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Abstract
Objective
To characterize the phenotypic spectrum, molecular genetic findings, and functional con-
sequences of pathogenic variants in early-onset KCNT1 epilepsy.

Methods
We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures
(EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple-gene
next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-
EIMFS early-onset epilepsy in whomwe identifiedKCNT1 variants on local diagnostic multiple
gene panel testing were also included. When possible, we performed homology modeling to
predict the putative effects of variants on protein structure and function. We undertook elec-
trophysiologic assessment of mutant KCNT1 channels in a xenopus oocyte model system.

Results
We identified pathogenic variants in KCNT1 in 12 patients, 4 of which are novel. Most variants
occurred de novo. Ten patients had a clinical diagnosis of EIMFS, and the other 2 presented
with early-onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine
with good clinical response in 1 patient. Computational modeling analysis implicates abnormal
pore function (F346L) and impaired tetramer formation (F502V) as putative disease mecha-
nisms. All evaluated KCNT1 variants resulted in marked gain of function with significantly
increased channel amplitude and variable blockade by quinidine.

Conclusions
Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with
onset in early infancy. Currently, genotype-phenotype correlations are unclear, although clinical
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outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate
the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy.

Glossary
ADNFLE = autosomal dominant nocturnal frontal lobe epilepsy; EIMFS = epilepsy of infancy with migrating focal seizures;
EOEE = early-onset epileptic encephalopathy; NFLE = nocturnal frontal lobe epilepsy; RCK = regulator of potassium
conductance; SLACK = sequence like a calcium-dependent potassium channel; WT = wild-type.

Autosomal dominant pathogenic variants in KCNT1, encod-
ing the sodium-activated potassium channel, are identified in
a wide spectrum of epileptic disorders with variable age at
onset and cognitive outcome. These include severe
early-onset epileptic encephalopathies such as Ohtahara
and West syndromes1,2 and epilepsy of infancy with
migrating focal seizures (EIMFS),3–14 as well as auto-
somal dominant and sporadic severe nocturnal frontal
lobe epilepsies (ADNFLE and NFLE),10,15,16 but the
genotype-phenotype relationship appears to be unclear.
We undertook detailed clinical, molecular genetic, and
functional characterization of a cohort of patients with
KCNT1-related epilepsy.

Methods
Patient recruitment
We recruited patients with EIMFS (n = 31) to a research study
investigating the genetic basis of early-onset epileptic en-
cephalopathy (EOEE) between 2011 and 2016, following
an earlier national surveillance study.4 Inclusion criteria were
epilepsy with onset at <2 years and unknown etiology.
Diagnostic criteria for EIMFS were as described in the pre-
vious study.4 Patients were recruited at Great Ormond Street
Hospital, London, UK, and by referral from other centers in
the United Kingdom and internationally. Two patients
who had routine local diagnostic multiple gene panel testing
revealing KCNT1 variants were also included.

Standard protocol approvals, registrations,
and patient consents
We obtained written informed consent from families in
whom research genetic investigations were undertaken. The
study was approved by the National Research Ethics Service
(London-Bloomsbury, Research Ethics Committee reference
13/LO/0168, Integrated Research Application System pro-
ject identifier 95005). We collected anonymized data from
patients tested on the diagnostic next-generation sequencing
panel (n = 3) as part of an approved case note review project
(Great Ormond Street Hospital Research and Development
Department, 16NM11).

Genetic testing
We used a variety of different methods (table e-1, http://links.
lww.com/WNL/A6), including direct Sanger sequencing,

multiple gene panel testing with the TruSeq Custom Ampli-
con panel and SureSelect panel, exome sequencing (e-
Methods, http://links.lww.com/WNL/A8; tables e-1 and e-2,
http://links.lww.com/WNL/A6), and diagnostic chromo-
somal microarray.

Homology modeling
HMMscan17 against Pfam (database of sequence-based do-
main families)18 identified 2 domains in the sequence
of human KCNT1 (isoform 1): ion channel (PF07885, at
position 278–346) and calcium-activated BK potassium
channel alpha-subunit family (PF03493, at position
495–598) (e-Methods).

Electrophysiologic assessment of mutant
KCNT1 in xenopus oocyte model
We introduced variants into a wild-type (WT) human
KCNT1 expression construct19 using QuikChange Light-
ning Site-Directed Mutagenesis Kit (Agilent Technologies,
Santa Clara, CA). cDNAs were transcribed in vitro
(mMessage mMachine; Ambion, Austin, TX). Oocytes
were prepared, and 2-electrode voltage clamp recording
was performed after 14 to 24 hours of expression. We also
recorded currents before and after the application of
Quinidine (e-Methods).

