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Influence of the micro-structure on
saturated transverse flow in fibre arrays

Frank Gommer1,2, Andreas Endruweit1 and Andrew C Long1

Abstract

This study analyses the influence of the random filament arrangement in fibre bundles on the resin flow behaviour.

Transverse steady-state resin flow that occurs behind a liquid resin flow front was simulated numerically through

statistically equivalent micro-structures at high-fibre volume fractions, Vf> 0.6, as observed in fibre bundles. The need

of applying a minimum gap distance between neighbouring filaments was overcome by automated local mesh refinement.

The derived permeability values showed significant scatter. Convergence of these values was determined at a ratio of

flow length to filament radius greater than 20 for all three analysed fibre volume fractions. Mean permeabilities were

between 6 and 10 times lower than those predicted for a hexagonal fibre array. A statistical model is proposed, which is

able to predict the scatter of observed permeabilities based on simple micro-structural descriptors.
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Introduction

Textile reinforcements utilised in the manufacture of
composite components are usually made from filaments
that are bundled into yarns and then processed into
fabrics for easier handling. This design leads to dual-
scale porosity with gaps formed in between and within
fibre bundles. During a liquid composite moulding pro-
cess, both types of pores need to be saturated with resin
to enable load transfer between the solidified matrix
and fibres in the finished component.

The permeability of a reinforcement textile describes
its effect on resin flow during composite processing.
Geometrical variabilities in fibre preforms can lead to
significant scatter in local permeability values,1,2 which
can make the outcome of resin injections hard to pre-
dict. In addition, the random filament arrangement at
the micro-scale leads to local variations in fluid velocity
within fibre bundles. This can lead to gas inclusion at
the flow front in the case of impregnating flow and may
impede void transport within saturated fibre bundles,
e.g. bleeding of resin at the end of an resin infusion
process will not decrease the void content.3 These
voids will compromise load transfer between neigh-
bouring filaments and may have an adverse effect on
the fatigue life.4 The detection of these micro-scale
defects is difficult as the resolution of non-destructive

evaluation techniques at the component scale is
generally too low.5 To avoid invasive procedures, it is
desired to predict the micro-scale flow properties
computationally.

The liquid infusion processes are driven by a number
of factors at the flow front. The applied fluid pressure
will dominate the liquid flow into the reinforcement,
whereas capillary forces may have a strong drag or
promotive effect acting on the velocity of penetrating
flow.6,7 However, the majority of fluid transport in the
reinforcements, e.g. flow behind the flow front, is pres-
sure driven only. Several models for this steady state
flow at the filament scale have been proposed in the
literature. Usually, the filaments are assumed to be per-
fectly aligned. This assumption allows flow simulations
to be simplified to two-dimensional problems, but
ignores any undulation and misalignment of the fila-
ments present in the fibre bundle.8 The most basic mod-
elling approaches assume the filament arrangement
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within a fibre bundle to be periodic, e.g. with hexagonal
or square packing, which reduces the computational
effort.9–11 These models fail, however, to predict the
influence of local geometric variability on resin flow
in yarns. Therefore, several studies proposed models
for randomisation of filament arrays.

Initial attempts achieved randomisation by disturb-
ing periodic arrangements, e.g. removing fibres ran-
domly and disturbing fibre centre positions within
their respective finite cells.12 This created variability in
predicted permeability values, but failed to represent
real fibre arrangements. Using different mathematical
algorithms to generate more realistic random filament
arrays, it was demonstrated that the permeability
of a model domain is dominated by a few main flow
channels formed in between filaments. Chen and
Papathanasiou13 and Matsumura and Jackson14 related
the resulting permeability of a random arrangement to
the average gap formed between the closest filaments
and Yazdchi et al.15 to that between the second closest
filaments. Alternatively, it was suggested that the per-
meability can be described by fibre clustering,16 which
effectively also implies formation of flow channels.
Such descriptions of the permeability are beneficial as
they allow the permeability variations in larger domains
(e.g. use of Voronoi cells tessellation of large fibre
arrays Yazdchi and Luding17) or at multiple length
scales18 to be estimated without the need of computa-
tional fluid dynamic simulations (CFDs) simulations.
However, even though these descriptions improve
the analytical permeability predictions, they still fail
to explain the very large spread of permeability values
found in practise. Attempts have been made to include
void formation mechanism during impregnating
flow7,19 or drag forces to describe movement of fila-
ments during saturated flow.20,21 The latter suggests
that the permeability can change significantly if the
fibre arrangement moves. Experimental evidence for
movement of individual filaments in liquid composite
moulding processes at low fluid velocities and the
required drag force was not provided. These transient
simulations are very computational expensive and dif-
ficult to run on a larger scale.7,19

