC). BIC is a 315	

model fitness index that includes a penalty based on the number of free parameters 316	

(Schwarz, 1978). Smaller BIC values correspond to better model fits. By convention, two 317	

models are considered equivalent if ΔBIC < 2 (Burnham & Anderson, 2004). As BIC 318	

values are based on the relevant dependent variable, ΔBIC values are reported relative to 319	

the best-performing model (i.e., ΔBIC = 0 for the best model considered). 320	
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For the models explaining age-related variability, since they all have the same 321	

dependent variable, ∆BIC values can be compared across all subcortical structures and 322	

measures. However, for the models with a subcortical structure's fractal dimensionality 323	

(FD) as the dependent measure, the ∆BIC values cannot be compared directly. Best-324	

fitting models for each structure (thalamus, putamen, caudate, hippocampus, combined), 325	

sample (OASIS, DLBS), and dependent variable (age, FD) are shown in bold in Table 1. 326	

Equivalent R2 and ∆BIC values for models that include more than one measure 327	

indicate Prism algorithm (based on relevance vector regression [RVR]; Tipping, 2000) 328	

selected the same subset of measures, based on the inherent feature selection (i.e., 329	

automatic relevance determination) in RVR. E.g., for the regression models with FD as 330	

the dependent variable, if volume was a relatively good predictor, models that included 331	

volume along with a shape measure could be based only on the volume measure after the 332	

feature selection. As such, these models will all yield an identical output as the volume-333	

only model, since the additional measure was removed. In these cases, only the simpler 334	

model is shown in bold in Table 1. 335	

 336	

3. Results 337	

Figure 2 and Table 1 show how well each of the morphological measures was able to 338	

index age-related differences in the subcortical structures. Surprisingly, the most coarse 339	

shape measure included here, surface-to-volume ratio (SV), performed the best out of the 340	

four distinct shape measures. Moreover, the aggregate ‘Shape’ model that included all 341	

four of the shape measures generally performed only slightly better than the surface-to-342	

volume ratio alone. In both samples, the surface-to-volume ratio explained more age-343	
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related variability in brain structure than fractal dimensionality for the caudate and 344	

hippocampus. Regression models including shape measures as well as volume (see Table 345	

1), further demonstrate that shape-related characteristics were beneficial measures of age-346	

related differences in subcortical structure beyond volumetry.  347	

 Sphericity performed more poorly than surface-to-volume ratio in nearly all cases, 348	

despite being closely related measures. Relatedly, the long-axis curvature performed 349	

more poorly than expected, together indicating that shape information related to the 350	

elongation of the structure is not particularly useful in understanding age-related 351	

differences in subcortical structure. Higher-frequency spatial information, i.e., shape 352	

texture, also did not seem be very informative either, despite artifactual reasons that it 353	

may have been useful (e.g., head motion would lead to smoother estimates of segmented 354	

structures, older adults are known to have increased head motion; see Madan & 355	

Kensinger, 2016, for a more detailed discussion).  356	

When the four distinct shape measures were combined with fractal dimensionality 357	

and volume (the gray bar), gains were relatively small relative to fractal dimensionality 358	

alone. However, this result is in-line with the primary goal of the study—to better 359	

characterize the structural properties that fractal dimensionality was sensitive to, using 360	

more interpretable measures of a structure’s shape. In this vein we were successful, the 361	

aggregate Shape model accounted for 80-90% of the variance in fractal dimensionality in 362	

all cases (i.e., for each subcortical structure and sample; see Table 1). The principle 363	

contributor in explaining age-related variability in fractal dimensionality was the surface-364	

to-volume ratio measures, convergent with this measure being the most sensitive to age-365	

related differences, of the four shape measures. 366	
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 With regards to individual subcortical structures, we found that fractal 367	

dimensionality continued to be indicative of age-related differences in thalamus, even 368	

beyond the distinct shape measures considered here. Age-related differences in the two 369	

structures with the most elongation, the caudate and hippocampus, were not particularly 370	

well explained by any of the shape measures. At least, however, the shape measures did 371	

provide a significant improvement over volume, which was relatively unaffected by age. 372	