Results
Clinical and molecular genetic features of
KCNT1 mutation–positive patients
Clinical presentation
We identified pathogenic variants in KCNT1 in 12 patients, 5
through direct Sanger sequencing, 2 from whole-exome se-
quencing, and 5 from the Great Ormond Street Hospital di-
agnostic panel (5 of 800 tested patients with EOEE/
developmental delay).

Clinical features are summarized in table 1. Median age at
seizure onset was 3.5 weeks (range 1 day–6 months). Most
patients developed seizures consistent with EIMFS. Two
patients (patients 3 and 11) presented with severe, early-onset
NFLE, characterized by asymmetric tonic posturing and later
fencing posture. We noted similar frontal seizure semiology in
patients with EIMFS (e.g., patient 12). All patients developed
axial hypotonia, and upper motor neuron signs emerged in 3
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Table 1 Clinical and genetic features for 12 patients with KCNT1 mutations

Patient

CDS/
protein
change Inheritance

Dx
methods ECS

Age
at
onset Initial seizure type

Subsequent
seizure types

Autonomic
features

MD (age at
onset)

Additional
features

Best
developmental
stage attained

Best response
to treatment

Previous functional
validation?

1a c.811G>T,
V271F

Unknown
(parental
DNA not
available)

WES, SS EIMFS 2 wk HV, eye jerking, oral
automatisms, FM upper
limbs

Asymmetric tonic
posturing, My,
GTCS

Facial
flushing

— — No developmental
milestones
achieved

None Gain of function4,28

2 c.820C>A,
L274I

De novo SS, NGSP EIMFS 1 d HV, ED and jerking, TS
upper limbs

FM seizures of
face and arm

— — — No developmental
milestones
achieved

None
(including
quinidine)

No

3 c.862G>A,
G288S

De novo NGSP NFLE 6 mo Predominantly nocturnal,
asymmetric tonic
posturing

ED, choking
noises, fencing
posture, brief
generalized TS
and GTCS

Facial
flushing

— Right-sided
neglect,
increased tone
on right side,
peripheral
hyperreflexia in
lower limbs

Grasps objects and
standing briefly at
2.5 y, vocalizing and
babbling

None resulted
in seizure
freedom

Gain of
function5,8–10,13,26,28,33

4 c.1038C>G,
F346L

De novo SS EIMFS 7 wk Exaggerated startle, reflex
warm water clonic/My,
evolved to HV and ED,
tonic posturing upper
limbs, FM all limbs

Rapid alternating
ED, facial
grimacing leading
to airway
obstruction

Drooling,
salivation,
apneas

HK MD
affecting
upper limbs
(18 mo)

Coarse facial
features, gum
hypertrophy

Normal
development until
10 wk, then
regression with loss
of social smile and
head control

None No

5 c.1504T>G,
F502V

Maternal
inheritance,
likely
somatic
mosaicism

SS EIMFS 3 mo Behavioural arrest,
staring, upward eye
rolling, HV and ED to either
side, asymmetric tonic
posturing and elevation of
limbs

Flexor spasms
involving the
trunk, clonic
seizures of limbs,
eyelid twitching,
gelastic seizures

HK MD
disorder
involving
head and all
limbs (18
mo)

Cleft of hard
palate

Early social smile
and visual
interaction, lost
after onset of
epilepsy

KD with
vigabatrin,
effect later lost
Quinidine-
marked
reduction in
seizures

No

6 c.2687T>A,
M896K

De novo NGSP EIMFS 2 wk Brief FM all limbs
(twitching)

HV, dystonic
posturing upper
limbs, ED and
jerking

Facial
flushing,
noisy
breathing

HK
movement
perioral
muscles,
tongue,
hand, and
wrists (2 y)

Systemic
proliferative
vasculopathy of
pulmonary and
mediastinal
vessels

No developmental
milestones
achieved

None
(including
quinidine)

No

7 c.2849G>A,
R950Q

Paternally
inherited

SS EIMFS 5 mo HV, TS TS, gelastic
seizures

— HK MD (14
mo)

— Normal until
seizure onset,
(smile and head
control), regression
at 5 mo with no
further
development

None No9
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Table 1 Clinical and genetic features for 12 patients with KCNT1 mutations (continued)

Patient

CDS/
protein
change Inheritance

Dx
methods ECS

Age
at
onset Initial seizure type

Subsequent
seizure types

Autonomic
features

MD (age at
onset)

Additional
features

Best
developmental
stage attained

Best response
to treatment

Previous functional
validation?