Due to the purely computational considerations
in generating the models in most studies, these fila-
ment arrays are not necessarily representative of the
micro-structure of a real fibre bundle. In addition,
these studies enforce a minimum distance between fila-
ments, which does not occur in practice and will affect
the predicted permeability. In this study, statistically
equivalent representative volume elements (RVEs)
were generated based on experimental characterisation
of the filament arrangement in low-crimp carbon fibre–
reinforced plastic samples.22 On these models, the fluid
transport was simulated numerically, and the influence

of the random filament arrangement on the domain
permeability was analysed. Using these data, a multiple
linear regression (MLR) model has been developed to
predict the permeability variations in entire fibre bun-
dles rather than using constant values23 or assuming
distributions of regular arrangements as function of
locally varying fibre volume fractions, Vf .

24

Numerical model set-up

The flow simulations in this work are governed by the
Navier–Stokes equations, describing conservation of
fluid mass and momentum. These equations are solved
on specified model geometries using the commercial soft-
ware Ansys Fluent� for steady state laminar flow imply-
ing a low Reynolds number. It is assumed that the fluid
is incompressible and exhibits Newtonian behaviour.
The fluid viscosity, �, was selected to represent a low-
viscosity epoxy resin (�¼ 0.1Pa�s). Transverse flow
with respect to infinitely long parallel filaments in
varying arrangements is assumed. Reduction of the
flow domain to two dimensions is therefore possible.
Permeability values were derived from the imposed pres-
sure gradient, �p, and the calculated average (weighted
by the respective cell dimensions) outflow velocity, vavg,
over the flow length, l, according to

K ¼
vavg�l

�p
ð1Þ

Statistically equivalent model domain generation

Statistically equivalent micro-structures were recon-
structed as discussed in an earlier study, which allows
generation of any Vf.

22 In this approach, a predefined
two-dimensional domain is populated with filament
cross-sections, represented by circles of given diameter.
The distributions of distances and angles at which
the nth nearest neighbours of a filament are located
(Figure 1) and the distributions of fibre diameter uti-
lised for the model generation were determined experi-
mentally from composite specimens at three global fibre
volume fractions, Vglob

f ¼ 0.45, 0.60 and 0.74. The cor-
responding fibre volume fractions in the fibre bundles,
Vf, were found to be 0.63, 0.66 and 0.74.22 Hence, the
minimum Vf of interest for flow in fibre bundles during
composite manufacture is significantly higher than
often assumed when based on Vglob

f . Therefore, only
this range of Vf is analysed in this work.

To ensure a complete population of the model
domain with filaments, the fibre placement area was
initially selected to be approximately three fibre diam-
eters larger than the target model size. After completion
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of the filament placement procedure, all fibres outside
the area of interest are removed, and only filaments that
are at least partially located within the target area
remain. Geometrical symmetry at the boundaries25 is
not enforced to avoid an additional constraint on the
filament arrangement. This will result in non-symmetric
flow patterns at the model boundaries, which are
thought to be more realistic than enforcing a symmetric
flow profile.

The reconstructed structures exhibit the same statis-
tical distributions of filament spacing and orientation

as observed in the original micro-structure (Figure 2(a)
and (b)), but are are not intended to reproduce the
exact filament arrangement as measured. Regular fila-
ment configurations such as square or hexagonal can
be present within yarn cross-sections locally, but it is
evident that these periodic arrangements do not reflect
the entire micro-structure. The filament density within
the micro-structure varies locally. Effects such as local
filament clustering (indicated by lines in Figure 2)
can be present.

