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The infinite Fibonacci groups and relative asphericity
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Abstract

We prove that the generalised Fibonacci group F (r, n) is infinite for (r, n) ∈ {(7 + 5k, 5),
(8 + 5k, 5) : k � 0}. This together with previously known results yields a complete classification
of the finite F (r, n), a problem that has its origins in a question by J. H. Conway in 1965. The
method is to show that a related relative presentation is aspherical from which it can be deduced
that the groups are infinite.

1. Introduction

The generalised Fibonacci group F (r, n) is the group defined by the cyclic presentation

〈x1, . . . , xn|x1x2 . . . xrx
−1
r+1, x2x3 . . . xr+1x

−1
r+2, . . . , xn−1xnx1 . . . xr−2x

−1
r−1, xnx1x2 . . . xr−1x

−1
r 〉,

where r > 1, n > 1. Thus there are n generators and n relators each of length r + 1 and each
relator is obtained from the first relator by cyclically permuting the subscripts and reducing
modulo n [10, Section 7.3]. There has been a great deal of interest in the study of these
groups since the question in [5] by Conway about the order of F (2, 5). Up to now the order of
F (r, n) was known except for the two infinite families F{7, 5} and F{8, 5}, where F{r, n} :=
{F (r + kn, n) : k � 0}. The reader is referred to [15], and the references therein together with
[3, 14] for further details. In this paper we will show that each group in F{7, 5} or F{8, 5} is
infinite. This together with previous results yields the following theorem.

Theorem 1.1. The generalised Fibonacci group F (r, n) is finite if and only if one of the
following conditions is satisfied:

(i) r = 2 and n ∈ {2, 3, 4, 5, 7}: indeed F (2, 2) is trivial; F (2, 3) ∼= Q8, the quaternion group
of order 8; F (2, 4) ∼= Z5; F (2, 5) ∼= Z11; and F (2, 7) ∼= Z29;

(ii) r = 3 and n ∈ {2, 3, 5, 6}: indeed F (3, 2) ∼= Q8; F (3, 3) ∼= Z2; F (3, 5) ∼= Z22; and F (3, 6)
is non-metacyclic, soluble of order 1512;

(iii) r � 4 and r ≡ 0 (modn), in which case F (r, n) ∼= Zr−1;
(iv) r � 4 and r ≡ 1 (modn), in which case F (r, n) is metacyclic of order rn − 1;
(v) r � 4, n = 4 and r ≡ 2 (modn), in which case F (r, n) = F (4k + 2, 4) (k � 1) is

metacyclic of order (4k + 1)(2(4)2k + 2(−4)k + 1).

A relative group presentation is a presentation of the form P = 〈G,x|r〉 where G is a group,
x a set disjoint from G and r a set of cyclically reduced words in the free product G ∗ 〈x〉
where 〈x〉 denotes the free group on x [2]. If G(P) denotes the group defined by P then
G(P) is the quotient group G ∗ 〈x〉/N , where N denotes the normal closure in G ∗ 〈x〉 of r. A
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relative group presentation is defined in [2] to be aspherical if every spherical picture over it
contains a dipole, that is, fails to be reduced. There is interest in when a relative presentation
is aspherical, see, for example, [1, 2, 6, 8, 9, 13]. In this paper we consider the situation when
G = 〈t|t5〉, x = {u} and r = {t2utu−n} and prove the following theorem.

Theorem 1.2. The relative presentation Pn = 〈t, u|t5, t2utu−n〉 is aspherical for n � 7.

Applying, for example, statement (0.4) in the introduction of [2] and the fact that the group
defined by Pn is neither trivial nor cyclic of order 5 we immediately obtain

Corollary 1.3. If G(Pn) is the group defined by Pn then G(Pn) is infinite for n � 7,
indeed u has infinite order in G(Pn) for n � 7.

We will show in Section 2 that Corollary 1.3 implies that each group in F{7, 5}, F{8, 5}
is infinite. The remaining Sections 3–11 of the paper will be devoted entirely to proving
Theorem 1.2.