8 c.2800G>A,
A934T

De novo SS EIMFS 4 wk HV, ED, fisting of hands Asymmetric tonic
posturing, ED, oral
9 automatisms

Facial
flushing

Limb
dystonia
and severe
scoliosis (18
mo)

Peripheral
hypertonia

Babbling, some
degree of head
control

Steroids and
KD in
combination
at 7–12 mo

Gain of
function3,4,8,9,20

9a c.2800G>A,
A934T

De novo WES EIMFS 2 wk HV, ED, vocalization T10S with
adversive
component

Facial
flushing,
pupillary
dilation

— Gastrointestinal
dysmotility

Partial head control,
smiling

Nitrazepam at
5 mo

10 c.2800G>A,
A934T

De novo NGSP EIMFS 3 wk HV, ED with pupil jerking,
FM arm and face, oral
automatisms

HV, ED, drooling,
TS with adversive
component, FM
upper limbs

Facial
flushing

— — Smiling, visual
awareness, some
head control, rolling

Stiripentol,
levetiracetam,
and
clonazepam in
combination

11 c.2800G>A,
A934T

De novo NGSP NFLE 8 wk Focal motor seizures
hands, ED and jerking, TS
upper limb and FM
contralateral lower limb
Seizures only in sleep
Stopped at 4–5 mo

From 11 mo: TS
with fist clenching,
ED, asymmetric
tonic posturing,
mainly from sleep

— — Right-sided
weakness with
peripheral
hyperreflexia

Walking before
regression at 11mo,
best subsequent
stage sitting
independently

No sustained
response

12 c.2800G>A,
A934T

De novo NGSP EIMFS 3 wk ED with eye flickering, HV,
TS upper limbs

FM upper and
lower limbs with
lip smacking,
hand fisting, HV
and ED, fencing
posture of arm

Facial
flushing

— — Social smile and
reaching for objects
until regression and
loss of these skills at
5 mo

KD and
lacosamide in
combination

Abbreviations: CDS = coding sequence; Dx = diagnostic; ECS = electroclinical syndrome; ED = eye deviation; EIMFS = epilepsy of infancy with migrating focal seizures; FM = focal motor; GTCS = generalized tonic-clonic seizures;
HK = hyperkinetic; HV = head version; KD = ketogenic diet; MD =movement disorder; My =myoclonic seizures; NFLE = nocturnal frontal lobe epilepsy; NGSP = next-generation sequencing panel; SS = Sanger sequencing; TS =
tonic seizures.
a Previously described by McTague et al.4
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patients. Four patients had a choreiform movement disorder
(onset 14–24 months); 1 patient developed generalized dys-
tonia at 18 months. Onset of hyperkinesia was not related to
medication (including vigabatrin) nor triggered by in-
tercurrent illness. Initial age at presentation, disease course,
response to medication, brain MRI, and EEG findings were
similar for both KCNT1 pathogenic variant–positive and –
negative patients from the cohort. However, 5 of 12 patho-
genic variant–positive patients with EIFMS presented with
a severe movement disorder compared to 2 of 19 KCNT1-
negative cases. Most had extensive uninformative laboratory
metabolic and genetic investigations. Abnormal muscle re-
spiratory chain enzyme activity for complex I and/or II was
detected in patients 4 and 8 of uncertain significance (table e-
3, http://links.lww.com/WNL/A6). For patient 4, the muscle
biopsy was taken during an intercurrent illness and repeated
after clinical recovery, revealing a more borderline result. In
patient 8, borderline abnormalities in complex I and II ratios
were found. Neither patient had other systemic, biochemical,
or radiologic features of mitochondrial disease or concurrent
sodium valproate treatment.

In general, neurodevelopmental outcome was markedly
impaired in all patients with EIMFS. All patients had a trial of
at least 5 different medications. Response to treatment was,
in general, poor (table 1). Three of 8 patients who received
the ketogenic diet in combination with other antiepileptic
drugs responded with ≈75% seizure reduction. Three
patients were treated with quinidine. Patient 2 received 40
mg/kg/d without adverse events but with no effect on sei-
zure burden. Patient 5 was treated with quinidine at 40 mg/
kg/d, leading to a marked reduction in seizure frequency.
Patient 6 showed some initial transient reduction in seizure
frequency at 30 mg/kg/d. For this patient, the unexpected
development of a severe proliferative pulmonary and medi-
astinal vasculopathy resulted in life-threatening pulmonary
hemorrhage. Investigations failed to identify an underlying
vasculitis, and quinidine was subsequently withdrawn. The
patient later died despite initial successful pulmonary
embolization.

