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The infinite Fibonacci groups and relative asphericity
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ABSTRACT

We prove that the generalised Fibonacci group F(r,n) is infinite for (r,n) € {(7 + 5k,5),
(8 + 5k,5): k > 0}. This together with previously known results yields a complete classification
of the finite F(r,n), a problem that has its origins in a question by J. H. Conway in 1965. The
method is to show that a related relative presentation is aspherical from which it can be deduced
that the groups are infinite.

1. Introduction
The generalised Fibonacci group F'(r,n) is the group defined by the cyclic presentation
-1 -1 -1 -1
(1, T 21T o T, T2T B 1T, gy e B 1T T T 2%, T X1 . Ty 1T, ),

where r > 1, n > 1. Thus there are n generators and n relators each of length r + 1 and each
relator is obtained from the first relator by cyclically permuting the subscripts and reducing
modulo n [10, Section 7.3]. There has been a great deal of interest in the study of these
groups since the question in [5] by Conway about the order of F(2,5). Up to now the order of
F(r,n) was known except for the two infinite families F/{7,5} and F{8,5}, where F{r,n} :=
{F(r 4+ kn,n): k > 0}. The reader is referred to [15], and the references therein together with
[3, 14] for further details. In this paper we will show that each group in F{7,5} or F'{8,5} is
infinite. This together with previous results yields the following theorem.

THEOREM 1.1. The generalised Fibonacci group F(r,n) is finite if and only if one of the
following conditions is satisfied:

(i) r=2andn € {2,3,4,5,7}: indeed F(2,2) is trivial; F(2,3) = Qg, the quaternion group

of order 8; F(2,4) = Zs; F(2,5) 2 Zy1; and F(2,7) & Zao;

(ii) r=3 and n € {2,3,5,6}: indeed F(3,2) = Qs; F(3,3) & Zy; F(3,5) & Zoo; and F(3,6)
is non-metacyclic, soluble of order 1512;

(iii) » > 4 and r =0 (modn), in which case F(r,n) = Z,_1;

(iv) r >4 and r =1 (modn), in which case F(r,n) is metacyclic of order " — 1,

(v) 724, n=4 and r=2 (modn), in which case F(r,n)=F(4k+2,4) (k>1) is
metacyclic of order (4k + 1)(2(4)%% +2(—4)F +1).

A relative group presentation is a presentation of the form P = (G, x|r) where G is a group,
x a set disjoint from G and r a set of cyclically reduced words in the free product G * (x)
where (x) denotes the free group on = [2]. If G(P) denotes the group defined by P then
G(P) is the quotient group G * (x)/N, where N denotes the normal closure in G * (x) of r. A
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relative group presentation is defined in [2] to be aspherical if every spherical picture over it
contains a dipole, that is, fails to be reduced. There is interest in when a relative presentation
is aspherical, see, for example, [1, 2, 6, 8, 9, 13]. In this paper we consider the situation when
G = (t|t°), ¢ = {u} and r = {t?utu="} and prove the following theorem.

THEOREM 1.2. The relative presentation P, = (t,u|t®,t>utu™") is aspherical forn > 7.

Applying, for example, statement (0.4) in the introduction of [2] and the fact that the group
defined by P,, is neither trivial nor cyclic of order 5 we immediately obtain

COROLLARY 1.3. If G(P,) is the group defined by P, then G(P,) is infinite for n > 7,
indeed u has infinite order in G(P,,) forn > 7.

We will show in Section 2 that Corollary 1.3 implies that each group in F{7,5}, F{8,5}
is infinite. The remaining Sections 3-11 of the paper will be devoted entirely to proving
Theorem 1.2.

2. Fibonacci groups

Consider the generalised Fibonacci group F(r,n) of the introduction. If r =2 or 2 < n <4 or
(r,n) € {(3,5),(3,6)} or n divides r or r = 1 (mod n) then Theorem 1.1 applies and these cases
are discussed fully with relevant references in [15]. Assume then that none of these conditions
holds. In particular r > 3 and n > 5. In [14] it is shown that if n does not divide any of » £+ 1,
r =+ 2,2r, 2r + 1 or 3r then F(r,n) is infinite. If n divides r 4+ 1 then F(r,n) is infinite for r > 3
[11] so assume otherwise. We are left therefore to consider the families F{r,r 4 2}; F{r,2r};
F{r,2r + 1} and F{r,3r}. In [3] it is shown that if » > 4 then each group in F{r,r + 2} and
F{r,2r} is infinite; and if » > 3 then each group in F{r,2r + 1} is infinite. This leaves F'{8,5},
F{9,6}, F{7,5} and F{r,3r}. In [14] it is also shown that if n does not divide any of r £ 1,
r+2,r+3,2r, 2r + 1 then F(r,n) is infinite. If n divides 3r and r 4+ 2 we obtain the family
F{4,6} which is F{r,r 4+ 2} for r = 4; if n divides 3r and r — 2 we obtain F{8,6} and each
group in this family is infinite [4]; and if n divides 3r and r + 3 we obtain F{6,9}. By our
assumptions n does not divide 3r together with any of » £ 1, 2r or 2r 4+ 1. It is also shown in
[3] that each group in F'{9,6} or F{6,9} is infinite, all of which leaves F{7,5} and F{8,5}.
These families are
{F(7+5k,5): k >0} and {F(8+5k,5): k >0},

where F'(7 + 5k,5) and F(8 4 5k,5) are defined, respectively, by the presentations

)k+1 )kJrl

-1 —1
<$1,$2,$3,$47$5 | ($1€E2$3$45E5 T1T2T3 ,~--,($5$15E2$3$4 T5L1To >,

(1,22, 23, T4, 5 | (x112x3x4m5)k+1x1x2x3m21, ce, (:c5:Elx2x3x4)k+1z5x1x2x51>.

We show how Corollary 1.3 can be used to prove Theorem 1.1. Since cyclically permuting the
generators induces an automorphism we can form a semi-direct product with the cyclic group
of order 5 in the way described, for example, in [10, Section 10.2] and this yields the groups
E(7+ 5k,5) and E(8 4 5k,5) defined, respectively, by the presentations

(ot | 5, (2t ™))+ 12),
<.’E,t | t57 (xt71)8+5km71t3>.
Now

<l‘,t | 1;157 (xt71)7+5kx71t2> _ (x,t,y I t5, (xt71)7+5kx71t27y71xt71>

= (y,t | 0,97y )



150 MARTIN EDJVET AND ARYE JUHASZ

= (y,t | 7,47ty 13)  (replacing t by t 1)

= (y,t,s | 0,y Pty st (s =17)

=(y,s| 8"y My ls) (P =10 =1

= (u,t | £, Putu" TR (s ety =u"') (cyclic conjugate)
and
(e, | 85, (2t~ D3+ a1 = (2, y | 5, (ot~ )31y et L)
— (t,y | 5,45y 13
= (u,t | £°, utu”BF))  (inverse, t7° =12,y = u).

Therefore Corollary 1.3 implies that each group in {E(7 + 5k,5) and F(8 + 5k,5): k > 0} is
infinite and, given this, Theorem 1.1 now follows.

3. The amended picture and curvature

The reader is referred to [2, 12] for definitions of many of the basic terms used in this and
subsequent sections.
Suppose by way of contradiction that the relative presentation

P = (tu| 2, Putu™™) (n>7)

is not aspherical, that is, there exists a reduced spherical picture P over P,,. Then each arc of P
is equipped with a normal orientation and labelled by an element of {u,u~!}; each corner of P
is labelled by an element of {#: — 2 < i < 2}; reading the labels clockwise on the corners and
arcs at a given vertex yields t>utu~" (up to cyclic permutation and inversion); and, since ¢ has
order 5 in G(P,,), the product of the sequence of corner labels encountered in an anti-clockwise
traversal of any given region of P yields the identity in G = (¢ | t5).

Now let D be the dual of the picture P with the labelling of D inherited from that of P.
Then D is a (spherical) diagram such that: each corner label of D is t, where —2 < i < 2; and
each edge is oriented and labelled u or 4 ~!. For convenience we adopt the notation

buaw At I T A e
for t?utu=". Thus a = t'; b =t%; and \; = t° (1 <i < n —1). Each (oriented) region A of D
is given (up to cyclic permutation and inversion) by Figure 1(i); and an example of how the
regions are oriented is illustrated by Figure 1(iii). (In subsequent figures we will not show the
orientation of the regions or edges nor the edge labels u,u~!.) Note that the sum of the powers
of t read around any given vertex of D is congruent to 0 modulo 5.

For ease of presentation and to simplify matters further we will use A to denote \; and p
to denote /\j_1 (1 <1i,7 <n—1) throughout what follows. This way the star graph T for D is
given by Figure 1(ii) with the understanding that the edges labelled A and p in I are traversed
only in the direction indicated. Thus the edge labelled A represents the n — 1 edges, labelled
Ai; and p represents the n — 1 inverse edges. Recall that the vertex labels in D yield closed
admissible paths in T'.

We can make the following assumptions without any loss of generality.

A1l. D is minimal with respect to number of regions and so, in particular, is reduced.
A2. Subject to A1, D is maximal with respect to number of vertices of degree 2.
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FIGURE 1. Region A, bridge moves and star graph.

We introduce some further notation. If v is a vertex of D then I(v), the label of v, is the cyclic
word obtained from the corner labels of v in a clockwise direction; and d(v) denotes the degree
of v. A (v1,v9)-edge is an edge with endpoints v; and ve; and an edge is a (61, 62)-edge relative
to the region A if its corner labels in A are, in no particular order, 6; and 5. (Sometimes we
will simply talk of a (1, 6s)-edge with the understanding that the corner labels are either 6,
and 6, or ;" and 65'.)

LEMMA 3.1. Ifv is a vertex of D then [(v) # (A\u)** for k > 2.

Proof. The proof is by induction on k. Consider the vertex of Figure 1(iii) having label
(Au)%. Apply m = min{l,l>} bridge moves of the type shown in Figure 1(iv) and (v). Then
each of the first m — 1 bridge moves will create and destroy two vertices of degree 2, leaving
the total number unchanged. The mth bridge move however will create two vertices of degree
2 but destroy at most 1. Since bridge moves leave the total number of regions unchanged,
we obtain a contradiction to assumption A2. Now consider the vertex of Figure 1(vi) having
label (Au)*, where k > 3. Again apply m = min{l;,lo} bridge moves of the type shown in
Figure 1(vii) and (viii). The first such bridge move may decrease the total number of vertices
of degree 2 by 1, each subsequent bridge move creates two and destroys two until the mth
bridge which increases the number by at least 1. This produces a new diagram with at
most the same number of vertices of degree 2 as D. But applying an induction argument
to the vertex v of Figure 1(viii) where I(v) = (Au)*~! will yield a contradiction to A2 as
before. O

LEMMA 3.2. Let v € D. (i) If d(v) =2 then I(v) = (Au)™! and (i) if d(v) > 2 then I(v)
contains at least three occurrences of a*!, b*".

Proof. Both statements follow from the fact that the sum of the corner labels is congruent
to 0mod 5 together with Lemma 3.1 for (ii) and the fact that, since D is reduced, no adjacent
corner labels are inverse to each other (that is, no sublabels of the form aa=t,bb=1, \; A, h, O
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FIGURE 2. New star graph and vertex labels.

We amend D as follows. Delete all vertices of degree 2 and remove all edges that are not
(b, a)-edges relative to any region, in so doing merging the adjacent regions. This results in the
diagram K.

LEMMA 3.3. Ifv € K then d(v) > 3.

Proof. We see from Lemma 3.2 that [(v) contains at least three occurrences of a*', b*! and
each such occurrence contributes uniquely to d(v). O

We claim that K contains a subdiagram K with the following properties: (1) K has
connected interior and is simply connected; and (2) every connected component of K\ K (()1)
is homeomorphic to an open disc. If K satisfies these two properties then take K = K. If
not then K\ K™ has a connected component L; satisfying (1) which fails to satisfy (2). (The
merging of regions may produce open annuli.) Consider K\L;. It is the disjoint union of
subdiagrams at least one of which Lo, say, satisfies (1). If Lo satisfies (2) then put Lo = Ky;

if not then repeat the argument with Lg\Lél) instead of K\K(l) and so on. This procedure
will terminate in a finite number of steps with a subdiagram K satisfying conditions (1) and
(2). Observe that if A is a region of K then it follows from Lemma 3.1 that any 2-segment in
A when regarded as a region of D will have its endpoints on dA. (Recall that a 2-segment is
a segment where endpoints have degree greater than 2 and whose intermediate vertices each
have degree 2.)

The corner labels of K are obtained by taking the product of the corner labels of D used
in forming each corner of K. (An example is shown in Figure 2(iv).) Since each corner of K
is between two (b, a)-edges it follows that the corner labels of K are

a = a(Au)*  (odd length)
b= (u\)¥b  (odd length)
N = (A)*3 X (odd length) (3.1)
= a\ (even length)
y=\b (even length)
z=a\b (odd length),
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FIGURE 3. Possible regions of degree 6.

where k; > 0 (1 <4 < 3). The star graph Iy for K is given by Figure 2(i), and the table in
Figure 2(ii) gives the power of ¢ each corner label represents. Observe that (Au)* for k > 1
cannot be a corner label in K for otherwise D would contain a subdiagram of the form shown
in Figure 2(iii) and this contradicts A1 since after bridge moves and cancellation it would be
possible to reduce the number of regions of D by at least 2.

LEMMA 34. Let v € K. If d(v) < 6 then l(v) is one of the following:

(i) dlv)=3: axy ! Z)[Lz,
(ii) d(v) =4: aazp bbx 'y;

(iii) d(v)=5: aaaaa bbbbb  azx'yi b Az ly.

Proof. This follows from checking all reduced closed paths in I'j whose exponent sum is 0
modulo 5 together with the fact that equations (3.1) can be used to show that the following
paths of length 2 together with their inverses do not occur as sublabels: a)\ ay; a tx; atz;
by 1 bzl bt b s Ae A fuy; ih; ¢tz yz2 L. For example, A = a()\u)kl()\u)k2)\ =

()\,u)kl"’k?)\ = a\ = x after rewriting using equations (3.1). Indeed if @ and A\ are adjacent
corner labels then this would imply the existence of a non(b, a)-edge in K. O

Convention: We will usually write a,b, A, u for é,l;,j\,ﬁ simply for ease of presentation.
For example, if v € D has label [(v) = aApa b~ uAy then in K this transforms uniquely
o (aAm)(apX) (b~ uip) = ary~! which we write as ary~! or as axy in the figures. This
is illustrated in Figure 2(iv). Moreover, when drawing diagrams we use 6 for §~!, where
0 € {a,b,x,y,z}.

We turn now to the regions of K. The edges or 2-segments deleted in forming K from D
will be referred to as shadow edges and will usually be denoted by dotted edges in our figures.
The number of edges in a 2-segment will be called its length. Much use will be of the fact
that the number of edges in a region of D is n + 1. By length contradiction we mean either a
contradiction to this fact or to the fact that n > 7.

We will also use the fact that no region of Ky can contain the configuration of edges and
shadow edges shown in Figure 2(v) and (vi). To see this observe in Figure 2(v) that {¢1, ¢2} C
{\, u} forcing each 6; € {a™',b*'} and any attempt at labelling forces 6203 = aa™' or bb~!, a
contradiction to D being reduced. In Figure 2(vi) each ¢; € {\, u} and this produces a region
in D without corner label a™! or b*!. We refer to the existence of each of these situations as
a basic labelling contradiction.

If A is a region of K then d(A) denotes the degree of A, that is, the number of sides
A has. For example, suppose A € K and d(A) = 6. If A contains no shadow edges as in
Figure 3(i) then we obtain the length contradiction n+ 1= 6. Let (pq) denote the shadow
edge with endpoints p and ¢. If A contains exactly one shadow edge e then, working modulo
cyclic permutation and inversion, e € {(13), (14)}. But e = (13) yields the length contradiction
n+1=n+ 3 as shown in Figure 3(ii) since the length of (13) must be n — 1. If A contains
exactly two shadow edges e; and ey then (e1,e2) € {((13),(14)),((13),(15)),((13),(46))}. But
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FIGURE 4. Permitted regions of degree at most 9.

TABLE 1. Degree 4 curvature formulae.

o(3,3,3,3) = & c(3,3,5,5) = 3T c(3,4,5,5) = — &
«3,3,3,4) =3 0(3356):l o(3,4,5,6) = — &
©(3,3,3,5) = & <(3,3,5,7) = {55 c(3,4,5,7) = —3lx
«3,3,3,6)=3 c(3,3,6,6) =0 ¢(3,4,6,6) = —Z
«3,3,44) =% (3,4,4,5) = % c(3,5,5,5) = — 2%
c(3,3,4,5) = 5 ¢(3,4,4,6) =0 c(4,4,4,6) = —
<(3,3,4,6) = § c(3,4,4,7) = =57 (4,4,6,6) = —Z

(e1,e2) = ((13),(14)) yields the length contradiction n + 1 =4; and (e, e3) = ((13), (15)) or
((13), (46)) implies n 4+ 1 = 2n (see Figure 3(iii)—(v)). Finally if A contains three shadow edges
e1, ex and e then (e, eq,e3) = ((13), (14), (15)) or ((13), (15), (35)) yielding a basic labelling
contradiction (see Figure 3(vi) and (vii)); or (e, ea,e3) = ((13), (14), (46)).

Similar elementary but somewhat lengthy arguments can be used to prove the following.
(Full details can be found at http://arxiv.org/abs/1708.01194.)

LEMMA 3.5. Let A be a region of K. If d(A) <9 then d(A) € {4,6,8,9} and A is given
by Figure 4(i)—(xi).

For example, it follows from Lemma 3.5 that if d(A) = 6 then up to cyclic permutation and
inversion A is given by Figure 4(xii) and (xiii). In particular, if A contains an (a,b)-edge or
(x,y)-edge then d(A) > 8.

We will use similar curvature arguments to those used in [7]. Briefly, each corner at a vertex
of degree d is given the angle <] 27 and so the curvature of each vertex is 0. Thus, if A is an
m-gon of K and the degrees of the vertices of A are d; (1 < i < m), then the curvature of A

is given by
!
C(A):c(dl,...,dm):(2—m)7r+27rzg. (3.2)

(Observe that if p is any permutation of {1,...,m} then ¢(A) = c(d,), ..., dy(m)). This fact
will be used throughout without explicit reference.) A list of some of the c(dl, .. ,dm) used in
the paper is given in the tables below for the reader’s benefit.
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TABLE 2. Degree 6 curvature formulae.

(3,3,3,3,3,4) = — % (3,3,3,4,4,4) = - Z
c(3,3,3,3,4,4) = - % (3,3,3,4,4,5) = -3¢
c(3,3,3,3,4,5) = — 13« c(3,3,3,4,4,6) = — 2%
(3,3,3,3,4,6) = -3 (3,3,4,4,4,4) = - 2%

4. Proof of Theorem 1.2

It was assumed by way of contradiction that there is a reduced spherical picture P over P,,.
As described in Section 3, the dual D of P was amended to produce the spherical diagram K
and then the subdiagram K.

Suppose first Ky = K. By Lemma 3.5, K has no regions of degree 5 or 7 and, since the
curvature of the vertices are 0, the total curvature ¢(Kj) is given by

c(Ko)= Y D)+ DY cd)+ > ).

d(A)=4 d(A)=6 d(A)>8

Now suppose K # K. In this case delete all vertices and edges in K\ K to produce a spherical
diagram Ky consisting of the union of K and a single region Ay (which has essentially been
obtained by merging all the regions of K not in K). Note that Lemma 3.5 holds for K; and
o)

oK)= > A+ D A+ D (D) +c(A).
d(A)=4 d(A)=6 d(A)>8
A#Ap A#Ap A#Ag
An elementary argument using Euler’s formula for the sphere shows ¢(K() = ¢(K1) = 47 and
it is this fact we seek to contradict.

The first step, given in detail in Section 5, is to define a positive curvature distribution
scheme for regions of degree 4. That is, regions A # Aq are located for which ¢(A) > 0, and so
d(A) = 4, and ¢(A) is distributed to near regions A of A. (Remark. Throughout the paper A or
A; will usually be used to denote regions from which positive curvature is initially transferred,
and A A reglons that receive, and possibly distribute further, positive curvature.)

For the region A define ¢*(A) to equal ¢(A) plus all the positive curvature A receives minus
all the positive curvature A distributes as a result of the positive curvature distribution scheme
that has been defined.

After completion of the first step, the following is proved in Section 6.

PROPOSITION 4.1. If Ko = K then ¢(Kg) < 34,56 ¢ (A); or if Ko # K then ¢(K/) <

Dd(A)>6 (D) + ¢ (D).
A#no

The second step of the proof, given in detail in Section 7, is to define a positive curvature
distribution scheme for regions A of degree 6. That is, regions A # Ag of degree 6 are located
for which ¢*(A) > 0 and ¢*(A) is distributed to near regions of A.

After completion of the second step, the following is proved in Section 8.

PROPOSITION 4.2. If K = K then ¢(Kg) < Y ya)55¢ (A); or if Ko # K then ¢(K) <

Ed(A)}S ¢ (A) + ¢ (Ao).
A#Nq
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FIGURE 5. d(A) = 4.

After completion of the first two steps, for the third and final step the following is proved in
Sections 10 and 11.

PROPOSITION 4.3. If d(A) > 8 and A # Ay then ¢*(A) < 0.

If Ky = K then Theorem 1.2 follows immediately since, combining the above results, we
obtain the contradiction ¢(Kj) < 0.

If Ky# K then noting that the positive curvature distribution schemes are exactly the
same with the proviso that if at any stage positive curvature is transferred to A( then it
remains with Ay, it follows that ¢(K1) < ¢*(Ag). Let d(Ag) = k. It follows by inspection of
steps one and two above (in Sections 5-7) that the maximum amount of curvature any region

s

receives across an edge is 5. Therefore it can be seen from equation (3.2) that c¢*(Ap) <
(2 — k)7 + k(%) + k(F) = 2m. This final contradiction completes the proof of Theorem 1.2.

5. Distribution of positive curvature from 4-gons

In this section we will describe the distribution of positive curvature from regions A # Ay of
the diagram K such that ¢(A) > 0. It follows from Lemma 3.5 that d(A) = 4 and A is given
by Figure 5 with neighbouring regions A, (1 <1< 4) and vertices v; (1 < i< 4) which we fix
for the remainder of this section. There are fifteen cases to consider according to which vertices
of A have degree 3. Our approach will be to consider neighbouring regions of A, the valency
and labels of their vertices and, if necessary, the neighbours of these also.

There will be exactly fourteen exceptions to the distribution of positive curvature rules given
for the fifteen cases. These are contained within six exceptional Configurations A-F and will
be fully described later in this section.

For the benefit of the reader let us indicate briefly that a general rule for distribution is to
try whenever possible to add curvature from A to neighbouring regions of degree greater than
4. Given this, we try to keep the number of times § is exceeded to a minimum; and, given this,
to keep the number of times £ is exceeded to a minimum, see, for example, Figure 7(iii). When
avoidance of neighbouring regions of degree 4 is not possible we usually introduce distribution
paths from A to nearby regions of degree greater than 4. For example, in Figure 17(iv) there
is a distribution path of length 2 from A to Ag; or in Figure 19(iii) there is a distribution path
of length 3 from A to Aqp. This approach turns out to be sufficient in almost all cases in terms
of compensating positive curvature by negatively curved regions. However, a more complicated
distribution scheme was required for some exceptional case and these are Configurations A-F
mentioned immediately above and treated in detail in what follows.

Notes. (1) In the figures, the upper bound of the amount of curvature transferred will
generally be indicated.

(2) Tt should be emphasised that whenever we identify regions, we do so modulo cyclic
permutation and inversion. For example, in what follows we will identify A of Figure 20(vi)
with Ay of Figure 31(i).
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@ (i) (i) @iv)

FIGURE 8. d(v1) = d(v2) = d(v4) = 3.

(3) Here and in what follows we use Lemma 3.4 to classify possible labelling of vertices.
(4) If Ko # K then it is assumed A # Ag and if at any point positive curvature is transferred
to Ag then it remains with Ag.

A complete description of the distribution of positive curvature from regions of degree 4 is
given by Figures 6-32. We give below an explanation for each case.

d(v;) = 3 (1 < < 4). Figure 6. ¢(A) = 2F is distributed as shown.

d(v;) = 3 (1 <4 < 3). Figure 7. Either d(vs) > 5 and ¢(A) < §; or d(vy) =5 and c(A) =
2% or d(vy) = 4 and ¢(A) = 3 (and distribute ¢(A) accordingly, as shown).

d(v1) = d(v2) = d(v4) = 3. Figure 8. Either d(vs) > 5 or d(vs) =5 or d(v3) = 4.

d(v1) = d(v3) = d(v4) = 3. Figure 9. Either d(v2) > 4 or d(v2) =4 and distribution of
¢(A) is given by Figure 9(i)—(iii). There are two exceptions to these rules. There is an exception
to Figure 9(ii) when A = A; of Configuration F in Figure 32(vi) and which, for convenience,
we have reproduced in Figure 9(iv) with a rotation of 7/2 so that Figures 9(ii) and (iv) match
up. Thus the exceptional rule (which is again described later for Configuration F) is that in
Figure 9(iv) Z, 2L is added from A to As, A, instead of %, & (respectively) as in Figure 9(ii),
and the dotted lines in Figure 9(iv) indicate the changes made. The second exception is to
Figure 9(iii) and is when A = A; of Configuration E in Figure 32(iv). Again, for convenience,
this has been reproduced (after inverting and rotating) in Figure 9(v). Thus the exceptional

rule (which is again described later for Configuration E) is that in Figure 9(v) 37, T is added
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Q) (ii) (iii) Y (v W)

FIGURE 9. d(v1) = d(vs) = d(va) = 3.
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FIGURE 10. d(v;) =3 (2 <t < 4).
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FIGURE 11. d(v1) = d(v2) = 3.

from A to Az, A, instead of %> (respectively) as in Figure 9(iii), and once more the dotted
lines in Figure 9(v) indicate the changes made.

d(v;) = 3 (2 < i < 4). Figure 10. Either d(v;) > 4 or d(v;) = 4.

d(v1) = d(v2) = 3. Figure 11. If d(v3) =4 and d(vs) > 6 or d(vsz) =5 and d(v4) = 5 or
d(v3) = 6 and d(v4) = 4 then c(A) < ¢(3,3,4,6) = § is distributed as in Figure 11(i); otherwise
the distribution is described by Figure 11(ii)—(viii).

d(vz) = d(vs) = 3. Figure 12. If d(v;) =4 and d(vyg) =6 or d(v1) =5 and d(vs) =5
or d(vy) > 6 and d(vs) =4 then c(A) < § is distributed as in Figure 12(i); otherwise the
distribution is described by Figure 12(ii)—(viii).

d(vs) = d(v4) = 3. Figure 13. Distribution of ¢(A) is given by Figure 13(i). There are
five exceptions to this rule. When A = A3 of Configuration A in Figure 31(ii)—(iv) and, for
convenience, A = Aj has been reproduced (after inverting and rotating) in Figure 13(ii); when
A = A of Configuration C in Figure 32(i) and A has been reproduced in Figure 13(iii);
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) i) (vii) (viii)
FIGURE 12. d(v2) = d(v3) = 3.

@) (ii) (iii)

FIGURE 13. d(v3) = d(v4) = 3.

(iii)

FIGURE 14. d(v1) = d(v4) = 3.

and when A = A; of Configuration E in Figure 32(iii) and A = A; has been reproduced
(after inverting and rotating) in Figure 13(iv). Dotted lines in Figure 13(ii)—(iv) indicate the
exceptional rules, so, for example, A adds 3767 To to Ay, A (respectively) in Figure 13(ii)
instead of simply adding % to Ajs as in Figure 13(i).

d(v4) = d(v1) = 3. Figure 14. Distribution of ¢(A) is given by Figure 14(i). There are
five exceptions to this rule. When A = Aj of Configuration B in Figure 31(vi)—(viii) and, for
convenience, A = Ag has been reproduced (after inverting and rotating) in Figure 14(ii); when
A = A of Configuration D and A has been reproduced (after rotating) in Figure 14(iii); and
when A = A; of Configuration F in Figure 32(v) and A = A; has been reproduced (after
rotating) in Figure 14(iv) Dotted lines in Figure 14(ii)—(iv) indicate the exceptional rules. so,
for example, A adds 75, 3% to Ay, A4 (respectively) in Figure 14(ii) instead of simply adding
3 to A, as in Figure 13(i).

d(v2) = d(v4) = 4. Figures 15-19. There are four subcases.
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FIGURE 15. d(v2) = d(v4) = 3(subcasel).

by W1ou by Miou bly™i0u
px 1 b0z pIX | bz Jy p|x [ bz
1Sl A —r 10275/154* A —bwi10 A w10
deg>dlq | yix 0o yix Xod | VX
N =T - — a —v—=
Ymisblb y blb Yom15° 1P
deg>4 a K. deg>6

® (i) (iii)
FIGURE 16. d(v2) = d(v4) = 3(subcase2).

