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ABSTRACT: A secondary phosphine oxide (SPO) ligand (tert-butyl(phenyl)phosphine oxide) 

was employed to generate an Ir–SPO complex which shows a particular ability to activate 

dihydrogen under mild conditions without the help of an external base or additive. Such an 

iridium (I) complex serves as a precursor for homogeneous catalysis since under H2 it is 

converted to a mixture of several iridium (III) hydride species that are the active catalysts. This 

system was found to be a highly active catalyst for the hydrogenation of substituted aldehydes, 

giving very high conversions and chemoselectivities for a wide range of substrates. The SPO 

ligand presumably plays a key role in the catalytic process through heterolytic cleavage of H2 by 

metal–ligand cooperation. In addition, an exhaustive characterization of the different iridium 

hydride species was performed by 1D and 2D NMR spectroscopy. The oxidative addition of H2 

to the Ir(I)–SPO complex is highly stereoselective, as all generated Ir(III) hydrides are 

homochiral. Finally, the crystal structure, as determined by X-Ray Diffraction, of a dinuclear 

iridium (III) hydride complex is described.  

 

INTRODUCTION 

The selective hydrogenation of an aldehyde function in the presence of other reducible groups is 

an important step in synthetic chemistry. As an example, the chemoselective reduction of -

unsaturated aldehydes to their corresponding allylic alcohols has tremendous industrial 

importance, since these compounds are relevant intermediates and end products in the 

preparation of fine chemicals, flagrances and pharmaceutical compounds.1 An interesting 

pathway to reduce polarized C=X bonds is the heterolytic cleavage of dihydrogen into H+ and H-

, and the subsequent transfer of hydrogen atoms to substrates such as C=O bonds.2 In this 

                                                           
a Laboratoire de Physique et Chimie des Nano Objets, LPCNO, UMR5215 INSA-UPS-CNRS, Institut 

National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse, France 
b GSK Carbon Neutral Laboratory for Sustainable Chemistry, University of Nottingham, NG7 2GA, 

Nottingham, UK 
c CNRS, LCC (Laboratoire de Chimie de Coordination) 205 Route de Narbonne, BP44099, F-31077 

Toulouse Cedex 04,  France; Université de Toulouse, UPS, INPT, F-31077 Toulouse Cedex 04, France 

† Electronic supplementary information (ESI) available: Synthesis, experimental procedure and 

supporting data. 



2 

 

approach H2 is frequently cleaved by metal-ligand cooperation; that is, a ligand containing basic 

sites and a coordinated metal center operate in tandem to activate the hydrogen molecule.
3 

In the field of homogeneous catalysis, this type of process is accomplished by numerous 

transition metal complexes, leading to the hydrogenation of aldehydes, ketones, and imines.4 

However, iridium-based complexes have shown a limited efficiency in the chemoselective 

hydrogenation of substituted aldehydes and only a few systems performing this transformation 

have been reported in the literature.5,6 Additionally, some of these complexes are not able to act 

as bifunctional catalysts and require the help of an external base to promote the heterolytic 

splitting of H2.5h,i On the other hand, in the area of metallic nanoparticle (MNP) catalysis, this 

process is rarely achieved by a heterolytic cleavage mechanism involving the ligand or 

stabilizing agent. Indeed, the described systems based on iridium produce the H2 activation and 

its later transfer to aldehydes by the use of heterogeneous catalysts consisting of iridium 

nanoparticles (IrNPs) immobilized on oxide supports or oxygenated surfaces,7 for which the 

process takes place by a strong metal–support interaction.8 

Along this line, secondary phosphine oxides (SPOs) form an interesting group of phosphorus 

ligands.9 Once coordinated (via P) as the phosphinous(III) tautomer10 to a suitable transition 

metal, the resulting complexes display an ability to cleave H2 heterolytically across M and O, as 

long as there is a vacancy on the metal. Then, the complex can transfer the hydrogen atoms to 

an appropriate substrate.11 This SPO–metal cooperative effect has been widely utilized in 

hydrogenation catalysis, in which such reactivity is particularly notorious.12 In that regard, our 

group has a longstanding experience in the use of this type of ligands, both in homogeneous11 

and MNP13 catalysis.   