Boundary conditions

The model boundaries parallel to the applied pressure
gradient were assumed to behave as impermeable fric-
tionless walls that do not allow flux across these edges
(Figure 3). In reality, flow in this direction may also be
present, which cancels out on average. Effectively, it is

x 

dn

y 

an

n-th neighbour 
wg

Figure 1. Distance, dn, and orientation, �n, of a filament relative

to its nth nearest neighbour in a cross section of a carbon fibre

bundle. The gap, wg, formed between these two filaments is

indicated. The global coordinate system, x–y, is selected to be

parallel to the image boundary.

(a) (b)

Figure 2. (a) Reconstructed filament micro-structure. Typical fibre arrangements are marked in the images. (b) Micrograph of a

unidirectional carbon fibre bundle cross section showing a random arrangement of filaments. Typical fibre arrangements are marked in

the images. (a) Reconstructed filament micro-structure. (b) Micrograph of a unidirectional carbon fibre bundle cross section showing a

random arrangement of filaments. Typical fibre arrangements are marked in the images.
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Figure 3. Applied boundary conditions for the analysis of

steady-state flow through a random filament network in a model

domain with side length, l, and width, w.
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assumed that the average flow is in the direction of the
applied pressure gradient. All filament boundaries
within the flow domain were treated as impermeable
no-slip walls. The influence of different types
of model domain boundary conditions, BC, on the
numerically determined permeability (equation (1))
was analysed based on CFD of hexagonal filament
arrangements discretised with the optimum parameters
determined during the mesh sensitivity study employing
local mesh refinement (Mesh sensitivity and model
validation section). Periodic geometries were chosen
as these are extensively studied and the results can
be easily compared to previous studies.9 The results
are thought to be valid for larger domains as well.
Periodic BCs, assuming an infinite repetition of the
flow domain where the pressure is not necessarily uni-
form on the boundary, were compared to pressure inlet
and outlet BC, which are characterised by a uniform
pressure distribution on the boundary. It was found
that the choice of pressure inlet and outlet BC gives
similar results as applied periodicity at identical Vf.
The non-symmetric geometry of the model domains
at the boundaries prevents the use of periodic BC and
therefore pressure gradients were applied in this work.

Model domain discretisation

For numerical solution of fluid transport through the
generated random filament arrangements, the model
domain is discretised into cells that correspond to
finite volumes. For description of the flow domain, it
is not necessary to discretise the impermeable cross-sec-
tions of the filaments (Figure 3). In order to achieve a
sufficiently fine discretisation of small gaps between two
filaments and limiting the total number of cells, local
mesh refinement is employed due to the difference in
scale between domain and minimum gap size. To limit

the computational cost, a minimum gap distance, dmin,
of about 5% of the average filament diameter is often
enforced. It was shown, however, that varying values of
dmin can significantly influence the filament arrange-
ments and hence, the flow patterns through a random
filament array.13 While it was suggested that a small
dmin does not have a significant influence on the overall
flow behaviour13,15 employing dmin does not allow com-
plete local blockage to be modelled, e.g. ensures a min-
imum gap between filaments, and will therefore affect
the permeability results. In addition, it is not possible to
create high Vf when using dmin, which usually limits the
maximum Vf used in CFD simulations to about
0.6.13–15 As the influence of an individual gap cannot
be known before a simulation is completed, all gaps will
need to be discretised with a fine enough mesh to ensure
that the flow behaviour can be captured correctly. This
may create more elements than required.

The mesh generator mesh2d26 in Matlab� is
employed in this work. This code generates an unstruc-
tured locally refined triangular mesh based on a
Delaunay algorithm and iterative smoothing oper-
ations. It is assumed that all geometrical features can
be expressed as piecewise linear curves. A method of
local mesh refinement was implemented as user speci-
fied function. This is achieved by applying a specified
cell size in selected areas between two filaments
(Figure 4(a)), which ensures a minimum number of
cells at the smallest gap distance between two filaments.
This predefined cell size h0 (Mesh sensitivity and model
validation section) specifies the characteristic edge
length of the triangular mesh.