EEG features
All patients with an EIMFS phenotype had a “migrating” ictal
focus with discrete ictal involvement of differing cortical areas
within the same EEG (table e-4, http://links.lww.com/WNL/
A6). Although not always evident at initial presentation, it
developed by 7 months of age in most patients. Periods of
EEG suppression or burst suppression were noted in 8 of 12
patients; 6 of these patients had seizure onset in the first 4
weeks of life. Further atypical EEG features included a gener-
alized electrodecremental response in 5 patients and hypsar-
rhythmia in 1 patient.

Radiologic features
Neuroimaging was available for review in 11 of 12 patients. The
majority developed predominantly frontal cerebral atrophy by 3
years of age (figures e-1A and e-1B, http://links.lww.com/

WNL/A7; table e-5, http://links.lww.com/WNL/A6). Cere-
bellar atrophy was also evident in 4 patients (figure e-1C).
We noted an open operculum in the first 6 months of life in
patient 4 (figure e-1B). Delayed myelination was evident in
9 of 11 patients who had imaging after 3 months of age. In
some patients, early brain imaging was normal. Magnetic
resonance spectroscopy was abnormal with a relatively
reduced N-acetylcholine peak in 3 of 4 patients.

Molecular genetic findings
We identified 12 patients with pathogenic variants in KCNT1
(table 1 and table e-6, http://links.lww.com/WNL/A6); 8
have been previously reported and 4 are unpublished.4,5,9,10,16

Eight of 12 patients had C-terminus variants, of whom 5 had
the commonly reported variant A934T. We have identified 4
(including 2 unpublished) pathogenic variants causing
EIMFS, namely V271F, L274I, G288S, and F346L located in
or between transmembranes 5 and 6. All are missense variants
that are predicted to be pathogenic (table e-6), affecting highly
conserved amino acid residues (figure e-2, http://links.lww.
com/WNL/A7), and are not reported in 1000 Genomes, the
ExAC database, or the Exome Variant Server.20–24 For 9 of 12
cases, variants occurred de novo. Parental DNA was not
available for patient 1. In patient 5, we found the sameKCNT1
variant in an asymptomatic mother and her affected child. We
noted a lower heterozygous peak on Sanger sequencing of
both salivary and blood-derived maternal genomic DNA
(figure e-3), which may reflect somatic mosaicism. In patient
7, the variant was inherited from the unaffected father with no
difference in peak size on Sanger sequencing (figure e-4). The
recurrent A934T variant was identified in 5 patients, 4 with an
EIMFSpresentation and 1 (patient 11)with anNFLEphenotype.

Protein homology modeling of mutant KCNT1
Homology modeling was performed for 2 novel mutations:
F346L, located in the ion channel domain (residues
270–353), and F502V, located in the gating region (residues
373–1174, although residues 1,045–1,174 could not be
modeled). F346 is located on the inner helix of the trans-
membrane pore (figure 1, A and B). It is part of the hydro-
phobic cavity, which mediates interactions between the inner-
membrane helices of 2 adjacent subunits (figure 1C) and is thus
responsible formaintaining the stability of the open conformation.
In the modeled closed-state conformation, the helix containing
F346 and the inner helix from the other protomer undergo
conformational changes (figure e-5, http://links.lww.com/WNL/
A7). Therefore, mutation to leucine (F346L) is likely to de-
stabilize the open state by perturbing the hydrophobic inter-
actions because the side chain of leucine is smaller (figure 1D),
affecting the equilibrium between the closed and open states. In
addition, the packing arrangement in the K+ channels involving
the pore and the inner helix is known to be critical for the stability
of the tetrameric assembly, ion conduction function, and cation
selectivity. Thus, F346Lmight be detrimental to these functions.25

Within each protomer of the KCNT1 gating region, there are
2 tandem RCK domains (RCK1 and RCK2) that serve as
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Figure 1 Modeling the ion channel and gating apparatus of KCNT1