Inspired by these works, we recently reported the synthesis and characterization of an Ir–SPO 

complex, for which two coordinated phosphine oxide ligands self-assemble after loss of one 

proton into a monoanionic bidentate ligand held together by an intramolecular hydrogen bond.14 

In a preliminary catalytic study, the system showed a very high activity and selectivity in the 

chemoselective hydrogenation of cinnamaldehyde and p-nitrobenzaldehyde. The complex acts 

as precursor for homogeneous catalysis, since under H2 it is converted to a mixture of several 

hydrides.  

Herein we describe the characterization and catalytic applications of such an Ir–SPO hydride 

system. This catalyst is very active for the chemoselective hydrogenation of substituted 

aldehydes, providing exceptionally high conversions and selectivities. The SPO ligand 

presumably plays a crucial double role, as modifying ligand, and as functional ligand acting as 

heterolytic activator for dihydrogen, since its oxygen atom operates as a basic site and takes a 

H+ from H2, leaving a H− bound to the metal center.11,13 
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RESULTS AND DISCUSSION  

Synthesis and Characterization of Catalytic System 

Treatment of (1,5-cyclooctadiene)(methoxy)iridium(I) dimer ([Ir(OMe)(COD)]2) with 4 

equivalents of tert-butyl(phenyl)phosphine oxide (1) and 2 equivalents of H2O affords complex 

2 (Scheme 1, for further details see ESI†).14 

 

 

Scheme 1 Formation of iridium SPO complex 2. 

 

The structure of 2 was elucidated unambiguously by single crystal X-ray structure analysis and 

solid state fast magic angle spinning (MAS) 1H NMR.14 Complex 2 adopts a square planar 

molecular geometry around the metal center with double coordination to cyclooctadiene (COD) 

and the SPO ligands coordinated to the iridium center as a hydrogen bonded pair of the two, for 

which SPOs have a strong preference in metal complexes thus obtaining a monoanionic 

bidentate ligand.15  

This complex is a precursor instead of an active catalyst for aldehyde hydrogenation. To 

investigate the active catalytic species, we treated iridium complex 2 with 5 bar of H2 pressure 

in acetonitrile (AN) at room temperature (R.T.) for 30 min (Scheme 2, for further details see 

ESI†).  
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Scheme 2. Formation of Iridium (III) hydride species under substrate-free hydrogenation 

conditions. 

 

Under H2, the Ir(I) complex is converted, via H2 oxidative addition, to a mixture of one 

monohydride Ir((SPO)2H)H(solvent)2X (5), two diastereomeric dihydrides 

Ir((SPO)2H)H2(solvent)2 (3, 4) and three bridging dihydride dimers (6–8) thereof after loss of a 

solvent molecule (Scheme 2). The reaction is very fast with an instantaneous change of colour 

from red-orange to light yellow. The NMR analyses in tetrahydrofuran (THF–d8) led to rapid 

decomposition and therefore we conducted the experiments in acetonitrile (CD3CN), which has 

a stabilizing effect on the hydrides.16   

The oxidative addition of H2 to Ir(I) complex 2 was studied by 1H and 31P NMR spectroscopy. 

The hydride region of the 1H NMR spectrum acquired 30 min after introducing H2 into the 

solution shows several iridium dihydride species (Fig. 1). The hydride resonances with highest 

intensity correspond to diastereomer 3 and appear as a double doublet of doublets at –10.38 

ppm (Ha) due to cis and trans phosphorus couplings (19.1 and 143.3 Hz, respectively) and one 

hydrogen coupling (4.8 Hz), and as a double doublet of doublets at –21.40 ppm (Hb) attributable 

to the coupling with two cis phosphorus (14.5 and 20.7 Hz) and one hydrogen (4.8 Hz). 

Similarly, the hydride resonances for the minor diastereomer 4 appear as a couple of double 

doublet of doublets at –9.77 ppm (Hc, JP-H = 140.9, 19.8 Hz and JH-H = 4.8 Hz) and –21.52 ppm 
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(Hd, JP-H = 22.7, 12.6 Hz and JH-H = 4.8 Hz), since both diastereomers exhibit the same 

coordination geometries.17 The ratio between the diastereomers is 2.23:1. 