(1)(d(v1),d(vs3)) # (4,4). Figure 15. Either (d(v1),d(vs)) € >
(4,5)} and distribution of ¢(A) is given by Figure 15(i)—(vi) or d(v1) > 5 and d(vs) > 5,
¢(A) < 22 and distribution is given by Figure 15(vii)—(x).

Suppose now d(v1) = d(vs) = 4.

(2 )(d(A3) d(A4)) ¢ {(4,6),(4,4),(6,4)}. Figure 16. c(A) is dlstrlbuted as shown.

(3)(d(As),d(A,)) € {(4,6),(6,4)}. Figure 17. In each case add {5 from c(A) to each
of ¢(A1) and ¢(Ay); and add 1z from ¢(A) to each of ¢(A3) and C(A4). Let d(As) =4 and
d(A,) = 6. This is shown in Figure 17(i) in which d(u;) >3 and d(uy) > 4. It remains to
describe the further transfer (if any) of positive curvature from ¢(As).

If ¢(As) < 1= then the % from c¢(A) remains with ¢(As) as in Figure 17(i); and if —15 <
c(A3) <0 then 1= + ¢(As) < 1z is added to ¢(Ay) as in Figure 17(ii). Assume ¢(A3) > 0.
We now proceed according to the values of d(ul) and d(uz) If d(u1) =4 and d(uz) = 5 then
(c(Az) = ¢(3,4,4,5) = 1z and) {5 + ¢(As) = 2T s0 add = to each of ¢(Ay) and ¢(Ag) as in
Figure 17(iii); if d(u1) = 4 = d(u2) then {& + c(A3) —g so add 7% to ¢(Ay) and 5 to ¢(Ag)
as in (iv); if d(u1) = 5 and d(ug) = 4 then add % + c(A3) = 22 to c(A4) as in (v); 1f d(u;) =3
and d(ug) > 6 then = 5 +c(A3) < = so add & to c(Ay) and Z to ¢(Aj) as in (vi); if d(u;) = 3
and d(uz) =5 then & + c(Ag) = —” so add 7% to c(Ay) and ¢(Ag), and add 5 to ¢(As) as
in (vii); and if d(ul) =3 and d(ug) =4 then % + c(As) = 5 s0 add 22 to ¢(Ay) and £ to
C(A5) as in (viii).

Now let d(As) =6 and d(A,) = 4. This is shown in Figure 17(ix) where d(us) >3 and
d(uz) > 4. It remains to describe the further transfer (if any) of positive curvature from ¢(Ay).
If ¢(Ay) < —1= then the {% from c(A) remains with c(Ay) as in Figure 17(ix); and if -5 <
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FIGURE 17. d(v2) = d(va) = 3(subcase3).

¢(A4) <0 then =+ e(Ay) < 7= is added to ¢(A3) as in Figure 17(x). Assume ¢(A4) > 0. We
proceed according to the values of d(uz) and d(usz). If d(uz) =4 and d(uz) =5 then & +
(A4) 2T 50 add = to each of ¢(As) and ¢(A7) as in Figure 17(xi); if d(u3) = 4 = d(us) then
1=+ C(A ) I 50 add 1= to ¢(As) and G to ¢(A7) as in (xii); if d(us) = 5 and d(uy) = 4 then
add {5 + C(A4) = 2T to C(Ag) as in (xiii); if d(uz) = 3 and d(uz) > 6 then add 7% +¢(Ay) < =
to ¢(Ag) as in (xiv); if d(us) = 3 and d(us) = 5 then = =+ C(A4) = 3% 50 add & to ¢(As3) and
- to ¢(Ag) as in (xv); and if d(us) = 3 and d(uy) = 4 then =+ c(Ay) = 6—” so add 2T to
¢(A3) and 1 to c(Ag) as in (xvi).

(4)d(A3) = d(A,) = 4. Figures 18 and 19. This subcase is shown in Figure 18(i) in which
d(u1) = 3, d(uz) > 4 and d(u3) > 3 and {f is distributed from c(A) to each of ¢(A1) and ¢(Az)
with 22 remaining with c¢(A). If d(uy) = d(us) = 4, d(u2) > 6 and d(Ag) > 4 then distribute
this remammg 2% from c¢(A) to ¢(Ag) as shown in Figure 18(ii), noting that ¢(As) < 0; or
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FIGURE 18. d(v2) = d(vs4) = 3(subcased).

if d(uy) = d(us) =4, d(us) > 6 and d(A7) > 4 then distribute the 2T from c¢(A) to c(A7) as
shown in Figure 18(ii), noting that ¢(A;) < 0. Assume from now on that neither of these sets
of conditions occur. Then ¢ is distributed from c¢(A) to each of ¢(A3) and ¢(A4) as shown
in Figure 18(iii). If ¢(As) < —1= then the {¢ from c(A) remains with ¢(A3) and similarly
for ¢(A,), so assume from now on that ¢(As) > —1= and c(Ay) > — 1= It remains to describe
further transfer of positive curvature from ¢(As3) and ¢(Ay) (and possibly ¢(Ag) when d(Ag) = 4
and ¢(A7) when d(A7) = 4). R R

Let d(uz) = 4. If d(u1) = 6 then add & + ¢(A3) < {5 to ¢(Ag) as in Figure 18(iv); if d(u1) =
5 then add 7% + c(Az) = 2Z to c(Ag) if 1(uy) is given by (v), or add 1= to each of ¢(As) and
¢(Ag) if I(uy) is given by (vi); if d(uy) = 4 then add =+ c(A3) = = to ¢(Ag) as in (vii); if

d(u1) = 3 then ¢ + c(Az) = 57 so add 1% to ¢(As) and 2 to c(Ag) as in (viii); if d(us) > 6
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FIGURE 19. d(v2) = d(v4) = 3(subcased).

then add { + c(Ay) < 1= to ¢(A7) as in (iv); if d(us) = 5 then add = 7=+ c(Ay) = 22 to (A7)
if I(ug) is glven by (ix), or add = to each of ¢(A7) and ¢(Ag) if I(us) is given by (x); 1f d(uz) =4
then add & + c(Ay) = = to c(A7) as in (xi); and if d(uz) = 3 then & + c(Ay) = 57 s0 add
2T to ¢(A7) and 1 to ¢(Ag) as in (xii).

Let d(uz) =5 and s0 l(ug) = a®. If d(uy) = 5 then add Z5 from ¢(A) to ¢(As) = ¢(3,4,5,5) =

3”—0 and 75 from c(A) to ¢(Ag) as in Figure 18(xiii) and (xiv); if d(u1) =4 then add ¢ +
c(As) = % to ¢(Ag) as in (xv); if d(u;) = 3 then add I+ c(As) = 5 to c(As) as in (xvi);
if d(us) = 5 then add 5 from c(A) to ¢(A4) and 5 from c(A) to ¢(A7) as in (xvii) and
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FIGURE 20. d(v1) = d(v3) = 3(subcasel).

(xviii); if d(uz) = 4 then add {& + c(Ay) = 2T to ¢(A7) as in (xix); and if d(us) = 3 then add
=+ c(Ay) = ?{—g to ¢(Ag) as in (xx).

Let d(uz) > 6 so that by assumption 3 < d(u1), d(uz) <4 (since ¢(3,4,5,6) = — 7). If
d(u1) = 3 then add & + c(As) < = to ¢(As) as in Figure 18(xxi); and if d(us) = 3 then add
=+ C(A4) < ?OT to C(AS) as in ()fxu). A

This leaves d(u1) = d(u3) = d(Ag) = d(A7) = 4. First consider Ag as shown in Figure 19(i).
If d(uq) > 3 and d(us) > 3 then add 1—”5 + c(Ag) < §5 to C(AG) < c(4,4,4,6) = —F as in 19(i);
if d(ug) =3 and d(u5) > 3 then add 7% + c¢(As3) —|—c(A(,) < 5 to c(Ay) as in (i ), if d(uq) =
3 =d(us) then & +c(A3) + ¢(Ag) < < IF so add % to ¢(Ay) and 2T to c(Ayg) as in (iii); if
d(ug) = 4, d(ur) = 3 and d(u2) > 6 then c(As) < % so add g7 from c(A) to ¢(A3) and the
remaining 7= — 7= = 2% to c(Ag) < —Z asin (iv); if d(us) = 4, d(us) = 3 and d(uy) = 6 then
(checking the star graph I for p0851ble labels shows that) us is given by (v) in which case
add {& +C(A3) c(Ag) = 1= to c(A11) as in (v); and if d(us) > 4 and d(us) = 3 then add
1= +C(A3) < to e(Ag) < —1% as in (vi). A

Now consider A7 as in Figure 19(vii). If d(ug) > 3 and d(u7) > 3 then add {5 + c(A4) < {5
to (A7) < —Z as in 19(vii); if d(u7) = 3 and d(ug) > 3 then add % + c(Ag) < & to c(Ay)
as in (viii); if d(u7) = 3 = d(ue) then ¢ + c(Ay) + (A7) = o so add 2T to ¢(A13) and 1o to
c(A1y) as in (ix); if d(ur) = 4, d(ug) = 3 and d(uy) > 6 then C(A4) 57 80 add g7 from c(A)
to ¢(A4) and the remaining - =2% to (A7) < —57 as in (x ); 1f d(ur) = 4 d(ug) =3
and d(uz) = 6 then us is given by (xi) in which case add 5+ c(Ay) + (A7) = 1= to ¢(Ay) as
in (xi); and if d(u7) > 4 and d(ug) = 3 then add % + c(Ay) < 15 to (A7) < *1L0 as in (xii).

d(v1) = d(vs) = 3. Figures 20-23. There are three subcases.

(1) ((d(v2),d(vs)) & {(= 6,5), (5,> 5)}. Figure 20. Distribution of ¢(A) is described in
Figure 20 according to possible d(vs) and d(vs). There are two exceptions to these rules.
When A is given by Figure 20(v), % is added to Aj as indicated, except when A = A; of
Configuration B in Figure 31(v,) in which case the dotted lines in Figure 20(v) indicate the
new rule, that is, 55, £ is added to Ay, Ay, respectively; and when A is given by Figure 20(v),
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FIGURE 22. d(v1) = d(v3) = 3(subcase2).
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FIGURE 23. d(v1) = d(v3) = 3(subcase3).

g—g is added to A; as indicated, except when A = A; of Configuration A in Figure 31(i), in
which case the dotted lines in Figure 20(vi) indicate the new rule, that is, T, 35 is added to
Al, Ay respectively.

(2) d(v2) 2 6 and d(v4) = 5. Figures 21 and 22. If A is given by Figure 21(i) then
c(A) is distributed as shown. Otherwise [(v4) = a® and this subcase is now considered using
Figures 21(ii)—(xx) and 22.

Let d(vz) > 6 and I(v4) = a”. Then ¢(A) < &%, half of which (< ) is distributed to ¢(Ay)
and ¢(A,) whilst the other half is distributed to ¢(As) and ¢(As3) (and this will be described in
the next paragraph). The distribution of 3¢(A) to c(A1) and ¢(A,) is as follows. If d(A;) > 4
then add 3¢(A) < 55 to ¢(A}) as in Figure 21(ii), or if d(A;) =4 and d(A,) > 4 then add

sc(A) < £5 to ¢(Ay) again as in (ii). It can be assumed therefore that A, A; and Aj (4 <
j < 8) are given by Figure 21(iii). We proceed according to d(u4) > 3, d(us) > 4, d(ug) > 3 of

Figure 21(iii). If d(ug) = 3, d(us) = 4 and d(u4) > 5 then add 1¢(A) < Z5 to ¢(Ag) < —35 asin
Figure 21(iv); if d(ug) = 3, d(us) = 4 and d(us) = 4 then add $¢(A) < & to ¢(A,) and then add
30t c(Ay) < 15 to ¢(As) as in (v); if d(ug) = 3, d(us) = 4 and d(us) = 3 then add se(A) < &
to ¢(Ay4) and then add 25 + c(Ay) < I to ¢(Ag) as in (vi); if d(ug) = 3 and d(us) = 5 then add
te(A) < & toc(Ar) < & and then add & to ¢(Ar) and add & to c(Ag) as in (vii); if d(ug) = 3
and d(us) > 6 then add $¢(A) < & to ¢(A;) < 0 and then add Z to c(Ag) as in (viii). This
completes d(ug) = 3. If d(ug) =4, d(us) =4 and d(v2) =7 (note that ¢(3,3,5,8) < 0) then
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add 1c(A) < 5% (A1) < =% as in (ix). Let d(ug) = 4, d(us) =4 and d(v 2) =6 so, in
particular, ¢(A;) = 0. If ug is given by Figure 21(x) then add $c(A) = & to ¢(Ar), so from
now on suppose that ug is given by Figure 21(xi). If d(Ag) > 4 then add Fe(A) = 5 to Ag

as shown in Figure 21(xi), so suppose from now on d(A§) = 4. Suppose that Ag is given
by Figure 21(xii). If d(us) > 5 then add c(A) < 25 to ¢(Ay) < —Z5 as in Figure 21(xiii); if
d(us) = 4 then add 1c(A) < & to c(A4) and then add % + ¢(Ays) < & to ¢(As) as in (xiv);
and if d(us) = 3 then add §C(A) < g5 to ¢(A4) and then add 30+ c(Ay) < £ to c(Ag) as
in (xv). Suppose now that Ag is not given by Figure 21(xii). Then again add le(A) =

2
<3

T

30
to Ag as in Figure 21(xi). We proceed according to the degrees of the vertices w; and ws

of Figure 21(xi). If d(w1) = d(ws) = 3 then fc(A) + c(Ag) = T so add f; to ¢(Ay) and 15 to
¢(A1g) as shown in Figure 21 (xvi); if d(w;) = 3 and d(w;) > 3 then 1e(A) + c(Ag) = 30 SO add
70 to c(Ag) as shown in (xvii); if d(w;) = 4 and d(wz) = 3 then by assumption Ag is given by
(xviii) and ¢(Ag) = 0 so add 1e(A) + ¢(Ag) = 35 to c(A1p) as shown; and if either d(w;) > 5
and d(w2) = 3 or d(w1) > 4 and d(w2) > 4 then add 1c(A) < 35 to c(Ag) < —15 as shown in
(xix). This completes d(ug) = d(us) = 4. Finally if d(ug) > 4 and d(us) > 5 or d(ug) > 5 and
d(us) = 4 then add 1c(A) = & to ¢(A1) < ¢(3,4,5,6) = — 7 as shown in Figure 21(xx).

The remaining %C(A) < 35 is distributed to ¢(Ay) and ¢(As) as follows. If d(Ay) > 4 then add
%C(A) < g5 to ¢(Ay) as in Figure 21(ii), or if d(Ay) = 4 and d(A{) > fl then a(Aid Fe(A) < 5
to ¢(A3) again as in (ii). It can be assumed therefore that A, Ay, Az and A; (5 < j < 8)
are now given by Figure 22(i). We proceed according to d(u;) > 3, d(ug) >4, d(ug) >3 of
Figure 22(i). If d(u) = 3, d(u2) = 4 and d(us) > 5 then add $c(A) < & to C(Ag) < —35 as
in Figure 22(ii); if d(u1) = 3, d(UQ) =4 and d(uz) =4 then add 1c¢(A) < & to ¢(A3) and
then add 55 —|—c(A3) < 75 to ¢(As) as in (iii); if d(u;) = 3, d(UQ) =4 and d(ud) =3 then
add 3c(A) < & to ¢(As) and then add :;TT) +¢(As) < £ to c( 6) as in (iv); 1f d(uy) =3
and d(uz) =5 then add c(A) < £ to c(As) < 15 and add to ¢(Ar) and 35 to c(Ag)
as in (v); if d(u1) =3 and d(uz) > 6 then add ic(A) < & to c(A ) <0 and then add =5
to ¢(Ag) as in (Vl) This completes d(u;) = 3. If d(u1) =4, d(uz) =4 and d(vy) =7 then
add 1c(A) < 105 to ¢(Ay) < —gr as in (vii). Let d(u;) =4, d(ug) = 4 and d(v2) = 6 so, in
particular, ¢(Ay) = 0. If uy is given by Figure 22(viii) then add Te(A) = % to C(A7), so from
now on suppose that uy is given by Figure 22(ix). If d(Ag) > 4 then add 2 5¢(A) = 55 to Ag
as shown in Figure 22(ix), so suppose from now on d(Ag) = 4. Suppose that Ag is given
by Figure 22(x). If d(U3) > 5 then add 1c(A) < & to c(As) < —35 as in Figure 22(xi); if
d(us) = 4 then add 3c¢(A) < & to ¢(As) and then add 25+ c(As) < 15 to ¢(As) as in (xii);
and if d(us) = 3 then add c(A) < £ to ¢(A3) and then add 25+ c(As) < 1 to c(Ag) as
in (xiii). Suppose now that Ag is not given by Figure 22(x). Then again add Tc(A) = 25 to
Ag as in Figure 22(ix). We proceed according to the degrees of the vertices w3 and wy of
Figure 22(ix). If d(w;3) = d(w4) = 3 then 1c(A) + c(Ag) = 30+ § = £ soadd {5 to ¢(Ag) and
15 to C(Alo) as shown in Figure 22(xiv); if d(w3) = 3 and d(ws) > 3 then $c(A) + c(Ag) = 20
so add 5 to ¢(Ag) as shown in (xv); if d(ws) =4 and d(w,) = 3 then by assumption Ag is
given by (xv1) and ¢(Ag) = 0 so add sc(A) = & to ¢(A1g) as shown; and if either d(ws) > 5
and d(w,) = 3 or d(ws) >4 and d(w,) > 4 then add $c(A) < 5 to c(Ag) < —15 as shown in
(xvii). This completes d(u1) = d(uz) = 4. Finally if d(uy) > 4 and d(uz) > 5 or d(uy1) > 5 and

d(uz) = 4 then add 3¢(A) = & to c(As) < ¢(3,4,5,6) = —15 as shown in Figure 22(xviii).
(3)d(v2) =5 and d(vyq) 2 5. Figure 23. If A is given by Figure 23(i) then add ¢(A) < &

to each of ¢(A1) and ¢(A;). Otherwise I(v2) = bz~ Az~ 1y and A is given by Figure 23(ii).



168 MARTIN EDJVET AND ARYE JUHASZ

a
YIx b
56— A
Zla ¥
M@
(ii)

YTx b AP b
A A
ala | YIX  ala | yX
zZ[ A 65’ Z[Ayfisb b
(1) (ix)

FIGURE 24. d(v) = 3.

Here add %C(A) <Z

= Ay) if d(Ay) > 4, otherwise add 1c(A) < Ls to C(A1); and add
1 m A A
5¢(A) < {5 to C(Ag)

o ¢

15 d(A3z) > 4, otherwise add 3c(A) < 1—“5 to c¢(Ay). If L s¢(A) < f5 s
added to ¢(A;) and d(A;) > 4 there is no further dlstrlbutlon of curvature from A1 and
the same statement holds for A,. This leaves the subcases d(A;) = d(A,) =4 and d(As) =
d(Ag) = 4.

Assume first d(A;) = d(A4) = 4 in Figure 23(ii). Then A is given by Figure 23(iii). We
proceed according to d(us) > 4 and d(ug) = 3. If d(us) = 4 and d(ug) = 3 then {& + c(Ay) < sz
so add f5 to ¢(A7) and T to c(A ) as in Figure 23(iv); if d(us) = 4 and d(ug) = 4 then add
2(}5 + C(A )) < {5 to each of ¢(A7) and ¢(Ag) if ug is given by (v), or add =+ c(Ay) < 1—5 to
c(Ag) if ug is given by (vi); if d(us) = 4 and d(ug) = 5 then C(Al) = —35 so add & + e(A)) <
35 to ¢(Ag) as in (vii); if d(us) =4 and d(ug) > 6 then add 1 5¢(A) < {5 to c(Ay) < —75 as
in (viii); if d(us) = 5 and d(ug) = 3 then & + (A1) < £ so add % to ¢(A7) and 22 to ¢(Ag)
as in (ix); if d(us) = 5 and d(ug) = 4 then ¢(A;) < —35 o0 add 7% + c(A)) < 30 to ¢(Ag) as
shown in the two possibilities for ug, namely (x) and (xi); if d(us) =5 and d(ug) > 5 then add
1e(A) < E to ¢(A)) < —2% as in (xii); if d(us) > 5 and d(ug) = 3 then add 1= +C(A1) <

S 15 15 ) 15
to ¢(Ag) as in (xiii); and if d(us) > 5 and d(ug) > 3 then add 3¢(A) < E to co(Ar) € —F5 as
in (xiv).

Now assume d(Ay) = d(Asz) = 4 in Figure 23(ii). Then A is given by Figure 23(xv). We
proceed according to d(u;) > 3 and d(ug) > 4. If d(uz) = 4 and d(u;) = 3 then & + ¢(As) < sz
so add % to ¢(Ag) and 15 to ¢(Ayp) as in Figure 23(xvi); if d(us) = 4 and d(u;) = 4 then add
%(}% +¢(A)) < 7% to each of c(Ay) and ¢(Aq) if uy is given byA (xvii), or {5 + c(Ag)Ag 22 to
c(Ag) if uy is given by (xviii); if d(uz) = 4 and d(u1) = 5 then c(Az) = —35 s0 15 + ¢(A2) < 5
is added to ¢(Ag) as shown in (xix); if d(ug) =4 and d(u 1) 6 then add 3c(A) < & to
c(Ay) < — 15 as in (xx); if d(uz) = 5 and d(u1) = 3 then & + ¢( 2) T soadd 2% to ¢(Ag) and
7= toAc(Am) as in (xxi); if d(us) = 5 and d(u1) = 4 then ¢(Ay) = 35 so add {& —i— c(Ay) = 36
to ¢(Ag) as shown in the two possibilities (xxii) and (xxiii); if d(UQ) =5 and d(ul) > 4 then add
%C(A) < {5 to c(Ay) < —27T as in (xxiv); if d(uz) > 5 and d(u;) = 3 then add % + c(Ag) < 32
to ¢(Ag) as in (xxv); and if d(ug) > 5 and d(u;) > 3 then add $c(A) < & to ¢(Ag) < =% as

10
in (xxvi).

d(v1) = 3. Figure 24. Either d(vs) =5 or d(v4) =5 or d(vs3) =d 4.
d(v2) = 3. Figure 25. Either d(v,) =5 or d(v3) =5 or d(v1) = d(v3) = 4.
d(vs) = 3. Figure 26. Either d(v1) =5 or d(v4) =5 or d(v1) =d 4
d(v4) = 3. Figures 27-30. There are four subcases.
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FIGURE 28. d(v4) = 3(subcase2).

(1) (d(v1),d(vs),l(v2)) # (4,4,b%). Figure 27. Either d(v;) = 5 or d(v3) =5 or d(v;) =
d(v3) = 4 but I(vy) # b° and the distribution of curvature is as shown.
Assume from now on d(vy) = d(v3) = 4 and I(ve) = b°.

(2) (d(As),d(A4)) # (4,4). Figure 28. ¢(A) = & is distributed as shown.
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FIGURE 29. d(vs4) = 3(subcase3).

Now assume d(Aj)

d(A,) = 4 as shown in Figure 29(i). If ¢(A3) < —1= thenadd ¢(A) = {&
to ¢(As) or if ¢(Ay) < —1& then add ¢(A) = & to ¢(Ay4) as shown in Figure 29(i). Assume

c(Az) > —1& and ¢(Ay) > — 5. There are two subcases according to d(uz) > 4.
(3) 4 < d(u2) < 5. Figure 29. R R
Let d(uz) = 4. If d(u1) > 6 then add c(A) +c(As) < {5 to ¢(Ag) as in Figure 29(ii); if
d(uy) = 5 then add ¢(A) + ¢(A3) = 2T to ¢(Ag) if Ag is given by (iii), or add L(e(A) + (A3))
1= to each of ¢(As) and c¢(Ag) if Az is given by (iv); if d(u1) = 4 then add c(A) + c(As) =
to ¢(Ag) as in (v); and if d(u;) = 3 then ¢(A) + ¢(As) = 5 50 add £ to ¢(As) and 2% to
c(Ag) as in (vi). X
Let d(uz) =5 in which case I(uz) = a®. In this case add 3c(A) = & to each of ¢(A3) and
c(Ay). If d(uy) > 5 then ¢(As) < ¢(3,4,5,5) = —35 and the 5 from ¢(A) remains with c(As)
as shown in Figure 29(vii); if d(u1) =4 then add 55 + c(A3) = {5 to c(Ag) as in (viii); and
if d(u;) =3 then add g + ¢(A3) = I to ¢(As) as in (ix). If d(us) =5 then ¢(A4) < —30
and the 35 from ¢(A) remains with ¢(Ay) as shown in Figure 29(vii); if d(u3) = 4 then add
70 + c(Ay) = 15 to ¢(A7) as in (x); and if d(us) = 3 then add 20+ c(Ay) = 1T to ¢(Ag) as in
xi).
( ()4) d(uz) > 6. Figure 30. If d(u;) > 4 then add c¢(A) = 7% to c(As) <
then add ¢(A) = {5 to c(Ay) < —1p as in Figure 30(i). If d(u;) = 3 then add c(A) + ¢(As) <
Z4+I=1Ito C(A5) as shown in Figure 30(ii); or if d(us) =3 then add ¢(A) + ¢(Ay) <
= to (A ) as shown in Figure 30(ii). This leaves d(ul) =d(us) = 4. If d(uz) > 7 then add
)

—15; or if d(U3) >4

(

) = 35 to each of c(As) < fﬁ and ¢(Ay) < —37 as in Figure 30(iii), so assume d(uz) = 6.
If d(Ag

> 4 then add c¢(A) = 7§ to c(Ag), or if d(A7) > 4 then add ¢(A) = 15 to ¢(A7) as
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FIGURE 30. d(vs) = 3(subcased).

(viii)

1as

in Figure 30(iv). It can be assumed d(Ag) = d(A7) = 4 which forces I(uy) = aaxy 'zy”
shown in Figure 30(v). If d(u4) > 3 and d(us) > 3 in Figure 30(v) then add c(A) + ¢(A3) =
to ¢(Ag) < —% as shown; if d(us) =3 and d(us) > 3 then add c(A) + c(As) + ¢(Ag) <
to c(Ag) as in (vi); if d(us) = d(us) = 3 then ¢(A) + ¢(A3) + ¢(Ag) = I= and so add % to
¢(Ay), 1= to ¢(Ayp) and 1= to c(A11) as in (vii); and if d(us) > 3 and d(us) = 3 then add
¢(A) 4 ¢(As) + ¢(Ag) = 7& to ¢(A1y) as in (viii).

This completes the description of distribution of curvature from A when d(A) = 4 except for
six exceptional configurations which we now describe and for which there is an amendment to
the rules given above. (Indeed the amendments, as they relate to Figures 9, 13, 14 and 20 have

already been described. In what follows we detail the amendments as they relate to Figures 31
and 32.)

T
15

o
15

e

Configuration A. This is shown in Figure 31(i) in which c¢(A;) = 55 and ¢(A3) = %. The
region A; in Figure 31(i) corresponds to the region A in Figure 20(vi); and the region As in
Figure 31(i)—(iv) corresponds to the region A in Figure 13(ii). The new rule is: add ¥ from
¢(A1) to ¢(A) and add 35 from c(Aq) to ¢(Ay) as shown by dotted lines in Figure 31(i) except
when the neighbouring regions of Az are given by Figure 31(ii)—(iv). There it is assumed that
A, receives £ from Ay; and so the region Ay of Figure 31(ii) and (iii) corresponds to the region
A of Figure 7(iii), and the region A, of Figure 31(iv) corresponds to the region A of Figure
10. When Aj is given by 31(ii)—(iv) add all of ¢(A;) = Z& to C(AA) (as shown in Figure 31(i))
as usual and the new rule is as follows: add 27 from c¢(Aj3) to ¢(A) and add Z from ¢(Aj3) to
¢(A3) as shown by dotted lines. Moreover, if d(A3) = 4 then add 25 + c(As) = 15 to c(Ay) as
shown by dotted line in Figure 31(ii). Note that it is being assumed d(As) # 4 in Figure 31(iii)
and (iv), in which case As is not given by Figure 4(ii) or (iii) and so d(A3z) > 8.

s

Configuration B. This is shown in Figure 31(v) in which ¢(A;) = 45 and ¢(A3z) = . The
region A; in Figure 31(v) corresponds to the region A in Figure 20(v); and the region Aj in
Figure 31(v)—(viii) corresponds to the region A in Figure 14(ii). The new rule is: add £ from
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FicUure 32. Configurations C to F.