(A) Side view of the homologymodel of the KCNT1 ion channel (residues 278–346) as a tetramer. F346 is present on the edge of the inner helix (in gold) and interacts
with the inner helix of the adjacent subunit in the tetrameric arrangement. Membrane position is shown in spheres. (B) Top view of the tetramer arrangement of the
ion channel and location of F346 on the inner helix. (C) F346 is part of the hydrophobic cavity (shown as surface), which mediates interactions between the inner
membranehelices of the 2 subunits. F346 is shown in green; the surrounding hydrophobic residues are shown in red. (D)Onmutation to leucine (F346L, in green), the
hydrophobic interactions between the2 subunits are likely tobe reduced (black circle) because the side chain of leucine ismuch shorter thanphenylalanine. (E)Model
of a dimer of the gating ring (residues 373–1,044; residues 1,045–1,174 could not be modeled), which is a tetramer (dimer of the modeled dimer). Each subunit
possesses 2 RCK domains: RCK1 (in blue) and RCK2 (in gold). F502 (in green) is present in the RCK1 domain, near the intersubunit interface (assembly interface). The
RCK1-RCK2 intrasubunit interface ispurple (residues fromRCK1)andorange (residues fromRCK2). Thedimer interfaces formedbybothRCK-1andRCK-2are indicated
by anarrow. (F) F502 (green) and its neighboring hydrophobic residues (red), includingW476,withwhich it could potentially formapi-pi interaction. Distance between
the centroid (spheres) of the 2 rings (F502andW476) is 4.7 Å, and theanglebetween the ringplanes is 27.3°. (G) F502V could abolish the formationof thepotential pi-pi
interaction with W476 and is likely to reduce the hydrophobic interactions (black circle) because the side chain of valine is smaller than that of phenylalanine.
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regulators of potassium conductance (figure 1E). These form
flexible intrasubunit and intersubunit (figure 1E) interfaces
that facilitate functional tetramer formation.26 F502 is located
in RCK1 and predicted to form a pi-pi interaction with W476
from αD (figure 1F). F502 is also surrounded by a number of
hydrophobic residues (I472, L473, A475, V500, and A503),
which may play a role in stabilizing the gating ring (figure 1F).
The amino acid substitution F502V is predicted to result in
destabilization of these hydrophobic interactions, given the
smaller valine side chain (figure 1G), and abolition of po-
tential pi-stacking with resultant disruption of the stable as-
sembly interface.

Electrophysiologic assessment of
mutant KCNT1
We evaluated the 4 previously unpublished variants and
V271F, which we previously described4 and was recently
studied in a xenopus oocyte system.27 All mutations resulted in
an increased current magnitude compared toWT (figure 2A).
We noted that for variants V271F and F346L, the rate of
activation was slowed at higher voltages compared toWT, and
in others (M896K, F502V and L274I), the activation rates
were generally faster thanWT (figure 2A). Investigation of the
current-voltage relationship showed that mutant channels
were very weakly voltage dependent, and in some cases,
voltage dependence of steady-state activation was essentially
absent (figure 2, B and C) with only a residual Goldman-
Hodgkin-Katz rectification. Assessment of average peak cur-
rents at 10 mV revealed a significant difference between both
individual mutant channels and summated data compared to
WT (figure 2, D and E).

Effect of 300 μmol/L quinidine on
mutant KCNT1
Quinidine 300 μmol/L had variable current-blocking effects in
different mutant channels. For F346L, peak current was
completely insensitive to quinidine, although it had some ef-
fect on activation kinetics (figure 3A). The differential sensi-
tivity of KCNT1 mutants to quinidine was clearly shown in
the current-voltage relationship (figure 3B) and percentage of
inhibition at maximum current, 80 mV (figure 3C). There is
some correlation between the in vitro studies and clinical
response in patient 5 (figure 3). M896K had the most marked
in vitro blockade by quinidine, and patient 6 showed some
initial clinical response. F346L showed no quinidine response
at all, and the patient harboring this mutation was not treated
with quinidine.

Discussion
We report a cohort of patients with early-onset epilepsy as-
sociated with pathogenic variants in KCNT1, which encodes
the sodium-activated potassium channel KCa4.1 (sequence
like a calcium-dependent potassium channel [SLACK],
Slo2.2). KCNT1 is widely expressed throughout the brain, as
well as in the dorsal root ganglia, kidney, and heart, and is
responsible for slow hyperpolarization after bursts of action

potentials.28,29 KCNT1 also has direct interactions with
Fragile X-related protein.29 Compared with other potassium
channels, KCNT1 is involved in a highly extensive protein
network, suggesting a putative role in cognitive developmental
processes.3,8,28,30