The curved filament boundaries imply a gradual
change in gap width. For a given distance between
two points, P1 and P2, on opposite filament boundaries,
the minimum necessary cell size is determined, which
ensures discretisation of the gap with a minimum

r1

r2

P

h2

P1

P2

h

h1

h0

(a) (b)

Figure 4. (a) Area subjected to the user defined mesh refinement between two filaments (rectangle with solid lines). (b) Local mesh

refinement as function of the distance between the filament boundaries. Three zones using different element sizes hi are shown and

the transition areas indicated by a solid line.
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number of cells (Figure 4(b)). In order to limit the total
number of cells, the specified cell size in the area sub-
jected to mesh refinement is then adjusted if the min-
imum required cell size, hi, is twice as large as the
previously applied minimum cell size. The minimum
cell size is limited by the computational accuracy only
and was in the order of 10�12 unit length. Hence, any
gap between filaments which would allow a single flow
molecule to pass through (atomic diameters �10�10m)
can be discretised efficiently and specifying a minimum
gap between filaments is no longer required. The
described method has been implemented in a Matlab�

program for the entirely automatic generation and dis-
cretisation of random filament arrangements.

Mesh sensitivity and model validation

For accurate simulation of fluid flow, the domain dis-
cretisation needs to be fine enough to reproduce the
expected parabolic velocity profiles in small inter-fila-
ment channels.27 In addition, the section length of the
assumed piecewise linear curvature of the filament
boundaries, defined by ��, needs to be sufficiently
fine to not affect the fluid flow. To estimate the neces-
sary resolution of the mesh, flow through hexagonal
filament arrangements (Figure 5) at different Vf

(varying gap width, wg) was simulated. A number of
different mesh densities and angular resolutions was
assigned in the smallest gaps between two filaments,
e.g. in the smallest distance between two filament
boundaries. It should be noted that the selected angular
resolution defines the minimum degree of discretisation
of a filament boundary and consequently the cell size
around filaments only. In the case of a smaller selected

cell size in small gaps, the filament boundary divisions
will be finer in these areas.

Evaluating the resulting convergence of permeability
values made it feasible to determine the optimum mesh
resolution as a function of minimum cell size and angu-
lar resolution. A satisfactory trade-off between the total
number of cells in the model and convergence for all Vf

studied was achieved with ��¼ 0.72�. This results in
500 nodes per filament boundary, which is significantly
larger than used in previous studies.13 By keeping this
angular resolution constant, the minimum required cell
size in small gaps between filaments can be determined,
e.g. the total number of elements is a function of
the discretisation in the smallest gap. A solution was
considered convergent (red labelled data points in
Figure 6), when it came to within �1% of the limit
value (indicated by arrows) of the permeability as a
function of the total number of cells. The resulting per-
meability values are presented as percentage difference
compared to the predictions by Gebart’s model9 for
transverse flow through a hexagonal filament arrange-
ment at the same Vf. For these models, the number of
elements in the smallest gap between two filaments have
been counted and this information was then used to
determine the minimum number of required elements
in small gaps to discretise a flow model sufficiently.

The local cell size h0 as a function of wg indicates
that approximately 15 rows of cells are required across
the gap width to obtain convergent solutions according
to the selected criterion (Figure 7). This is significantly
more than determined by Yazdchi et al.15 who
employed 10 rows of cells for the discretisation of
small gaps in RVEs. A difference of permeability
values of up to 5% for flow through hexagonal unit
cells was estimated based on simulations using the opti-
mum discretisation determined in this work compared
to models using the discretisation recommended in the
literature. This better result is likely based on a better
description of the shape of the flow profile and a
more precise estimate of the effects of the boundary
layers. These differences in permeability are small
but are likely to accumulate in larger models containing
multiple filaments. The specified relationship of the cell
size as a function of the gap width between filaments
was implemented in the automated mesh refinement
approach described in Model domain discretisation
section.