¢(A1) to ¢(A) and add 35 from c¢(Aq) to ¢(A1) as shown by dotted lines in Figure 31(v) except
when the neighbouring regions of Aj are given by Figure 31(vi)—(viii). There it is assumed
that A receives £ from Ay; and so the region Ay in Figure 31(vi) and (vii) corresponds to the
region A in Figure 7(iii), and the region A4 in Figure 31(viii) corresponds to the region A in
Figure 8(iv). When Aj is given by Figure 31(vi)—(viii) add all of ¢(A1) = % to ¢(A) (as shown
in Figure 31(v)) as usual and the new rule is as follows: add 2% from c(Aj3) to ¢(A) and add 30
as shown by dotted lines. Moreover, if d(As) = 4 then add 30+ c(As) = g to ¢(Ay) as shown

by dotted line in Figure 31(vi). Note that it is being assumed d(As) # 4 in Figure 31(vii) and
(viii), in which case Aj is not given by Figure 4(ii) or (iii) and so d(A3) > 8.

Configurations C and D. These are shown in Figure 32(i) and (ii). The region A of
Figure 32(i) corresponds to the region A of Figure 13(iii); and the region A of Figure 32(ii)
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corresponds to the region A of Figure 14(iii) In both cases the new rule (given by dotted lines)
is: add 37 from ¢(A) to ¢(A) and add Z5 from ¢(A) to ¢(Ay).

Configurations E and F. This is shown in Figure 32. There are two cases, namely when
d(v) > 4 and when d(v) =3 for the vertex v indicated. If d(v) >4 then the region A; in
Figure 32(iii) corresponds to the region A of Figure 13(iv); and the region A; of Figure 32(v)
corresponds to the region A in Figure 14(iv). If d(v) = 3 then the region A; in Figure 32(iv)
corresponds to the region A in Figure 9(v); and the region A; in Figure 32(vi) corresponds
to the region A in Figure 9(iv). For Figure 32(iii) and (v) the new rule is as follows: instead
of adding ¢(A;) < § to ¢(A), as in Figures 13(i) and 14(i), add min{c(A,), T} from c(Aq) to
¢(Ay) via A across the edge shown; and add (at most) 2% from ¢(A) to ¢(A). For Figure 32(iv)
and (vi) the new rule is as follows: instead of adding g from ¢(A) to each of ¢(A) and ¢(A,),
as in Figure 9(ii) and (iii), add ¥ from c(A;) to ¢(Ay) and add 2T from c(Aq) to ¢(A) as shown
by the dotted lines. Note that d(A;) > 8 in Figure 32(iii)—(vi).

6. Proof of Proposition 4.1

Let A (# Ap) be a region that receives positive curvature in Figures 6-32. Then inspection of
these figures shows d(A) > 6 in Figures 6— 12; 13(i), (iii), (iv); 14(i), (iii), (iv); 15 and 16; 20;
24-28 and 32.

LEMMA 6.1. Let A be a region of degree 4 that receives positive curvature across at least
one edge in Figures 6-32. Then one of the following holds.

( ) A occurs in Figure 17, 18 or 19, in which case we say that A isa T24 region.
ii) A occurs in Figure 21, 22 or 23, in which case we say that A is a T13 region.
iii) A occurs in Figure 29 or 30, in which case we say that A is a T4 region.

(iv) A Ag of Figure 31(ii) = A of Figure 13(ii).

) A = Ay of Figure 31(vi) = A of Figure 14(ii).

Proof. The result for Figures 6-30 and 32 follows immediately from the statement preceding
the lemma. To complete the proof observe that all regions in Figure 31 other than As of (ii)
and (vi) that receive positive curvature have degree greater than 4. O

We remark here that if A is a T24 region then an inspection of Figures 17-19 shows that
there are essentially six cases for A, namely A = Ay of Figure 17(i) and this is again shown
in Figure 33(i); A = A4 of Figure 17(1x) see Figure 33(ii); A = Ag or A, of Figure 18(iii),
see Figure 33(iii); A = Ag of Figure 19(i) for which it is no longer assumed d(ug) >3 or
d(us) > 3, see Figure 33(iv); or A = A; of Figure 19(vii) for which it is no longer assumed
d(ug) > 3 or that d(u7) > 3, see Figure 33(v). If A is a T13 region then an inspection of
Figures 21— 23 shows that there are six cases for A, namely A = A; of Figure 21(iii) but with
d(v2) = 5 to take Figure 23(iii)—(xiv) into account, see Figure 33(vi); A= A4 of Figure 21(iii),
see Figure 33(vi); A = Ag of Figure 21(xi) under the assumption that d(Ag) = 4 and that Ag
is not given by Figure 21(xii), see Figure 33(vii); A = A, of Figure 22(i) but with d(v2) > 5
to take Figure 23(xv)—(xxvi) into account, see Figure 33(viii); A = Ay of Figure 22(i), see
Figure 33(viii); or A = Ag of Figure 22(ix) under the assumption that d(Ag) = 4 and that Ag
is not given by Figure 22(x), see Figure 33(ix). If Ais a T4 region then inspecting Figures 29
and 30 shows that there are three cases for A, namely A = As or A, of Figure 29(i), see
Figure 33(x); or A = Ag of Figure 30(v) where it is no longer assumed d(u) > 3 or d(us) > 3,
see Figure 33(xi). The two remaining possibilities for A, namely A = Ay of Figure 31(ii) and
(vi) are given by Figure 33(xii) and (xiii).
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F1GURE 33. Curvature to degree 4 regions.

LEMMA 6.2. Let A be a region of degree 4 that receives positive curvature across at least
one edge. Then one of the following occurs:

(i) ¢"(4) <
(i) e*(A) > O is distributed to a region of degree greater than 4;
(iii) c*( ) > 0 is distributed to a region A" of degree 4 and either ¢*(A") < 0 or ¢*(A’) >0

s distributed to a region of degree greater than 4.

Proof. Let d(A) = 4. By Lemma 6.1, A is a T24, T13 or T4 region or A = A of Figure 31(ii)
and (vi). We divide the proof of the lemma into two parts. The first deals with the cases when
A receives positive curvature across exactly one edge and the second part deals with the cases
in which A receives positive curvature across at least two edges.

If A receives positive curvature across exactly one edge then we see by inspection of
Figures 17-19, 21-23, 29 and 30, 31(ii) and (vi) that in all cases either ¢*(A) < 0 or ¢*(A) is
distributed from A to a neighbouring region of degree greater than 4 except when A s given
by Figures 19, 21(xi), 22(ix) or 30(v)—(viii) where ¢*(A) may initially be distributed further
to a region A’ of degree 4. But in each of these cases either ¢*(A’) < 0 (under the assumption
that A’ receives positive curvature across exactly one edge — the case when A’ may receive
across more than one edge is considered below) or ¢*(A’) is again distributed to a region of
degree greater than 4.

Now suppose that A receives positive curvature across at least two edges. An inspection
of the labelling and degrees of the vertices in each of these 17 possibilities for A shown
in Figure 33 immediately rules out the following combinations: a T24 region with a T24; a
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FIGURE 34. Curvature across more than one edge.

T24 with a T4; a T4 with a T4; and either Figure 33(xii) or 33(xiii) with any of the other
sixteen possibilities. For example, A of Figure 33(viii) cannot coincide with the inverse of
A, of (xii) as the degrees of the b-corner vertices differ. This leaves the possibility that
at least two T13 regions coincide or a T13 coincides with a T24 or a T13 coincides with
a T4.

Suppose that at least two T13 regions coincide. An inspection of the six T13 regions of
Figure 33(vi)—(ix) shows that all combinations are immediately ruled out by the labelling and
degree of vertices except for three cases. The first case is A = Ay of Figure 33(vi) = As of
Figure 33(vii). This, for example, forces [(us) = ybz~'w in Figure 33(vi), in particular, d(us) >
4. But observe that if A, has degree 4 and receives positive curvature from A in Figures 21—
23 then d(us) =4, a contradiction. The second case is A = Ag of Figure 33(vii) = Ag of
Figure 33(ix). But this forces [(ve) = bz~ 'a~lybw in Figure 33(vii), and the fact that d(vy) = 6
then forces I(vy) = bx~ta~lybb, a label whose t-exponent sum is equal to 6, a contradiction.
The third case is A = A, of Figure 33(vi) = A, of Figure 33(viii). This case can occur and
is shown in Figure 34(i). It follows that a combination of more than two T13 regions cannot
occur.

Consider Figure 34( ) in which A receives positive curvature from the regions A and A, each
contributing at most 7 to ¢(A). (Note that we use Aq, Ay and not A as before to denote regions
from which positive curvature is distributed.) Let d(w;) > 5 and d(ws) > 5. If d(u) > 3 then

(A) < c(3 4,6,6) +2(55) < 0; and if d(u) = 3 then c(A) +2(55) <¢(3,3,6,6) +2(55) = 15

so add 35 to each of c(Ay), (Ag) as shown in Figure 34(ii). Let d(wy) > 5 and d(wy) =5
If d(u )>3 then ¢*(A) < ¢(3,4,5 ,6) + 35 + 75 = 0; and if d(u) =3 then A+ &5+ & <
(3,3,5,6) + 75 + &= = = so add 2T to c(Ay) and 35 to C(AQ) as shown in Figure 34(iii). Let
d(wy) =5 and d(w2) > 5. If d(u) > 3thenc (A)\ ¢(3,4,5, 6)+ + 35 = 0; andlfd( )=3
then ¢(A) + = 1=+ 35 <¢(3,3,5,6) + {5 + 35 = % so add 35 to ¢(Ay) and 22 to C(Ag) as shown
in Figure 34(iv). This leaves d(w1) = d(ws) = 5. If d(u) > 4 then ¢*(A) < (3 5,5,5) +2({5) =
0; if d(u) = 4 then ¢(A) + 2(75) = ¢(3,4,5,5) +2(75) = {5 so add ¢ to C(A ) and 5 to c( A 2)
as shown in Figure 34(v) and (vi); and if d(u) = 3 then ¢(A) + 2(15) c(3,3,5, 5) —l— =

\ﬂ [
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so add 2T to ¢(A,) and 2T to C(ég) as shown in Figure 34(vii). Observe that d(gl) > 6 and

d(Ay) > 6 in Figure 34(11)7(v11).

Now suppose that a T4 region and a T13 region coincide. Again an inspection of Figure 33
of the labelling and degrees of the vertices involved immediately rules out all combinations
except for three cases. The first case is As of Figure 33(x) with Ag of Figure 33(vii), but
this forces Ag to be given by Figure 21(xii), a contradiction; and the second case is Ay of
Figure 33(x) with Ag of Figure 33(ix), but this forces Ag to be given by Figure 22(x), a
contradiction. The third case is when A = Ag of Figure 33(xi) and A = Ag of Figure 33(ix).
But then ¢*(A) < ¢(4,4,6,6) + {5 + 35 < 0. Note that we have also shown that a T4 region
coincides with at most one T13 reg10n

Finally suppose that a T24 region and a T13 region coincide. An inspection of the 36 possible
combinations immediately rules out all but the following 10 cases. If A = A; of Figure 33(i)
or 33(iii) and A = Ag of Figure 33(vii) then this forces Ag to be _given by Figure 21(xii),
a contradiction; or if A = A, of Figure 33(ii) or 33(iii) and A = Ag of Figure 33(ix) then
this forces Ag to be given by Figure 22(x), a contradiction. If A = Ag of Figure 33(iv) and
A = Ag of Figure 33(ix), or if A = A; of Figure 33(v) and A = Ag of Figure 33(vii) then

*(A) < ¢(4,4,6, 6)+15+30 <0.

This leaves A = Ag of Figure 33(iv) and either A = A of 33(vi) or or A = A, of 33(viii);
or A = A7 of Figure 33(v) and again either A = A; of 33(vi) or A = Ay of 33(viii). Observe
that if Ag of Figure 33(iv) = A, of 33(vi) or if Ag of Figure 33(iv)= A, of 33(viii) then I(us) =
y~'a’zb~'w in Figure 33(iv) and so d(up) > 7, and this is shown in Figure 34(viii). Moreover
if A; of Figure 33(v) = A; of 33(vi) or if A; of Figure 33(v)= A, of 33(viii) then I(us) =

b~'y~'a*zw in Figure 33(v) and again d(uz) > 7, and this is shown in Figure 34(ix). It follows
in both Figure 34(viii) and (ix) that ¢(A;) < 0(3,4,4, 7) = —57 and ¢(Az) < ¢(3, 3 5,7) = 2.
In both configurations 57 is added from c¢(A;) = {& to c(A ) and the remaining & — I~ = 2¢

to A as shown. If A does not receive positive curvature from Ajs then c (A) (3, 4,4,7) +
2(105) <0 so it can be assumed without any loss that A receives from A; (via Aj), A,
and As. But then A = A, of Figure 33(viii) forces d(u) > 5 in Figure 34(viii), and A=A,
of Figure 33(vi) forces d(u) > 5 in Figure 34(ix); therefore in each case ¢*(A < ¢(3,4,5,7) +

1¢(3,3,5,5) + 2(&) < 0. O

Proposition 4.1 follows immediately from Lemma 6.2 together with the fact that all
possibilities for distribution of curvature from a region of degree 4 have been covered by
Figures 6-32.

We end this section with a summary that will be helpful in subsequent sections.

Note. In Figure 35(i) the maximum amount of curvature, denoted by c(u,v), distributed
across an edge e; with endpoints u,v according to the description of curvature given in
Figures 6-32 and 34 is shown for each choice of corner labels. The list excludes (b, a)-edges
and excludes the (x,y)-edges of Figures 13 and 14. In Figure 35(ii) and (iii) ¢(u,v) is shown
when at least one of d(u),d(v) is greater than 4 apart from the two exceptional cases shown
in (iv) and (v) (see Figure 23(xvi) and (iv)). The integers shown are multiples of 2= with 7 or

30

5, 4 or 2 meaning that if ¢(u,v) < zg, 3’: then c(u,v) = %, {5, respectively. This will be used

throughout what follows often without explicit reference.

7. Distribution of positive curvature from 6-gons

We turn now to step 2 of the proof of Theorem1.2 as described in Section 4. Let d(A) =6 and
so A is given by Figure 4(xii) and (xiii). In Figure 36 we fix the labelling of the six neighbours
A; (1 <i<6)of A as shown. We consider regions A (# Ag) of degree 6 that have received
positive curvature in step 1 of Sections 5 and 6.
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FIGURE 36. Curvature from degree 6 regions.

Again for the benefit of the reader let us indicate briefly that a general rule for distribution
is to try whenever possible to add the positive curvature from A to neighbouring regions of
degree greater than 6. It turns out that this is not possible for exactly four cases, namely, Ay

of Figure 36(i) and (x); and A, of Figures 37(iv) and 38(iv). These four exceptions are dealt
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TABLE 3. ¢(us,u;+1) for regions of degree 6.

d(w;) d(wit1) c(u1,u2) c(ug,us) c(us,uq) c(ua,us) c(us,up) c(ug,u1)
3 3 0 0 0 6 0 0
3 4 0 3 0 0 0 2
4 3 0 0 0 0 7 0
3 5 0 2 2 0 0 0
5 3 0 2 2 2 2 0
3 6F 0 2 2 2 0 0
6+ 3 0 2 2 2 2 0
4 4 7 0 0 0 0 0
4 5 2 0 0 2 0 0
5 4 2 2 0 0 4 0
4 6+ 4 0 1 0 2 0
61 4 2 0 0 0 1 4
5+ 5+ 1 0 0 1 1 0

with in greater detail in the next section. In all other cases in Figures 36 and 38 the curvature
is added to a region of degree at least 8.

First assume that A is not A; of Figure 31(i) (Configuration A) or Figure 31((v)
(Configuration B). Then checking the distribution of curvature described in Figures 6-32 and
34 yields Table 3 in which vertex subscripts are modulo 6; the entries under c(u;,u;;1) are
multiples of 5 and denote the maximum amount of curvature that A can receive across the
edge with endpoints u;, u;+1 according to Figure 35; and 5%, 6T means > 5, > 6. Moreover
Table 3 applies to A both of Figure 4(xii) and (xiii).

Notes. (1) (See Figures 4 and 36.) d(u;) =3 (= d(A;) >4, d(As) > 4) = c(u1,up) =
clug,u1) = 0; d(ug) =3 = c(ug,uz) =0; d(uz) =4 = c(ug,us) =0; d(us) =3 = clus,ug) =
0; and d(us) = 4 = c(uq,us) = 0.
(2) c(u1,u2) >0 and c(us,uz) > 0= (Table 3) c(u1,u2) + c(uz,u3) < 3= + % and since
c(uy,ug) < %7 c(uz,u3) < {5 we have c(ur,uz) + c(uz,u3) < go
(3) c(us, us) > 0and c(us, ug) > 0 = c(us, us) + c(us, ug) < 7= + = and since c(ug, us) < 7,

c(us,ug) < % we have c(uy, us) + c(us, ug) < ZU

(4) Let d(us) = 5, d(ug) = 4. If ¢(us, ug) = 3F then checking I(us), {(ug) shows c(uy, us) = 3%
(see Figure 23(vi) and (xviii)); moreover (bee Figure 35(ii) and (iii)) if c(us,ug) # 2% then
c(us, ug) = {5-

In what follows much use will be made of Lemma 3.4 when determining the vertex labels
and Table 3 when determining ¢(u, v).

LEMMA 7.1. If A is given by Figure 4(xii)-(xiii) (with the assumption that A is not A; of
Figure 31) and A receives positive curvature across at least one edge then ¢*(A) < 2T and if
c*(A) > 0 then A is given by one of the regions of Figure 36.

Proof. Tt follows from Table 3 and Notes 1-4 above that ¢ (A) c(A) + (¢ (u1,uz) +
c(ug,us)) + c(us, ug) + (c(ug, us) + c(us, ug)) + c(ug, u1) < c(A) + gg + {5+ % + —’g =c(A) +
%’T. Therefore if A has at most two vertices of degree 3 then c*( ) < ¢(3,3,4,4,

4,4) + 28 =0.
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Let A have exactly three vertices of degree 3 so that c(A) < —%5. If d(uy) =3 then
c(uy,us) = c(ug,uy) = 0 and ¢*(A) < —T+ 5+ &+ 5 <0, 50 assume d(uy) > 4. If d(ug) =
3 then c(ui,u2) =0 so if d(ug) > 6 then c (A)<c(3 3,3,4,4,6) + 75 + &= + I5 + 2T < 0;
otherwise c(ug,u1) = {5 and (A < I+ L4+ L+ 4 L <0;s0 assume d(ug) > 4. This
leaves four subcases. First let d(us) = d(us) = = d(us) —3 Then c(usz,uq) = c(us, ug) = 0.
Moreover if d(ug) < 6 then c(ug,ul) =0and ¢*(A) < =% + 22 + T = 0; and if d(ug) > 6 then
c*(A) (3,3,3,4,4,6) + 2 + T + 2T < 0. Let d(uz) = d(U4) = d(ug) = 3. Then c(ug,u3) =
15, c(uz, ug) = 0, c(u4,u5) + c(u5,u6) < = and c(ug, u1) = 7% If either d(u;) > 4 or d(uz) > 4
then c(u1,uz) < 2% and ¢ “(A) < ¢(3,3,3,4,4,5) + = 5 <0; otherwise d(u1) = d(uz) = 4 which
implies c(uQ,ug) =0 and the labelling (of wuj, uz and wug) either forces c(ug,uz) =0 and
(A< -2 2+ 3% <0 or forces C(UG,Ul) =0 and ¢*(A) < 2+ I+ I8 <0. Let d(ug) =
d(us) = d(uG) = 3. Then c(ug,us) = 75, c(us,us) = 0 and c(ug,u1) = 7. Therefore (A) <
—5+ 55+ 1+ 15 + 15 <0. Finally let d(us) = d(us) = d(ug) = 3. Then c(us,us) =0 and

If d(ul) >4 or d(uz) >4 then c(ui,uz) =22 and c “(A) < -4y
0 otherwise d(u1) = d(uz) =4 so c(ug,us3) =0 and the labelhng either forces

0 and ¢*(A) < —Z + 2 <0 or forces c(ug,u1) =0 and ¢*(A) < —Z + 20 4 = 4

2
+ o
oy &

w1 2
IS
E
<
()

Now let A have exactly four vertices of degree 3 so that ¢(A) < —%. There are fifteen cases
to consider. In fact if (d(u1),d(u2), d(us), d(u4), d(us), d(us)) € {(3,3,3,3,%,%),(3,3,3,%,3,%),
(3, 3,3, %, %, 3),(3, 3, %, x, 3, 3), (3, %, 3, 3, 3, %), (3,%,3,3,%,3), (3,*,3,*,3,3), (3,%,%,3,3,3),
(%,3,3,3,3,%), (*’3’3’37*1 3), (*,3,3,*,3,3)} then a straightforward check using Table 3 and

Notes 1-4 shows c*(A)< —%+ % =0. Let d(u1)=d(uz)=d(us)=d(us) =3. Then
c(uy,u2) = c(us, ug) = c(ug,u1) = 0. If d(uz) >4 then ¢*(A) < — Br 4 LT <0; otherwise
d(ug) =4 forcing c(ug,us) =0 and ¢*(A)< -2 Z 4+ 3% <0. Let d(ul) = d(u2) = d(uq) =

d(ug) =3. Then c(uj,u2) = c(ug,u;) =0. If d(U3) >4 then c¢*(A)<— Br oy 2 <0
otherwise d(us) =4 forcing c(us,us) =0 and ¢*(A) < —%5+ %5 =0. Let d(uQ) d(U4)
d(us) = d(ug) = 3. Then c(uy,u2) = c(us,us) = 0 and c(ug,u1) = {z. lf d(u1) > 4 or d(uz) >4
then ¢*(A) < —Br 4 85— 0, so assume d(u1) = d(us) =4. Then c(uz,us) =0 and I(uy)
either forces c(ug,ul) = O and ¢*(A) < —Z+3 <0or A is given by Figure 36(i) or (x)) in
which the numbers assigned to each edge is the value of c(u;,u;11) in multiples of 55 and so
*(A) < T+ + 5+ 15 =35 (Note that if c *(A) > 0 then A must receive 1= from Ag
and, since d(As) > 4 this forces Ag = A where A is given by Figure 16(i) which in turn forces
I(u) = b~'z~' X in Figure 36(i), and I(u) = buz in Figure 36(x); and A must receive = £ from Ay
This leaves the case d(u;) =3 (3 < j <6). Then c(us,us) = c(us, us) = 0 and c(u(;,ul) = f&.
If d(uy) > 5 and d(us) > 5 then ¢*(A) < —8T 4+ 2 <0.Ifd(u;) =4 and d(uz) =5 or d(u1) =5
and d(uz) = 4 then c(ui,us) = {5 and *(A) < ¢(3,3,3,3,4 5)+ {5+ 15 + £+ 5 = 0; and
if d(u;) =4 and d(uz) > 6 then ¢*(A) < ¢(3,3,3,3,4,6) + 2 + & + + Z = 0. Let d(u1) =
d(uz) = 4 s0 ¢(ug, uz) = 0. Then I(u) either forces c(uhuQ) =0andc ( ) S -5+ E+E<0
or A is given by Figure 36(ii) or (xi) where ¢*(A) < I+ 4+I=21.

Now suppose that A has exactly five vertices of degree 3 so that ¢(A) < =5 If d(ug) > 3
then c(uy, us) = c(ug, us) = c(us, us) = c(us, ug) = c(ug, u1) = 0, ¢*(A) < -5+ % =35and A
is given by Figure 36(iii) or (xii). If d(us) > 3 then c(u;, ui+1) =0 except for c(us,us) and
c(us, ug). If d(us) = 5 then ¢*(A) < —7F + & < 0; and if d(us) = 4 then ¢*(A) < —% 4+ I& =
7= and A is given by Figure 36(iv) or (xiii) If d(ug) >3 then c(u;,uiy1) =0 except
for c(us,us) = c(us,us) = {z and (A) < — 5 + £ <0. Let d(uz) >3. Then c(ui,us) =
c(us,ug) = c(ug,uy) = 0. If d(ug) > 6 then ¢*(A ) —% +2(55) + £ =0; if d(uz) =5 then
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I(us) forces either ¢(uz,us) = 0 or c(us, us) = 0s0 ¢*(A) < -+ ZEZ+Z=0andifd(us) =4
then c(us,uq) =0, ¢*(A) < I+ +I=2 and A is given by Flgure 36(v) or (xiv).
If d(uz) > 3 then c(ui,us) = c(us, us) = c(us, us) = c(ug,uy) = 0. If d(uz) =5 then ¢*(A) <
—Z 4+ L + 2 =0; and if d(uz) = 4 then c(uz,u3) =0, ¢ (A) <—% + =45 and A is given
by Figure 36(vi) or (xv). Finally if d(u;) > 3 then C(U/“U/»L_Arl) =0 except for c(us,us) = %

and c(ug,u1) = {5. So if d(ul) 5 then ¢*(A) < —4T 4+ 27 = 0; and if d(u1) = 4 then either

c(ug,u1) =0 or c(ug,uy) = so either ¢ (A) <—§gt+tg=g5orc (A) S—§FtE+tHE=1

15 =30 — 10

and the two cases for A are shown in Figure 36(vii) and (viii) or Figure 36(xvi) and (xvii).
This leaves the case d(u;) =3 (1 <i<6). Then c(u;,uir1) =0 except for c(us,us) = %,
(A) <0+ T =% and A is given by Figure 36(ix) or (xviii). O

We now describe the distribution of curvature from each of the eighteen regions A of
Figure 36.

Figure 36(i) and (x): ¢*(A) < —Z + L7 distribute 5 from A to A, in each case.

Figure 36(ii) and (xi): ¢*(A) < ﬂ + 2% distribute 75 from A to Ag in each case.

Figure 36(iii) and (xii): ¢*(A) < —% + F 5, distribute 55 from A to A, in each case.

Figure 36(iv) and (xiii): ¢*(A) < =% + I5; dlstrlbute 1z from A to A, in each case.
Figure 36(v) and (xiv): ¢*(A) < —Z + 32 distribute 22 from A to Ay in each case.

Figure 36(vi) and (xv): ¢*(A) < -5+ dlstrlbute 76 from A to As in each case.

Figure 36(vii) and (xvi): ¢*(A) < —% + %; distribute 55 from A to A, in each case.

Figure 36(viii) and (xvii): ¢"(A) < —F + 1’57, distribute 7z from A to A, and 55 from A to

A3 in each case.

Figure 36(ix) and (xviii): ¢*(A) < 0+ T; distribute ¢

15 from A to Al, 1z from A to Ag and

35 from A to Az in each case.

Note: in all of the above cases d(A ) > 6 for each region A; that receives positive curvature
from A except possibly for A; in Figure 36(i) and (x).

Now assume that A is A; of Figure 31(i) or (v). Then A, is given by Figures 37(i) and 38(i).
(Recall that for now we are only considering distribution of curvature from Sections 5 and 6.)
First assume d(us) > 5. Then c(wy,u3) = % and c(us, uz) = 3% by Figure 35(ii)~(v). Since
c(u1, us) = 24 it follows that c¢*(A1) < ¢(A) + =, If d(u;) > 3 then ¢(A1) < ¢(3,3,3,4,4,5) =
—9Z: on the other hand if d(u1) = 3 then c(u;,u2) = 0 and ¢ *(A1) < ¢(3,3,3,3,4,5) + 7 <0.
Novv let d(uz) = 4. Then c(uy, uz) = 215, c(uz,uz) = 2= and c(us, w) = 0o ¢ “(Ay) < e(A) +
. If d(uy) > 3 or d(uz) > 3 then c(Al) —7%; on the other hand if d(u;) = d(uz) = 3 then
c*(A ) <¢(3,3,3,3,4,4) + LI = I as shown in Figures 37(ii) and 38(ii). Finally let d(u3) = 3.
Then c(ug, w1) = I, c(uz,u1) = 2T and c(uz, uz) = 050 (A < e(A) + 2 Ifd(uy) = 3 then
c(ur,uz) = 0 and so d(uz) > 4 would imply ¢*(A1) < ¢(3,3,3,3,4,4) + § = 0, whereas if also
d(uz) = 3 then ¢*(A;) < % as shown in Figures 37(iii) and 38(iii). Let d(u1) = 4. If d(uz) > 4
then ¢*(Aq) < ¢(3,3,3,4,4,4) + % < 0 so assume d(uz) = 3. Reading clockwise from the A,
corner label if {(u;) = bbz ™"y, br~'yb in Figures 37(i) and 38(i), respectively, then ¢(uy, uz) = 0
and c*(Az) < —% + § = 0; otherwise c(u1,uz) = {5 and A, is given by Figures 37(iv) and
38(iv) and ¢* (A;) < —Z + %% = 7 as shown. This leaves d(u1) = 5 in which case c(uy, uz) =
and ¢*(A1) < ¢(3,3,3,3,4,5) + 5 < 0.
The distribution of curvature in Figures 37 and 38 is as follows.