To date, KCNT1 variants have been reported in a wide range
of epilepsies (table e-7, http://links.lww.com/WNL/
A6).1–16,31,32 We identified patients with the same variant as-
sociated with varying electroclinical phenotypes (table 1).
Phenotypic variability has been reported within single families
in which different individuals may present with either
ADNFLE or EIMFS.10 Such intrafamilial variation in pheno-
type is also described in SCN1A kindreds; Dravet syndrome,
febrile seizures, and a variety of other generalized epilepsies
may be reported in the same family.33 Furthermore, while
the majority of variants in our cohort occurred de novo, 2
patients inherited variants from an unaffected parent. The
mechanisms underlying phenotypic variability and true/apparent
nonpenetrance are unclear but may be related to somatic mosa-
icism, variant type, other genetic/epigenetic factors, or differential
expression of alternative KCNT1 transcripts.9,10,29,34,35

The majority of patients with pathogenic KCNT1 variants in
our cohort had electroclinical EIFMS, although this is likely to
reflect ascertainment bias. Indeed, 2 of the 5 KCNT1-positive
patients identified by the diagnostic panel from a larger cohort
of 800 patients with EOEE/developmental delay had an
NFLE-like presentation. Although movement disorders are
increasingly reported in other severe early-onset genetic
epilepsies, they appear to be rare in KCNT1 epilepsy.36 We
describe several atypical EEG features. Generalized electro-
decrement and hypsarrhythmia, more classically associated
with infantile spasms, have been previously described in
EIMFS.2,4,9,10,31 EEG suppression, classically seen in Ohtahara
syndrome,37 has been only rarely described in EIMFS.4,9 Ex-
tensive diagnostic investigations undertaken in patients with
KCNT1 mutations were unyielding other than abnormal re-
spiratory chain enzyme analysis of muscle tissue in 2 patients.
The relevance of these findings is not clear, but secondary
mitochondrial effects may be evident in KCNT1 epilepsy, as
often reported in other severe drug-resistant epilepsies.38

Other genetic and environmental influences onmitochondrial
function may also play a role.

KCNT1 tetramers form a transmembrane sodium-activated
potassium channel. Each subunit consists of 6 transmembrane
domains with an extended cytoplasmic carboxy (C-) terminus
(figure 4). Themajority of reported pathogenic variants (table
e-7, http://links.lww.com/WNL/A6), as seen in this study,
are located in the C-terminus with clustering around the RCK
and nicotinamide adenine dinucleotide–binding domains
(figure 4). More recently, several variants have been identified
within transmembrane domain 5 and in the pore-forming
regions between transmembrane domains 4 and 54,5,8–10 (table
e-7), and this study also demonstrates epilepsy-associated
mutations in transmembrane domains.
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To date, different model systems have been used to determine
the functional effects ofKCNT1 variants.1,5,7,10,13,19,27 Our protein
homology structural modeling data predict abnormal gating or
protein instability within the pore-forming region as a putative
disease mechanism. In silico modeling of G288S has predicted
similar detrimental effects,5 while Y775H is predicted to affect
sodium sensitivity of the channel.27 KCNT1 variants may
therefore alter structural properties of the protein, contributing
to altered channel function. Consistent with previous
reports1,3,13,19,27 (table e-7, http://links.lww.com/WNL/A6), our
xenopus oocyte model demonstrated that KCNT1 pathogenic
variants display a gain-of-function effect with increased
current amplitude (figure 2). Previous studies have sought to
correlate disease severity with the degree of gain of

function.1,19 However, in keeping with more recent studies,8

such correlation was not evident in our study. KCNT1 variants
result in an increased Po (probability of the channel being
open), which may be due to increased mutant channel coop-
erativity or altered sodium sensitivity.8,27 In a recent study, so-
dium removal from the pipette solution had a less negative
effect on G288S channel amplitude than WT, suggesting
reduced sodium sensitivity in the mutant.13 Heterotetramer
formation may be of importance in vivo. In 1 study, mutant
KCNT1 homomers revealed a more marked gain of function
than mutant WT heteromers.13 A significant remaining
question is howKCNT1 gain-of-function variants with predicted
effects on neuronal hyperpolarization result in epilepsy.28

