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FULL PAPER

Presence of Time-Dependent Diffusion in the
Brachial PlexusAQ1

Zaid B.AQ2 AQ6 Mahbub,1,2 Andrew M. Peters,2 and Penny A. Gowland2*

Purpose: This work describes the development of a method
to measure the variation of apparent diffusion coefficient (ADC)

with diffusion time (D) in the brachial plexus, as a potential
method of probing microstructure.
Methods: Diffusion-weighted MRI with body signal suppres-

sion was used to highlight the nerves from surrounding tis-
sues, and sequence parameters were optimized for sensitivity

to change with diffusion time. A porous media-restricted diffu-
sion model based on the Latour-Mitra equation was fitted to
the diffusion time-dependent ADC data from the brachial

plexus nerves and cord.
Results: The ADC was observed to reduce at long diffusion
times, confirming that diffusion was restricted in the nerves

and cord in healthy subjects. T2 of the nerves was measured
to be 80 6 5 ms, the diffusion coefficient was found to vary

from (1.5 6 0.1)�10�3 mm2/s at a diffusion time of 18.3 ms to
(1.0 6 0.2)�10�3 mm2/s at a diffusion time of 81.3 ms.
Conclusion: A novel method of probing restricted diffusion in

the brachial plexus was developed. Resulting parameters were
comparable with values obtained previously on biological sys-

tems. Magn Reson Med 000:000–000, 2017. VC 2017 Interna-
tional Society for Magnetic Resonance in Medicine.

Key words: brachial plexus; ADC; diffusion time; restricted
diffusion

INTRODUCTION

The brachial plexus provides motor and sensory innerva-
tion to the upper extremities, and its function can be
compromised in disorders such as cervical spondylosis,
radiculopathy, and/or myelopathy. Quantitative MRI
may provide a means of monitoring changes in tissues
particularly during response to therapy. In particular,
diffusion, and the effects of hindered or restricted diffu-
sion, may provide information about changes in tissue
microstructure.

MRI can be used to measure both the apparent diffu-
sion coefficient (ADC), and the diffusion time (D) depen-
dence of the ADC, which is an indicator of compartment
size. At short diffusion time, most water molecules are
unlikely to have diffused far enough to interact with the

boundaries, but at longer diffusion times the measured
ADC will be reduced if molecular motion is restricted
within, or hindered between, axons. In the brachial
plexus, the diameter of the nerve fibers is the range
between 5 and 15 mm (1,2) with smaller distances
between them, so assuming a free water diffusion coeffi-
cient of D¼2� 10�3 mm2/s at body temperature (3), the
molecular displacement would be hindered or restricted
at times up to �50 ms, which overlaps the accessible
range of diffusion times for a human MR scanner. Thus,
it should be possible to use diffusion MRI to probe
changes in the size or spacing of axons in the brachial
plexus.

In order to allow comparison between subjects, it is
useful to be able to parameterize the diffusion time
dependence of the ADC. Various models have been used
to do this, including the intra-axonal restricted and
extra-axonal hindered diffusion (CHARMED) model
(4,5), models considering cell membrane hindering (6),
and models considering cell membrane permeability and
density effects (7). Here, we have used the porous media
model (8,9), which provides a simple, physically based
method for parameterizing the diffusion time depen-
dence of ADC (D(D)), based on the Mitra equations
(10–13). This model was initially proposed for use in
biological tissues (14) and has been applied to various
biological systems in vivo (15) and ex vivo (8,16,17) and
to microstructure phantoms (18,19), but, as we are aware,
it has never previously been used for in vivo human tis-
sues. For restricted diffusion in porous media, Latour
et al (14) simplified the model using a Pade approximant
to Equation [1]:

DðDÞ ¼ Do 1� 1� 1
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where Do is the unrestricted self-diffusion coefficient, D

is the diffusion time, c ¼ 4
9
ffiffiffi
p
p S

V

� � ffiffiffiffiffiffi
Do

p
, u is a time scaling

factor, which depends on the characteristic size of
restricting and hindering microstructure, a is the (dimen-
sionless) tortuosity index of the medium, relevant in the
long D regime in which spins diffuse greater distances
than the characteristic restriction lengths and hence sam-
ple the connectivity of spaces within the tissue, and S/V
(mm�1) is the surface-to-volume ratio of the medium
reflected in the short D regime where surfaces are probed
by a fraction of molecules.