Flow through randomised

filament arrangements

Statistically equivalent random filament arrays in
square domains of different sizes and Vf containing
up to 170 filaments were generated from measured dis-
tributions (Statistically equivalent model domain
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Figure 5. Unit cell of hexagonal filament arrangement. The cell

dimensions as function of the gap width, wg, are shown.
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generation section). The employed automatic model
discretisation (Model domain discretisation section)
made it feasible to avoid additional constraints on
the filament arrangement such as enforcing minimum
gap distances between neighbouring filaments. The
number of transverse flow simulations employed for
different model sizes, applying the numerical procedure
described in Boundary conditions section, are listed
in Table 1.

For transverse flow through random filament arrays,
predicted permeability values varied significantly
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Figure 6. Mesh convergence calculations for steady-state flow through hexagonal unit cells with a constant angular resolution, ��,
of the filaments at varying fibre volume fraction, Vf. The resulting permeability values are expressed as the percentage difference to the

predictions by Gebart’s model.9 The data points represent varying user defined volume size within the smallest gaps between

filaments. The points marked in red are considered to be within �1% of the limit value.
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width, wg; data can be approximated by a linear trend line.

Table 1. Number of simulations for three intra bundle Vf at

different model sizes given as ratio of model side length, l, to

average filament radius, r.

l/r Vf¼ 0.63 Vf¼ 0.66 Vf¼ 0.74

4.3 281 192 228

7.1 143 256 99

14.3 62 54 8

21.4 95 62 12

28.6 23 12 –
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at identical Vf (Figure 8). From maps of the resulting
flow velocities, it was observed that channels
with increased fluid velocity may form locally
(Figure 9(a)), which dominate the permeability of the
model. This agrees with observations made in the lit-
erature.13–15 The possible blockage of such a channel
explains the significant differences in transverse perme-
ability values found at identical Vf (Figure 9(b)).

The simulated permeability values, normalised by
the permeability of an ideal hexagonal filament
arrangement at the same fibre volume fraction, Khex,
were found to be log-normally distributed. The differ-
ences in transverse permeability for Vf¼ 0.63 and
Vf¼ 0.66 are smaller than suggested by Gebart’s ana-
lytical model for a hexagonal arrangement,9 which
explains the relative position of the lines in Figure 10.

The standard deviation of ln(K/Khex) decreases with
increasing model size, i.e. ratio of model edge length,
l, and average filament radius, r. Since, with increasing
model size, the flux through an increasing number of
local inter-filament flow channels is averaged, the scat-
ter in permeability is reduced.

Numerous domain sizes are suggested in the litera-
ture depending on the material used and the property
analysed.28 However, as the representative model
domain was shown to depend on the used micro-
structural descriptor,29 it is necessary to determine the
model size convergence in this work by CFD simula-
tions rather than using another computationally inex-
pensive model size predictor.

For a converged solution of steady state flow trans-
verse to the filament axis, Yazdchi et al.15 stated a l/r
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Figure 8. Normalised permeability results from 211 CFD simulations and the derived multiple linear regression model (MLR),

compared with predictions of a hexagonal array9 and the the predictions proposed by Chen and Papathanasiou13 and Yazdchi et al.15

for random arrangements. The dashed lines represent the exponential trend of the simulated and predicted permeability values, K.

The fibre volume fractions are rounded to full percentages and the predictions are offset from the CFD simulations for clarity.
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Figure 9. Maps of velocity distributions for transverse flow through random filament arrangements at Vf¼ 0.64. (a) Flow channel

present over which the majority of fluid is transported; K/r2¼ 2.49� 10�3. (b) Transverse flow is blocked by a fibre cluster;

K/r2¼ 1.56� 10�5.
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ratio of 80. In this work, the mean of ln(K/Khex) was
found to converge to values of approximately �1.7 to
�2.3, depending on Vf (Figure 10), for ratios l/r greater
than approximately 20, which is similar to the value
reported by Chen and Papathanasiou (l/r& 23).13

Models with an l/r ratio above this critical value for
which convergence is achieved can be considered stat-
istically equivalent to a complete fibre bundle. This
implies that they can be expected to exhibit the same
average permeability as the entire fibre bundle. The
required computational effort can be reduced by limit-
ing the model domain size to this critical ratio.