2. Fibonacci groups

Consider the generalised Fibonacci group F (r, n) of the introduction. If r = 2 or 2 � n � 4 or
(r, n) ∈ {(3, 5), (3, 6)} or n divides r or r ≡ 1 (modn) then Theorem 1.1 applies and these cases
are discussed fully with relevant references in [15]. Assume then that none of these conditions
holds. In particular r � 3 and n � 5. In [14] it is shown that if n does not divide any of r ± 1,
r + 2, 2r, 2r + 1 or 3r then F (r, n) is infinite. If n divides r + 1 then F (r, n) is infinite for r � 3
[11] so assume otherwise. We are left therefore to consider the families F{r, r + 2}; F{r, 2r};
F{r, 2r + 1} and F{r, 3r}. In [3] it is shown that if r � 4 then each group in F{r, r + 2} and
F{r, 2r} is infinite; and if r � 3 then each group in F{r, 2r + 1} is infinite. This leaves F{8, 5},
F{9, 6}, F{7, 5} and F{r, 3r}. In [14] it is also shown that if n does not divide any of r ± 1,
r ± 2, r + 3, 2r, 2r + 1 then F (r, n) is infinite. If n divides 3r and r + 2 we obtain the family
F{4, 6} which is F{r, r + 2} for r = 4; if n divides 3r and r − 2 we obtain F{8, 6} and each
group in this family is infinite [4]; and if n divides 3r and r + 3 we obtain F{6, 9}. By our
assumptions n does not divide 3r together with any of r ± 1, 2r or 2r + 1. It is also shown in
[3] that each group in F{9, 6} or F{6, 9} is infinite, all of which leaves F{7, 5} and F{8, 5}.
These families are

{F (7 + 5k, 5) : k � 0} and {F (8 + 5k, 5) : k � 0},
where F (7 + 5k, 5) and F (8 + 5k, 5) are defined, respectively, by the presentations

〈x1, x2, x3, x4, x5 | (x1x2x3x4x5)k+1x1x2x
−1
3 , . . . , (x5x1x2x3x4)k+1x5x1x

−1
2 〉,

〈x1, x2, x3, x4, x5 | (x1x2x3x4x5)k+1x1x2x3x
−1
4 , . . . , (x5x1x2x3x4)k+1x5x1x2x

−1
3 〉.

We show how Corollary 1.3 can be used to prove Theorem 1.1. Since cyclically permuting the
generators induces an automorphism we can form a semi-direct product with the cyclic group
of order 5 in the way described, for example, in [10, Section 10.2] and this yields the groups
E(7 + 5k, 5) and E(8 + 5k, 5) defined, respectively, by the presentations

〈x, t | t5, (xt−1)7+5kx−1t2〉,
〈x, t | t5, (xt−1)8+5kx−1t3〉.

Now

〈x, t | t5, (xt−1)7+5kx−1t2〉 = 〈x, t, y | t5, (xt−1)7+5kx−1t2, y−1xt−1〉
= 〈y, t | t5, y7+5kt−1y−1t2〉
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= 〈y, t | t5, y7+5kty−1t3〉 (replacing t by t−1)

= 〈y, t, s | t5, y7+5kty−1t3, st−3〉 (s = t3)

= 〈y, s | s5, y7+5ks2y−1s〉 (s2 = t6 = t)

= 〈u, t | t5, t2utu−(7+5k)〉 (s ↔ t, y = u−1) (cyclic conjugate)

and

〈x, t | t5, (xt−1)8+5kx−1t3〉 = 〈x, t, y | t5, (xt−1)8+5kx−1t3, y−1xt−1〉
= 〈t, y | t5, y8+5kt−1y−1t3〉

= 〈u, t | t5, t2utu−(8+5k)〉 (inverse, t−3 = t2, y = u).

Therefore Corollary 1.3 implies that each group in {E(7 + 5k, 5) and E(8 + 5k, 5) : k � 0} is
infinite and, given this, Theorem 1.1 now follows.