MRI of the brachial plexus is technically challenging
because of the size and location of the nerves, which can
result in problems in identification, partial volume
errors, distortion, and artefacts, but diffusion-weighted
imaging (DWI) with background suppression (DWIBS)
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(20,21) provides a method of isolating nerves from the
other soft tissues (22). DWIBS uses inversion recovery to
null the fat signal independent of frequency offset and
T2 and diffusion weighting to suppress surrounding tis-
sues. The resulting images can be reconstructed as maxi-
mum intensity projections (MIPs) to illustrate the
relative positions of the nerve roots and nerve paths.
Several qualitative studies using DWIBS have shown
that this technique has potential value in the assessment
of pathological changes, including in the brachial plexus
(22–26).

The aim of this work was to develop a robust method

for measuring the diffusion time dependence of ADC

(D(D)) in the brachial plexus nerves and cord, and to

parameterize the results using the porous media-

restricted diffusion model.

METHODS

A sequence was written to allow the diffusion time (D)

to be varied for fixed b values (Fig.F1 1) and optimized to

measure diffusion time-dependent changes in a diffusion

coefficient. Initial experiments were performed to inves-

tigate any nondiffusive effects in the DWI signals from

the brachial plexus (i.e., intravoxel incoherent motion

[IVIM], taken to include any dephasing attributed to non-

diffusive motion), and to determine the T2 of the nerves

(27,28). Finally, the sequence was used to assess D(D) in

the brachial plexus.

Development of the Sequence

The sequence shown in Figure 1 (which defines timing

parameters) was coded on a 3 T Philips Achieva scanner

(Philips Medical Systems, Best, The Netherlands). The

three gradient coils were driven simultaneously to pro-

duce the maximum achievable diffusion gradient, which

was necessary to be able to vary diffusion time within a

reasonable echo time (TE), particularly given that it

would not be possible to vary both diffusion time and

diffusion direction in a feasible scanning time. This pro-

vided diffusion encoding at 45� to the x-axis and 700 to

the z-axis of the scanner, which is approximately per-
pendicular to the fibers of the brachial plexus as they
curve around the neck.

The maximum achievable value of diffusion time Dmax

is limited by echo time (TE¼Dþ td1þ td2þ dþ j), and
for a given value of b the minimum diffusion time Dmin

is determined by the maximum achievable gradient
amplitude. Table T11 shows the range of accessible values
of D, determined by considering achievable values of gra-
dient lobe length (d), delay times (td1 and td2), and gradi-
ent amplitudes (G) for required values of b and TE,
assuming the time between the end of the second gradi-
ent lobe and the center of k-space was j¼ 19.7 ms for the
Philips Achieva 3T scanner used (Philips Medical
Systems).

Optimization of Sequence Parameters

Within the constraints of the limited information avail-
able about the geometry and permeability of the nerve
fibers, we attempted to maximize sensitivity to changes
in ADC across the range of accessible diffusion times
ðDðDÞÞ. For clinical imaging systems, long echo times are
required to assess restricted or hindered diffusion, which
reduces the signal-to-noise ratio (SNR) of the data and
leads to a trade-off between contrast and sensitivity. Ide-
ally, one would want to probe the variation in ADC
across a wide range of diffusion times, but that is not

FIG. 1. DWIBS sequence with timing parameters. TE¼Dþtd1þtd2þdþj and it can be seen that variations in the delay times td1, td2, and
gradient amplitudes G result in the required diffusion times Dmin and Dmax at fixed b-values. (Left to Right 1st part) G(Dmax) G(Dmin) Dmax

d j, (Left to Right 2nd part) td1(Dmax) Dmin td2(Dmax) EPI readout, (Left to Right 3rd part) 90� td1(Dmin) 180� td2(Dmin), (Bottom) TE.
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Table 1
Range of Achievable Diffusion Time D at Different b-values, for

d¼10 ms and TE¼100 or 85 ms, on the 3T Philips Achieva
Scanner.