Smoothing spline fits for volume, fractal dimensionality, and surface-to-volume ratio are 373	

shown in Figure 3. These spline fits show that many middle-age adults have comparable 374	

volume and fractal dimensionality—for the caudate and hippocampus—to young adults, 375	

which is likely related to the poorer age-related differences observed here. 376	

 377	
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378	
Figure 2. Variance explained in age, for each of the structures, morphological 379	
measures, and samples considered. ‘Shape’ is an aggregate of SV, Sph, LAc, and Tex. 380	
Key: Vol, volume; FD, fractal dimensionality; SV, surface-to-volume ratio; Sph, 381	
sphericity; LAc, long-axis curvature; Tex, shape texture; see Table 1 for additional details 382	
and comparisons. 383	
  384	
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 385	
Figure 3. Smoothing spline age-structure fits for the OASIS sample. X-axis values 386	
represent z-scored volume (Vol), fractal dimensionality (FD), and surface-to-volume 387	
ratio (SV). Each dot represents an individual.  388	
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	391	
Table 1. Hierarchical regression analysis of age and fractal dimensionality, for each 392	
of the structures and morphological measures considered. Best-fitting models for 393	
each structure (thalamus, putamen, caudate, hippocampus, combined), sample (OASIS, 394	
DLBS), and dependent variable (age, FD) are shown in bold.  395	



Subcortical shape as a biomarker of aging 23 
	

4. Discussion and Implications 396	

Fractal dimensionality appears to be a structural measure high in reliability (Madan & 397	

Kensinger, 2017b), sensitive to age-related differences (Madan & Kensinger, 2016, 398	

2017a), as well as useful in differentiating individuals with a variety of psychiatric and 399	

neurological disorders relative to healthy controls (de Miras et al., in press; King et al., 400	

2010; Nenadic et al., 2014; Sandu et al., 2008; Thompson et al., 2005). However, this 401	

measure is borne out of mathematical principles, rather than quantifying a 402	

neurobiologically relevant biomarker directly. Here we compared the sensitivity of fractal 403	

dimensionality to age-related differences in healthy adults with four distinct shape-related 404	

measures that are more biologically relevant than fractal dimensionality: surface-to-405	

volume ratio, sphericity, long-axis curvature, and surface texture. Though our results 406	

demonstrate that these other shape-related measures are able to explain most of the same 407	

variance as fractal dimensionality, we nonetheless suggest that fractal dimensionality is 408	

the more useful single measure, as it simultaneously accounts for these shape-related 409	

characteristics and also works as a general purpose measure of structural complexity (see 410	

Madan & Kensinger, 2016). Nonetheless, the current results indicate that surface-to-411	

volume ratio is also a particularly useful biological marker of age-related differences in 412	

subcortical structures and should be considered in future studies of age-related structural 413	

differences. These results lay the foundation for future ex vivo histological research to 414	

examine how aging effects the microstructure of subcortical structures. 415	

Here we demonstrate that shape-related measures can be used as robust biological 416	

markers of aging using a computational neuroanatomy framework. While fractal 417	

dimensionality performed well, the four distinct measures of shape-related characteristics 418	
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were also sensitive to age, particularly surface-to-volume ratio. Furthermore, the current 419	

approach is in-line with the emerging literature on ‘radiomics’ (Adduru et al., in press; 420	

Gillies et al., 2016; Lambin et al., 2012, in press; Parekh & Jacobs, 2016; Yip & Aerts, 421	

2016), the use of high-throughput automatic quantitative imaging analyses to calculate 422	

structural features related to the shape of brain structures from radiological images, as 423	

well as further demonstrates the benefits of open-access data for brain morphology 424	

research (see Madan, 2017, for an in-depth discussion). The current findings clarify the 425	

age-related differences in the shape, not just volume, of subcortical structures in the brain 426	

and provide strong evidence for additional biological markers of aging.    427	
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