 

 

Fig. 1 1H NMR spectrum (500 MHz) in the hydride region after reaction of 2 with H2 (5 bar) in 

CD3CN.  

 

The identity of the major diastereomer 3 was established by 2D NOESY NMR experiments 

(Fig. S3†). As the tert-butyl groups are non-equivalent, both diastereomers display 2 signals for 

these substituents in the 1H NMR spectrum (Fig. S2†), being the most intense peaks those that 

belong to 3 (0.71 and 0.94 ppm). Only the tert-butyl group at 0.71 ppm shows NOESY 

correlations with both hydrides Ha and Hb (Fig. S3†) in this species, whereas the other tert-butyl 

substituent does not give signal with the axial hydride Hb. This suggests that the tert-butyl 

groups of 3 are placed in trans position. Indeed, no interaction between the tert-butyl groups of 

3 was detected in the NOESY experiment (Fig. S4†). In addition, the tert-butyl resonances for 4 

appear at 0.80 and 0.82 ppm (Fig. S2†). The 31P{H} NMR spectrum (Fig. S5†) exhibits two 

doublet signals for each diastereomer (70.2 and 77.2 ppm with JP-P = 14.6 Hz for 3, and 62.5 

and 84.2 ppm with JP-P = 14.9 Hz for 4). The assignation of signals was performed through a 

1H–31P HMBC 2D experiment (Fig. S6† and S7†), which also enabled us to confirm the identity 

of the tert-butyl resonances corresponding to 4. Both iridium dihydride complexes 3 and 4 are 

homochiral (Scheme 2 shows the RR isomers), which is the most stable configuration, and there 

is no meso isomer.  

The 1H NMR spectrum in the hydride region also shows a signal attributable to a species 5 with 

one hydride (He) and one non-identified anion (X) generated by decomposition, both located in 

axial position (Scheme 2). The hydride resonance appears at –24.70 ppm as a well-resolved 

triplet with JP-H of 13.6 Hz (Fig. 1) due to the coupling with two cis phosphorus nuclei (the 

signal would be located at –5-(–10) ppm in case of coupling with one trans phosphorus 

nucleus), whereas the phosphorus signals arise as two doublets (AB pattern) at 77.6 (JP-P = 12.7 



6 

 

Hz) and 78.1 ppm (JP-P = 13.2 Hz) in the 31P{H} NMR spectrum (Fig. S5† and S6†). This AB 

system indicates that the molecule is homochiral (RR/SS), since a meso compound would give a 

singlet signal for the two phosphorus in the 31P{1H} NMR spectrum. The integration of hydride 

signals in the 1H NMR spectrum reveals that the iridium monohydride complex is the third most 

abundant species. Consequently, the peaks for the tert-butyl substituents are those observable at 

0.64 and 0.97 ppm in the 1H NMR spectrum, which was corroborated by analysis of the 1H–31P 

HMBC 2D experiment in the tert-butyl zone (Fig. S7†).  

On the other hand, we observed the formation of three dimers 6, 7 and 8 with bridging and 

terminal hydrides as minor species (Scheme 2 and Fig. 1). The hydride region of the 1H NMR 

spectrum displays three triplets at δ –8.59 (JP-H = 60.5 Hz), –9.01 (JP-H = 61.5 Hz) and –9.37 

ppm (JP-H = 62.3 Hz) corresponding to the bridging hydrides (Hf) of each dimer, and small 

signals around –19.5 and  –20.8 ppm attributable to the terminal hydrides (Hg).18 Each dimeric 

species exhibits two different phosphorus environments, giving a pair of signals in the 31P{H} 

NMR spectrum (Fig. S5†). As was previously described for the mononuclear iridium complexes 

3–5, all the dimers are homochiral and there are no meso isomers because all the dimeric species 

generate two peaks with cis phosphorus coupling in the 31P{H} NMR spectrum (Fig. S5†). The 

homochiral nature of all species as caused by the bulky tert-butyl groups reduces the number of 

possible diastereoisomers and allows the present interpretation. 