Altered voltage sensitivity may result in KCNT1 channels

Figure 2 Functional investigation of KCNT1 mutations in a xenopus oocyte model

(A) Representative current traces obtained from oocytes expressing WT and EIMFS mutants (M896K, F502V, V271F, F346L, and L274I). Oocytes were held at
−90 mV and stepped from −80 to 80 mV for 600 milliseconds every 5 seconds. Scale bars apply to all traces. (B) Current-voltage relationships for WT (n = 32),
M896K (n = 15), F502V (n = 13), V271F (n = 9), F346L (n = 11), and L274I (n = 12). Currents were averaged and then normalized to the value at a test potential of
80 mV (Imax). (C) Comparison of current-voltage relationships between WT (solid circles, n = 32) and EIMFS mutations (M896K [squares, n = 15], F502V
[triangles, n = 13], V271F [hexagons, n = 9], F346L [diamonds, n = 11], and L274I [inverted triangles, n = 12]). Currents were averaged and then normalized to
the value at a test potential of 80mV (Imax). (D) Average peak currents at 10 mV for WT (n = 44), M896K (n = 19), F502V (n = 16), V271F (n = 10), F346L (n = 11),
and L274I (n = 12) channels. Peak currents for eachmutant channel at 10mVwere compared to the peak currents for theWT channel at 10mV. ***p < 0.001,
****p < 0.0001. (E) Comparison of pooled WT (n = 44) and EIMFS (n = 68) currents at 10 mV. ****p < 0.0001. EIMFS = epilepsy of infancy with migrating focal
seizures; WT = wild-type.

e62 Neurology | Volume 90, Number 1 | January 2, 2018 Neurology.org/N

http://links.lww.com/WNL/A6
http://neurology.org/n


opening at more depolarized potentials, allowing a persistent
hyperpolarizing current, with resultant interneuronal dis-
inhibition as reported in SCN1A-related epilepsy.39 Con-
versely, increased repolarization permitting more frequent
and rapid action potentials may also play a role.27,34

Recently, quinidine has been identified as a novel therapy
for patients with KCNT1-related epilepsy. In in vitro
models, quinidine has been shown to reduce the abnormal
increase in mutant KCNT1 channel amplitude.19 For 1
patient with EIMFS with the KCNT1 variant R428Q , in
vitro testing showed quinidine sensitivity, and treatment
resulted in a dramatic improvement in seizure control with
neurodevelopmental gains.3,7 However, in more recent
studies, patient response has been variable and not always
as predicted by in vitro studies.11 Indeed, another patient

with the same variant (R428Q) but different epilepsy
phenotype (unclassified EOEE) failed to respond to quin-
idine, albeit at a later stage in the disease course.14 Most
recently, a patient withWest syndrome had a good response
but only with a higher dose of 60 mg/kg/d.2 Clinical re-
sponse may possibly be determined by the specific variant,
other genetic factors, epilepsy phenotype, and drug timing
within a therapeutic window. In our series, we treated 3
patients with quinidine, and 1 patient showed a clinical response.
One patient developed a severe pulmonary vasculopathy, after
which quinidine was discontinued. Systemic vasculitis has been
reported with quinidine treatment.40 While investigations in our
patient did not reveal overt evidence of vasculitis, the observed
pulmonary dysfunction may represent an adverse drug-related
event. The precisemechanism of KCNT1 blockade by quinidine
is unclear, and it is possible that the disease mechanism for

Figure 3 Effect of quinidine on xenopus oocytes expressing hKCNT1 channels

(A) Representative current traces obtained from oocytes expressing WT and EIMFS mutants (M896K and F346L) with application of vehicle (ND96) and 300
μmol/L quinidine. Oocyteswere held at−90mVand stepped from −80 to 80mV for 600milliseconds every 5 seconds. Scale bars apply to all traces. (B) Current-
voltage relationships forWT (n = 32), M896K (n = 15), F502V (n = 13), V271F (n = 9), F346L (n = 11), and L274I (n = 12) hKCNT1 channels in the presence of vehicle
(ND96) and 300μmol/L quinidine. Currentswere averagedand then normalized to the value at a test potential of 80mV (Imax). (C) Average percent inhibition at
80 mV of WT (n = 31) and EIMFS (M896K, n = 15; F502V, n = 13; V271F, n = 9; F346L, n = 11; and; L274I, n = 12) hKCNT1 channels by quinidine (300 μmol/L)
depicting the variable degree of block by 300μmol/L quinidine (1-way analysis of variance followed by Bonferroni post hoc analysis). *p < 0.1. EIMFS = epilepsy
of infancy with migrating focal seizures; WT = wild-type.
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F346L, perhaps involving abnormal channel-opening dynamics
as suggested by themodeling data, is notmodifiable by quinidine.
Our data suggest that quinidine should be considered as a ther-
apeutic option for patients with KCNT1 variants, but used with
caution. Larger studies will provide further guidance about clin-
ical utility, patient selection, optimum age at administration, and
dose. Other KCNT1 modulators, including bepridil and clofili-
lum, have been identified as possible alternative therapies.28 Like
quinidine, bepridil has been shown in vitro to reversibly block
mutant KCNT1 channels at a lower concentration than WT
channels.13 However, similar to quinidine, potential cardiac
effects and lack of specificity may limit use in patients.