The reduction of the filament mobility, e.g. the
reduction in physical space a filament can potentially
occupy, with increasing Vf leads to a decreased scatter
in absolute permeability values at a given model size
(Figure 8). Compared to analytical model predictions
for a periodic hexagonal filament arrangement,9 the
predicted average permeability values of the random
arrangements are 6–10 times lower. As also observed
in previous studies, these results show that local perme-
abilities cannot be estimated based on Vf only, and
actual filament arrangements need to be considered.

Influence of the filament micro-structure

The dependence of the permeability on the overall Vf of
a micro-structure is not unique due to the random
arrangement of the filaments (Figure 9). Changes in
the micro-structure due to different levels of compac-
tion of the fibre bundles (varying Vf) are reflected in a
reduction of the mean distance of a filament to its nth
nearest neighbour at increased Vf. The differences in
micro-structural descriptors for different model
domains can therefore be correlated to the resulting

permeability, and an analytical relation can be derived.
This may enable to predict the permeability of a micro--
structure without the need of additional numerical
models.

Correlations between permeability and
micro-structural descriptors

As the gaps between neighbouring filaments determine
the local fluid transport,9 their influence on the perme-
ability is analysed. It should be noted that, since the
filament radii are not identical for all filaments, the
gaps between any pairs of filaments are not necessarily
identical, even if the distance between filament centres
in the pairs is identical. To allow comparison between
different micro-structures, all distances are normalised
by the average fibre radius of the individual model
domain.

The relation between the estimated permeability and
the average gap width between filaments, �wgðnÞ, was
found to be best described by an exponential function.
This corresponds to a linear equation if K is expressed
logarithmic, enabling the use of simple linear correl-
ation coefficients to assess the strength of the relation-
ship between the two variables.30 Fitting more
complicated regression lines, e.g. based on a power
law,15 does not improve the overall fit of the presented
data significantly.

The average and scatter of wg(n) between closest fila-
ments (n¼ 1) are small. The fluid transport through
these gaps is small and hence, these closest gaps do
not show a strong correlation with the resulting perme-
ability as indicated by the almost vertical regression line
in Figure 11. The fluid will therefore more probably
flow through a gap between a filament and a more
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Figure 10. Mean and standard deviation of log-normally distributed permeability values from CFD simulations on random filament

arrangements, normalised by Gebart’s analytical prediction for an hexagonal filament arrangement9 as function of the ratio of model

side length, l to average filament radius, r. For improved visualisation, the permeability values at Vf¼ 0.66 and Vf¼ 0.74 are shifted

horizontally by �0.2 from the values of Vf¼ 0.63.
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distant neighbour. This corresponds to the observed
flow channels dominating the permeability (Figure 9)
which are not formed between the closest neighbours.
The linear correlation coefficients, rs, (figure 12)
between the second and third (n¼ 2,3) closest �wgðnÞ to
ln(K) suggest a strong positive relationship (rs> 0.7).
The influence of these gaps on the overall permeability
is larger than for �wgð1Þ, e.g. more preferred gap for flow,
and hence the correlation with K is stronger. Scatter
present in these gap widths will therefore have a stron-
ger influence on K which leads to a significant increase
of the 95% confidence intervals of the fitted regression
lines. In addition, this scatter is also caused by the fact
that the filaments are part of a larger network and the
flow through gaps between pairs of filaments is also
affected by the subsequent arrangement. These �wgðnÞ

alone are therefore not able to describe the permeability
of a random micro-structure precisely.

Maps of flow velocity (Figure 9) suggest that the
orientation of gaps between filaments with respect to
the main flow direction may influence the permeability
of the micro-structure. Therefore, the circular mean, ��,
and variance, � ��n,

31 of the angles between the nth near-
est neighbours, �n, are correlated to the logarithmic K

values. It was found that the mean angles and their
variance are only weakly correlated to the permeability
(�0.3< rs< 0.3). The experimental analysis of fibre
bundle cross-sections suggested that the micro-struc-
ture has tendencies to become more regular with
increasing Vf.