3. The amended picture and curvature

The reader is referred to [2, 12] for definitions of many of the basic terms used in this and
subsequent sections.

Suppose by way of contradiction that the relative presentation

Pn = 〈t, u | t5, t2utu−n〉 (n � 7)

is not aspherical, that is, there exists a reduced spherical picture P over Pn. Then each arc of P
is equipped with a normal orientation and labelled by an element of {u, u−1}; each corner of P
is labelled by an element of {ti : − 2 � i � 2}; reading the labels clockwise on the corners and
arcs at a given vertex yields t2utu−n (up to cyclic permutation and inversion); and, since t has
order 5 in G(Pn), the product of the sequence of corner labels encountered in an anti-clockwise
traversal of any given region of P yields the identity in G = 〈t | t5〉.

Now let D be the dual of the picture P with the labelling of D inherited from that of P .
Then D is a (spherical) diagram such that: each corner label of D is ti, where −2 � i � 2; and
each edge is oriented and labelled u or u−1. For convenience we adopt the notation

buau−1λ−1
n−1u

−1λ−1
n−2 . . . u

−1λ−1
1 u−1

for t2utu−n. Thus a = t1; b = t2; and λi = t0 (1 � i � n− 1). Each (oriented) region Δ of D
is given (up to cyclic permutation and inversion) by Figure 1(i); and an example of how the
regions are oriented is illustrated by Figure 1(iii). (In subsequent figures we will not show the
orientation of the regions or edges nor the edge labels u, u−1.) Note that the sum of the powers
of t read around any given vertex of D is congruent to 0 modulo 5.

For ease of presentation and to simplify matters further we will use λ to denote λi and μ
to denote λ−1

j (1 � i, j � n− 1) throughout what follows. This way the star graph Γ for D is
given by Figure 1(ii) with the understanding that the edges labelled λ and μ in Γ are traversed
only in the direction indicated. Thus the edge labelled λ represents the n− 1 edges, labelled
λi; and μ represents the n− 1 inverse edges. Recall that the vertex labels in D yield closed
admissible paths in Γ.

We can make the following assumptions without any loss of generality.

A1. D is minimal with respect to number of regions and so, in particular, is reduced.
A2. Subject to A1, D is maximal with respect to number of vertices of degree 2.
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Figure 1. Region Δ, bridge moves and star graph.

We introduce some further notation. If v is a vertex of D then l(v), the label of v, is the cyclic
word obtained from the corner labels of v in a clockwise direction; and d(v) denotes the degree
of v. A (v1, v2)-edge is an edge with endpoints v1 and v2; and an edge is a (θ1, θ2)-edge relative
to the region Δ if its corner labels in Δ are, in no particular order, θ1 and θ2. (Sometimes we
will simply talk of a (θ1, θ2)-edge with the understanding that the corner labels are either θ1

and θ2 or θ−1
1 and θ−1

2 .)

Lemma 3.1. If v is a vertex of D then l(v) 	= (λμ)±k for k � 2.

Proof. The proof is by induction on k. Consider the vertex of Figure 1(iii) having label
(λμ)2. Apply m = min{l1, l2} bridge moves of the type shown in Figure 1(iv) and (v). Then
each of the first m− 1 bridge moves will create and destroy two vertices of degree 2, leaving
the total number unchanged. The mth bridge move however will create two vertices of degree
2 but destroy at most 1. Since bridge moves leave the total number of regions unchanged,
we obtain a contradiction to assumption A2. Now consider the vertex of Figure 1(vi) having
label (λμ)k, where k � 3. Again apply m = min{l1, l2} bridge moves of the type shown in
Figure 1(vii) and (viii). The first such bridge move may decrease the total number of vertices
of degree 2 by 1, each subsequent bridge move creates two and destroys two until the mth
bridge which increases the number by at least 1. This produces a new diagram with at
most the same number of vertices of degree 2 as D. But applying an induction argument
to the vertex v of Figure 1(viii) where l(v) = (λμ)k−1 will yield a contradiction to A2 as
before. �

Lemma 3.2. Let v ∈ D. (i) If d(v) = 2 then l(v) = (λμ)±1 and (ii) if d(v) > 2 then l(v)
contains at least three occurrences of a±1, b±1.