Pathogenic variants in KCNT1 cause a wide spectrum of se-
vere epilepsies typically associated with impaired neurologic

development and significant disease burden. As demonstrated,
in vitromodel systemsmay be useful to validate putative variants
and to confirm pathogenicity, although genotype-phenotype
correlations remain unclear. Evaluation of new therapies, in-
cluding KCNT1-specific blockers, remains a research priority
for this devastating pharmacoresistant group of epilepsies.

Note added in proof
Recently, 3 patients with de novo KCNT1 mutations and
massive systemic to pulmonary collateral artery formation,
presenting with pulmonary hemorrhage requiring emboliza-
tion, were described. These patients had not been treated with
quinidine. However, the mechanism remains unclear and
further investigation of the expression and role of KCNT1 in
the cardiovascular system is required.41

Figure 4 Schematic diagram of the location of mutations in KCNT1 in this and previously published studies

KCNT1 encodes sequence like a calcium-dependent potassium channel (SLACK), which forms tetramers (top left) or heteromers with KCNT2 or sequence like an
intermediate conductance K channel (SLICK). The structure comprises 6 transmembrane domains with a pore-forming region, regulator of potassium conductance
(RCK), and nicotinamide adenine dinucleotide–binding (NAD-B) domains. EIMFS phenotypes are shaded in purple, ADNFLE or NFLE in pink, others (Ohtahara
syndrome, leukoencephalopathy, focal epilepsy, EOEE,West syndrome,unaffected) inorange.Mutationsgiving rise to>1phenotypeareshadedwitha combinationof
the corresponding colors. Novel mutations identified in this study are outlined in green, those identified in previous studies in turquoise. ADNFLE = autosomal
dominant nocturnal frontal lobe epilepsy; EIMFS = epilepsy of infancy with migrating focal seizures; EOEE = early-onset epileptic encephalopathy; NFLE = nocturnal
frontal lobe epilepsy.
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Study question
What are the phenotypic, molecular genetic, and functional char-
acteristics of KCNT1 variants that cause early-onset epilepsy?

Summary answer
Gain-of-function KCNT1 mutations can cause diverse severe
focal epilepsies with onset in early infancy, but genotype-
phenotype relationships remain unclear.

What is known and what this paper adds
Autosomal dominant pathogenic variants of the sodium-activated
potassium channel gene KCNT1 are associated with a broad
spectrum of epileptic disorders. The study explores the clinical,
molecular genetic, and functional properties of a cohort of
patients with KCNT1-related epilepsy.

Participants and setting
Thirty-one patients with epilepsy of infancy with migrating focal
seizures (EIMFS) were recruited from 2011 to 2016. Two
patientswhohad undergone routine genetic testing that included
KCNT1 analysis were also included. The patients were
recruited at London’s Great Ormond Street Hospital and by
referrals from UK and international centers.

Design, size, and duration
The patients’ KCNT1 variants were identified via multiple
methods, and homologymodeling was performed. Themutant
KCNT1 variants were electrophysiologically assessed in
a Xenopus oocyte model.

Main results and the role of chance
Pathogenic KCNT1 mutations were detected in 12 patients.
These patients exhibited diverse symptoms. The ages at onset
ranged from 1 day to 6 months, and all had neurodevelopmental
impairments. Treatment outcomes were generally poor. The
pathogenicKCNT1 variants included 8 previously reported and
4 unreported variants. Homology modeling for 2 unreported
variants indicated that they would induce abnormal gating or
protein instability. Electrophysiologic assessments of 5

variants, including the 4 unreported ones, revealed abnormal
channel functions, including increased current magnitudes
relative to the wild-type (WT) channel and variable blockade
by quinidine, in keeping with the clinical response.

Bias, confounding, and other reasons
for caution
Focusing on patients with EIMFS may have introduced as-
certainment bias.

Generalizability to other populations
Pathogenic KCNT1 mutations have been detected in patients
with epileptic conditions other than EIMFS, including noc-
turnal frontal lobe epilepsy. Such mutations may have different
effects in other conditions.

Study funding/potential competing interests
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ments from various companies, journals, scholarly societies, and
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