Tz
15

Figure 37(ii) and 38(ii): ¢*(A;) < —Z + LT distribute 7 from A to Ay in each case.
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FIGURE 38. Configuration B.

Figure 37(iiii) and 38(ii): ¢*(A,)
A

c* <—-Z+ g; distribute % from Al to AQ in each case.
Figure 37(iv) and 38(iv): ¢*(A1) < —% +

%; distribute 7z from A; to Ay in each case.

[SSER-NE



182 MARTIN EDJVET AND ARYE JUHASZ

LEMMA 7.2. According to the distribution of curvature so far, that is, in Figures 6-32, 34
and 36-38, Ay of Figures 37(i) and 38(i) does not receive positive curvature from A,, that is,
c(wa,uy) = 0.

Proof. Consider A; of Figure 37(i). If c(wa,u1) > 0 then A, of Figure 37(i) is (the inverse
of) A of Figure 36(x) or A, is A; of Figure 38(iv). Suppose that A, is A of Figure 36(x) Then

since A of Figure 36(x) must receive T across its (v4,vs)-edge, the region A, of Figure 36(x)

is given by A of Figure 7(iii); and this in turn forces A, of Figure 37(i) to be given by
Figure 31(ii)—(iv) and not Configuration A of Figure 31(i), a contradiction. Moreover the region
A, of Figure 37(i) cannot coincide with the region A, of Figure 38(iv) since, for example, the
distribution of curvature from the region Ay of Figure 37(i) is not the same as the distribution
of curvature from the corresponding region A, of Figure 38(iv).

Consider A; of Figure 38(i). If ¢(ws,u1) > 0 then Ay of Figure 38(i) is A of Figure 36(i)
or Ay is A, of Figure 37(iv). If Ay is A of Figure 36(i) then a similar argument to the one
above using Figures 36(i), 7(iii) and 31(vi)-(viii) applies to yield a contradiction; and A, of
Figure 38(i) cannot coincide with the region A; of Figure 37(iv) since as above the distribution
of curvature from the corresponding A, differs. O

Note. The upper bounds ¢(u, v) of Figure 35 remain unchanged as a result of the distribution
of curvature described in this section.

8. Proof of Proposition 4.2

An inspection of all distribution of curvature described so far yields the following. If positive
curvature is distributed across an (z,a')-edge e into a region of degree greater than 4 then e
is given by Figure 21(ii) (two cases), Figure 23(ii) (two cases), Figure 21(xi) and Figure 31(v).
In particular if the x-corner vertex has degree 4 and the a~'-corner vertex has degree 3 then
e is given by Figure 31(v) (Configuration B). If positive curvature is distributed across an
(a=1,y71)-edge e into a region of degree greater than 4 then e is given by Figure 21(ii)
(two cases), Figure 23(ii) (two cases), Figure 22(ix) and Figure 31(i). In particular if the
a~'-corner has degree 3 and the y !-corner has degree 4 then e is given by Figure 31(i)

(Configuration A).

LEMMA 8.1. Let A be a region of degree 6 that receives positive curvature across at least
one edge. Then one of the following occurs.
(i) (&) <
(ii) ¢ (A) > 0 is distributed to a region of degree greater than 6;
(iii) ¢*(A) € {&, £} is distributed to a region A" of degree 6 and c*(A') <

Proof. It is clear from Figures 36-38 that if (i) and (ii) do not hold then ¢*(A) e =, =)
is distributed to A of Figure 36(i) and (x) or A, of Figures 37(iv) and 38(iv). It follows that
a region of degree 6 receives positive curvature from at most one region of degree 6. We treat
each pair of cases in turn.

Consider A; of Figure 36(i) and (x). Then A; is given by Figure 39(i) and (ii) in which
d(w,) > 3. Observe that d(A) > 4 and it follows that A; does not receive any positive curvature

from A in Figure 39(i) and (ii). Note also from Figure 35 that ¢(ws, w,) = 2% or 7% cug, wy) =
15; and, from Note 3 following Table 3 at the start of Section 7, (wl,wg) + c(wz,ws) = IF.

Therefore ¢*(Ay) < ¢(Ay) + Z. If however c(ws,ws) = 2% then from Figure 35(iii) it follows

that ¢(A) <¢(3,3,3,4,4,5) = —32 and so ¢*(A}) < 0; so assume c(ws,wy) = 15 (Ay) <
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(iii)

FIGURE 39. Curvature to degree 6 regions.

c(Ay) + B I A\ has at least three vertices of degree greater than 3 then ¢(A;) < —5; and if
d(wg) > 5 then c(A1) < ¢(3,3,3,3,4,5) = 15’5“, this leaves d(w;) =3 (1 < i < 3) and d(w4)
4 in which case c(wi,w2) = 0 and c¢(wz,ws) = £. If c¢(ws, wy) = 0 then ¢ “(A)) < - z+3=0

On the other hand if ¢(ws,w4) > 0 then it follows from the remark preceding the statement of
the lemma that A, of Figure 39(i) and (i) must coincide with A; of Figure 38(i) (Configuration
B), Figure 37(i) (Configuration A). But the fact that A, receives 35 from A in Figure 39(i)
and (ii) contradicts Lemma 7.2

Now consider A, of Figures 37(iv) and 38(iv) and assume d(Ay) = 6. Then Ag is given by
Figure 39(iii) and (iv) in which (see Figure 35) the following hold: c(uz,ws) = {5; c(us, ug) =
0 if d(ug) < 6; and c(us, ug) = 2% if d(ug) > 6. Note that if A, of Figure 39(iii) and (iv)
does not receive 55 from A; then we are back in the previous case, so assume otherwise. In
particular, according to Configurations A and B of Figure 31 this implies c(u4,us) # £ and so
c(ug,us) = §; and note that if d(us) = 6 then c(us,us) = 35. Applying the statement at the
beginning of this section, it follows by inspection of F1gures 21(11) and (xi), 22(ix), 23(ii) and
31(i) and (v) that if ¢(ws, us) > 0 then A, of Figure 39(111) and (iv) coincides with region Ag of
Figures 21(xi) and 22(xi) in which case c(ws,u4) = 35 and d(u4) = 6. Finally if c(u1,u2) = {5
then A; must receive 1= from A which implies d(u) = 3 and d(Ag) > 4 and so c(u,ug) = 0.
On the other hand if ¢(uy, u2) = 75 then (see Figure 35) either c(uy,ug) = 2% in which case Ag
is given by As or A, of Figure 18(ii), in particular d(ug) > 6; or d(ug) < 6 and c(u1,ug) = 15 -

Tt follows that if d(ug) < 6 then ¢ (Ag) = C(Ag) + c(ug7 w3) + c(ws, ug) + c(ug, us) + c(us, u6)
+ (c(ug,u2) + c(ur, ug)) <c(A2) +%5+35+ 5T 5% In ct+ 1% (Ag) 13?077, or if d(ug) > 6 then
(A <c(Ao)+ E+ 5+ 2+ 2 +g:c(A2)+1§—g.

Let d(uy) > 4. If d(ug) > 4 or d(us) > 4 then ¢*(A;) < —28 4 9T < 0; on the other hand if
d(ug) = d(us) = 3 then c(us, ug) = 0 and ¢*(As) < ¢(3,3,3,4,4,4) + (5 - <o.

Let d(us) = 3 so, in particular, c(ws,us) = 0. If d(ug) > 4 and d(us) > 4 or if d(us) = 3 and
d(us) =5 or if d(U6) > 5 and d(us) = 3 then ¢(Ay) < —3% and it follows that ¢ *(Ay) 0.

If d(ug) =4 and d(us) =3 then d(As) >4, c(us,us) =0 and ¢*(Ag) < -5+ t0+5+
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(xvi) (xvii) (xviii) (xix) (xx)

FIGURE 40. c(u,v) > 2m/15.

0+ {5 <0; and if d(ug) = 3 and d(us) = 4 then d(A4) >4, c(ug,us) =0 and ¢*(A) < -5 +
74+ 0+0+ Z& 4+ & < 0. This leaves d(us) = d(ug) = 3 in which case ¢(us,ug) = 0. Moreover
d(As) > 4 also means that if c(ui,us) = {5 then Ag is given by A of Figure 16(i) forcing
the region A of Figure 39(iii) and (iv) to have degree greater than 4, a contradiction,

so c(u1,us) = 35. Since, as noted above, c(uy,uz) = {5 implies c(u1,us) = 0 it follows that

. 15

c(ur,uz) + c(ur,ug) = 75 and c¢*(A) <¢(3,3,3,3,4,4) + 5 +0+ 5 +0+ 7 = 0. O

Proposition 4.2 follows immediately from Lemma 8.1.

9. Two lemmas

The first two steps of the proof have now been completed. Given this, only step three remains,
that is, it remains to consider regions A of degree at least 8. To do this we partition such
A # A, into regions of type A or type B.

We say that Aisa region of type B if A receives positive curvature from a region A of degree
4 shown in Figure 5 such that A has not received any positive curvature from any other region
of degree 4 and such that either d(vs) = d(vs) = 3 only or d(vs) = d(v1) = 3 only. Thus A is
given by Az of Figure 13(i) or A, of Figure 14(i) or A of Figure 31 or A of Figure 32(i), (i),
(iii) or (v). Otherwise we will say that A is a region of type A.

There will be no further distribution of curvature in what follows and so we collect together
in this section results that will be useful in Sections 10 and 11. The statements in the following
lemma can be verified by inspecting Figures 6-39. Further details will appear in the proof of
Lemma 10.1.

LEMMA 9.1. Let e; be an edge with endpoint u,v such that e; is neither a (b, a)-edge nor is
the edge of a region A across which positive curvature is transferred to a type B region.

(i) If c(e;) := c(u,v) > 2% then c(e;) € {E, T, 2.
(ii) If c(e;) € {F, Z, 55} then e; is given by Figure 40 (in which possible c(e;) is given by
multiples of 5).

(iil) If c(e;) >
(xii) and (xvi).

o

2% then either c(e;—1) = 0 or c(e;+1) = 0 except for e; of Figure 40(vii), (xi),

Now assume that e; be a (b,a)-edge and that transfer of curvature to a type B region is
allowed.
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FIGURE 41. ¢(u,v) > 2mw/15.

(iv) (v) (vi)

(x) (xi) (xii)

FI1GURE 42. Curvature across adjacent edges.
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i) > 15 then c(e;) € 5% % 15 07
m m Tm 4w 37w

i) €45 5, 55, 15, 70t then ¢; is given by Figure 41.

vi) If c(e;) > 2% then either c(e;—1) = 0 or c(e;+1) = 0 except for e; of Figure 41(vii) and
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REMARKS. (1) In verifying statement (iii) note that A of Figure 40(xix) and (xx)
corresponds to A; of Figure 32(iii) and (v), respectively.

(2) In Figure 40(vii) if c(u,v) = T then A = A, of Figure 8(i)—(iii); if c(u,v) = T then
A=A, of Figure 8(iv); moreover the 5 distributed across the e;; edge is given by
Figure 36(viii) and (ix). In Figure 40(xi), A = A of Figure 27(vii). In Figure 40(xii), A = A,
of Figure 27(viii). In Figure 40(xiii), A = A, of Figure 37(iii). In Figure 40(xiv), A = A, of
Figure 38(iii). In Figure 40(xvi), A = Az of Figure 10(i) and (ii); moreover the & distributed
across the e;_; edge is given by Figure 36(xvii) and (xviii).

(3) In Figure 41(vii) if ¢(u,v) = £ then A is given by Figure 31(v); and in Figure 41(x) if

c(u,v) = £ then A is given by Figure 31(i), in particular, A in both cases is a type B region.
LEMMA 9.2. Let the regions A, A; and A, be given by Figure 42(i) or (vii).

(i) Ife; = g—g then ¢;+1 = 0.

(ii) If¢; = % then ¢; 11 < g—g.
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F1GURE 43. Curvature from more than one region.

(iii) {f ci =32 and c;y1 = 3% then AA of Figure 42(i) is given by Figure 42(ii) in which
A1 = Az of Figure 22(xii) or A;1 = Ay of Figure 29(x); and A of Figure 42(vii) is given
by A of Figure 42(viii) in which A;11 = Ay of Figure 21(xiv) or A; 11 = Ag of Figure 29(viii).

(IV) If C; = % then Cit+1 % .

(v) If c; = 55 and ciy1 = %Athen A of Figure 42(i) is given by Figure 42(iii) in which
A1 = A of Figure 24(viil); and A of Figure 42(vii) is given by Figure 42(ix) in which A1 =
A of Figure 26(vi).

(vi) Ifc; = Z& then c;y1 < 52 )

(vil) If ¢; = %A and c;11 = 5% then A of Figure 42(i) is given by Figure 42(iv) and (V)
in which A;1 = Ay of Figure 17(xiil) and A;11 = A of Figure 24(viii), respectively; and A
of Figure 42(vii) is given by Figure 42(x) and (xi) in which A,11 = Ay of Figure 17(iv) and
A;11 = A of Figure 26(vi), respectively.

(viii) If ¢; = I% then c;y1 # g—g. A

(ix) If¢; = ciy1 = L5 then A of Figure 42(i) is given by Figure 42(vi) in which Aj11 = Ay
of Figure 18(xi); and A of Figure 42(vii) is given by Figure 42(xii) in which A;,, = Ay of
Figure 18(vii) or of Figure 29(v).

Proof. Statements (i), (vi) and (viii) follow from an inspection of Figures 40 and 41.
Moreover if A is given by Figure 42(i) and ¢; = 55 then it can be assumed without any loss

that either A; = Ay of Figure 22(iv) or (xiii) or A; = Ay of Figure 29(xi); and if A is given
by Figure 42(vii) and ¢; = % then it can be assumed without any loss that either A; = Ay of
Figure 21(vi) or (xv) or A; = A, of Figure 29(ix).

(ii) Let A be given by Figure 42(i). If ¢;1q > 2% then the only possibility is given by
Figure 40(ix) in which case ¢;31 = 2% and A1 = A, of Figure 18(xi) where we note that (in
A) d(v;) = 4 and d(vs) = 3. However if A; = A, of Figure 22(iv) then the vertex corresponding
to vy is uy (see Figure 22(i)) which has degree 3; or if A; = Ay of Figure 29(xi) then the vertex
corresponding to vy is v of A which has degree 5, in each case a contradiction. This leaves
A; = A, of Figure 22(xiii), where A; ;1 = A7 and this is shown in Figure 43(i) (recall that Ag
of Figure 22(xiii) is given by Ag of Figure 22(x), hence w3 of Figure 43(i)). But observe that
ws is the vertex of Figure 43(i) that corresponds to vy of Figure 18(xi) and since ws has degree
4 again there is a contradiction.

Now let A be given by Figure 42(vii). If ¢;41 > 5% then the only possibility is given by
Figure 40(x) in which case ¢;11 = 2= and either A, = A, of Figure 18(vii) where in A
d(vy) =3 and d(v3) =4 or Ajyq = Ay of Figure 29(v) where in Ad(ve) =5 and d(vs) = 4.
However if A; = A, of Figure 21(vi) the vertex corresponding to vs (both cases) is ug (see
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Figure 21(iii)) which has degree 3; or if A; = A, of Figure 29(ix) the vertex corresponding to
v3 (both cases) is vy which has degree 5, in all cases a contradiction. This leaves A; = A4 of
Figure 21(xv) where A, = A7 and this is shown in Figure 43(ii) (and here recall that Ag of
Figure 21(xv) is given by Ag of Figure 21(xii), hence w; of Figure 43(ii)). But observe that
the vertex of Figure 43(ii) corresponding to vy of Figures 18(vii), 29(v) is w; which has degree
4, again a contradiction.

(iii) Checking Figures 6-39 shows if ¢;y1 = 5% in Figure 42(i) then A,,;Jfl must be one of
Figures 11(vii) and (viii), 22(iii) and (xii), 29(x) or 31(ii). Given that A; = A, of Figure 22(iv)
or (xiii) or A; = Ay of Figure 29(xi) there is a vertex (degree or labelling) contradiction in each
possible combination except when A;; is given by Figure 22(xii) or Figure 29(x) and these
each yield Figure 42(ii). If ¢;11 = 3% in Figure 43(ii) then A;;1 must be one of Figures 12(vii)
and (viii), 21(v) and (xiv), 29(viii) or 31(vi). Given that A; = A, of Figure 21(vi) or (xv) or
A; = AQ of Figure 29(ix) again there is a vertex contradiction in each case except when A;;q
is given by Figure 21(xiv) or Figure 29(viii) and these yield Figure 42(viii).

(iv) If ¢;41 = 4% in Figure 42(i) then A, ;1 must be one of the Figures 16(iii), 18(ii) and (xix)
or 31(v), but in each case there is a vertex contradiction when compared with Figure 22(iv)
and (xiil) or 29(xi). (When comparing Figures 18(xix) and 22(xiii) we use Figure 43(i) for
22(xiii) as in case (ii) above.) If ¢;y1 = 3= in Figure 42(vii) then A;;; must be one of
Figures 16(ii), 18(ii), 18(xv) or 31(i), and again in each case there is a vertex contradiction
when compared Figure 21(vi) and (xv) or 29(ix). (When comparing Figures 18(xv) and 21(xv)
we use Figure 43(ii) for 21(xv) again as in case (ii) above.)

(v) The possibilities for A;;; of Figure 42(i) are (see Figures 40(ix) and 41(v)) A, of
Figure 17(xii) which yields a vertex contradiction when compared with Figure 22(iv) and (xiii)
or 29(xi) and A of Figure 24(viii) which is given by Figure 42(iii); and for A; 1 of Figure 42(vii)
are (see Figures 40(x) and 41(iii)) A, of Figure 17(iv) which yields a vertex contradiction when
compared with Figure 21(vi) and 21(xv) or Figure 29(ix) and A of Figure 26(vi) which is given
by Figure 42(ix).

Finally statement (vii) appears in the proof of (v); and statement (ix) appears in the proof
of (ii). O

10. Type A regions

Throughout this section many assertions will be based on previous lemmas. Moreover checking
means checking Figures 6-34 and 36-39. The reader is also referred to Figures 35, 40, 41
and 42.

The surplus s; of an edge e; is defined by s; = ¢; — 21—75: (1 < i < k) where ¢; is the maximum
amount of curvature that is transferred across e;. If we add s; to ¢;11,c¢;—1 we will say that
ei+1,¢€i—1 (respectively) absorbs s; from ¢;. Checking Figures 40 and 41 shows, for example,
that if d(u;) = d(uiy1) = 3 in Figure 43(iii) then s; < {5. The deficit 0; of a vertex u; of degree
d; is defined by 0; = 27r(d% — %) and so if d; > 4 then §; < —F. If we add s;_1, s; (vespectively)
to 6; we will say that u; absorbs s;_1,s; from e;_1,e; (respectively).

LEMMA 10.1. Let A be a type A region of degree k. Then the following statement holds.
(A< @2-k) +kZ + k22

Proof. Denote the vertices of A by v; (1 <i<k), the edges by e; (1 <i< k) and the
degrees of the v; by d; (1 <i< k). Let ¢ denote the amount of curvature A receives across
the edge ¢; (1 < < k). Consider the edge ¢; of A as shown in Figure 43(iii). If ¢; < 2Z there is

nothing to consider, so let ¢; > %r Then by Lemma 9.1, ¢; € {F, £, ;—g, %, ?1’—’5} and A is given

by Figures 40 and 41. First assume that e; is not given by Figure 32(iii) or (v).
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Let A be given by Figure 40. If A is given by Figure 40(i), (vii), (viii), (xiv) or (xv) then
the edge e;;1 absorbs s; < {& (from ¢;). Note that in these cases (diy1,¢i11) € {(3,0), (3, ?ZB)}
If A is given by Figure 40(ii), (iii), (vi), (xiii) (xvi), (xix) or (xx) then e; 1 absorbs s; < {%.
Note that (di, c;—1) € {(3,0),(3,35)}. If A is given by Figure 40(1v) (x) or (xviii) then the
vertex v; absorbs s; < {5. Note that (d,c;—1) € {(4,0),(5,0)}. If A is given by Figure 40(v),
(ix) or (xvii) then v;y; absorbs s; < {5. Note that (di;1,ci11) € {(4,0),(5,0)}. This leaves
Figure 40(xi) and (xii) to be considered. If A is given by Figure 40(xi) or (xii) then v; absorbs
S; = 3”—0. Note that d; = 4.

Now let A be given by Figure 41. If A is given by Figure 41(i) or (ix) then the edge e;;1
absorbs s; = 75. Note that (di;1,ci41) = (3,0). If A is given by Figure 41(ii) or (viii) restricted
to the case ¢; = 5% then e;_1 absorbs s; = 75. Note that (d;,¢;—1) = (3,0). If A is given by
Figure 41(iii), (vi) or (xi) then v;,; absorbs s; < &. Note that (d;y1,ci11) = (4,0). If A is given
by Figure 41(iv), (v) or (xii) then v; absorbs s; < . Note that (d;,c;—1) = (4,0). This leaves
the cases Figure 41(vii) and (viii) with ¢; = 5% and (x). If A is given by Figure 41(vii) then
v; absorbs s; < 2Z. Note that d; = 4. If A is given by Figure 41(viii) or (x) then v;;; absorbs
5i < 3 2—” Note that dit1 =4.

ThlS completes absorption by edges or vertices when e; is not given by Figure 32(iii) or
(v) (and these correspond to cases of Figure 40(xix) and (xx)). Observe that if an edge
ej absorbs positive curvature ay;, say, then a; < {z and either ¢; =0 or ¢; = 35; moreover

307
e; always absorbs across a vertex of degree 3. If 07 =0 then ¢; +a; < 3% so let ¢; =

30
We claim that in this case we also have c; i +a] < 7%. The only possible way this fails is
if s;_1 =541 = {5, that is, ¢;_1 = ¢;41 = §. Thus ej = e;+1 of Figure 40(vii) and A=A,

of Figure 8(iv); and also e; =e;_1 of Flgure 40(xvi) and A = Az of Figure 10(i) and (ii).
But any attempt at labelling shows that this is impossible and so our claim follows. Observe
further that any pair of vertices each absorbing more than 55 cannot coincide. This follows
immediately from the fact that either ¢;_1 =0 or ¢;41 =0 or the vertex is given by v; of
Figure 41(vii) or v;41 of Figure 41(x ) and clearly these cannot coincide. Also observe that if
a vertex v; say absorbs more than 2 1, from e; or e;_; (respectively) then it absorbs 0 from
e;—1 or e; (respectively). Therefore any glven vertex can absorb at most £ +0= ¢ as in
Figure 41(iv) and (vi), or at most 2T + 2= = Z. But since any vertex that absorbs curvature
has degree at least 4 and so a deficit of at most —%, the statement of the lemma holds for these
cases.

Finally let e; be given by Figure 32(iii) or (v). Since d( ) > 4 in both figures it follows that
e;—1 does not absorb any surplus from e; _o. If s;11 > 1 then according to the above it must
be absorbed by v; 12 = w (of Figure 32(iii) and (v)) and in this case e; 1 absorbs s; < {%; or if

si+1 < 75 then let e; 1 absorb s; + 5,11 < %r Again the statement follows. O

PROPOSITION 10.2. If A is a type A region of degree k and k > 10 then c*(A) <0

Proof. This follows from Lemma 10.1 and the fact that (2 — k) 4+ k.2F + k.2T <0 if and
only if k£ > 10. O

It follows from Proposition 10.2 that we need only consider type A regions of degree at most
9. The following lemma applies to all regions A.

LemMMA 10.3. If 7< d(A) <9 then (up to cycle-permutation and corner labelling)
either d(A) =8 and A is given by Figure 44(i)—(xi) or d(A)=9 and A is given by
Figure 44(xii).
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4(0)
(xi)

FIGURE 44. Degree 8 regions.

Proof. If 7 < d(A) <9 then A is given by Figure 4(iv)—(xi). It turns out that there is (up
to cyclic permutation and inversion) exactly one way to label A of Figure 4(iv), (v), (ix) and
(xi); four ways to label A of (vi); six ways to label A of (vii); and two ways to label A of (viii)
and (x). The resulting set of seventeen labelled regions contains some repeats with respect to

corner labelling and deleting these leaves the twelve A of Figure 44(i)(xii). O

NOTATION. Let d(A) = k and suppose that the vertices of A are u; (1 <i < k). We write

cv(A) = (ay, ..., ax), where each a; is a non-negative integer, to denote the fact that the total
amount of curvature A receives is bounded above by (a1 + - - - + ax) 55 with the understanding

that a;55 is transferred to A across the (u;, u;1)-edge (subscripts mod k).

NoOTATION. In the proof of Proposition 10.4 we will use non-negative integers a1, as, by, ba,
C1,C2, d17d27 €1, €2, h17 h27 where

a1+ as =701 +by =8;¢1+c0=9;dy +dy =10;e1 +e5 = 11; 1 + hy = 14.

Let ¢(A) =c(di,...,dm). Suppose m = my + mg + ms =8 + k where k£ > 0 and suppose
further that A contains mj, mso, ms vertices of degrees 3, 4, 5 (respectively). Then we will use
the following formula (here and in the next section)

3 (20 + 10k + 5moy + 8mz) T
30 '

co(A)=c¢(3,...,3,4,...,4,5,....5) =

REMARK. Much use will be made here and in Section 11 of the fact that the region Ay of
Figure 36(i) and (x) receives no curvature from the region A shown. If Ay of Figure 37(iv),
38(iv) receives {z from A; then Ay receives no curvature from the region Ag shown; however
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if Ay receives 35 from A then A, may receive curvature from Ag although note that A, has
at least two vertices of degree greater than 3.

PROPOSITION 10.4. If A is a type A region and 7 < d(A) < 9 then c*(A) <0.

Proof. Tt follows from Lemma 10.3 that we need only consider A of Figure 44 in which
the label a(3) at the edge with endpoints u,v indicates c(u,v) = §f or c(u,v) = 3—8 when
d(u) = d(v) = 3. We treat each of the twelve cases of Figure 44 in turn. (We will make extensive
use of checking and Figures 35, 40, 41 and 42 often without explicit reference although for the

reader’s benefit full details will be given in Cases 1 and 4.)