b (s/mm2)

TE¼100 ms TE¼85 ms

Dmin Dmax Dmin Dmax

300 18.3 81.3 18.3 62.3
600 18.3 81.3 18.3 62.3
850 20.3 81.3 18.3 62.3

1,100 23.3 81.3 22.3 62.3
1,300 29.3 81.3 26.3 62.3

1,500 31.3 81.3 32.3 62.3
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feasible in vivo, so instead we aimed to identify a range
of diffusion times that would give a large change in ADC
that could be detected with high sensitivity. First, we
defined the diffusivity difference as a measure of the
dynamic range of the experiment (maximum detectable
change in diffusion coefficient with diffusion time)
(Eq. [2]):

KðDmin;DmaxÞ ¼ D1ðDminÞ � D2ðDmaxÞ [2]

where D1 is the ADC measured at short diffusion time
(Dmin) and D2 is the ADC measured at long diffusion
time (Dmax). We then defined the contrast to noise in dif-
fusivity difference as shown by Equation [3]:

GK ðDmin;DmaxÞ ¼
KðDmin;DmaxÞ

sK
[3]

Ideally, we would sample diffusion at a range of b values
and a range of diffusion times, but this is not feasible in
vivo. It has previously been shown that for pure Brow-
nian motion, the diffusion coefficient (D) is optimally
measured at two b values (29–31) and we used these val-
ues as the best estimate for this initial work (Eq. [4]):

D ¼ lnS1 � lnS2

b2 � b1
[4]

where S1 and S2 are the signals at b1 and b2, respectively
(Eq. [5]):

Si ¼ S0eð�biDÞeð�TE=T2Þ; i ¼ 1; 2 [5]

By propagation of errors, the variance in the calculated
value of D is given by Equation [6]:

s2
D ¼

s2
S

ðb2 � b1Þ2
1

S0e�
TE
T2

� �2 ðe
2b1D þ e2b2DÞ [6]

(where rS is the variance of the noise in the raw images),
which has a minimum sD for b2D¼ 1.1 (29,31).

The variance in K is given by Equation [7]:

sK ¼ ðs2
D1
þ s2

D2
Þ1=2 [7]

and substituting from Equation [6], this gives Equation [8]:

sK ¼
s2

S

ðb2 � b1Þ2
�

S0ðb1Þ
�2

e�
2TE
T2

�
2þ e2ðb2�b1ÞD1 þ e2ðb2�b1ÞD2

�2
64

3
75

1=2

[8]

This analysis neglects the effect of the Rician noise dis-
tribution, and, experimentally, data points below the
noise floor were removed (see Methods). To estimate GK,
an estimate of the change in ADC with diffusion time is
required. Therefore, a Monte Carlo simulation of diffu-
sion restricted by impermeable boundaries with different
restriction sizes (R) was used to estimate the change in
ADC with D for different values of TE. It was assumed
that b1¼ 0 and b2¼ 50, 100, 150, 200, 250, 300, 400, and
500 s/mm2, although if b1 had to be greater than zero for

other reasons, then b2 could be replaced by (b2 – b1) and
the final results scaled by S0(b1)/S00. For R of 20 mm and
5 mm, the variation of GK with b value was investigated
for TE¼ 85 ms (Dmin¼ 18.3, Dmax¼ 66.3 ms), TE¼ 100 ms
(Dmin¼ 18.3 ms, Dmax¼ 81.3 ms), and TE¼ 110 ms
(Dmin¼ 18.3 ms, Dmax¼ 91.3 ms), assuming d¼ 10 ms and
T2¼ 100 ms.