22 The distributions of �n should therefore
become more peaked with increasing Vf. As measure of
peakedness, the circular kurtosis, k0n,

31 can be ana-
lysed, which is zero for evenly distributed angles and
shows significant deviations from zero with increasingly
peaked distributions. However, the correlation between
k0n and the logarithmic permeability value is also only
weak (�0.3< rs< 0.3). This highlights that the perme-
ability of a micro-structure is not defined by an average
filament orientation, but is more likely affected by local
arrangements only, e.g. a single filament can lead to
blockage of a flow channel.

Statistical model

Gebart9 derived a simple analytical power law relation-
ship of the transverse permeability to the Vf of a peri-
odic arrangement based on the Navier–Stokes
equation. The constant C is a shape parameter

Figure 11. Correlation between permeability, K, normalised by the squared average filament radius, r2, and the average gap width,

�wgðnÞ, formed between the first three (n¼ 1,2,3) nearest neighbours, shown as triangles, circles or diamonds, respectively. The dotted

lines show the fitted regression lines and 95% confidence intervals. The colours represent data from the different fibre volume

fractions: Vf¼ 0.63 light grey, 0.66 dark grey and 0.74 black.
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determined from the arrangement and Vf(max) is the
maximum achievable Vf for the selected periodic
arrangement, e.g. C& 0.0578 and Vf(max)& 0.91 for a
hexagonal arrangement.

K ¼ C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vf ðmaxÞ

Vf

s
� 1

 !2:5

�4r2 ð2Þ

A number of models were derived to incorporate the
randomness in random fibre arrays in a similar form as
proposed by Gebart (equation (2)). Chen and
Papathanasiou13 derived an equation to scale the hex-
agonal permeability derived by Gebart with the ratio of
the average gap formed between the closest neighbour,
wg(1), in the random array to the smallest gap formed
for filaments in a hexagonal array, wg(hex). The param-
eters �& 1.51 �&�1.93 were derived by fitting the
power law to their CFD results.

K ¼
wg 1ð Þ

wg hexð Þ

� ��þ�ð1�Vf Þ

Khex ð3Þ

Arguing that the contribution of flow between a fila-
ment and its closest neighbour will be small, Yazdchi
et al.15 proposed a relationship of K to the second near-
est neighbour, wg(2), instead.

K ¼ C wg 2ð Þ

� �2:5
ð1� g0e

�m�wg 2ð Þ Þ � 4r2 ð4Þ

They fitted a similar geometrical constant, C& 0.2,
as Gebart to relate to the geometrical arrangement.
Their exponential function is then scaled by another

exponential function with parameters g0& 0.5 and
m& 3 derived by fitting their data to their CFD results.

A similar approach for the average gaps formed was
attempted by Matsumura and Jackson.14 Instead of
scaling their function of average gap width by a
second function, they modified the exponent directly.

K ¼ C wg 1ð Þ

� �2:5þv
�4r2 ð5Þ

Curve fitting this equation to their numerically
derived K values, they proposed C¼ 0.3354 and
v¼ 0.5426 for a good fit to the permeability of a
random arrangement.

However, none of these functions describes the
values of K obtained in this work well (Figure 8).
This may be related to the different method of generat-
ing the micro-structures, which does not rely on a min-
imum gap width between adjacent filaments, and
therefore results in a more non-uniform flow field
than in other studies.13 Additionally, all of the above
models fit their data to the mean K; however, it was
found that the K is log-normally distributed. A simple
fit to the Gaussian mean is therefore not appropriate.
The minimum Vf in this work is also higher than the
maximum used in other studies to allow analysis of
the flow in real fibre bundles.22 This may suggest that
the models above may not be applicable for flow pre-
sent in real fibre bundles used in composite manufac-
turing. More importantly, it was demonstrated that it is
not possible to find a single descriptor explaining the
scatter in permeability (Correlations between perme-
ability and micro-structural descriptors section).
Therefore, more than one parameter is used here. It is
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possible to fit statistical models based on correlated
data to a defined response variable.32 One of these
models is the MLR, which fits linear equations to
observed data.

y ¼ �0 þ �1x1 þ �2x2 þ � � � þ �ixi ð6Þ

In this case, the observation, y (the permeability K in
this work), is related to the sum of several predictor
variables, xi, weighted by constant coefficients, �i, and
a constant offset, �0.