Proof. Both statements follow from the fact that the sum of the corner labels is congruent
to 0mod 5 together with Lemma 3.1 for (ii) and the fact that, since D is reduced, no adjacent
corner labels are inverse to each other (that is, no sublabels of the form aa−1, bb−1, λiλ

−1
i ). �
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Figure 2. New star graph and vertex labels.

We amend D as follows. Delete all vertices of degree 2 and remove all edges that are not
(b, a)-edges relative to any region, in so doing merging the adjacent regions. This results in the
diagram K.

Lemma 3.3. If v ∈ K then d(v) � 3.

Proof. We see from Lemma 3.2 that l(v) contains at least three occurrences of a±1, b±1 and
each such occurrence contributes uniquely to d(v). �

We claim that K contains a subdiagram K0 with the following properties: (1) K0 has
connected interior and is simply connected; and (2) every connected component of K0 \K(1)

0

is homeomorphic to an open disc. If K satisfies these two properties then take K = K0. If
not then K\K(1) has a connected component L1 satisfying (1) which fails to satisfy (2). (The
merging of regions may produce open annuli.) Consider K\L1. It is the disjoint union of
subdiagrams at least one of which L2, say, satisfies (1). If L2 satisfies (2) then put L2 = K0;
if not then repeat the argument with L2\L(1)

2 instead of K\K(1) and so on. This procedure
will terminate in a finite number of steps with a subdiagram K0 satisfying conditions (1) and
(2). Observe that if Δ is a region of K0 then it follows from Lemma 3.1 that any 2-segment in
Δ when regarded as a region of D will have its endpoints on ∂Δ. (Recall that a 2-segment is
a segment where endpoints have degree greater than 2 and whose intermediate vertices each
have degree 2.)

The corner labels of K0 are obtained by taking the product of the corner labels of D used
in forming each corner of K0. (An example is shown in Figure 2(iv).) Since each corner of K0

is between two (b, a)-edges it follows that the corner labels of K0 are

ã = a(λμ)k1 (odd length)

b̃ = (μλ)k2b (odd length)

λ̃ = (λμ)k3λ (odd length)
x = ãλ (even length)

y = λb̃ (even length)

z = ãλb̃ (odd length),

(3.1)
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where ki � 0 (1 � i � 3). The star graph Γ0 for K0 is given by Figure 2(i), and the table in
Figure 2(ii) gives the power of t each corner label represents. Observe that (λμ)k for k � 1
cannot be a corner label in K0 for otherwise D would contain a subdiagram of the form shown
in Figure 2(iii) and this contradicts A1 since after bridge moves and cancellation it would be
possible to reduce the number of regions of D by at least 2.

Lemma 3.4. Let v ∈ K0. If d(v) < 6 then l(v) is one of the following:

(i) d(v) = 3 : ãxy−1 b̃μ̃z;
(ii) d(v) = 4 : ããzμ̃ b̃b̃x−1y;
(iii) d(v) = 5 : ããããã b̃b̃b̃b̃b̃ ãzx−1yμ̃ b̃x−1λ̃z−1y.

Proof. This follows from checking all reduced closed paths in Γ0 whose exponent sum is 0
modulo 5 together with the fact that equations (3.1) can be used to show that the following
paths of length 2 together with their inverses do not occur as sublabels: ãλ̃; ãy; ã−1x; ã−1z;
b̃y−1; b̃z−1; b̃−1x−1; b̃−1μ̃; λ̃x−1; λ̃μ; μ̃y; μ̃λ̃; x−1z; yz−1. For example, ãλ̃ = a(λμ)k1(λμ)k2λ =
a(λμ)k1+k2λ = ãλ = x after rewriting using equations (3.1). Indeed if ã and λ̃ are adjacent
corner labels then this would imply the existence of a non(b, a)-edge in K0. �

Convention: We will usually write a, b, λ, μ for ã, b̃, λ̃, μ̃ simply for ease of presentation.
For example, if v ∈ D has label l(v) = aλμaλμλb−1μλμ then in K0 this transforms uniquely
to (aλμ)(aλμλ)(b−1μλμ) = ãxy−1 which we write as axy−1 or as axȳ in the figures. This
is illustrated in Figure 2(iv). Moreover, when drawing diagrams we use θ̄ for θ−1, where
θ ∈ {a, b, x, y, z}.