Evaporation of solvent favors a displacement of the equilibrium between the hydride species 

toward the formation of the dimers. As a result, crystals of the dinuclear iridium(III) hydride 

complex 7 suitable for X-ray Diffraction were obtained. The crystal structure of 7 is shown in 

Figure 2. The Ir–Ir distance is 2.77 Å, in good agreement with the values reported in the 

literature for dinuclear Ir(III)/Ir(III) complexes containing an (IrH)2(-H2) unit.16,18,19 The Ir2 

core possesses a 36–electron configuration with no M–M bond. The two acetonitrile molecules 

are orientated mutually trans. However, the two terminal hydrides were not located by Fourier 

differences, but one vacant site in the coordination sphere of each iridium atom trans to the 

acetonitrile molecule were assumed to be their positions. Fourier differences revealed a Ir1–Hy2 

distance of 1.75 Å and an Ir1-Ir1i-Hy2 angle of 42.9o, the latter very close to the 45o required for 

the bridging hydrides being equidistant to both iridium atoms. Interestingly, Fourier differences 

also showed that the intramolecular hydrogen bond O–H–O contained in the monoanionic 

bidentate ligand is essentially linear (O….O is 2.398 Å) as was also found by DFT calculations 

for related Rh complexes,11e and as was already proposed by Palenik et al. on the basis of the 

short O….O distance of 2.5 Å in Pd–SPO complexes,20 although routinely the structures are 

drawn showing the O–H–O atoms as part of a regular 6-membered ring.11a–d 
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Fig. 2 X-ray structure of 7 showing thermal ellipsoids set at 40% probability level. Selected 

bond lengths (Å): Ir1–P1, 2.2930(13); Ir1–P2, 2.2794(12); Ir1–N1, 2.120(4); Ir1–Hy2, 1.75(6); 

P1–O1, 1.555(4); P2–O2, 1.558(4); O1–Hy1, 0.97(6); O2–Hy1, 1.43(6). Selected angles (deg): 

N1–Ir1–P2, 91.61(11); N1–Ir1–Hy2, 89(2); P2–Ir1–P1, 89.01(5); P2–Ir1–Hy2, 90.3(19). 

 

As concerns the symmetry, the crystal structure of 7 contains an inversion center but has neither 

a plane of symmetry (due to the chiral ligands) nor a 2-fold axis due to the acetonitrile 

molecules and hydrides in trans axial positions. The tert-butyl groups are placed in trans 

position and the pairs of SPOs exhibit an R configuration at the phosphorus atoms in one 

monoanionic bidentate ligand and S in the other one. Thus, one side of the dimer is RR and the 

other side is SS, giving two doublets at approximately 72 (JP-P = ~22 Hz) and ~82 ppm (JP-P = 

~22 Hz) in the 31P{1H} NMR spectrum (Fig. S5†).  

Catalytic Hydrogenation of Substituted Aldehydes 

This encouraging demonstration of hydrogen activation prompted us to evaluate the ability of 

the Ir–SPO system as hydrogenation catalyst. The hydrogenation of a range of substituted 

aldehydes was investigated using catalytic quantities of 2, which was found to be the precursor 

for a highly active and almost exclusively selective catalyst. Firstly, we decided to evaluate the 

activity of the catalytic system in a screening set of experiments for the hydrogenation reaction 

of cinnamaldehyde (Table 1). At R.T. and 5 bar H2 pressure, complete selectivity toward the 

unsaturated alcohol was observed in 1 h, albeit with low conversion (entry 1, 25 %). In 2.5 h, 
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97% conversion and 99% selectivity to the expected allylic alcohol were obtained (entry 2). 

Increasing the time to 4.5 h, quantitative conversion of the substrate with >99% selectivity was 

achieved (entry 4). With the pressure maintained at 5 bar but increasing the temperature to 60 

ºC, a decrease in the conversion was observed (entry 11, 45%), which points to some 

decomposition and/or deactivation process of the catalyst. Furthermore, a loss of selectivity to 

the -unsaturated alcohol was produced. We observed hydrogenation of the C=C bond and 

both 3-phenylpropanal (6%) and 3-phenylpropanol (4%) were generated in addition to the 

expected product (cinnamyl alcohol, 90%). The solvent was found to be relatively important in 

that THF consistently provided good results (entry 2–5), while other solvents gave much lower 

conversions (entry 6, toluene; entry 7, CH2Cl2). Moreover, the use of methanol led to a decrease 

in the selectivity, since the acetal derivative was generated as by-product (entry 8).   