Case 1. Let A be given by Figure 44(i). Note that A cannot be A, of Figure 37 or
38. If c¢(u1,u2) > 2 then, noting that Flgure 40(xiv) does not apply to A, d(u;) > 3 and
c(ug,u1) =0 (see Figure 40(xv11)); and if & < c(ui,uz) < I then c(ui,us) € {32, %} and
either c(us,u1) =0 or c(ug,us) =0 (see Flgures 15(iii), 18(1x) 23(ix) and (xiii), 34(iv) and
(vii) and 36(xiv) and (xviii)). Similar statements hold for each of (ug,us), (us,us), (ur, us) and
(us,u1). In particular it follows that c(urz,us) + c(us,u1) + c(u1,u2) + c(uz, ug) —|— c(us,uqg) <
2% Indeed the maximum is given by (6+4+0+6+4)%. If c(U4,U5) > 2T then (see
Figure 40(ix)) d(us) = d(us) =4 and c(us,us) = 0; if c(ug,ur) > 2F then (see Flgure 40(1)
and (vi)) d(us) =d(ur) =3 and either c(us,us) =0 or c(ur,ug) =0; and by Lemma 9.2
(see Figure 42(vi)), c(uq,us)+ c(us,ug) < Z=. Therefore if C(U4,ur) > 2T then cw(A) =
(0,6,0,h1,h2,6,0,6); and if c(uq, us) < 21—75: then c(ug, us) + c(us, ug) < 30” (see Figure 42) and

cv(A) = (4,0,6,e1,e2,6,0,6). So if A has at least three vertices of degree greater than 3 then

*(A) < =3 4 35 < 0. If d(uy) = d(uz) =3 and c(uy,uz) > 0 then A is given by A, of
Figure 36(xiv) or (xvnl) therefore c(uy,uz) = 2% and c(uz,us) = 0. Again similar statements

hold for (ug,us), (us,us), (ur,us) and (us,u1). Suppose that A has no vertices of degree
greater than 3. In particular I(us) = Ab~'27" and I(us) = b~'27"A\. Then c(us,us) = 0 and
c(us,ug) = {5 (see Figure 36(i)—(ix)) so it follows that cv(A) = (4,0,4,0,2,4,4,0) and c*(A) <

72% + ‘%’T < 0. Suppose that A has exactly one vertex of degree greater than 3. If d(us) = 3 then

c(us,us) = 0 and c(us, ug) = 75 (see Figure 36) and it follows that cw(A) = (0,6,4,0,2,6,0,4);
and if d(us) >3 then d(us) =3 and c(us,us) = 35 (see Figure 36(x)—(xviii)) so cw(A) =
(4,0,4,c1,¢2,4,4,0). Therefore c* (A) < —%’r + %’T = 0. Finally suppose that A has exactly two
vertices u;, u;j of degree greater than 3. If d(us) = 3 then ¢*(A) < 050 it can be assumed without
any loss that i = 5. If j =1 then (since l(ug) = Ab~'27") c(ug,u1) =0 and if ¢(ug, us) > 0
then c(ug,us) = 55 and c(us,ug) =0 (see Figure 36(x)) so cv(A) = (6,0,4,c1,¢2,4,4,0); if
Jj =2 then c(ui,uz) =0 and C’U(A) =(0,6,4,c1,¢2,6,0,4); if j =3 then c(uz,uz) =0 and
cv(A) = (4,0,6,c1,c2,4,4,0); if j = 4 then c(uz,us) = 0 and cv(A) = (0,4,0, k1, h2,6,0,4); if
J = 6 then c(us,us) =0, c(us,ug) = § and cv(A) = (4,0,4,0,5,4,4,0); if j = 7 then cv(A) =
(4,0,4,c1,¢2,4,4,0); and if j =8 then c(ur,us) =0 and CU(A) =(4,0,4,¢1,¢2,6,0,6). It
follows that ¢*(A) < —7 + 2T < 0.

Case 2. Let A be given by Figure 44(ii). If c(us,us) > 22 then, see Figure 40(ix),
(d(us),d(uq)) = (4,4) and c(ua,us) =0; and if c(U5,u6)>ﬁ then, see Figure 40(v),
(d(us),d(ug)) = (3,4) and c(ug,u7) = 0. It follows that if at least three of u; have degree
at least 4 then ¢ (A) < -T2 + T =0, so assume otherwise. Note that if d(uz) = d(u3) =3

and c(uz,uz) > 3% then A s glven by Ay of Figure 38(iii); in particular, c¢(ug, us) = & and

d(uy)=4. If A has no vertices of degree greater than 3 then we see (from Fig-
ure 44(ii) and Figure 38(iii)) that cv(A)=(0,4,0,0,0,4,6,0) and c*(A) < —2F + %r < 0.
Let A have exactly one vertex u; of degree greater than 3. Then the following holds.
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If i=1 then cv(A)=(3,5,0,0,0,4,6,2); if i =2 then cv(A)=(3,6,0,0,0,4,6,0); if i =
3 then cv(A) = (0,6,4,0,0,4,6,0); if i =4 then cv(A) = (0,4,4,4,0,4,6,0); if i =5 then
cw(A) = (0,4,0,4,4,4,6,0); if i =6 then cv(A) = (0,4,0,0,d;,ds,6,0); if i = 7 then cv(A) =
(0,4,0,0,0,6,6, 0) and if =8 then CU(A) (0,4,0,0,0,4,6,2). It follows that ¢*(A) <
— 3 117’ ;,uj of degree greater than 3. If d(u3) =

d(ug) = d(u5) =3 or d(us) = d(us) = d(ug) = 3 then ¢*(A) < —m 4+ = 0. This leaves 14 of
28 cases to be considered. If (i,7) = (1,4) then cv(A) = (3,5,4,4,0,4,6,2); if (1,5) then
(3,5,0,4,4,4,6,2); if (2,4) then (3,6,4,4,0,4,6,0); if (2,5) then (3,6,0,4,4,4,6,0); if (3,4)
then (0,dy,ds,4,0,4,6,0); if (3,5) then (0,6,4,4,4,4,6,0); if (3,6) then (0,6,4,0,dy, ds, 6,0);
if (4,5) then (0,4,4,4,4,4,6,0); if (4,6) then (0,4,4,4,d;,d2,6,0); if (4,7) then
(0,4,4,4,0,6,6,0); if (4,8) then (0,4,4,4,0,4,6,2); if (5,6) then (0,4,0,4,4,6,6,0); if (5,7)

then (O 4,0,4,4,6,6,0); and if (5,8) then (0,4,0,4,4,4,6,2). It follows that ¢*(A) < —7 +
1471'

Case 3. Let A be given by Figure 44(iii). If c(ug,us) > 2% then (d(u2),d(u3)) = (4,3) and
c(uy,u) = 0; if c(ug,us) > 2% then, see Figure 40(x), (d(ua),d(us)) = (4,4) and c(us,us) =
0; if c(us,ug) > 2% then (d(us),d(ug)) = (4,4) and c(ug,ur) = 0; if c(ur,us) > %7: then,
see Figure 40(iv), (d(u7),d(us)) = (3,4) and c(uS,ul) = 0. Moreover if c(ui,uz) > 7% then
d(uz) =3 and c(ug,uz) =0; and 1f c(ug,u1) > 3T then d(us) =3 and c(ur,us) =0. It
follows that c(u,u2) + c(ug,us) < 1% c(ud,u4) + c(ug, us) < I55 c(us, ug) + c(us, ur) < I
and c(ur,us) + c(us,u1) < %. Therefore if A has at least two vertices of degree greater

than 3 then ¢*(A) < —7 47 = 0. Suppose that A contains no vertices of degree greater
than 3. Then we see (from Figure 44(iii)) that cv(A) = (6,0,0,0,0,0,0,6) and ¢*(A) <
f%ﬂ + 2% < 0. Let A have exactly one vertex u; of degree greater than 3. Then the following
holds: if ¢ =1 then CU(A) = (6,0,0,0,0,0,0,6); if ¢ =2 then cv(A) = (b1,b2,0,0,0,0,0,6);
if i=3 then cv(A)=(6,0,3,0,0,0,0,6); if i =4 then cv(A)=(6,0,3,4,0,0,0,6); if i=
5 then cv(A) = (6,0,0,4,4,0,0,6); if i =6 then cv(A) = (6,0,0,0,4,3,0,6); if i =7 then
cw(A) = (6,0,0,0,0,3,0,6); and if i = 8 then cv(A) = (6,0,0,0,0,0,by,bs). Therefore ¢*(A) <

Case 4. Let A be given by Figure 44(iv) If c(uy, uz) > 2Z then c(uo, ud) = 0;if c(us, ug) > 2
then c(ul,ug) = 0; if c(ug,u1) > 22 then c(uz,ug) = 0; 1f c(ur,ug) > 1—’,’ then c(usg,uy) = 05 if
c(uq,us) = 75 then, see Flgure 41(1V) c(us, ug) = 0; if c(ug, us) = 1 then c(us,us) = ll, (bee
Figure 42); 1f c(us, ug) = 3% then, see Figure 41(vi), c(ug, ur) = 0; and if c(us, ug) = = then

c(ug,u7) = (see Figure 42) It follows that c(us, us) + c(wa, us) + c(us, ug) + c(ue, U7) =z

Therefore ¢ (A) <c(A) + X2 so if A has at least four vertices of degree greater than 3 then

¢ (A) <0. Let A have no vertices of degree greater than 3. Then cv(A) = (6,0,0,2,2,0,0,6)
and ¢ (A) <—5+ ?—f < 0. Let A have exactly one vertex u; of degree greater than 3.
If d(us) =3 then c(uz,ug) =0 and c(ug,us) = 75; and if d(ug) =3 then c(us,us) = 7=
and ¢(ug, u7) = 0. Thus if d(us) = d(ug) = 3 then ¢*(A) < 3% 4 28 <0; if d(us) >3 then
CU(A) = (6,0,e1,€2,2,0,0,6); and if d(ug) > 3 then cw(A) = (6,0,0,2,e1,e,0,6). Therefore
c (A) < - 5“ + 5“ = 0. Let A have exactly two vertices of degree greater than 3. If d(us) = 3
or d(ug) = 3 then (A < -7+ 2T <0 so it can be assumed d(us) >3 and d(ug) > 3.
Then d(uz) = 3 implies d(Az) >4 and c(ug,us) = 0; and d(u8) = 3 implies d(A7) >4 and

c(uz,us) = 0. This then prevents c(us,us) = 3% or c(ug,u7) = 3% (see Figure 16(ii) and (iii))

‘n' 4

so c(uz,us) = c(ug,ug) = {z. Since c(ui,uz) = c(ug,u;) = ¢ it follows that if c(us, us) # 15
and c(us,ug) # % then cw(A) = (6,0,¢1,¢2,¢1,¢2,0,6) and ¢*(A) < —m+ 7 =0. Suppose

c(ug, us) = 1=, say. If c(us, us) > 0 then A = A; of Figure 29(vi) or (ix) where I(v3) = b and
so c(us,uq) > 0 implies Az = A of Figure 28. But d(Ajy) > 4 forces Az = A of Figure 28(i)
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and c(us,uq) = Similarly if c¢(us,us) = 1= and ¢(ug, u7) > 0 then we see from Figure 29(xi)

30- 15

and Figure 28(i) and (iii) that c(ug, ur) = 35. It follows that if c(us,us) = 1% or c(us, ug) = 1%
then c* (A) <—7m4+7= O Finally let A have exactly three vertices u;, uj, ji of degree greater
than 3. Then ¢(A) < —TZ. If d(us) = d(ug) = 3 then c¢(ug, us) = c(u7,ug) =0 and cv(A) =

(6,0,€e1,e2,€1,€2,0,6); 1f d(us) =3 then CU(A) (b1,b2,0,2,e1,€9,b1,b2); and if d(ug) =3
then CU(A) (b1,b2,€1,€2,2,0,b1,b2). So it can be assumed (4, j, k) = (2,4,6) or (4,6,8) and
in both cases ¢*(A) < ¢(A) + 395 1f d(u;) or d(u;) or d(uy,) is greater than 4 then c¢* (A) < 0so0
assume otherwise. But now d('UQ) = 4 implies [(uz) = Az~ ta~2 and c(u1,us) = 0; and d(ug) = 4
forces c(us,u1) = 0. It follows that CU(A) =(0,7,e1,ea,e1,€2,0,6) or (6,0, e1,e2,e1,e2,7,0) so
A< -Z+ I =0

Case 5. Let A be given by Figure 44(v). If ¢(uy, uQ) = 9% then c(us, u1) = 0; if c(u1,uz) = 1%

30 5
then c(us,ul) = 15 (see Figure 42); if c(us,u1) = 75 then c(uy, uz) = O if c(ug,ul) 2T then

c(ur,uz) = {5; if c(ua, us) > 2T £ then c(us,uq) = O and if c(us,ug) > 2= then c(ug, u7) = 0. It
follows that c(us,u;) + c(ul,uQ) = T2 c(ug, ua) + c(ug, us) = I and c(us,uﬁ) + c(ug, ur) =

o soc “(A) < e(A) + L0 Therefore if A has at least three vertices of degree greater than 3

then c¢*(A) < 0. If A has no vertices of degree greater than 3 then we see (from Figure 44(v))
that ¢*(A) < 2% + 22 < 0. Observe that if d(u1) =3 then c(us,u1) + c(u1,uz) = 3Z; and if
d(us) = 3 then c(U4, U5) = c(us,ug) = 0. It follows that if d(u1) = 3 or d(us) = 3 then ¢ “(A) <

c(A) + L <0 and so if A has exactly one vertex of degree greater than 3 then ¢*(A) < 0. If

A has exactly two vertices u;, u; of degree greater than 3 it can be assumed (i,7) = (1,5) in
which case CU(A) = (h1,0,0,7,7,0,0, hy). Therefore c*(A) < -7+ 114—5” < 0.

Case 6. Let A be given by Figure 44(vi). If ¢(uy, u5) = 3% then c(us, us) = 0; if c(ua, u5) =
then c(ug,u4) = {= (see Figure 42); if c(us,ug) = then c(ug,u7) = 0; if c(us, ug) = = then
c(ug,u7) = {5; and as in Case 5, c(us, u1) + c(u1, uz) = T2 1t follows that c *(A) < c(A) +4
so if A has at least four vertices of degree greater than 3 then ¢*(A) < 0. Let A have no
vertices of degree greater than 3. Then cv(A) =(2,0,0,2,2,0,0,2) and c*(A) < 72% + %’ <
0. Let A have exactly one vertex u; of degree greater than 3. Note that if d(u;) =3
then c(ug,u1) = c(ui,uz) = {5; if d(us) =3 then c(usz,us) =0 and c(ug,us) = 5; and if
d(ug) = 3 then c(us,us) = {5 and c(ug,u7) = 0. If i = 1 then CU(A) = (h1,0,0,2,2,0,0, hs); if
i =2 then cv(A) = (2,2,0,2,2,0,0,2); if i = 3 then cv(A) = (2,2,4,2,2,0,0,2); if i = 4 then
cw(A) = (2,0,e1,€2,2,0,0,2); if i = 5 then cv(A) = (2,0,0,9,9,0,0,2); if i = 6 then cv(A) =
(2,0,0,2,e1,€5,0,2); if i =7 then cv(A)=(2,0,0,2,2,4, 2,2); and if i =38 then cw(A) =
(2,0,0,2,2,0,2,2). Therefore ¢*(A) < —37 4 L= U
of degree greater than 3. Then c(A) < —m. If d(ul) = 3 then CU(A) (2,2,e1,e3,€1,€9,2,2)
and ¢ (A) < 0 so it can be assumed ¢ = 1. If 5 =2 then CU(A) = (h1,2,0,2,2,0,0, hs); if
j =3 then cv(A) = (h1,2,4,2,2,0,0,hs); if j=4 then cv(A) = (h1,0,e1,€2,2,0,0,hy); if
j = 5then cv(A) = (h1,0,0,2,2,0,0, hy); if j = 6 then cv(A) = (h1,0,0,2,e1,e3,0,hy);if j = 7
then cv(A) = (h1,0 0,2,2,4,2 hz) and if j = 8 then cv(A) = (h1,0,0,2,2,0,2, hy). Therefore
c (A) < 7r—|— 5 < 0. Let A have exactly three vertices of degree greater than 3 so that

c(A) < — If d(ul) = 3 then ¢*(A) < — T2 4+ 7; if d(us) = 3 then ¢ “(A) < -1z 4 4r. and
if d(ug) = 3 then ¢*(A) < 4+ 37 So it can be assumed d(uy) > 3, d( 4) >3 and d(u6) >3
in which case cv(A) = (h1,0,e1,ea,e1,e,0,hs). If d(u1) >4 then ¢*(A) < <-—Pr+ 8w <0,
whereas if d(u;) =4 then the fact that d(uz) = d(ug) = 3 means that I(u;) = bbaz y forces

either c(uy, us) = 0 or c(us,u;) = 0 and ¢*(A) < —IF 4 3% < 0.

Case 7. Let A be given by Figure 44(vii) and note that A cannot be Ag of Figure 37(iv) or
38(iv). If ¢(u1, uz) > 2% then d(u1) = 3 and c(us, u1) = 75; if ¢(us, us) > 3T then c(us, ug) = 0;
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if c(us,ug) > 2T then d(us) =3 and c(us, us) = Z5; and if c(us,u) > % then c(uq,uz) = 0.
It follows that c(us,u1) + c(ur,uz2) < 75 and c(ua, us) + c(us, ug) < 1&. If A has at least

two vertices of degree greater than 3 then ¢ (A) < -7+ 14” < 0. If A has no vertices of
degree greater than 3 then we see (from Figure 44(vii)) that (A) < 20 + 82 <0. Let
A have exactly one vertex of degree greater than 3. If d(uz) = d(us) =3 then c(us,us) =0
and ¢*(A) < —5% 4+ 4% < 0; if d(us) > 3 then cv(A) = (6,2,4,0,6,0,0,0); if d(us) >3 then
cv(A) = (6,0,4,b1,b2,0,0,0); and it follows that ¢*(A) < =3y 18 <.

Case 8. Let A be given by Figure 44(viii). Then CU(A) (4,4,6,2,2,4,9,2) so if A has
at least three vertices of degree 2 then c¢*(A) < < —Tr 4+ Ux < 0. Note that if d(uz) =3
then c(uy,us) = c(ug,u3) =0 and if d(u7) =3 then c(uﬁ,w) = 0. If A has no vertices of
degree greater than 3 then cv(A) =(0,0,6,0,0,0,2,0) and c*(A) < —%’T + %r < 0. Let A have
exactly one vertex u; of degree greater than 3. If : =1 then cv(A) =(0,0,6,0,0,0,2,2); if
i =2 then cv(A) = (4,4,6,0,0,0,2,0); if i = 3 then cv(A) = (0,0,6,0,0,0,2,0); if i = 4 then
cw(A) = (0,0,6,2,0,0,2,0); if i =5 then cv(A) = (0,0,6,2,2,0,2,0); if i = 6 then cv(A) =
(0,0,6,0,2,0,2,0); if i =7 then cv(A)=(0,0,0,6,0,0,4,9,0); and if i =8 then cv(A) =
(0,0,6,0,0,0,9,2). Therefore c*(A) < 5” 19” < 0. Let A have exactly two vertices of

degree greater than 3. If d(ug) =3 or d(u7) = 3 then ¢*(A) < -7 + 2T <0 so assume that

d(uz) > 3 and d(u7) > 3. Then cv(A) = (4,4,6,0,0,4,9,0) and ¢*(A) < —7 + 2 <0.

Case 9. Let A be given by Figure 44(ix). If ¢(uy, us) > 2= £ then d(uq) = 4 and c(u3,us) = 0;
and if c(ug, ur) > 3% then (d(ug),d(ur)) = (4 4) and C(U7,u8) = 0. It follows that if at least

three of the u; have degree at least 4 then ¢*(A) < —IZ 4 IT — (), 50 assume otherwise. If A has

no vertices of degree greater than 3 then we see (from Flgure 44(ix) and the fact that A cannot
then be A, of Figure 37(iii)) that CU(A) = (0,6,4,0,0,0,4,0) and c*(A) < —2.7” + % < 0.
Let A have exactly one vertex u; of degree greater than 3. Then the following holds.
If i=1 then cv(A)=(2,6,4,0,0,0,5,3); if i=2 then cv(A)=(2,6,4,0,0,0,4,0);
if i=3 then cu(A) (0,6,6,0,0,0,4,0); if i=4 then cv(A)=(0,6,dy,ds,0,0,4,0);
if =5 then cv(A) (0,6,4,4,4,0,4,0); if i=6 then CU(A) =(0,6,4,0,4,4,4,0); if
i=7 then cv(A)=(0,6,4,0 0460) and if i=8 then cv(A)=(0,6,4,0,0,0,6,3).
It follows that c¢*(A) < -5 4 Ux < 0. Let A have exactly two vertices wj,u; of
degree greater than 3. If d(us) = d(us) =d(us) =3 or d(us) = d(ug) =d(ur) =3 then
c (A) < —m+m=0. This leaves 14 of 28 cases to be considered. If (¢,7) = (1,5) then
CU(A):(26444053) f (i,7) = (1,6) then cv(A) = (2,6,4,0,4,4,5,3); if (4,5) = (2,5)
then cv(A) = (2,6,4,4,4,0,4,0); if (i, ) (2,6)thencv(A) (2,6,4,0,4,4,4,0); if (4,5) =
(3,5) then cv(A) = (0,6,6, 4,4,0,4,0); if (i,7) = (3,6) then CU(A) = (0,6,6,0,4,4,4,0);
it (i,7)=(4,5) then cv(A ): 6,d1,d2,4,0,4,0); if (i,j) =(4,6) then cw(A) =
(0 6 dl,d2,4 4,4,0); if (i,5) = (4,7) then cv(A) = (0,6, d1, da,0,4,4,0); if (i, ') (5,6) then
cv( §06444440) (i):(5,)thencv(A):(QG444440) tf(i,5) = (5,8)
then CU(A) (0,6,4,4,4,0,4,3); if (i,7) = (6,7) then cv(A) = (0,6,4,0,4,d1,d>,0); and if

- g A 4w
(¢,7) = (6,8) then CU(A) = (0,6,4 0,4,4,4,3). It follows that ¢*(A) <= —7 + Lz <

4
(0,
)t

Case 10. Let A be given by Figure 44(x). If c(uy,us) > 2% then (d(u1),d(u2)) = (4,4)
and c(us,ul) =0; if c(ur,us) > 3% then (d(ur),d(us)) = (4, 3) and c(ug,u7) =0; and if
c(ug,ur) > 2% then d(ur) = 3 forcing c(ur,us) = 0. It follows that c(us,u1) + c(uy, ug) < I
and c(us,u7) + c(ur,ug) < ﬁ If A has at least three vertices of degree greater than 3 then
(A) < Ty Hxoco. If A has no vertices of degree greater than 3 then we see (from
Figure 44(x)) that cv(A) = (0,0,6,6,0,6,0,0) and ¢*(A) < —2% + 187 < 0. Let A have exactly
one vertex u; of degree greater than 3. Then the following holds If 4 z = 1 then d(us) = 3 and so
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cv(A) = (0,0,6,6,0,6,0,3); if i = 2 then d(u;) = 3 and so cv(A) = (z1,¥1,6,6,0,6,0,0) where,

by the remark preceding this lemma, z, + 1y, = 4; if i = 3 then cv(A) = (0,4,6,6,0,6,0,0);

if i =4 then cv(A)=(0,0,6,6,0,6,0,0); if i =5 then cv(A) = (0,0,6,6,2,6,0,0); if i =6

then cv(A)=(0,0,6,6,2,6,0,0); if ¢ =7 then CU(A) (0,0,6,6,0,b1,b2,0); and if i =8
)

6
then d(u7) = 3 so CU(A) =(0,0,6,6,0,6,0,3). Therefore ¢ (A < - 56” + 111; < 0. Let A have
exactly two vertices of degree greater than 3. If d(ui) =3 or d(us) =3 then cv(A)=
(z2,Y2,6,06,2,b1,bs,3) where, again by the above remark, x5 + y» = 5 and ¢* (A) <—7m+71=0.
On the other hand if d(u;) > 3 and d(uz) > 3 then cv(A) = (a1,4,6,6,0,6,0,as) and ¢*(A) <
-+ 23?7; < 0.

Case 11. Let A be given by Figure 44(xi). If ¢(uy, UQ) > 2% then d(u;) = 3 and c(ug,u;) = 0;
if c(us,u1) > 2% then c(uy, uz) = 0; and if c(ug, u7) > 22 then c(uz,ug) = 0. Therefore cv(A) =
(b1,2,6,6,4,a1,as,bs). It follows that c*(A) < c(A) + %’r and so if A has at least three vertices
of degree greater than 3 then c* (A) < 0. If A has no vertices of degree greater than 3 then
we see (from Figure 44(xi)) that ¢*(A) < —28 4+ 3% < 0. Let A have exactly one vertex u;
of degree greater than 3. If d(ug) = d(u7) = d(us) = 3 then c(us, ug) = c(ug, u7) = c(ur, ug) =
0; if i = 6 then cv(A) = (6,0,6,6,4,1,0,0); if i = 7 then cv(A) = (6,0,6,6,0,0,3,0); and if
i =8 then cv(A) = (6,0,6,6,0,0,3,0). It follows that c*(A) < -3 + L= A
exactly two vertices of degree greater than 3. If d(ug) =3 then c(us,ug) =0 and cv(A) =
(b1,2,6,6,0,a1,a2,bs); if d(uy) = 3 then CU(A) = (b1,2,6,6, 22, y2,3,ba) where again x5 + yo =
5; if d(ug) > 3 and d(u7) > 3 then cv(A) = (6,0,6,6,4, a1, as,0). It follows that ¢*(A) < —7 +
m=0.

Case 12. Finally let A be the region of Figure 44(xii). Suppose that A has at least one
vertex of degree greater than 4. Using a similar analysis as done for Case 1, it follows

that ¢*(A) < — 3871 4 31 < 0. Indeed the maximum 25T can only be obtained when cw(A) =

(0,6,0,h1,h2,6,0,6,4). Suppose that A has no vertices of degree greater than 4 and at
least one vertex of degree 4. Then noting again that A is not given by Figure 40(xvii), we
see from Figure 40(xiv) that c(u;,u;) = 3% for (i,7) € {(7,8),(8,9),(9,1),(1,2),(2,3), (3,4)}.
It follows that ¢*(A) < — Br 42T <0, the maximum 2% being obtained when cw(A) =
(0,4,0,h1,h2,6,0,4,4). But 1f A has no vertices of degree greater than 3 then c(ug,us) =0,

c(us,u) = {5 and as in Case 1, for example either c(uy,us) =0 or c(uj,uz) = 21—75: and
c(u2,uz) = 0. It follows that cv(A) = (4,0,4,0,2,6,0,4,0) and c*(A) < —7 + & < 0. This

completes the proof. O

11. Regions of type B

Let A be a type B region as defined at the start of Section 9. Therefore A is given by
Figures 13(i), 14(i) and 31 or Figure 32(i), (ii), (iii) or (v); in particular d(A) > 8. A b-segment of
A of length k is a sequence of edges e, ..., e of A maximal with respect to each vertex having
degree 3 with vertex label a(a)\)(b~'u) = axy~! and which (up to inversion) contribute one of
four possible alternating sequences to the corner labelling of A, namely: =, y~*, ..., 271,y %
ey oy ey e oy ey ey e L 27y An example
showing the first sequence is given in Figure 45(i) and so maximal in this case means that
either d(ug) > 3 or d(ug) = 3 but does not extend the sequence to ,%,7,...,Z,¥; and that
either d(uj42) > 3 or d(ur+2) = 3 but does not extend the sequence to Z,7,...,Z, ¥, Z. Since
A is of type B, it must contain at least one b-segment in which at least one of the regions
A; (1 <i<k)is given by the region A in Figures 13(i) and 14(i) and we will from now on
call such a region A; a b-region. Therefore a b-region contributes at most % to A. (If A; is
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Ag | A A Ap—1 A [Apsr. :
A 0 1 2 k [2k+1-/ A A A
- aly alx aly aX 7y alx k2 Ay OaXliy
e e X e Yep X A Y ek-rf ek Ve ke2epyn e-1% €0 g x
() (i)
A, \V/ A A_1\X/ A A
L1 \Y/ B0 | A ! 0 1 Ak | A\ /A
ylX byYx Zly x|y b\/Y al x alx ayk+1 k+2
a e E ¢y X e2a e b ey y ¥ ek X Gkl Uy
A A A
(iii) (iv) v)
A1 | Aks2 Agl| Ak+2 |
alx Al b Y| x aly z|b Xy
N e1<+1§ Ck+2 @ ey Uy g X Cktl M Ck42 Aoy quy gy
(vi) (vii)
FIGURE 45. b-segments.
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FIGURE 46. Exceptional b-segments.

not a b-region then, as shown in Figure 35, it contributes at most £ to A.) The absorption

rules for edges and vertices described in Section 10 apply also to A. In Figure 31 A receives
T,2% from Ay, As so the vertex of degree 4 with label b~'b~1y~ 'z is used to absorb 7; and

in Figure 32(i) and (ii) A receives § across an edge, e say, but checking Figures 36— 38 shows

that A receives no curvature from A across the neighbouring edge which is used to absorb
1= noting from Figure 32(i) and (ii) that this is all the curvature that this edge will absorb
(relative to curvature transferred to A).

It follows from the above paragraph and as in the proof of Lemma 10.1 that if the
b-segments containing at least one b-region of A contribute a total of n; edges to A then
putting n = ny + no,

n2

H(A) < (2 = (n1 + n2))m + 2(m +n2)3 + +n2i§ ™ (2 - 3) . ()

Therefore if no > 10 then ¢ (A) < 0. The next result improves this bound slightly.