The input data for these models needs to be nor-
mally distributed, and therefore it is necessary to ana-
lyse the logarithmic values, ln(K), of the log-normally
distributed permeability (Flow through randomised
filament arrangements section) as the dependent vari-
able. The units of the variables and coefficients are
ignored in this type of MLR models which are explana-
tory only.

Vf is strongly negatively correlated with the perme-
ability and is therefore used for generation of an MLR
model in this work. In addition, �wgðnÞ for the second and
third neighbour (n¼ 2.3) in micro-metres were selected
as explanatory variables because of their strong correl-
ation with permeability. Possible cross-correlations
between these two input factors or small deviations
from a normal distribution are ignored. The model fit
was found to be better if the corresponding standard
deviations for the selected �wgðnÞ were also included.
Employing these five input variables as dimensionless
xi, in equation (6) the corresponding parameters
�1¼�46.16, �2¼ 6.74, �3¼�4.22, �4¼�4.77 and

�5¼�0.10 were determined as weight factors for Vf,
�wgð2Þ, �wgð3Þ, �wg(2) and �wg(3), respectively. To ensure
that the derived MLR model is only based on statis-
tical descriptors, the constant �0 was set to 0 which
leads to

lnðKÞ ¼ 6:74 �wg 2ð Þ � 4:22 �wg 3ð Þ � 4:77�wgð2Þ

� 4:77�wgð3Þ � 46:16Vf

ð7Þ

It should be stressed that the absolute values of �i do
not reflect any physical property and are simply weight-
ing factors for the selected input parameters. The aver-
age angles of a filament to its nth nearest neighbour do
not correlate strongly with the permeability (Figure 12)
and are therefore not employed in this model.

The derived equation predicts the observed spread of
permeability values more accurately than the other
models based on a single geometrical descriptor
(Figure 8) which is reflected in similarity of K values
to those derived from CFD. The probability density
curve (Figure 13) for the MLR data fits the CFD simu-
lations better than the probability density for published
models.13–15 In addition, the probability density of the
MLR model is wider than that of the other models.
This indicates that a larger spread of K values can be
estimated if more than one geometrical parameter is
used. The analytical model in this work (equation (7))
shows a similar trend as predicted based on experimen-
tally determined distributions of regular filament
arrangements.24 As the MLR model is derived to be
predictive only for the analysed Vf range, it does not
default to the hexagonal arrangement when the corres-
ponding input values are used. This shortcoming may
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be overcome when using a different statistical modelling
approach, e.g. non-linear regression. The achieved
accuracy of predictions is, however, higher than that
based on existing models in the Vf range of interest.

Concluding remarks

Since experimental determination of the permeability at
the micro-scale is difficult, numerical simulations are
employed to describe flow at this scale. Automatic gen-
eration and discretisation of flow domains on statistic-
ally equivalent micro-structures were implemented in a
Matlab� program. This discretisation process allowed
omitting the assumption of a minimum distance
between filaments, which would imply an unintended
constraint on the analysed micro-structures. To obtain
the desired accuracy of the solution, it was concluded
that a minimum of 15 rows of cells in small gaps were
required. Convergence of the derived average trans-
verse permeability values was found at a ratio of flow
length to filament radius greater than 20 for all ana-
lysed fibre volume fractions. The convergence of the
permeability with increasing model size was related to
the probability of formation and local blockage of main
flow channels. It was not found feasible to relate the
scatter in permeability to a single micro-structural
descriptor. Using five correlated descriptors, fibre
volume fraction, average gap width and corresponding
standard deviation to the second and third nearest
neighbour, it was possible to generate an MLR
model to predict the permeability. The requirement
for five input parameters may sound excessive; how-
ever, when determining statistical descriptors in
random filament arrays, it is almost no extra effort
to derive more than one of these. The proposed stat-
istical model predicts the permeability significantly
better than models proposed in the literature.
Differences in permeability predictions are probably
related to the influence of local filament arrangements,
which are not taken into account when using average
values. The scatter of permeability values can, how-
ever, be reproduced with this computationally inex-
pensive method. Exploring more sophisticated
statistical models, e.g. non-linear regression, may
result in even better predictions of permeability in
the future.
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