We turn now to the regions of K0. The edges or 2-segments deleted in forming K from D
will be referred to as shadow edges and will usually be denoted by dotted edges in our figures.
The number of edges in a 2-segment will be called its length. Much use will be of the fact
that the number of edges in a region of D is n + 1. By length contradiction we mean either a
contradiction to this fact or to the fact that n � 7.

We will also use the fact that no region of K0 can contain the configuration of edges and
shadow edges shown in Figure 2(v) and (vi). To see this observe in Figure 2(v) that {φ1, φ2} ⊆
{λ, μ} forcing each θi ∈ {a±1, b±1} and any attempt at labelling forces θ2θ3 = aa−1 or bb−1, a
contradiction to D being reduced. In Figure 2(vi) each φi ∈ {λ, μ} and this produces a region
in D without corner label a±1 or b±1. We refer to the existence of each of these situations as
a basic labelling contradiction.

If Δ is a region of K0 then d(Δ) denotes the degree of Δ, that is, the number of sides
Δ has. For example, suppose Δ ∈ K0 and d(Δ) = 6. If Δ contains no shadow edges as in
Figure 3(i) then we obtain the length contradiction n + 1 = 6. Let (pq) denote the shadow
edge with endpoints p and q. If Δ contains exactly one shadow edge e then, working modulo
cyclic permutation and inversion, e ∈ {(13), (14)}. But e = (13) yields the length contradiction
n + 1 = n + 3 as shown in Figure 3(ii) since the length of (13) must be n− 1. If Δ contains
exactly two shadow edges e1 and e2 then (e1, e2) ∈ {((13), (14)), ((13), (15)), ((13), (46))}. But
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Table 1. Degree 4 curvature formulae.

c(3, 3, 3, 3) = 2π
3

c(3, 3, 5, 5) = 2π
15

c(3, 4, 5, 5) = − π
30

c(3, 3, 3, 4) = π
2

c(3, 3, 5, 6) = π
15

c(3, 4, 5, 6) = − π
10

c(3, 3, 3, 5) = 2π
5

c(3, 3, 5, 7) = 2π
105

c(3, 4, 5, 7) = − 31π
210

c(3, 3, 3, 6) = π
3

c(3, 3, 6, 6) = 0 c(3, 4, 6, 6) = −π
6

c(3, 3, 4, 4) = π
3

c(3, 4, 4, 5) = π
15

c(3, 5, 5, 5) = − 2π
15

c(3, 3, 4, 5) = 7π
30

c(3, 4, 4, 6) = 0 c(4, 4, 4, 6) = −π
6

c(3, 3, 4, 6) = π
6

c(3, 4, 4, 7) = − π
21

c(4, 4, 6, 6) = −π
3

(e1, e2) = ((13), (14)) yields the length contradiction n + 1 = 4; and (e1, e2) = ((13), (15)) or
((13), (46)) implies n + 1 = 2n (see Figure 3(iii)–(v)). Finally if Δ contains three shadow edges
e1, e2 and e3 then (e1, e2, e3) = ((13), (14), (15)) or ((13), (15), (35)) yielding a basic labelling
contradiction (see Figure 3(vi) and (vii)); or (e1, e2, e3) = ((13), (14), (46)).

Similar elementary but somewhat lengthy arguments can be used to prove the following.
(Full details can be found at http://arxiv.org/abs/1708.01194.)