It is worth noting that the use of higher pressures or longer reaction times involved only a slight 

reduction in the chemoselectivity (entries 5, 9 and 10), which highlights the preference of the 

catalytic system toward the aldehyde functionality. With these optimized reaction parameters 

based on 2.5 h as reaction time, R.T., 5 bar of hydrogen pressure and THF as solvent, a TON of 

2910 and a TOF of 1164 h-1 (entry 2) were achieved.  

 

Table 1 Optimization Parameters for the Hydrogenation of Cinnamaldehyde.a 

Entry Solvent T (K) Time (h) P (bar) Conversion (%)b Selectivity (%)c 

1 THF 295 1 5 25 >99 

2 THF 295 2.5 5 97 99:1 (UA:A) 

3 THF 295 3 5 99 99:1 (UA:Al+A) 

4 THF 295 4.5 5 >99 >99 

5 THF 295 5 5 >99 99:1 (UA:A) 

6 Toluene 295 4.5 5 2 >99 

7 CH2Cl2 295 4.5 5 4 >99 

8 CH3OH 295 4.5 5 50  56d 

9 THF 295 18 5 >99 96:4 (UA:A) 

10 THF 295 18 10 >99 98:2 (UA:A) 

11 THF 333 4.5 5 45 90:6:4 (UA:Al:A) 

a Reagents and conditions: 2 (0.00125 mmol), cinnamaldehyde (3.75 mmol), solvent (0.75 mL).b 

Conversions determined by 1H NMR spectroscopy and refer to the selective conversion of 

cinnamaldehyde (average of two runs).c UA = Unsaturated Alcohol, A = Saturated Alcohol, Al 

= Saturated Aldehyde.d The formation of the acetal product was observed. 
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We studied the rate dependence on the reaction time (Fig. 3). The profile clearly shows an 

incubation time of ca. 1 h, during which 2 generates the catalytically active hydrides species. 

Since the hydrides are formed in acetonitrile on the timescale of the NMR sample preparation, 

we cannot say what this incubation time involves. Nanoparticle formation can be excluded on 

the basis of rate –IrNP being >50 times slower catalysts for entry 1– and selectivity, vide infra.14 

Indeed, the formation of nanoparticles requires more than 12 h under 5 bar of H2 pressure, 

whereas no nanoparticles generation was observed under these conditions in the NMR tube 

employed for the characterization of hydrides.14 From the profile we deduced a maximum TOF 

of 2040 h–1 at 1.5–2 h of reaction for the hydrogenation of cinnamaldehyde. To the best of our 

knowledge, the catalytic system described herein performs as one of the best catalysts in terms 

of rate and selectivity compared to iridium-based systems reported to date.5,7 The oxidative 

addition of H2 observed is the same as that described for diphosphine complexes17 and thus 

there is no indication that in this instance we are dealing with a heterolytic cleavage.21 Since the 

present Ir–SPO catalyst shows poor activity for alkenes compared to iridium catalysts 

containing neutral ligands (monophosphines, bisphosphines, Phox ligands), mechanistically the 

SPO function might be involved in the hydrogenation, but firm evidence is lacking. 

 

 

Fig. 3 Profile of the evolution of the reaction with the time for the hydrogenation of 

cinnamaldehyde. Reagents and conditions: 2 (0.00125 mmol), cinnamaldehyde (3.75 mmol), 

THF (0.75 mL), 5 bar, 295 K. 
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With optimized conditions in hand, we were keen to study the substrate scope and functional 

groups tolerated by 2 (Table 2). The catalyst showed a very high activity and selectivity in the 

hydrogenation of aldehydes over other functional groups. In terms of activity, the reaction 

appears to be very general and, in nearly all cases, very high conversions were obtained. 

Nevertheless, we observed differences in the TOF depending on the reactant, since some 

substrates required longer reaction times to complete the catalytic process (Table 2 and Section 

4†).  