LEMMA 11.1. Ifny > 9 and A is not given by Figure 46 (in which the b-segment contains
at least one b-region) then c*(A) < 0.
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Proof. We will show that the existence of a b-segment in WhiACh at least one A; (1 <i < k)
is a b-region allows us to decrease the upper bound (1) for ¢*(A) given above. First consider
the region Ag of Figure 45(i) or (ii). In each case if A; is not a b-region then A receives at

most £ from A; and the upper bound for ¢ (A) is reduced by at least 7 — £ = 2T 50 assume

5 = 157
the A; is a b-region. In particular, according to the rules in Section 10 and at the start of

this section eg absorbs no positive curvature from A1 Let d(up) > 5 and so ug can absorb at
least 2T — 2?” = IZ. Since A then receives at most = = from Ay (see Figure 35(ii)) and since
the maxunum amount any vertex absorbs is %, in partlcular ug from A_q, ug can absorb the
75 crossing eg and so ny in (f) is reduced by 1, that is, ¢*(A) is reduced by at least . Let
d(up) =4 and so ug can absorb 2 — Z = Z_ If the total curvature A receives across eo and
e_1 is at most 2% then c “(A) is reduced by at least 2T, so assume otherwise. In particular A
must receive curvature from Ag which forces l(uo) to be as shown in Figure 45(iii) and (iv)

and so (see Figure 35(i)) A receives at most 2Z Z from Ag. To exceed a total of 3%, therefore,

it follows that A must receive at least Z £ across e,l and so (see Figure 40) [(u_1) must be as
shown in Figure 45(iii) and (iv) and in these figures the maximum combination A can receive
across e_1, eq is o7, 2T (see Figure 42), therefore ¢*(A) is reduced by at least 75 Let d(ug) = 3.
Note that we use the fact that [(ug) # azy ="' in Figure 45(i) or (ii) for otherwise the b-segment
would be extended, a contradiction. Given this, I(ug) = buz forces d(Ag) > 6 and d(A_1) > 6
and checking Figures 36— 38 shows that A does not receive curvature across ey and at most
2% across e_1 s0 ¢ (A) is reduced by at least 2,

Now consider the region Ay of Figure 45(i) and (v). Again if Ay is not a b-region then
c*(A) is reduced by 3 2” so assume otherwise. In particular eg4;1 absorbs no positive curvature
from Ajy. Moreover, 1f Ay is given by Ay of Figure 32(iii) or (v) (Configurations E and F)
then c* (A) is again reduced by %, so assume otherwise, in particular uy 2 is not given by the
corresponding vertex of Ay of Figure 32(iii) or (v). Let d(ugy2) > 5 and so uj12 can absorb

1= Since A then receives at most {& from Agyy (see Figure 35(ii)) and since the maximum

amount ugt1 absorbs from Ao is " ug+o can absorb the X crossing er+1 and so ¢*(A)

6 15
is reduced by at least 21—75“ Let d(ugy2) =4 and so ugyo can absorb %. If A does not receive

curvature from Ay, then ¢*(A) is reduced by 2z

A : s
for uj12 shows l(ugy2) = aazp and A receives at most 50 across egt1 and 0 across ejy2, SO

otherwise checking possible vertex labels

¢*(A) is reduced by 2% Let d(up42) = 3 and so using the maximality of the b-segment and the
fact that ugyo is not given by Figure 32(iii) or (v) it follows that I(uj12) must be as shown
in Figure 45(vi) and (vii). Then d(Agy1) > 6 and checking Figures 36— 38 show that A does
not receive curvature from Agyq. It follows that ¢* (A) is reduced by ?—g except possibly when

d(upss) = 3 and A receives & or £ from Agyo (see Figure 40). There are four cases. Two (see
s

Figure 40(i), (ii), (vi) and (xv)) are given by Figure 45(vi) and (vii) where A can receive z
from Ay, and ¢*(A) is reduced by 15; and two (see Figure 40(xiii) and (xiv)) are given by
Figures 37(iii) and 38(iii) in which the region Ao, Ay, Ay (respectlvely) plays the role of the
region A Ajia, Atz (respectively) which implies l(ug+4) = bbx~ 'y so, in particular, ey3
does not absorb curvature from ey 4 (relative to A) In each of these last two cases A receives
& from Apyo and {5 from A3, and since A does not receive curvature from A4 it follows

that *(A) is reduced by 22
It follows from the above that 1f the b-segment of Figure 45(i) is not given by Figure 46 then

there is a reduction of at least = + 22 = 3T to ¢ “(A) (if epy2 = o the reduction is also )

therefore ¢*(A) < m(2 — 7) - ?{—g and o n2 > 9= ¢*(A) <0. O

LEMMA 11.2. Let A be a type B region such that d(A) > 10.
(i) If A has exactly three b-segments that contain a b-region then ny > 8.
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FIGURE 47. Exactly 2 or 3 b-segments.

Assume now that A has exactly two b-segments B and Bs that contain a b-region as shown in
Figure 47(i) and assume (m,n) € {(2,7) (2<3j <6),(3,3),(3,4),(3,5),(4,4)} where m,n are
given by Figure 47(i).

(i) A must contain a shadow edge with an endpoint in By and the other endpoint in By
except when A is given by Figure 47(ii)—(v).

(iii) If v € A is a vertex of By or By and (m,n) # (2,6) then ideg(v) = 1 where ideg(v)
denotes the number of shadow edges in A incident at v.

(iv) If (m,n) € {(3,3),(3,4),(3,5),(4,4)} and A is not given by Figure 47(ii)~(v) there must
be a shadow edge in A either from 1 to By or from 4 to Bi; and there must be a shadow edge
in A either from 2 to Bs or from 3 to Bj.

Finally assume that AAhas exactly one b-segment containing a b-region.
(v) Ifny <8 then A is given by Figure 48. R
(vi) If no =9 and A is given by Figure 46 then A is one of the regions of Figure 49.

Proof. The proof is elementary but lengthy so we have omitted it. (Full details can be found
at http://arxiv.org/abs/1708.01194.) As an illustration we give part of the proof of (i).

Let A have exactly three b-segments and suppose by way of contradiction that no < 7.
Since there are at least two edges between any two b-segments it follows that A is given by
Figure 47(vi) (ne = 6) or 47(vii) (ng = 7) in which 2, 6, 10 refer to the (possibly empty) set
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vii) (viii)

FIGURE 48. At most 8 non b-segment edges.

(x) (xi) (xii)

(xiii) (xiv) (xv)

(xvi) (xvii)

FI1GURE 49. Exactly 9 non b-segment edges.

of vertices between vertices 1 and 3, 5 and 7, 9 and 11. We will consider the case ny =6
only.

We remark here that if the corner label at a vertex v of A is z or y then it follows from
equations (3.1) in Section 3 that there must be an odd number of shadow edges in A incident
at v and it is clear that there are no shadow edges in A connecting two vertices in the same
b-segment. We write (ab) to indicate there is a shadow edge between vertices a and b with the
understanding that if a = 2, for example, we mean a vertex belonging to a.

Consider Figure 47(vi). By the previous remark the number of (ab) involving each of 1, 3,
5,7, 9 and 11 must be odd. It also follows that if {a,b} C {12,1,2,3,4} or {4,5,6,7,8} or
{8,9,10,11,12} then (ab) does not occur. Moreover (18) forces (19), (111) and this in turn
forces a basic labelling contradiction (see Section 3), termed LAC. It follows that the only
pairs involving 4, 8 or 12 are (410), (28) and (612). First assume that none of (35), (79) or
(111) occur. Then since (15), (16) and (17) each forces (35), and (19), (110) each forces (111),
we get a contradiction. Assume exactly one of (35), (79), (111) occurs — without any loss
(79). Then again (15), (16) and (17) each force (35), and (19) and (110) each force (111), a
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contradiction. Assume exactly two of (35), (75), (111) occur — without any loss (35) and (79).
Then (19) and (110) each forces (111), a contradiction; and (16) and (17) each forces a basic
length contradiction at (35) (a shadow edge of length n — 1) or forces either the pair (52), (52)
or (52), (51) or (36), (36) or (36), (37) yielding LAC. This leaves (15). Since the number of (ab)
involving 5 must be odd at least one of (59), (510) or (511) occurs. But (59) forces (115) and
(510); (510) forces (115) and another (510); and (511) forces either a length contradiction

t (79) or forces (95),(96) or (96),(96) or (710),(710) or (710),(711) yielding LAC in all
cases.

Finally assume that (111), (35) and (79) occur. Since the length of each is n — 1 we must
have more pairs otherwise there is a length contradiction. Assume without any loss that 1
is involved in further pairs. Since (16) and (17) each forces either (36),(36) or (36)(37) or
(52), (52) or (52)(51) yielding LAC it follows that at least two of (15), (19) and (110) occur.
However (19), (110) and (110), (110) yield LAC and (15), (19) forces (59) and LAC. This leaves
(15), (110) together with at least one of (25), (59), (510). But (25) yields LAC; (59) forces
(19) or (69) and LAC; and finally (510) forces either a length contradiction or one of (710),
(710) or (59)(69) or (69)(69) and LAC, our final contradiction. O

NOTATION. Throughout the following proofs we will use non-negative integers
ai,az, by, by, c1,c2,d,dz, €1, €2, f1, fo where: a1 +a2 =7; by +by =8; ¢c1 +c2=9; di +dz2 =
10; e1 +eo =11; and f; + fo = 12.

PROPOSITION 11.3. Let A be a type B region. If d(A) < 10 then ¢*(A) < 0.

Proof. If d(A) < 10 then by Lemma 10.3 A is given by Figure 44(viii), (x) or (xi).

Case 1. Let A be given by Figure 44(viii) in which it is now assumed d(us)=d(u 1)=3.

Observe from Figures 41 and 42 that c(ug,ur) + c(ur,us) < 5. Therefore cv(A)

(4,4,10,2,2, €1, €2,2) so *(A) < ¢(A) + %’r and if A has at least three vertices of degree at least
4 then ¢*(A) < () IfA has no vertices of degree greater than 3 then cv(A) = (0,0, 10,0,0,0,2,0)
and c*(A) —27 4 27 <. Let A have exactly one vertex u; of degree greater than 3. If
1 =1 then CU(A) (4,0, 10,0,0,0,2,2); if i =2 then cv(A) = (4,4,10,0,0,0,2,0); if i =5
then cv(A) = (0,0,10,2,2,0,2,0); if i =6 then cv(A) = (0,0,10,0,2,4,2,0); if i =7 then
cw(A) = (0,0,10,0,0, 61,62,0); and if i = 8 then cv(A) (0,0,10,0,0,0,9,2). It follows that
*(A) < # 21” i,u; of degree greater than 3. If
d(uz) =3 then cv(A) (4,4, 10,2,2,4,2,2) and ¢*(A) < =7+ 7 =00 assume i = 7. If j = 1
then cv(A) = (4,0,10,0,0, ey, es,2); if j = 2 then cv(A) = (4,4,10,0,0, €1, e2,0); if j = 5 then
ev(A) = (0,0,10,2,2, €1, €2,0); if j = 6 then cv(A) = (0,0,10,0,2,e1, e2,0); and if j = 8 then

cw(A) = (0,0,10,0,0, €1, €2, 2). It follows that ¢*(A) < —7 + 2

REMARK 1. If A is given by Figure 44(x) or (xi) then it is now assumed d(us) = 3, at
least one of d(us), d(us) equals 3 and d(u) > 3 Note that in both figures if d(u) >4 and
d(us) = 3 then c(uz,ug) = 2&; if d(u) > 4 and d(uz) > 3 then c(us,us) = Z; if d(u) > 4 and
d(us) = 3 then c(uq,us) = 33; and if d(u) >4 and d(us) > 3 then c(us,us) = ¢. Note also
that if d(u) = 4,d(us) = d(ue) = 3 in Figure 44(x) or d(uz) = d(uz) = 3 in Figure 44(xi )and

A receives more than ?—? across the (u4,us)-edge, (us,uq)-edge (respectively) then according

to Configuration E in Figure 32(iii), Configuration F in Figure 32(v) (respectively) the surplus
of at most f is distributed out of A.

REMARK 2. In Figure 44(x) if d(u;) = 3 then, by the remark immediately preceding Propo-

sition 10.4, c(u1,uz2) + c(uz,u3) < § and this bound can only be attained when c(uy,u2) = 55,
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c(ug, uz) = 2%, A = A, of Figure 37(iv) and checking shows that Ag of Figure 37(iv) must
then be A, of Figure 18(ii); in particular, the vertices us, uz and ug of A have degree greater
than 3. Similarly if d(u7) = 3 in Figure 44(xi) then c(us, ug) + c(ug, u7) = § forces the vertices
us, ug and ug of A to have degree greater than 3 (see Figure 38(iv)).

Case 2. Let A be given by Figure 44(x) in which case (see Proposition 10.4 and Case 10)
cw(A) = (az,4,10,10,2,by,by,a1), so ¢*(A) < ¢(A) + 47 and if A has at least five vertices
of degree greater than 3 then c*(A) < 0. If A has no vertices of degree greater than 3
then it follows by Remark 1 that either d(u) = 4, cv(A) = (0,0, 10, 10,0,6,0,0) and ¢*(A) <
-2 4 BT T —0or d(u) >4, cw(A) =(0,0,7,7,0,6,0,0) and ¢ (A) < - 2; + 28 =0. Let
A have exactly one vertex u; of degree greater than 3 and assume that d(u) =4.1f i = 1 then
I(ug) = buz implies cv(A) = (0,0,10,10,0,6,0,3); if i = 2 then cv(A) = (21,41, 10,10,0,6,0,0)
where z1 +y1 =4 by Remark 2; if 4§ =3 then CU(A) (0,0,6,10,0,6,0,0); if i =5 then
ev(A) = (0,0,10,6,2,6,0,0); if i = 6 and d(ug) = 4 then cv(A) = (0,0, 10, 10, 2,0,0,0); if i = 6
and d(ug) > 4 then cv(A) (0, O 10,10,2,2,0,0); if i = 7 then cv(A) = (0,0, 10, 10,0, by, b2, 0);
and if i =8 then [(u7) = Ab~! _1 implies cv(A) = (0,0,10,10,0,6,0,3). It follows that
if d(us) = d(ug) =3 then c*(A) < =% 47— I <0; otherwise ¢ (A) <=3 42 0. If
now d(u) >4 then each cv(A) is altered by replacing each 10 by 7 and 1t follows that
c*(A) < _5% + 2;—; < 0. Let A have exactly two vertices u;,u; of degree greater than 3 and
assume d(u) = 4. If (4,5) = (1, ) then cv(A) = (a9, 4,10,10,0,6,0,a1) and so if d(uy) > 4 or
d(uz) > 4 then ¢*(A) < ——0“ + 3% — 2 < 0; and if d(u1) = d(uz) = 4 then c(us,u1) = 0 and,
moreover, c(u1,uz) > 3% and I(u ) axy~! together imply (see Figure 40(x)) c(u2,u3) = 0 so
cv(A) = (b1, b2,10,10,0,6,0,0) and ¢*(A < —7 + L% — T < 0. If (4,5) = (1,3) then cv(A) =
(0,0,6,10,0,6,0,3); if (i,5) = (1,5) then cv(A) = (0,0,10,6,2,6,0,3); if (4,5) = (1,6)
d(ug) = 4 then cv(A) = (0,0,10,10,2,0,0,3); if (i,7) = (1,6) and d(ug) >4 then CU(A)
(0,0,10,10,2,2,0,3); if (i,7) = (1,7) then (see Proposition 10.4 and Case 10) c (A)
(0,0,10,10,0,b1,bs,3); if (i,7) = (1,8) then ev(A) = (0,0,10,10,0,6,0,3); if (i,7) = (2,
then cv(A) = (z1,41,6,10,0,6,0,0); if (i,7) = (2,5) then cv(A) (:cl,yl,l() 6,2,6,0,0); i
(i,7) = (2,6) and d(ug) = 4 then cv(A) = (1,1, 10,10,2,0,0,0); if (i,7) = (2,6) and d(ug) >
4 then cv(A) = (z1,y1,10,10,2,2,0,0); if (4, j) = (2,7) then cv(A) = (21,41, 10, 10,0, b1, b2, 0);
if (i,j)=(2,8) then (A) (z1,91,10,10,0,6,0,3); if (i,j) = (3,6) then cv(A)=
(0,0,6,10,2,6,0,0); if (i, ) = (3,7) then cv(A) = (0,0,6,10,0,by,bs,0); if (i,7) = (3,8) then
ew(A) = (0,0,6,10,0,6,0, (i, ) (5,6) then cv(A)=(0,0,10,6,2,6,0,0); if (i,5) =
(5,7) then cv(A) = (0 0,10,6,2,b1,by,0); if (i,7) = (5,8) then cv(A) = (0,0,10,6,2,6,0,3); if
(4,7) = (6,7) then cv(A ) (0,0, 10, 0 2,b1,b2,0); if (,7) = (6,8) and d(ug) = 4 then cv(A) =
(0,0,10,10,2,0,0,3); if (¢,5) = (6,8) and d(ug) > 4 then cv(A) =(0,0,10,10,2,2,0,3); and
if (, ) = (7,8) then cv(A) = (0,0, 10, 10,0, bl,bg, 3). It follows that if (i,j) # (1,2) and if
d(us) = d(ug) = 3 then ¢*(A) < —7 1115 (us) > 3 or d(ug) > 3 then ¢*(A) <
—7m+ 7 =0. If now d(u) > 4 then, as before replacmg each 10 by 7 in the above yields

H(A) < —m+ 2% <0 except when (i,7) = (1 2) and either d(u;) >4 or d(ug) >4 and
c*(A) < - 11” + ?’;—J < 0. Let A have exactly three Vertlces u;, Uj, up of degree greater than
3. If d(ug) = 3 then CU(A) (0,0,10,10,2,by,by,3) and ¢*(A) < — 4 Ur < 0; or if d(us) =
d(ug) = 3 then ¢*(A) < =17 + 4r — T =0, so assume otherwise. If d(U3) = 4 then (d(u4) =3
implies) c¢(us,uq) =0 and if d(us) > 5 then c(uz,us) = {5, and in both cases (A <0.
Similarly if d(us) # 3 then ¢ (A) <0, so it can be assumed d(ud) = d(u ) =3. If (i,4,k) =

(0
A

and

w
==

3); if
10,

(1,2,6) and d(ug) =4 then CU(A) (a2,4,10,10,2,0,0,a1) and c*(A) < —F + 1117;7 <0; or
if d(ug) >4 then cv(A) = (az,4,10,10,2,2,0,a;) and ¢*(A) < Ir 4 IT < O If (i,5,k) =
(2,6,7) then CU(A) = (1,91, 10,10,2,b1,b2,0) (by Remark 2); and if (i,7,k) = (2,6,8) then
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CU(A) = (1,91, 10,10,2,6,0,3). In both cases ¢ (A) 0. Finally let A have exactly four
vertices of degree greater than 3 and so C(A) < —=F. If any vertex has degree greater than
4 or if any of uy, us, ug or ur has degree 3 then clearly c (A) 0, so assume otherwise. But
then d(u1) = d(uz) = 4 and d(u3) = 3 together imply either c(u1,u2) = 0 or c(uz,u3) =0 and
c*(A) < 0.

Case 3. Let A be given by Figure 44(xi) in which case (see Proposition 10.4 and Case 11)
cw(A) = (be,2,10,10,4,a1,a2,b1) = 4;—57 so if A has at least five vertices of degree at least 4
then ¢ (A) 0. If A has no vertices of degree greater than 3 then by Remark 1 preceding
Case 2 either d(u) =4, cv(A)=(6,0,10,10,0,0,0,0) and c*(A) < -yl _z-9
or d(u) >4, CU(A) = (6,0,7,7,0,0,0,0) and c*(A) < —2.7" + 2?” —0. Let A have exactly
one vertex u; of degree greater than 3 and assume d(u) =4. If i=1 then cv(A)=
(b2,0,10,10,0,0,0,by); if i = 2 and d(uz) = 4 then I(u;) = 27 Ab~! forces c(uy,uz) =0 and
cv(A) = (0,2,10,10,0,0,0,0); if i =2 and d(ug) >4 then cv(A)=(2,2,10,10,0,0,0,0);
if i=3 then cv(A)=(6,2,6,10,0,0,0,0); if i =5 then (I(ug) =buz and so) cv(A) =
(6,0,10,6,0,0,0,0); if ¢=06 then CU(A) = (6,0,10,10,21,41,0,0) (where z7+y; =4
by Remark 2); if ¢ =7 then CU(A) = (6,0,10,10,0,0,3,0); if ¢ =8 and d(us) =4 then
ew(A) = (6,0,10,10,0,0,3,0); and if i = 8 and d(us) > 4 then cv(A) = (6,0, 10, 10,0,0,2,2).
Therefore ¢ (A) < 5” B (d(uz2),d(ug)) # (3,3); and if d(uz) = d(us) =3 then
*(A) < o < 0. If now d(u) > 4 then replacing each 10 by 7 in the above yields
c*(A) < —%’T + 251—0” <0. Let A have exactly two vertices w;,u; of degree greater than 3
and assume d(u) = 4. If (i,5) = (1,2) then cv(A) = (bs,2,10,10,0,0,0,b1); if (i,7) = (1,3)

then cv(A) = (b3,2,6,10,0,0,0,b1); if (i,7) = (1,5) then cv(A)= (b2,0 10,6,0,0,0,b;);
if (i,7)=(1,6) then cv(A)= (by,0,10,10,21,1,0,b1); if (i,5) = (1,7) then cv(A) =
(b2,0,10,10,0,0,3,by); if (i,5) = (1,8) then cv(A) = (b2,0,10,10,0,0,3,by); if (i,) = (2,3)
then cv( ): (6,2,6 10,0,0,0,0); if (i,j) = (2,5) then cv(A) (6 2,10,6,0,0,0,0); if

(i,7) = (2,6) and d(ug) =4 then cv(A)=1(0,2,10,10,z1,91,0,0); if (z,j) (2 6) and
d(uz) > 4 then cv(A) = (2,2,10,10,z1,y1,0,0); if (i,7) = (2,7) and d(us) = 4 then cv(A) =
¢(0,2,10,10,0,0,3,0); if (i,5) = (2,7) and d(us) >4 then cv(A) = ¢(2,2,10,10,0,0,3,0); if
(i,7) = (2,8) and d(ug) = 4 then cv(A) = (0,2,10,10,0,0,3,0); if (i,7) = (2,8) and d(uy) > 4
then cv(A) =(2,2,10,10,0,0,3,0); if (i,j) = (3,6) then cv(A)= (6,2,6,10,z1,31,0,0);

if (i,j)=(3,7) then cv(A)=(6,2,6,10,0 ,0,3,0); if  (i,7) = (3,8) then cv(A)=

(6,2,6,10,0,0,3,0); if (i,j) = (5,6) then cv(A) = (6,0,10,6,21,51,0,0); if (i,7) = (5,7)

then cv(A) = (6,0,10,6,0,0 30) f (i,7) = (5,8) then cu(A)=(6,0,10,6,0,0,3,0); if
6,0

(4,7) = (6,7) then cv( )= ( 10, 10 4,a1,a2,0) and so if d(ug) >4 or d(uz) >4 then
lin

c*(A) < — g +3r_Z2<0, or 1f d(uG) =d(ur) =4 then c(ur,us) =0 and, moreover,
c(ug,u7) = 7% and l(’ur) =axy ' together imply (see Figure 40(ix)) c(us,ug) =0

7
so cv(A) = (6,0,10,10,b;,b2,0, and (A< -7+ 1z if (i,j) = (6,8) then

ev(A) = (6,0,10,10, 21, 91,3,0); and if (i,5) = (7,8) then CU(A) (6,0, 10, 10 0,0,3,0).
It follows that if (i, ) # (6,7) and if d(u) = d(u3) = 3 then ¢*(A) < —7 + 11—” — & <0;orif
d(ug) > 3 or d(us) > 3 then ¢*(A) < =747 = 0. If now d(u) > 4 then replacmg each 10 by 7
in the above yields ¢*(A) < —7 Lz i, Uj, uy, of degree

greater than 3. If d(ug) = 3 then cv(A) (b2,2 10,10,0,0,3,b;) and c¢*(A) < -1 + Lx < q;

or if d(us) = d(us) = 3 then ¢*(A) < =% + 4r — I =0, so assume otherwise. If d(m) =4,

d(us) =4 (respectively) then d(us) =3 1mphes c(us,ug) =0, c(usg,us) =0 (respectively) or
if d(us) =5, d(us) =5 (respectively) then c(us,us) = {5, c(us,us) = {z (respectively)and
in each case ¢*(A <0. So it can be assumed d(us) = d(us) = 3. If (i,,k) = (6,2,7) and
d(uz) =4 then cv(A) = (0,2,10,10,4,a1,a2,0); if (i,4,k) = (6,2,7) and d(uz) >4 then
CU(A) =(2,2,10,10,4,a1,a9,0); if (i,4,k) = (6,2,8) then cv( ) =1(2,2,10,10, 1,41, 3,0)
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FIGURE 50. Regions for Figure 47(ii)—(v).

by Remark 2); or if (i,j,k) = (6,2,1) then cv(A) = (b2,2,10,10,21,91,0,b1). In each case
*( ) <0 so assume that A has exactly four vertices of degree greater than 3. Then
c(A) < — %”. If d(uy) =3 then cv(A) = (6,2,10,10,4,a1,a2,0) = :?—O’T; or if d(u;) =4 then

ew(A) = (0,2,10,10,4, a1, a5,7) = 4:% and in both cases ¢*(A) < 0. On the other hand if

d(uy) > 5 then ¢*(A) < ¢(A) + cv(A) < -2 4 4z < 0. O
LEMMA 11.4. Let A be a type B region. If A is given by Figure 47(ii)—(v), 48 or 49 then
c*(A) 0.

Proof. Let A be given by Figure 47(ii)~(v). Then (up to cyclic permutation and inversion)
there are two ways to label each of (ii) and (iii); and one way to label each of (iv) and (v) and
so A is given by Figure 50. There are six a-cases. As usual we rely heavily on Figures 35-38
and 40-42.

Case al. Let A be given by Figure 50(i) in which (it can be seen from Figure 47(ii)
that) d(u1) = d(uz) = d(u3) = d(u7) = d(us) = 3 and d(ug) > 3. Then (see Figure 40) cw(A) =
(10,10,2,dy,d,6,10,4,a1,as) so ¢*(A) < c(A) + 8% Let A have exactly one vertex ug

457
of degree greater than 3. Then cv(A) (10,10, 0 6,0,6,10,0,0,0) and c (A) <=5+

42“ <0. Let A have exactly two vertices wug,u; of degree greater than 3. If i=4

thcn ev(A) = (10,10,2,6,0,6,10,0,0,0); if i =5 then cv(A) = (10,10,0,dy,ds,6,10,0,0,0);
if i=9 then (using d(us) = d(ui0) =3) cw(A)= (10,10,0,6,0,6,10,4,2,0); and if i =
10 then cv(A) = (10,10,0,6,0,6,10,0,a;,as). It follows that ¢*(A) < — 50” + 497 < 0. Let
A have exactly three vertices wg,u;,u; of degree greater than 3. If d(us)—S then
ev(A) = (10,10,2,6,0,6, 10,4 ,a1,a2); if d(u19) = 3 then cw(A) = (10,10,2,dy, dy, 6,10,4,2,0);
and if (4,7) = (5,10) then cv(A) (10,10,0,d;,d2,6,10,0,a1,as). It follows that ¢*(A) <

55” + 5350” —=0. If A has more than three vertices of degree greater than 3 then
c*(A) < —w + .9” < 0.