In Vivo Measurements

Eight healthy volunteers (4 male) aged 25 to 55 years
were recruited with approval from the ethics committee
of University of Nottingham Medical School (Notting-
ham, UK) and participated in an experiment to 1) assess
IVIM effects (a subgroup of 5 subjects participated; 3
male, aged 22–55 years), 2) measure T2, and 3) assess
the diffusion time-dependent ADC in the brachial
plexus. We repeated both experiments twice (three times
for 1 volunteer) with a gap of at least 2 months to allow
a qualitative assessment of reproducibility. MR Images of
the brachial plexus were acquired using the cranial ele-
ments of the Torso XL 16 channel array coil, which was
centered over the subject’s thorax with padding used to
prevent it touching the face.

The DWIBS scan consisted of a short tau inversion
recovery images, fat-suppressed, multislice, single-shot
echo planar imaging (EPI) readout with pulse gradient
spin echo preparation. Axial/oblique scans were cen-
tered on the C5/C6 disc so that the imaged volume
encompassed the C5 to T1 nerves in the cervical spine.
The imaging parameters were field of view
192� 54�300 mm, 3-mm isotropic voxels, 18 slices with
no gap, water/fat shift of 4.64 pixels, sense encoding
(SENSE) factor¼2, EPI factor of 35, anterior-posterior
fold-over direction, volume shimming with repetition
time (TR)¼ 8,813 ms, and inversion time¼ 220 ms. The
data acquisition was repeated to give two samples within
each scanning session.

Initially to assess IVIM effects, subjects were scanned
at b¼ 0, 25, 50, 75, 100, 300, 500, 700, and 900 s/mm2

with TE¼ 60 ms, D¼ 28.3 ms, and d¼ 10 ms and a refer-
ence agar phantom placed above the subject’s shoulder.
A log-linear plot was used to identify the b value corre-
sponding to reasonable separation between large-scale
motion and diffusion. To measure T2, data were
acquired for TE¼55, 60, 65, 70, 75, and 80 ms with
b¼ 600 s/mm2, D¼ 28.3 ms, d¼ 10 ms, and TR¼6,000
ms. T2 was calculated by weighted linear square fit to a
monoexponential decay. Finally, to study the diffusion
time dependence of ADC, data were acquired at b¼ 300
and 600 s/mm2, D¼ 18.3, 25.3, 33.3, 41.3, 49.3, 57.3,
65.3, 73.3, and 81.3 ms, d¼ 10 ms, and TE¼ 100 ms.
Data were also acquired from a phantom containing agar
gel (4% [wt/wt] agar).

From a coronal MIP of the DWIBS data (Fig. F22a), two
sagittal planes were selected through the multislice data
set, orthogonal to the path of the nerves, on both sides of
the body. Images of each plane were fitted to a multiple
2D Gaussian function (Fig. 2b), assuming that the nerve
signal had an approximately Gaussian spatial profile,
with the peak amplitudes providing an estimate of signal
for each b value. The size of the nerve was of the order
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of a voxel causing much of the signal to be partial vol-

umed between voxels. This approach allowed us to

quantify the signal taking account of signals distributed

across a number of voxels, and empirically this function

fitted the nerve signal profile well. Any peak less than

twice the standard deviation of the locally assessed noise

was neglected to avoid errors from Riccian noise, partic-

ularly in the IVIM analysis where low-signal data were

acquired (32–34). The cord region of interest was

selected on the raw transverse images, and a similar pro-

cess was applied. This analysis was repeated for each

acquisition separately and the results were averaged

across the two samples and both sides of the neck. ADC

values of nerves and cord were then calculated (Eq. [2]).
The variation of ADC with diffusion time was plotted

and averaged over all visits for nerves and cord sepa-

rately. The resulting data were fitted to Equation [1] for

tortuosity (a) and surface-to-volume ratio (S/V) using the

nonlinear least square fitting function in Matlab (The

MathWorks, Inc., Natick, MA, USA). For this fit, the self-

diffusion coefficient D0 was derived by linear extrapola-

tion of a plot of D(D) versus
ffiffiffiffiffiffi
D
p

to D¼ 0 and the time

scaling factor u estimated from the relation
ffiffiffiffiffiffiffiffi
D0u
p

� neu-

ron size as previously proposed (14,15).