In all cases, high selectivities were observed for several -unsaturated aldehydes (entries 1–

4), including some that are of particular interest in the production of perfumes and fragrances.22 

The complex was very selective to the carbonyl functionality in cinnamaldehyde and prenal 

(entries 1–2). However, a slight reduction in the selectivity was produced in the hydrogenation 

of trans-2-hexen-1-al in comparison with the previous substrates (entry 3). The steric 

impediment in the former probably avoids a higher reduction of the C=C bond. Of particular 

importance is the selective hydrogenation of citral, which proceeded with complete 

chemoselectivity (entry 4). Interestingly, in contrast to other systems based on Ru,23 no reaction 

was observed in the reduction of 2-octynal. Indeed, this substrate poisoned the catalyst, as we 

reported in a preliminary communication.14 

In addition to this selectivity to C=O over alkenes, the catalyst is highly tolerant to several other 

functional groups. For example, the hydrogenation of p-nitrobenzaldehyde yielded the 

corresponding nitrobenzyl alcohol with perfect retention of the nitro group (entry 5). This is the 

second indication that nanoparticles are not responsible for the catalytic activity, because IrNPs 

gave formation of aminoaldehyde and aminoalcohol when used as the catalyst.14 In addition, we 

found poisoning of the catalytic system for the reactions with p-cyanobenzaldehyde and 2-

octynal, while IrNPs on the contrary showed high conversions and chemoselectivities in the 

hydrogenation of these substrates.14 Esters were also tolerated excellently and the aldehyde 

group was selectively reduced to alcohol (entry 6). Finally, complete chemoselectivity was 

observed in compounds containing reducible heteroaromatic substituents (entries 7–8), such as 

furfural (compound derived from biomass) and 2-thiophenecarboxaldehyde.  
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Table 2 Catalytic Hydrogenation of Aldehydes with 2.a 

a Reagents and conditions: 2 (0.00125 mmol), substrate (3.75 mmol), THF (0.75 mL), 295 K, 5 

bar of H2.
b Conversions and product identities were determined by 1H NMR spectroscopy 

(average of two runs).c UA = Unsaturated Alcohol, A = Saturated Alcohol, Al = Saturated 

Aldehyde.d Maximum TOF.   

 

CONCLUSIONS  

In summary, we have successfully used an Ir–SPO complex to activate dihydrogen under mild 

conditions. The treatment of the iridium (I) complex with H2 led, via H2 oxidative addition, to 

the formation of a mixture of one monohydride Ir((SPO)2H)H(solvent)2X, two diastereomeric 

dihydrides Ir((SPO)2H)H2(solvent)2, and three bridging dihydride dimers as minor species. Such 

a process undergoes a high degree of diastereoselectivity, since a thorough characterization of 

the different iridium (III) hydride complexes by 1D and 2D NMR spectroscopy showed that all 

monomeric species are homochiral. In addition, the crystal structure of a dinuclear iridium (III) 

hydride complex was determined by X-Ray Diffraction and discussed. This dimer shows the 

preferred homochiral coordination for each half of the molecule, with opposite chirality 

resulting in an inversion center for the dimer. 

This catalytic system was highly efficient for the chemoselective hydrogenation of substituted 

aldehydes, displaying exceptionally high activities and selectivities for a wide variety of 

Entry Substrate Product t (h) Conv. (%)b Selectivity (%)c TOF (h-1) 

       
1   2.5 97 99:1 (UA:A) 2040d 
       

       
2   5 38 99:1 (UA:A) 228 

       

       
3   5 94 97:3 (UA:A) 564 
       

       

4   5 >99 >99  600 

       

       

5   5 >99 >99 600 

       

       

6   20 >99 >99 150 

       

       
7   5 96 >99  720 
       

       
8   5 98 >99 588 
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substrates. For instance, the hydrogenation of cinnamaldehyde proceeded with a TOF of 2040 h–

1 and a selectivity of 99%. The catalyst works without the help of an external base or additive 

presumably through a ligand-metal cooperative mechanism in which the SPO ligand might play 

a crucial double role, as modifying ligand, and as functional ligand acting as heterolytic 

activator for dihydrogen. Finally, it is worth noting that with the study reported herein, SPO 

ligands have shown their merit in homogeneous hydrogenation catalysis, which may inspire the 

design of new homogeneous SPO-based catalysts that incorporate earth-abundant metals and 

exhibit similar catalytic properties.  
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