Case a2. Let A be given by Figure 50(ii) in which d(u1) = d(uz) = d(u3) = d(u7) = d(ug) = 3
and d(ug) > 3. Then cv(A) = (10,10,4, a1, as,6,10,2,dy,ds) so ¢*(A) < ¢(A) + 297 Let A
have exactly one vertex ug of degree greater than 3. Then ev(A) = (10,10,0,0,3,6,10,0,6,0)
and ¢*(A) < =237 4 457 — (. Let A have exactly two vertices ug, u; of degree greater than 3. If
i =4 and d(U6) = 4 then (I(ug) together with I(u7) force) cv(A) = (10,10,4,2,3,0,10,0,6,0);
if i =4 and d(ug) > 4 then (see Figure 35(ii)) cv(A) = (10,10,4,2,2,2,10,0,6,0); if i =5
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then cv(A) = (10,10,0, a1, a2,6,10,0,6,0); if i =9 then cv(A) = (10,10,0,0,3,6,10,2,6,0);
and if i =10 then cv(A)= (10,10,0,0,3,6,10,0,d1,d>). It follows that either c¢*(A) <

507r +49J <0 or c (A) < 537r 467r U, Uj
of degree greater than 3. If d(ulo) =3 then cv(A) (10,10,4, a;,a2,6,10,2,6,0) and
(A < — Dr 435 =0, so assume i=10 and j€{4,5,9}. If j=4 then cw(A) =
(10, 10,4,2,3,6, 10,0,d;,ds); if 5 = 5 then CU(A) (10,10,0,a1, az,6,10,0,d1, d2); and if j = 9
then CU(A) = (10,10,0,0,3,6,10,2,d;,ds). It follows that ¢ (A) g -7 "5” =0. If A has

30
_607r + 597r 0

more than three vertices of degree greater than 3 then c*(A) <

Case a3. Let A be given by Figure 50(iii) in which (see Figure 47(iii)) d(u1) = d(us) =
d(uz) = d(us) = 3, d(u3) > 3 and d(ug) > 3. Then ev(A) = (10,6, a1, as,4,6,10,dy, dy, 2) and

*(A) < ¢(A) L If A has at least three vertices of degree greater than 3 then
(A < —35m 4 B0% — . This leewes the case d(us) >3 and d(ug) > 3 only. Then cv(A) =
(10,6,3,0,4,6,10,0,6,0) and c*(A) < =22 + 227 < 0.

Case ad. Let A be given by Figure 50(iv) in which d(u1) = d(uz) = d(u7) = d(us) =
d(uz) > 3 and d(ug) > 3. Then cv(A) = (10,6, d1, d2, 2,6,10, a1, az,4) and ¢*(A) < ¢(A) + 3 ”.
If A has at least three vertices of degree greater than 3 then ¢*(A) < — 5 + 5 =0. ThlS

leaves the case d(uz) >3 and d(ug) > 3 only. Then cv(A) = (10,6,7,6,2,6, 10,0,0,0) and
c*(A)S 5()w+%<0

Case ab. Let A be given by Figure 50(v) in which (see Figure 47(iv)) d(u1) = d(ug) =
d(us) = d(u7) = d(us) = d(ug) =3.  Then  cv(A) = (10,10,d1,d2,6,2,10,10,3,dy, d>,4)
so ¢*(A) <c(A)—|— DroIf A has no vertices of degree greater than 3 then cv(A)=
(10,10,0,0,6,0, 10, 10,0,0,0,0) and ¢*(A) < — (’0” + 4;5 < 0. Let A have exactly one vertex
u; of degree greater than 3. If i=4 then ew(A) = (10,10, dy, ds, 6,0,10,10,0,0,0,0);
if i=5 then cv(A)=(10,10,0,6,6,0,10,10,0,0,0,0); if =6 then cv(A) =
(10,10,0,0,6,2,10,10,0,0,0,0); if =10 then cv(A)= (10,10,0,0,6,0,10,10,3,6,0,0);
if i=11 then C’U(A) = (10,10,0,0,6,0,10,10,0,d1,d>,0); and if ¢i=12 then
c(A) = (10,10,0,0,6,0,10,10,0,0,7,4). It follows that c*(A) < —%r 4 3% <0. Let
A have exactly two vertices wu;,u; of degree greater than 3. If d(U4) = d(u5) =3
then CU(A) = (10,10,0,0,6,2,10,10,3,dy,d2,4); if d(uio) =d(u11) =3 then cv(A)=
(10,10, d4,d>,6,2,10,10,3,0,2,4); and if d(uiz) =3 then CU(A) = (10, 10,d1,d2,6,2,10
10,3,6,0,0). It follows that c*(A) < 770—” + 67—” If A has at least three vertices of degree

A 72 5w _
greater than 3 then ¢*(A) < — 57 é’gr 0.

Case a6. Let A be given by Figure 50(vi) in which (see Figure 47(v)) d(u1) = d(us) = d(ug) =
d(uz) =3, d(u3) > 3 and d(us) > 3. Then ev(A) = (10,6,dy, d, 2,10,6, ai,az,4) and c ( ) <

¢(A) o If A has at least three vertices of degree greater than 3 then ¢*(A) < — 557 4 3om

0. This leaves the case d(us) > 3 and d(ug) > 3 only. Then cv(A) (10,6,0,6,0,10,6,3,0,0)

A 50 41
and c*(A) < —%7 + 35 <0.

Now let A be one of the regions of Figure 48. It turns out that (up to cyclic permutation
and inversion) there are two ways to label each of Figure 48(i), (ii), (iii) and (iv); four ways to
label (v); two ways to label each of (vi) and (vii); and four ways to label (viii). However the
labelled regions produced by (vii) already appear in those produced by (vi); and two of the
labelled regions produced by (viii) already appear in those produced by (ii), leaving a total of
sixteen regions and A is given by Figure 51. Table 4 gives c(u;, u;11) (1 <i < 8) in multiples
of 55 for each of the sixteen regions of Figure 51 with the total plus the contribution made via
the b segment in the final column. We note here that Lemma 9.2 is used for the bounds ey, e



204 MARTIN EDJVET AND ARYE JUHASZ

FIGURE 51. Regions for Figure 48.

and fi1, fo in rows (iii), (iv), (ix) and (xii); and that Figure 40(iv), (x), (xiii) and (xviii) is used
to obtain the other bounds ay,as, b1,bs and dy, ds in the table.

The regions in Figure 51(i), (ii), (v) and (vi) each have degree 12 and so ¢(A) < (2 — 12)7 +
2‘;” = —27, whereas the rest have degree 10 and in these cases ¢(A) < %”. It follows from
Table 4 that if A has at least two vertices of degree greater than 3 then ¢*(A) < 0 for (x); if
at least three then ¢*(A) < 0 for (i), (i), (iii), (v), (vi), (vii), (viii), (xi), (xii), (xiii), (xiv) and
(xvi); and if at least four then ¢*(A) < —4r 4 L — .

If A has no vertices of degree greater than 3 then we see from Figure 51 that c*(A) <
-2 4 B <.

We COhSlder each of the sixteen b-cases in turn.

Case bl. Let A be given by Figure 51(i). Suppose that A has exactly one vertex wu;
of degree greater than 3. If d(us) = d(ug) = 3 then CU(A) = (10,10, 10, 10,2,6,0, 6,6, 3,0,0);
if i=3 then cv(A)=(10,10,10,10,0,ds,d>,6,6,0,0,0); and if i=8 then cv(A)=
(10,10, 10,10,0,6,0,6,6,0,2,4). It follows that c*(A) < —%r 4+ 8™ <0. Let A have
exactly two vertices w;,u; of degree greater than 3. If d(U3) = d(u7) =3 then cv(A) =
(10,10, 10, 10,2, 6,0,6,6,3,2,4); if d(us) = 3 then cv(A) = (10, 10,10, 10,2, d1, d2, 6, 6, 3,0,0);
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TABLE 4. ¢(u;,u;4+1) for Figure 51.

() 2 d da 6 6 a1 as 4 35+ 40 = 75
(i) 4 a as 6 6 dy dy 2 35440 =75
(iii) 4 dq do 3 2 fi fa 2 33420 =53
(iv) 2 6 di do el es el es 40 + 20 = 60
) 4 by b 3 d da 6 2 33 +40 = 73
(vi) 2 6 d ds 3 d da 4 35 +40 = 75
(vii) d do 2 6 6 a1 as 4 35 +20 = 55
(viii) 2 dy ds 6 6 4 a1 as 35+ 20 = 55
(ix) e1 es el es b1 bo 6 2 38 +20 =58
(x) al as ai as b1 bo 6 2 30 + 20 = 50
(xi) dy da d1 do 3 b1 ba 4 35420 =55
(xii) 2 i fa 2 3 by bo 4 31420 = 51
(xiii) a1 as 4 6 6 d ds 2 35420 = 55
(xiv) d da 2 6 6 a1 as 4 35+ 20 = 55
(xv) 4 dy ds 3 d1 ds dy da 37 +20 = 57
(xvi) 2 6 d1 do al as a1 as 32+ 20 =52

if (4,7) = (3,8) then ¢*(A)=(10,10,10,10,0,d;,dz,6,6,0,2,4); and if (i,5) = (7 8) then

(A) = )
ev(A) = (10,10, 10, 10,0,6,0,6,6, a1, a2,4). It follows that ¢*(A) < —Z0F 4 89«

Case b2. Let A be given by Figure 51(ii). Suppose that A has exactly one vertex
u; of degree greater than 3. If d(us) =d(ur;) =3 then cv(A)=(10,10,10,10,0,0,
3,6,6,0,6,2); if i=2 then cv(A)=(10,10,10,10,4,2,0,6,6,0,6,0); and if i=7 then
cv(A) = (10,10,10,10,0,0,0,6,6,d1,d2,2). It follows that c*(A) < —%r 4 & <,
Let A have exactly two vertices w;,u; of degree greater than 3. If d(uz) =3
then cv(A) = (10,10,10,10,0,0,3,6,6,d1,d2,2); if d(us) =d(uy) =3 then cv(A)=
(10,10, 10,10,4,2,3,6,6,0,6,2); if (i,7) = (2,3) then cv(A)= (10,10, 10,10,4, a1, as,6,6,0,
6,0); and if (4,7) = (2,7) then CU(A) = (10,10, 10,10,4,2,0,6,6,d;,d2,0). It follows that

C*(A)S 707r_|_6??76r<0

Case b3. Let A be given by Figure 51(iii). Suppose that A has exactly one vertex wu; of
degree greater than 3. If d(u7) =3 then cv(A) = (10,10,4,d,,ds,3,2,2,2,2); if i =7 then
(see Lemma 9.2) CU(A) = (10,10,0,0,5,0,0, f1, f2,0). It follows that ¢ (A) < - 45” + 45” . Let
A have exactly two vertices u;,u; of degree greater than 3. If d(u7) =3 then c (A) < 0;
if d(ug) = d(ug) = 3 then cv(A) = (10,10,0,0,6,3,2, f1, f2,0); if (i,7) = (7,2) then cv(A) =
(10,10,4,2,5,0,0, 1, f2,0); and if (,7) = (7,8) then cv(A) = (10,10,0,0,5,0,0, f1, f»,2). It

507 4371'
follows that ¢ (A) < =53 + < 0.

Case bd. Let A be given by Figure 51(iv). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(us) = d(ug) = d(ug) = 3 then cv(A) = ¢(10,10,2,6,6,0,0,2,2,0);
if i=4 then (see Figure 36) cv(A)=(10,10,0,6,0,7,0,2,2,0); if i=6 then cv(A)=
(10,10,0,6,4,0,e1,e2,2,0); and if ¢ =8 then C’U(A) = (10,10,0,6,4,0,0,2,e1,€e2). Therefore

*(A) < 4356r + 47 Tet A have exactly two vertices u;,u; of degree greater than 3.
If d(us) =d(ug) =3 then cv(A) = (10,10,0,6,d1,d>,0,2,e1,e2); if d(us) =d(us) =3 then

) =

(A (10,10,2,d1,d2,0, €1, €2,2,0); if (3, j) (2,4) then cv(A) = (10,10,2,6,0,7,0,2,2,0);
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if (i,7) = (2,8) then cv(A)=(10,10,2,6,4,0,0,2,e1,e5); if (i,j) = (6,4) then cv(A)=
(10,10,0,6,0,7,e1,€2,2,0); and if (¢,5) = (6,8) then CU(A) = (10,10,0,6,4,0,¢e1,e2,€1,€2). It
follows that either ¢*(A) < Som 4 dom (i,7) = (6,8), but here either d(u) =4 and %
is distributed from A across the (u1,u2) edge according to Configuration E of Figure 32(iii)

and so ¢*(A) < — T (u) >4, cv(A) = (7,7,0,6,4,0,e1,es,€1,e5) and so

c*(A) < - 50“ + 4"—” < 0. Let A have exactly three vertices u;, u;, u;, of degree greater than 3.
If d(uq) = 3 then (see Figure 40(xiv) and (xvii)) ev(A) = (10, 10,2,dy,dz,0, €1, €2, €1, €2) and
F(A) < =37 4+ 35 < 0; or if d(ug) =3 or d(us) =3 then ¢*(A) < =5 + 3% <0; and if

(i,5,k) = (476,8) then cv(A) = (10,10,0,6,0,7,e1, €2, €1, 2) and ¢*(A) < — {fgf + BT — 0.

Case b5. Let A be given by Figure 51(v). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(us2) = d(ug) = 3 then CU(A) = (10,10, 10, 10,0,0,6,3,0,d1, d2, 2);
if i=2 then cv(A)=(10,10,10,10,4,2,5,0,0,4,6,0); and if i=6 then cv(A)=
(10,10, 10,10,0,0,5,0,7,0,6,0). It follows that c*(A)< —%r 4+ 6™ <0. Let A have
exactly two vertices u;, u; of degree greater than 3. If d(us) = 3 or d(uf,) = 3 then in each case
(A) < =T 4 817 < 0; and if (4,5) = (2,6) then cv(A) = (10,10, 10,10,4,2,5,0,7,0,6,0)
and ¢*(A) < 0.

Case b6. Let A be given by Figure 51(vi). Suppose that A has exactly one ver-
tex u; of degree greater than 3. If d(us) = d(us) =3 then cv(A) = (10, 10,10, 10,2,6,6,0,
3,6,0,0); if i=4 then cv(A)=(10,10,10,10,0,6,d;,ds,0,5,0,0); and if i=8 then

ev(A) = (10,10, 10,10,0,6,4,0,0,5,2,4). It follows that c (A)< Gom 4 837 < 0. Let A

have exactly two vertices wu;,u; of degree greater than 3. If d(ug) =3 then
cv(A) = (10,10,10,10,2,6,d1,ds,3,6,0,0); if d(us) = d(us) = 3 then cv(A) = (10,10, 10, 10,
0,6,6,0,3,d1,d2,4); if (i,5) = (8,2) then cv(A) = (10,10,10,10,2,6,4,0,0,5,2,4); and if

%g,ﬂj) = (8,4) then CU(A) = (10,10, 10,10,0,6,d;,d»,0,5,2,4). It follows that ¢*(A) < —% +
30

Case b7. Let A be given by Figure 51(vii). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(uz) = d(us) = 3 then cv(A) = (10,10,0,6,2,6,6,3,0,0); if i =2
then cv(A) = (10,10, dy, d>,0,6,6,0,0,0); and if i = 8 then cv(A) = (10, 10 0,6,0,6,6,0,2,4).

It follows that ¢*(A) < — o 44” i,uj of degree

greater than 3. If d(us) = 3 then CU(A) (107 10,d1,d2,2,6,6,3,0,0); if d(uz2) = d(ur) = 3 then
cv(A) = (10,10,0,6,2,6,6,3,2,4); if (i, ) = (8,2) then cv(A) = (10,10,ds,ds,0,6,6,0,2,4);

and if (4, §) = (8,7) then cv(A) = (10,10,0,6,0,6,6, a1, as, 4). It follows that ¢*(A) < — 0T+
4971'
<0.

Case b8. Let A be given by Figure 51(viii). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(u3) = d(u7) = 3 then cv(A) = (10,10,2,6,0,6,6,0,0,3); if i =3
then cv(A) = (10,10,0,dy,d2,6,6,0,0,0); and if i = 7 then cv(A) = (10, 10,0, 6,0,6,6,4,2,0).

It follows that ¢ (A) <=3 44” vertices u;,u; of degree

greater than 3. If d(u7) = 3 then cv(A) (10 10,2,d,,ds,6,6,0,0,3); if d(uz) = d(ug) = 3 then
cv(A) = (10,10,0,6,0,6,6,4,a1,az); if (i,7) = (7,2) then ev(A) = (10,10,2,6,0,6,6,4,2,0);
and if (4,7) = (7, 3) then cv(A) = (10,10,0,d,,ds, 6,6,4,2,0). It follows that ¢ (A) < - ?g
491

dom ),

Case b9. Let A be given by Figure 51(ix). Suppose that A has exactly one vertex u; of degree
greater than 3. If d(uz) = d(us) = 3 then cv(A) = (10,10,0,2,2,0,b1,b2,6,2); if i =2 then
cv(A) = (10,10, 1, €2,2,0,0,4,6, 0) and if ¢ = 4 then cv(A) = (10,10,0,2,e1,e2,0,4,6,0). It

457r 4571'
follows that ¢ (A) < — % 30
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Let A have exactly two vertices u;,u; of degree greater than 3. If d(ug)=
d(uy) = 3 then ¢*(A) < 0; if d(uz) = d(ug) = 3 then cv(A) = (10,10,0,2, €1, ea, by, by, 6,0); if
d(ug) = d(ug) = 3 then CU(A) = (10,10, e1,€2,2,0,b1,b2,6,0); if (4,5) = (2,4) then cv(A) =
(10,10, e1, e, e1, €2,0,4,6,0); if (i,7) = (2,8) then cv(A) = (10,10, e1,€2,2,0,0,4,6,2); and if
(i,7) = (4,8) then cv(A) = (10,10,0,2, €1, €2, 0, 4,6,2). It follows that ¢*(A) < — 53?; A
except for (i,j) = (2,4), in which case either d(u) =4 and % is distributed from A across

the (us,u) edge according to Configuration F of Figure 32(v) and ¢*(A) < — e

T <0 or d(u) >4, CU(A) = (7,7,e1,e3,€1,€2,0,4,6,0) and c*(A) < - 50” + 46—” < 0. Let A

have exactly three vertices w;,u;,ur of degree greater than 3. If d(UQ) = 3 or d(ug) =3

then ¢*(A) < 0; if d(ug) = d(us) = 3 then cv(A) = (10,10, 1, ea, €1, €2,0,6,6,0); if (i,7, k) =

(2,4,6) then CU(A) = (10,10, ey, e2,€1,€2,7,0,6,0); and if (z J, k) =(2,4,8) then CU(A) =
)

(10,10, e1, €2, €1,€2,0,4,6,2). It follows that c*(A < —s?f’gr "g’gr =0.

Case b10. Let A be given by Figure 5}( x). Let A have exactly one vertex u; of degree greater
than 3. If d(uz) = d(ug) =3 then cv(A) = ¢(10,10,3,0,0,3,0,6,6,2); if i = 3 then cv(A) =
(10,10,0,2,2,0,0,4,6,0); and if ¢ = 6 then cv(A) = (10,10,0,0,0,0,7,0,6,0). It follows that

c(A) < - 4355 + 4?‘,’0“ <0.

Case b11. Let A be given by Figure 51(xi). Let A have exactly one vertex u; of degree greater
than 3. If d(up) = d(us) = d(ug) = 3 then cv(A) = (10,10,0,6,6,0,3,6,2,0); if i =2 then
cw(A) = (10,10, dy, d,6,0,0,5,0,0); if i = 4 then cv(A) = (10,10,0,6,dy, ds,0,5,0,0); and if
i = 8 then cv(A) = (10,10,0,6,6,0,0,5,2,4). It follows that ¢ (A) g - 4;; A
have exactly two vertices u;,u; of degree greater than 3. If d(us) = d(us) = 3 then CU(A) =

(10,10,0,6,6,0,3,by, by, 4); if d(ug) = d(ug) = 3 then cv(A) = (10, 10,0,6,d;,ds, 3,6,0,0); if
d(uy) = d(us) = 3 then c¢ (A) = (10,10, d,d2,6,0,3,6,0,0); if (i,5) = (2,4) then cv(A)=
(10,10, dy, dy, dy, d3,0,5,0,0); if (i, ] )_( 8) then cv(A) = (10,10,d:,d>,6,0,0,5,2,4); and if
(i,7) = (4,8) then cv(A ):( 0,10,0,6,d1,d»,0,5,2,4). It follows that c*(A) < -2 4 4Ir <
0.

Case b12. Let A be given by Figure 51(xii).A Suppose that A has exactly one vertex wu;
of degree greater than 3. If d(uz) = 3 then cv(A) = (10,10,2,2,2,2,3,b1,b2,4); and if i = 3

then cv(A) = (10,10,0, f1, f2,0,0,5,0,0). It follows that ¢*(A) < —45= 43”

exactly two vertices wug,u; of degree greater than 3. If d(ur) = d(us) 73 then cw(A) =
(10,10,2, f1, f2,2,3,6,0,0); if 5 = 7 then cv(A) = (10, 10,0, f1, f2,0,0,6,0, 0) and if j = 8 then

co(A) = (10,10,0, f1, f2,0,0,5,2,4). Tt follows that ¢*(A) < — 50m 4°7f

Case b13. Let A be given by Figure 51(xiii). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(us) = d(us) = d(us) = 3 then cv(A) = (10,10,0,0,0,6,6,d, ds,0);
if i = 2 then cv(A) = (10,10,3,0,0,6,6,0,6,0); if i = 3 then cv(A) = (10,10,0,2,4,6,6,0,6,0);
and if i =8 then cv(A) = (10,10,0,0,0,6,6,0,6,2). It follows that ¢*(A) < — 4;; 4;;

0. Let A have exactly two vertices u;,u; of degree greater than 3. If d(up) =3 then
ev(A) = (10,10,0,2,4,6,6,dy,ds, 2); if d(us) =3 then cv(A) = (10,10,3,0,0,6,6,d;,ds,2);

and if (i,7) = (2,3) then cv(A) = (10,10, a1, as,4,6,6,0,6,0). It follows that ¢ (A) < -3
50
Som _ g,

Case bl4. Let A be given by Figure 51(xiv). Suppose that A has exactly one vertex w;
of degree greater than 3. If d(uz) = d(us) = 3 then cv(A) = (10, 10,0,6,2,6,6,3,0,0); if i =2
then cv(A) = (10,10, d1,d>,0,6,6,0,0,0); and if i = 8 then cv(A) = (10, 10 0,6,0,6,6,0,2,4).

It follows that c (A) < -2z 44” u; of degree

greater than 3. If d(us) = 3 then cv(A) (10, 10,d1,d>,2,6,6,3,0,0); if d(ug) = d(U7) = 3 then
cw(A) = (10,10,d4,d2,2,6,6,0,2,4); if (i,75) = (8,6) then cv(A) = (10,10,0,6,0,6,6,3,2,4);
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FIGURE 52. Regions for Figure 49.

and if (i,7) = (8,7) then cv(A) = (10,10,0,6,0,6,6, a1, as,4). It follows that cv(A) < 753%” +
S =0.

Case b15. Let A be given by Figure 51(xv). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(us) = d(ug) = 3 then cv(A) = (10, 10,0,0,6,3,0,6,d;,ds); if i = 2
then cv(A) = (10,10,4,2,5,0,0,6,6,0); and if i = 6 then cv(A) = (10,10,0,0,5,0,d:, ds, 6,0).

It follows that ¢* (A) < - 4;’5 43557 = 0. Let A have exactly two vertices u;, u; of degree greater

than 3. If d(uz) =3 then cv(A) = (10,10,0,0,6,3,d1,d2,d1,dz); if d(ug) = d(us) =3 then
cv(A) = (10,10,4,dy, d»,3,0,6,6,0), if (i, j) = (2,6) then cv(A) = (10,10,4,2,5,0,dy, do, 6, 0);
and if (¢,7) = (2,8) then cv(A) = (10,10,4,2,5,0,0,6,d;,ds). It follows that ¢ (A) < -

49” < 0. Let A have exactly three vertices of degree greater than 3. If d(uz) =3 or
d(uG) =3 or d(us) = 3 then ¢*(A) < 55” ‘)3” (i,4, k) = (2,6,8) then cv(A) =
(107 107 47 27 57 07 d17 d27 dlu d2) and C*(A) < 5077 + 551(? < 0.

Case b16. Let A be given by Figure 51(xvi). Suppose that A has exactly one vertex u; of
degree greater than 3. If d(u4) = d(us) = 3 then c*(A) = (10,10,2,6,6,0,a1,a2,2,0); if i =4
then cv(A) = (10,10,0,6,dy, ds,0,0,0,0); and if i = 8 then cv(A) = (10, 10,0,6,5,0,0,0,2, 3).
It follows that ¢*(A) < — 45” + 43—” < 0. Let A have exactly two vertices u;, u; of degree
greater than 3. If d(u4) = 3 or d(ug) = 3 then ¢*(A) < 0; and if (i,7) = (4,8) then cv(A) =
(10,10,0,6,dy,ds, a1, a2, a1,as). It follows that c*(A) < - 500” + 5??0”.

Finally let A be given by one of the regions of Figure 49. It turns out that (up to cyclic
permutations and inversion) there is one way to label each of Figure 49(i), (ii), (iii), (v) and
(vi); two ways to label (iv); five ways to label (vii) or (viii); three ways to label (ix) or (x);
seven ways to label (xi) or (xii) or (xiii); and seven ways to label (xiv) or (xv) or (xvi) or (xvii).
This yields a total of 29 regions. There are however several coincidences amongst these regions
resulting in A being one of the eight regions given by Figure 52. Table 5 gives ¢(u;, tit1)
(1 <4< 9) in multiples of 7/30 for each of the eight regions of Figure 52 with the total plus
the contribution via the b-segment in the final column.

We claim that xy +y; + 21 = 15 in Table 5. To see this let A be given by Figure 52(i).
If e(us,ug) =0 then z1 +y1 + z1 = 14, so assume otherwise, in which case c(ug,us) = 21—’5:
(Figure 40(ix)) If now c(us, ug) = <= then x1 + y; + 21 = 15 by Lemma 9.2. On the other hand
if c(us,ug) > 2% then d(us) =3 (see Figure 40) forcing c(uq, us) = 3—”0 and z1 +y1 + 21 = 15.
Note that we use here and below the fact that labelling prevents A=A, of Figure 38. The
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TABLE 5. ¢(u;,u;4+1) for Figure 52.

(i) dy da x1 Y1 21 6 6 e1 ea 48 + 10 = 58
(ii) el e 6 dy do di do dy do 47 430 = 77
(iif) di do T Y1 1 f1 fo e1 e 48 +30 =78
(iv) di do bit f2 1 Y1 21 e1 s 48 +30 =78
(v) d1 da bil fa T Y1 2 e1 s 48 + 50 = 98
(vi) e1 s dy do dy do 6 dy do 47 4+ 50 = 97
(vii) di do x1 Y1 21 fi fo e1 eo 48 + 50 = 98
(viii) di do 6 6 z1 Y1 21 e1 ea 48 470 = 118

arguments for A of Figure 52(iii), (iv), (v), (vii) and (viii) are similar although for (v), (vii)
and (viii) we use the fact, again both here and below, that A #* A, of Figure 37.

Observe that d(A) = 10 in (i); d(A) = 12 in (ii)—(iv); d(A) = 14 in (v)—(vii); and d(A) =
in (viii). It follows that if A has at least four vertices of degree greater than 3 then ¢*(A) <
If A has no vertices of degree greater than 3 then we see from Figure 52 that ¢ (A) < —Tm
Br 4 2r <0,

16
0.
+

We deal with each of the eight c-cases in turn.

Case cl. Let A be given by Figure 52(i). Suppose that A has exactly one vertex w; of
degree greater than 3. If d(us) = d(ug) = 3 then cv(A) = (10, di,dz,2,0,6,6,6,2,0); if i =4
then cv(A) = (10,0,6, 1, ¢2,4,4,6,2,0) (the ¢1, ¢, follows from A # Az of Figure 38(1v)) and
if i = 9 then cv(A) = (10,0,6,2,0,4,4,6,e1,e2). It follows that ¢*(A) < —437 4 437
A have exactly two vertices u;, u; of degree greater than 3. If d(u) = d(us) = 3 then cv(A) =
(10,0,6,2,0,6,6,6,e1,e5); if d(uz) = d(ug) =3 then cv(A) = (10,0,6, 21,41, 21,6,6,2,0); if
d(ug) = d(ug) = 3 then cv(A) = (10,dy,dy,2,0,6,6,6,2,0); if (i,7) = (2,4) then cv(A)=
(10,dy,da, ¢1,¢0,4,4,6,2,0); if (i,7) =(2,9) then cv(A) (10,d1,d2,2,0,4,4,6,e1,e2); if
(i,7) = (4,9) then CU(A) = (10,0,6,c1,¢2,4,4,6, €1, e3). It follows that ¢ (A) < - 50” + 50“ =
0. Let A have exactly three vertices U, uj, ur, of degree greater than 3. If d(u4)

3 or d(ug) =3 then ¢*(A) < 0; if d(uz) =d(us;) =3 then (see Figure 40(xiv)) cv(A) =
(10,0,6,z1,y1,21,4,6, €1, e2); if (2 J>k) = (4,9,2) then C’U(A) = (10,dy,da,c1,¢2,4,4,6,e1, €2);

and if (4,7, k) = (4,9,7) then cv(A) (10,0,6,c¢1,¢2,4,6,6,€1,€e2). It follows that c*(A) <
55T 541

— <0
30

Case ¢2. Let A be given by Figure 52(ii). Suppose that A has exactly one vertex
u; of degree greater than 3. If d(ug) =d(ug) =3 then cv(A) = (10,10, 10,0,2,6,d;,
dy,dy,d2,6,0); if i=2 then C’U(A):(10,10,10,61,62,6,4,0,0,6,6,0) and if =9
then cv(A) = (10,10,10,0,2,6,4,0,0,6,d;,d>). It follows that c*(A) < —%r 4 & <.
Let A have exactly two vertices w;,u; of degree greater than 3. If d(uQ)f3 then
CU(A) (10,10,10,0,2,6,d1,ds,d1,ds,dy,ds); if d(ug) = 3 then CU(A) = (10, 10,10, 1, €2, 6, 6,
0,0,6,dy,d2); and if (i,7) =(2,6) then CU(A) (10,10, 10, €1, €2,6,4,2,2,6,6,0).
It follows that c* (A) < 770—” + 69—” Let A have exactly three vertices w;,u;,u; of degree
greater than 3. If d(uq) = 3 or d(u(,) =3 or d(ug) = 3 then ¢*(A) < — Dr 4+ D% <0; and if
(i,5,k) = (2,6,9) then cv(A) =(10,10,10, ey, e2,6,4,2,2,6,d1,ds) and ¢ (A) < 75” +0r <
0.