RESULTS

FigureF3 3 shows the simulated variations in the contrast

to noise in diffusivity difference (GK) with b value, for

different ranges of D achievable at different echo times.

Similar results were obtained by varying T2 or restriction

size. The simulation also confirmed that short gradient
lobes (small d) and high b values maximized sensitivity
to diffusion time. From these results, the difference

FIG. 2. (a) Coronal view MIP of brachial plexus, obtained using DWIBS with b¼300 s/mm2. C6, C7, and C8 nerves are identified and
used for positioning of sagittal view slices. (b) Sagittal view of brachial plexus showing locations of C6, C7, and C8 nerve roots at
b¼300 s/mm2. (c) Corresponding 2D Gaussian fitting showing peak for each nerve.
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FIG. 3. Variation of contrast-to-noise ratio in the diffusion time
dependence of the measured diffusion coefficient (GK) with b-

value at a range of D for different TE and d¼10 ms. *TE¼110
ms; �TE¼100 ms; TE¼85 ms; blue for R¼20 mm, black for

R¼5 mm.
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between the high and low b value used experimentally

was selected to be 300 s/mm2.
FigureF4 4 shows that the diffusion curve was approxi-

mately biexponential, with b¼ 300 s/mm2 providing rea-

sonable separation between IVIM and diffusion effects,

and thus this value was selected as the low b value for

subsequent measurements. The measured IVIM and T2

parameters are shown in TableT2 2.
FiguresF5 5a shows the variation in ADC with D for 1

representative subject (the subject that was scanned three

times), and Figure 5b shows the fit to the Latour-Mitra

equation superimposed on the subject-averaged data.

The average ADC was higher in the nerve than the cord

at all values of diffusion time. Table 2 summarizes the

results of fitting the data to the Latour-Mitra equation.

No variation with diffusion time was observed for agar

phantoms [ADC¼ (1.5 6 0.008)�10�3 mm2/s at room

temperature].

DISCUSSION

This study detected restricted diffusion in the human

brachial plexus in vivo using the DWIBS sequence on a

clinical MRI scanner. Measured ADC values were in the

same range as previously reported in the nervous system

(35). The larger ADC in the brachial plexus nerve than

the cord is expected given that nerve fibers are larger.
There was a clear reduction in the ADC with increas-

ing diffusion time for the nerves and cord, which was

not observed in an agar phantom, suggesting that diffu-

sion was restricted or hindered in these tissues. The lon-

gest accessible diffusion time, Dmax¼ 81.3 ms,

corresponded to a mean diffusion length of �13 mm,
which is similar to the diameter of the largest fibers in

the brachial plexus nerves and cord, and the lack of an

asymptote at high D indicates that diffusion was not

fully restricted at the longest diffusion time, consistent

with extra-axonal contributions. The short diffusion
time, Dmin¼ 18.3 ms, probed a mean molecular displace-

ment of around 8 mm, which corresponds to the diame-

ters of the middle-range fibers, suggesting that sensitivity

to observing smaller fibers could be achieved by using

shorter diffusion times if larger gradients were available.
The definition of diffusion time used here (Fig. 1) does

not fully consider the effects of movement during the

gradient pulses.
The measured T2 values were comparable with previ-

ous results (36). The longer values recorded in the cord

and the greater intra-subject variation may indicate cere-
brospinal fluid contributions or motion artefacts. It was

also found that IVIM-type effects contributed to signals

from the nerves and cord collected at b<�300 s/mm2.