Case ¢3. Let A be given by Figure 52(iil). Suppose that A has exactly one vertex
u; of degree greater than 3. If d(ur) =d(ug) =3 then cv(A)=(10,10,10,d;,ds,
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r1,91,21,2,2,2,0); if i=7  then C’U(A):(10,10,10,0,6,2,0,6,f1,f2,2,0); ~and
if i=9 then cv(A)=/(10,10,10,0,6,2,0,6,2,2,e,e5). Tt follows that c*(A)<

65” + 631—0” <0. Let A have exactly two vertices wu;,u; of degree greater
than 3. If d(us)=d(uy)=3 then cv(A) = (10,10, 10,076,961,3/1,2172 2,e1,€2);
if d(ug) =3 then C’U(A) = (10,10,10,d1,d2, ¥1,y1, 21, f1, f2,2,0); if  (4,5) = (9,2)
then cv(A) = (10,10,10,d;,d2,2,0,6,2,2,e1,e2); and if (i,7) =(9,7) then cv(A)=
(10,10,10,0,6,2,0,6, f1, f2,e1,€2). It follows that c¢*(A)<—Dr 4 87 =0, Let A
have exactly three vertices w;,uj,ur of degree greater than 3. If d(uz) =3 or
d(uz) =3 or d(ug) =3 then c*(A)<— Br4 T <0; and if (i,4,k) =(2,7,9) then

eo(A) = (10,10,10, . d.2,0,6. fy for1,e2) and ¢ (A) < 3 1 i

Case c4. Let A be given by Figure 52(iv). Suppose that A has exactly one vertex
u; of degree greater than 3. If d(us) =d(ug) =3 then ¢*(A)=(10,10,10,d,,ds,
2,2,21,y1,21,2,0); if i=4  then CU(A) = (10,10, 10,0,6, f1, f2,2,0,6,2,0);  and
if i=9 then c*(A)=(10,10,10,0,6,2,2,2,0,6,e1,e5). It follows that c*(A)<

6"” + 61—0” <0. Let A have exactly two vertices wu;,u; of degree greater than

3. If d(ug) =3  then cw(A) = (10,10,10,dy, ds, f1, fo, #1, 91, 21,2,0);  if  d(ug) =
d(ug) =3  then cv(A) =(10,10,10,0,6,2,2, 71,91, 21,€1,€2); if  (i,5) =(9,2)  then

cv(A) = (10,10,10,d1,d2,2,2,2,0,6,e1,e2);  and if  (i,5) = (9,4) then cv(A)=
(10,10,10,0,6, f1, f2,2,0,6,e1,e5). It follows that c*(A) < —Dr 487 =0, Let A
have exactly three vertices wu;,uj,ur of degree greater than 3. If d(uz) =3 or
d(us) =3 or d(ug) =3 then c¢*(A)<— o4 734% <0; and if (i,5,k) =(2,4,9) then

ev(A) = (10,10,10,dy, da, f1, f2,2,0,6,e1,e3) and c(A) < =D 4 T <.

Case ¢5. Let A be given by Figure 52(v). Suppose that A has exactly one vertex
u; of degree greater than 3. If d(us)=d(ug) =3 then CU(A):(10,10,10710, 10,dq,
d5,2,2,21,y1,21,2,0); if i=4 then cv(A)=(10,10,10,10,10,0,6, f1, f,6,0,2,2,0);
and if ¢=9 then cv(A) - (10,10,10,10,10,0,6,2,2,6,0,2,e1,e2). It follows that

H(A) < — Sg’gr 81” <0. Let A have exactly two vertices u;,u; of degree greater

than 3. If d(u9) =3 then cv(A) (10,10, 10, 10,10, dy,do, f1, fo,z1,91, 21,2,0); if
d(uz) = d(us) =3 then cv(A) = (10,10,10,10,10,0,6,2,2, 21,91, 21, €1, €2); if (i,5) = (9,2)
then  cv(A) = (10,10,10,10,10,d;,ds,2,2,6,0,2,e1,e2);  and if  (i,7) = (9,4) then
CU(A)A: (10,10, 10,10,10,0,6, f1, f2,6,0,2,e1,e2). It follows that c*(A) < -2 4 897 = (.
Let A have exactly three vertices w;,uj,uy of degree greater than 3. If d(uz) =3 or
d(ug) =3 or d(ug) =3 then ¢*(A)< — Pr 4 UT <0; and if (4,4,k) = (2,4,9) then

cv(A) = (10,10, 10,10,10,d1, do, f1, f2,6,0,2,e1,e2) and c*(A) < —2x 4 2r <,

Case c6. Let A be given by Figure 52(vi). Suppose that A has exactly one vertex u; of degree
greater than 3. If d(us) = d(ug) = 3 then cv(A) = (10,10, 10, 10,10,0,2,d1, ds,d;,ds2, 6,6, 0);
if ¢=2 then CU(A) = (10,10, 10, 10,10, €1, €2,6,0,0,4,6,6,0); and if ¢=9 then
cw(A) = (10,10,10,10,10,0,2,6,0,0,4,6,d1,d>). It  follows  that c*(A) < —2r 4

84” <0. Let A have exactly two vertices wu;,u; of degree greater than 3. If

d( ) =3 R then C’U(A) (10, 10, 10, 10, 10, O, 2, dl, dQ, dl, dg, 6, dl, dg) if d(U5) =3
then  cv(A) = (10,10,10,10,10,e1,€9,6,0,0,6,6,d1,d2); and if (i,j)=(2,5) then
cw(A) = (10,10,10,10,10, 1, €2,6,2,2,4,6,6,0). It follows that c*(A) < —0r 4 &7
Let A have exactly three vertices wu;,uj;,u, of degree greater than 3. If d('U/Q) =3

(us) =3 or d(ug) =3 then ¢*(A)< — P4+ BT <0; and if (4,4,k) = (2,5,9) then
cv(A) =(10, 10,10, 10,10, €1, e2,6,2,2,4,6,d1, ds) and c (A) < - 957’ + (’;—g < 0.
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Case c7. Let A be given by Figure 52(vii). Suppose that A has exactly one vertex u; of degree
greater than 3. If d(u7) = d(ug) = 3 then CU(A) = (10,10,10,10,10,d1, dz2, z1, Y1, 21, 2,2, 2, 0);
if 4 =7 then cv(A) = (10, 10,10, 10,10,0,6,6,0, 2, f1, f2,2,0); and if i =9 then cv(A) =
(10,10,10,10,10,0,6,6,0,2,2,2,e1,e2). It follows that c*(A) < —857 8;—57 < 0. Let A have
exactly two vertices u;, u; of degree greater than 3. If d(ug) = 3 then cv(A) = (10, 10, 10, 10,
10,dy, dg, 21,91, 21, f1, f2,2,0);  if  d(ug) =d(u;) =3 then ev(A) = (10,10, 10,10, 10,0,
6,21,y1,21,2,2, e1,e2); if (i, 7) = (9,2) then cv(A) = (10,10, 10,10, 10, dy, d2,6,0,2,2,2, 1, €3);
and if (¢,7) =(9,7) then CU(A) (10,10,10,10,10,0,6,6,0,2, f1, f2,e1,e2). It follows that
c (A) < - 90” + ??ST = 0. Let A have exactly three vertices u;, u;, uy, of degree greater than 3.

) =

If d(ug) = 3 or d(u7) = 3 or d(ug) = 3 then ¢*(A) < — P+ LT <0;if (4,4,k) = (2,7,9) then
ev(A) = (10,10, 10, 10,10, dy, da, 6,0,2, f1, fo, €1, €2) and c (A) <% 4 91 <.

Case c8. Let A be given by Figure 52(viii). Suppose that A has exactly one vertex
u; of degree greater than 3. If d(u7) =d(ug) =3 then cv(A) = (10,10, 10, 10, 10, 10, 10,
dy,ds,6,6,6,0,2,2,0); if i =7 then cv(A)=(10,10,10,10,10,10,10,0,6,6,4,4 ;€15 C2,2,0)
(the ¢1,¢o follows from A # A, of Figure 37(iv)); and if i=9 then cv(A)=
(10,10, 10,10,10,10,10,0,6,6,4,4,0,2,e1,e2). It follows that c*(A) <197 4 103w —q
Let A have exactly two vertices, wu;,u; of degree greater than 3. If d(ug) —d(u7) =3
then cv(A) = (10,10,10,10,10,10,10,0,6,6,6,6,0,2,e1,e5); if d(us) = d(ug) =3 then
ev(A) = (10,10, 10,10, 10,10, 10, 0,6,6,6, 21, y1, 21, 2, O) if d(u7) =d(ug) =3 then ¢*(A) <

—Lox 4 102n. ¢ (j ) = (2,7) then cv(A) = (10,10, 10,10, 10,10, 10, d;, ds, 6,4, 4, ¢y, ¢5, 2, 0);
if (i,7) =(2,9) then cv(A)=(10,10,10,10,10,10,10,d;,ds,6,4,4,0,2,e1,e5); and if
(i,j) = (7,9) then cv(A)=(10,10,10,10,10,10,10,0,6,6,4,4,¢c1, 2, e1,€2). It  follows

0. Let A have exactly three vertices w;,uj,up of
(u

that ¢*(A) < —10r 4 110n
degree greater than 3. If d(u;) =3 or d(ug) =3 then c*(A)< 115,r_~_1117r <0 if

d(uz) = d(us) = 3 then ev(A) = (10,10, 10, 10, 10, 10, 10,0, 6, 6, 4 xl,yl,z1,61,62) if (i,4,k) =
(7,9,2) then cv(A) = (10,10,10, 10,10, 10, 10,dl,d2,6,4,4,cl,02,61,62), and if (i,7,k) =

(7.9.4) then cv(A) = (10,10,10,10,10,10,10,0,6,6,6,4,c1,cz,e1,2). It follows that

co(A) < Lz 4 1ax 0

The next result completes the proof of Proposition 4.3.
PROPOSITION 11.5. If A is a type B region and d(A) > 10 then ¢*(A) <0

Proof. Tt can be assumed d(A) > 10 and that A is not one of the regions of Figures 47(ii)—
(v), 48 or 49, otherwise Lemma 11.4 applies. Moreover if ny > 10 then ¢*(A) < 0 so assume that
ny < 9. It follows from the proof of Lemma 11.1 that the upper bound () immediately preceding

Lemma 11.1 is reduced by at least %r for each gap between two b-segments that contain

n9o

b-regions so if there are at least three such b-segments then ¢*(A) < 7(2 — %2) — 3(37) implying
c* (A) < 0 for ny > 8. Since there are at least two edges between b-segments it follows that if
A contains more than three such b-segments then c*(A) < 0 or if exactly three then ny > 8 by
Lemma 11.2(i) and again ¢*(A) < 0. If A has exactly one b-segment that contains a b-region
then ¢ (A) < 0 by Lemma 11.4 together with Lemma 11.2(v) and (vi) so suppose from now

na

on that A contains exactly two such segments. Then ¢*(A) < 7(2 — 2) — 2(27) which implies
¢*(A) <0 for ny > 9, so assume ny < 8 in which case A is given by Figure 47(i) where (m, n) €
{(2,2),(2,3),(2,4),(2,5),(2,6),(3,3),(3,4),(3,5), (4,4)}. Applying Lemmas 11.4 and 11.2(ii)
shows it can be assumed that there is at least one shadow edge in A between the two b-segments.

Let m = 2. It follows from the statement at the end of the above paragraph that A contains
the shadow edge (14) (of length n — 1) and A is given by Figure 53(i) and (ii). If (m,n) # (2, 6)
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(O] (i) (iii)

(vi) (vii)

(viii) (ix)

FIGURE 54. m = 3 or 4.

then ideg(1) = ideg(4) = 1 by Lemma 11.2(iii) and this leads to a length contradiction so let
(m,n) = (2,6). We claim that there is a reduction to (1) of 4T between vertices 1 and 4. Given

this and the fact that there is a reduction of 2Z between 2 and 3 we obtain c* (A) < 72— 7) -
5 and ¢* (A) <0 for ny > 8, in particular when (m,n) = (2,6). To prove the claim observe
that if d(a;1) =3 in Figure 53(i) or (ii) then ¢; = ¢ = 0; and if d(a1) > 4 then ¢; + o < 32
(see Figure 35). In the first instance there is a deficit of at least (37 +2(3%)) — 2% = 1%; and
in the second case the deficit is at least (3 + 2(3%)) — (3F + 3Z) = 3%,

Let m = 3 or 4. Applying Lemma 11.2(ii)(iv) and Lemma 11.4 it can be assumed that A is
given by Figure 54 with the understanding that the segment of A between vertices 2 and 3 is also
one of these nine possibilities. (Note that in Figure 54 the length of the shadow edge incident at
vertex 1 is shown.) We claim that if m = 3 then the edges between 1 and 4 produce a deficit of at
least 2&; and if m = 4 then the reduction is at least Z. Given this, if (m, n) = (3,3) then (A) <
m(2— &) — 2% =0; if (m,n) = (3,4) then (A <72 - 1) — 3% = 0; if (m,n) = (3,5) then
(A <72 - 8) — (3 + 2Z) < 0; and if (m,n) = (4,4) then (A <72 - 8)—2(2)=0,s0
it remains to prove the claim for the possible labellings of the regions of Figure 54 and these are
shown in Figure 55(1)—(xx). Indeed there are four ways to label each of Figure 54(iv) and (vi);
and two ways to label each of the others. However the labelling obtained from Figure 54(vii)
already appears in Figure 54(vi).

Let m = 3. Then Tables 6-9 give maximum values for k1, ke and k3 of Figure 55(i)—(iii) as
multiples of 7. Also indicated in each case as a multiple of 5 is the deficit = m(% — ﬁ) +

(3 - ﬁ) + (35)(12 — (k1 + K2 + K3)). The entries in each final column show that the deficit

in each case is X, as required, except for d(vi) = d(v2) = 3 and d(u) > 4 in Figure 55(i) and
we consider this below. Note that in Tables 6 and 8 when d(u) = 4 in Figure 55(i) and (iii)
and either d(v;) = d(v2) =3 or d(v1) =3, d(v2) =4, T is distributed from A according to
Configurations E and F of Figure 32(iii) and (v) resulting in deficits of 12 and 16 as shown.
Note that in Table 7 when d(v;) = 3 and d(vy) = 4 the region A cannot be Ay of Figure 38(iv)
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FIGURE 55. Labelling for m = 3 or 4.
TABLE 6. Deficit for Figure 55(i).
d(v1) d(va2) K1 K2 K3 Deficit
() 3 3 0 6 0 12 (9) (Note)
() 4 3 2 0 0 15
(i) 3 4 0 0 7 16 (13) (Note)
() 5+ 3 2 2 0 16
() 3 5+ 0 2 2 16
@) 4 4 2 0 7 13
() 4 5+ 2 4 P 17
() 5+ 4 2 4 7 12
() 5+ 5+ 2 2 2 22

because d(w) = 3 in Figure 55(ii) but the corresponding vertex in Figure 38(ii) has degree 4,
and so kg = 1 by Figure 36(x). Similarly in Table 9 when d(v1) = 4 and d(v2) = (3) the region
A cannot be A, of Figure 37(iv); and so ks = 1 by Figure 36(i).

Suppose d(u) >4 in Figure 55(i) in which the vertex v corresponds to the vertex 4 of
Figure 54(i). If there are at least two regions in the b-segment between vertices 4 and 3
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TABLE 7. Deficit for Figure 55(ii).

d(v1) d(v2) K1 K2 K3 Deficit
(i) 3 0 0 0 12
(i) 4 3 0 0 0 17
(i) 4 0 1 4 12 (Note)
(ii) 5+ 3 2 2 0 16
(ii) 5+ 0 2 2 16
(ii) 4 0 7 0 15
(ii) 0 0 4 18
(i) 5+ 0 4 2 19
(i) 5+ 4 2 4 4 15
(i) 5+ 5+ 2 2 2 22
TABLE 8. Deficit for Figure 55(iii).
d(v1) d(v2) K1 K2 K3 Deficit
(iii) 3 0 6 0 12 (Note)
(iii) 4 3 2 0 0 15
(iif) 4 0 0 7 16 (Note)
(iii) 5+ 3 2 2 0 16
(iif) 3 5+ 0 2 2 16
(iii) 4 4 2 0 7 13
(iii) 4 5+ 2 4 2 17
(iif) 5+ 4 2 4 7 12
(iif) 5+ 5+ 2 2 2 22

then 2(3 — Z1) = I is contributed to the deficit and so we obtain the totals 2T when

d(vy) = d(vz) = 3 and 2% when d(v1) =3, d(v2) =4 as shown in Table 6. If however there

is exactly one region in the b-segment then only 9% — g—g = {5 is contributed to the deficit

and so the total is 37 when d(vi) = d(v2) = 3 and ?%” when d(vy) = 3, d(ve) = 4 as shown in
parentheses in Table 6. If (m,n) = (3,5) then ¢*(A) < 7(2 — 8) — (3 + 32) < 0 s0 it can be
assumed n € {3,4}. But given that there are no vertices between 4 and 3, it follows immediately
from length considerations that (i) of Figure 54 can only be combined with (iv) or (viii), and
so, in particular, n = 4. Any attempt at labelling shows that (i) with (viii) is impossible and
the unique region A obtained from (i) with (iv) is given by Figure 53(iii) in which the segment
of vertices from 2 to 3 corresponds to Figure 55(x). We show below that for Figure 55(x), the
deficit is at least % and so (A <72 - 1) — Bm < 0. If d(u) > 4 in Figure 55(iii) in which
the vertex v corresponds to the vertex 4 of Figure 54(ii), then since there are at least two
regions in the b-segment between 4 and 3 it follows that, as in the above case, the total deficit
is 12 and 16 as shown in Table 8.

Now let m = 4 and consider Figure 55. (Recall that it remains to show that there is a deficit
of at least % in all cases except for Figure 55(x) where we must show that there is a deficit of
at least g) Checking Figures 35-38, 40 and 41 and Lemma 9.1 shows k1 + ko + k3 + k4 < 111—5”
for (xiv); and k1 + ko + K3 + K4 < % in all other cases. Indeed the upper bounds are shown in
Table 10. Note that x4 < 2 in (vii)—(x), (xvii) and (xviii) follows from the fact that d(vs) > 4
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TABLE 9. Deficit for Figure 55(iv).

d(v1) d(v2) K1 K2 K3 Deficit
(iv) 3 3 0 0 0 12
(iv) 4 3 4 1 0 12 (Note)
(iv) 3 4 0 0 0 17
(iv) 5+ 3 2 2 0 16
(iv) 5+ 0 2 2 16
(iv) 4 4 0 0 18
(iv) 0 7 0 15
(iv) 5+ 4 4 2 15
(iv) 5+ 4 2 4 0 19
(iv) 5+ 5+ 2 4 2 20
TABLE 10. Upper bounds for m = 4.
K1 K2 K3 K4 K1 K2 K3 K4
(v) b1 bo 6 2 16 (xiii) 1 To T3 T4 18
(vi) 3 d1 do 4 17 (xiv) el es el es 22
(vii) 2 6 7 2 17 (xv) Y1 Y2 Y3 m 17
(viii) 3 7 4 2 16 (xvi) a as a as 14
(ix) 7 6 2 2 17 (xvii) 4 7 3 2 16
(x) 4 7 3 2 16 (xviii) 2 7 2 17
(xi) 2 2 6 7 17 (xix) 2 6 d ds 18
(xii) 2 4 7 3 16 (xx) 4 dy ds 3 17

and if d(vs) = 4 then k4 = 0; K1 < 2 in (xi) and (xii) follows from the fact that d(vy) > 4 and
if d(v1) =4 then k; = 0. Note further that in (v) k1 > 4 implies kK3 = 0 and ko > 4 implies
k1 = 0; in (vi) that k3 > 4 implies ko = 0; that x1 + xo + 3 + x4 < 18 in (xiii) follows from
the fact that d(v1) = 3 implies k; = 0, d(v1) > 3 implies K2 = 5, d(v3) = 3 implies k4 = 0 and
d(v3) > 3 implies k3 = 5; that in (xiv) ko =9 or 8 forces k1 =0 or 2, that ko < 4 and that
similar statements hold for k3 and k4; in (xv) the fact that x; > 4 implies ko =0, ko >4
implies k1 =0 or k3 =0, k3 > 4 implies ko =0 or k4 =0 and k4 > 4 implies k3 = 0 forces
Y1 +y2 +y3 + y4 < 17; in (xvi) that ko > 4 implies k1 = 0 and k3 > 4 implies k4 = 0; in (xix)
k4 > 4 implies k3 = 0; and in (xx) k2 > 4 implies k3 = 0. All other numerical entries for the
upper bounds in Table 10 can be read directly from Figure 35.

In the cases where k1 + ko + K3 + k4 < ?—g if at least one of vi,v9,v3 has degree at least
5 then there is a deficit of at least (2F + i—g) — (2 +9)=1Z; and if at least two have
degree at least 4 then the deficit is at least (3T + 5T) — (7 + 2T) = 4Z, so it can be assumed
(d(v1),d(v2),d(vs)) € {(3,3,3),(4,3,3), (3,4, 3), (3,3,4)}. For cases (vii)—(x) and (xvii)—(xviii),
d(v3) = 4 which forces x4 = 0 and so k1 + K2 + k3 + k4 < § which gives a deficit of at least 5
For (xi) and (xii), d(v1) = 4 which forces k1 = 0 and so 1 + k2 + k3 + k4 < § which gives a
deficit of at least Z. In fact for case (x), d(vs) > 4 and so if at least one of vy or vy has degree
at least 4 then the deficit is at least Z; or if d(vi) = d(v2) = 3 then x; = kp = 0 and we see
from Table 10 that the deficit is at least %, as required.

Table 11 shows the deficit for (v), (vi), (xiii), (xv), (xvi), (xix) and (xx).
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TABLE 11. Deficit for Figure 55(v), (vi), (xiii), (xv), (xvi), (xix) and (xx).

d(v1) d(v2) d(vs) K1 Ko K3 K4 Deficit
v) 3 3 3 0 4 6 0 6
v) 4 3 3 7 0 6 0 8
) 3 4 3 0 0 0 0 21
(v) 3 3 4 0 4 0 2 15
(vi) 3 3 3 0 5 0 0 11
(vi) 4 3 3 0 0 0 0 21
(vi) 3 4 3 0 0 0 0 21
(vi) 3 3 4 0 5 2 4 10
(xiii) 3 3 3 0 2 2 0 12
(xiii) 4 3 3 2 0 2 0 17
(xii) 3 4 3 0 9 0 0 12
(xii) 3 4 3 0 0 9 0 12
(xiii) 3 3 4 0 2 0 2 17
(xv) 3 3 3 0 6 6 0 6 (Note)
(xv) 4 3 3 7 0 6 0 8
(xv) 3 4 3 0 0 0 0 21
(xv) 3 3 4 0 6 0 7 8
(xvi) 3 3 3 0 0 0 0 16
(xvi) 4 3 3 0 0 0 0 21
(xvi) 3 4 3 0 2 2 0 17
(xvi) 3 3 4 0 0 0 0 21
(xix) 3 3 3 0 6 4 0 6
(xix) 4 3 3 2 0 4 0 15
(xix) 3 4 3 0 0 0 0 21
(xix) 3 3 4 0 6 0 7 8
(xx) 3 3 3 0 0 5 0 11
(xx) 4 3 3 4 2 5 0 10
(xx) 3 4 3 0 0 0 0 21
(xx) 3 3 4 0 0 0 0 21

As can be seen from Table 11 for these cases it remains to explain the first row for (xv).
Consider (xv) with d(vi) = d(v2) = d(v3) = 3. Then k1 = k4 =0, ko < T and k3 < £. If Ky +
k2 < % then the deficit is at least T so assume otherwise. If A receives less than £ from each
of Ay and A3 then deficit > £, so assume otherwise. If A receives £ from Ay then A is given
by A of Figure 7(iii) or Figure 8(iv). But if Ay is A of Figure 8(iv) then A does not receive
any curvature from As and we are done; and if Ay is A of Figure 7(iii) then according to

Configuration D of Figure 32(ii), A receives % from Ay and the deficit is increased by 5. If

A receives T from As then Az is given by Figure 7(iii) or Figure 10(i) and (ii). But if Az is A
of Figure 10(i) and (ii) then A does not receive any curvature from A, and we are done; and if
Ay is A of Figure 7(iii) then according to Configuration C of Figure 32(i), A receives 37 from

Ajs and the deficit is increased by 5. It follows that the deficit is at least %T + % =z.
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TABLE 12. Deficit for Figure 55(xiv).

d(v1) d(v2) d(v3) K1 Ko K3 K4 Deficit
(xiv) 3 3 3 0 2 2 0 12
(xiv) 4 3 3 el es 2 8
(xiv) 3 4 3 0 0 0 0 21
(xiv) 3 3 4 0 2 e1 ea 8
(xiv) 5+ 3 3 2 2 2 0 18
(xiv) 3 5+ 3 0 2 2 0 20
(xiv) 3 3 5+ 0 2 2 2 18
(xiv) 4 4 3 T T2 0 0 17
(xiv) 4 3 e1 €2 e1 €2 4(6) (Note)
(xiv) 3 4 0 0 a1 o 17

Finally the case Figure 55(xiv) is given by Table 12. Note that d(v1) = d(v2) = 4 implies
k1 = 0or ko = 0 and that d(vs) = d(v4) = 4 implies k3 = 0 or k4 = 0 which implies z1 + 22 =5
in Table 12; and the eq, e entries are explained by Figure 42 and Lemma 9.2(iv). Since (see
Table 10) k1 + K2 + k3 + kg < 15 , if there is a vertex of degree at least 4 and one of degree

at least 5 it follows that the deficit is at least gg, and if there are at least three vertices of

degree at least 4 then the deficit > ?{—g and so we see from Table 12 that to complete the proof

the penultimate row for (xiv), that is, case (xiv) with d(v1) = d(vs) = 4 and d(v2) = 3 must be

considered. Note that for this subcase the deﬁmt is at least ?g and so it remains to show that

the deficit is in fact at least Z. If k1 + ko < 5 T and k3 + k4 < ” then the deficit > g, SO assume

otherw1se If ki + ko> % then the only way this can occur (see Figure 42) is if k1 = —’57 and

kg = 55 forcing Ay to be given by A of Figure 20(v) and Aj to be given by A of Flgure 16(1ii).
But elther this gives Configuration B of Figure 31(v), a contradiction since then ro = £ only, or
d(u) > 4 in Figure 31(v) and the deficit is at least (2 - = If kg + Ky > ” then the
only way this can occur is if k3 = ;0 and x4 = 3% forcing Az to be glven by A of Flgure 20(vi)
and Ay to be given by A of Figure 16(ii). But either this gives Configuration A of Figure 31(i),

a contradiction since then k3 = ¥ only, or d(u) > 4 in Figure 31(i) and again the deficit is at

T
least 7. d
The proof of Proposition 4.3 follows from 10.2, 10.4, 11.3 and 11.5.
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