This was assessed for D¼ 28.3 ms and it would be inter-

esting to investigate how these effects vary with diffu-
sion time. The b value used for diffusion time-dependent

measurements was optimized to maximize the sensitivity

to a change in measured diffusion coefficient with diffu-

sion time (GK), for accessible scanner timing parameters,

based on a simple Monte Carlo simulation of restricted
diffusion within a simplified model. GK decreased at

short TE over the range considered because the accessi-

ble range of D was small. GK decreased at high b value

because the SNR in the measured value of D fell, and

decreased at low b value because the absolute variation
in D with D was small, giving a maximum in GK at b

�300 s/mm2. In practice, the low b value used in vivo

(b1) needed to be 300 s/mm2 to eliminate IVIM-type

effects; therefore, given that the accessible range of diffu-
sion time was similar across a wide range of b values

(Table 1), the high b value used in vivo (b2) was 600 s/

mm2.
The diffusion time dependency of the ADC data was

fitted to the Latour-Mitra porous media model. The mea-

sured values of a and S/V were in the range previously
obtained for other biological samples such as red blood

FIG. 4. Example IVIM plots for brachial plexus nerves, cord, and

agar phantom. Agar phantom (black) shows a linear change with
b-values because there is no IVIM effect. However, nerve (blue)

and cord (red) signals show nonlinear behavior. Below the graph
is shown a set of images from the IVIM data set showing the C6,
C7, and C8 nerves for the range of b-values indicated on the fig-

ures (s/mm2). Cord, Nerve, Agar.
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Table 2

Measured Values of T2, IVIM Parameters, and the Latour-Mitra Equation Fitting Parameters and a and S/V (Intersubject Mean and
Standard Deviation).

Region T2 (ms)

IVIM Results Measured for D¼28.3 ms Latour-Mitra Equation Fit

f

D*

(�10�3 mm2/s)

D

(�10�3 mm2/s)

D0

(�10�3 mm2/s)

u

(�10�2 s) a

S/V

(mm�1)

Nerve 80 6 5 0.24 6 0.01 10 6 7 1.1 6 0.02 1.898 6 0.005 5.26 6 0.5 6.9 6 0.1 132 6 7

Cord 100 6 6 0.48 6 0.02 70 6 7 0.9 6 0.01 1.527 6 0.005 6.66 6 0.2 4.3 6 0.3 260 6 20

J_ID: MRM Customer A_ID: MRM26733 Cadmus Art: MRM26733 Ed. Ref. No.: 16-17433.R1 Date: 29-May-17 Stage: Page: 5

ID: thangaraj.n Time: 14:32 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/Wiley/MRMT/Vol00000/170115/Comp/APPFile/JW-MRMT170115

Restricted Diffusion in the Brachial Plexus 5

Ppzpag
Cross-Out



cells and cerebral tumors (8,15). S/V and a relate to the
characteristic sizes of the structures restricting or hinder-
ing the diffusion, so the smaller values of S/V in the
nerve would be expected given that the fibers are larger
with consequently larger interfiber spaces than in the
cord, and the larger values of a found in the nerves indi-
cate greater hindrance to movement of water molecules
than in the cord. However, the tortuosity a cannot be
estimated reliably unless a high-diffusion time asymptote
is reached, which was not detected in the cord and was
not clearly detected in the nerve in this work. The
Latour model is inherently a 3D model, but, in this case,
we were applying it to a system that is restricted in only
two dimensions and were only encoding diffusion in
one direction, which was not exactly perpendicular to
the nerve fibers. This will alter the physical interpreta-
tion of the fitted parameters and also make them depen-
dent on the exact orientation of the diffusion gradients
relative to the nerve fibers. This could be overcome in
the future by ensuring that diffusion is measured in an
anatomically consistent direction.

Future work should focus on measuring this parameter
in a range of nervous tissue and should consider other
restricted diffusion models. Assessment of microstruc-
ture in the peripheral nerves has potential in monitoring
inflammatory neuropathies, and so future work should
also investigate whether diffusion time-dependent ADC
provides additional clinical information, and, if so, the
optimum diffusion time would provide sensitivity to
changes in disease.

CONCLUSION

We have developed a novel method of probing restricted
and hindered diffusion in the brachial plexus nerves and
cord. The porous media, time-dependent diffusion model
was used to characterize restricted diffusion in these tis-
sues. Resulting estimates of the surface to volume ratio

and tortuosity were comparable with values obtained
previously on biological systems and can give informa-
tion about the intra-axonal and extra-axonal spaces.
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