Lemma 3.5. Let Δ be a region of K0. If d(Δ) � 9 then d(Δ) ∈ {4, 6, 8, 9} and Δ is given
by Figure 4(i)–(xi).

For example, it follows from Lemma 3.5 that if d(Δ) = 6 then up to cyclic permutation and
inversion Δ is given by Figure 4(xii) and (xiii). In particular, if Δ contains an (a, b)-edge or
(x, y)-edge then d(Δ) � 8.

We will use similar curvature arguments to those used in [7]. Briefly, each corner at a vertex
of degree d is given the angle 2π

d and so the curvature of each vertex is 0. Thus, if Δ is an
m-gon of K0 and the degrees of the vertices of Δ are di (1 � i � m), then the curvature of Δ
is given by

c(Δ) = c(d1, . . . , dm) = (2 −m)π + 2π
m∑
i=1

1
di
. (3.2)

(Observe that if ρ is any permutation of {1, . . . ,m} then c(Δ) = c(dρ(1), . . . , dρ(m)). This fact
will be used throughout without explicit reference.) A list of some of the c(d1, . . . , dm) used in
the paper is given in the tables below for the reader’s benefit.
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Table 2. Degree 6 curvature formulae.

c(3, 3, 3, 3, 3, 4) = −π
6

c(3, 3, 3, 4, 4, 4) = −π
2

c(3, 3, 3, 3, 4, 4) = −π
3

c(3, 3, 3, 4, 4, 5) = − 3π
5

c(3, 3, 3, 3, 4, 5) = − 13π
30

c(3, 3, 3, 4, 4, 6) = − 2π
3

c(3, 3, 3, 3, 4, 6) = −π
2

c(3, 3, 4, 4, 4, 4) = − 2π
3

4. Proof of Theorem 1.2

It was assumed by way of contradiction that there is a reduced spherical picture P over Pn.
As described in Section 3, the dual D of P was amended to produce the spherical diagram K
and then the subdiagram K0.

Suppose first K0 = K. By Lemma 3.5, K0 has no regions of degree 5 or 7 and, since the
curvature of the vertices are 0, the total curvature c(K0) is given by

c(K0) =
∑

d(Δ)=4

c(Δ) +
∑

d(Δ)=6

c(Δ) +
∑

d(Δ)�8

c(Δ).

Now suppose K0 	= K. In this case delete all vertices and edges in K\K0 to produce a spherical
diagram K1 consisting of the union of K0 and a single region Δ0 (which has essentially been
obtained by merging all the regions of K not in K0). Note that Lemma 3.5 holds for K1 and
so

c(K1) =
∑

d(Δ)=4
Δ �=Δ0

c(Δ) +
∑

d(Δ)=6
Δ �=Δ0

c(Δ) +
∑

d(Δ)�8
Δ �=Δ0

c(Δ) + c(Δ0).

An elementary argument using Euler’s formula for the sphere shows c(K0) = c(K1) = 4π and
it is this fact we seek to contradict.

The first step, given in detail in Section 5, is to define a positive curvature distribution
scheme for regions of degree 4. That is, regions Δ 	= Δ0 are located for which c(Δ) > 0, and so
d(Δ) = 4, and c(Δ) is distributed to near regions Δ̂ of Δ. (Remark. Throughout the paper Δ or
Δi will usually be used to denote regions from which positive curvature is initially transferred,
and Δ̂, Δ̂j regions that receive, and possibly distribute further, positive curvature.)

For the region Δ̂ define c∗(Δ̂) to equal c(Δ̂) plus all the positive curvature Δ̂ receives minus
all the positive curvature Δ̂ distributes as a result of the positive curvature distribution scheme
that has been defined.

After completion of the first step, the following is proved in Section 6.

Proposition 4.1. If K0 = K then c(K0) �
∑

d(Δ̂)�6 c
∗(Δ̂); or if K0 	= K then c(K1) �∑

d(Δ̂)�6

Δ̂ �=Δ0

c∗(Δ̂) + c∗(Δ0).

The second step of the proof, given in detail in Section 7, is to define a positive curvature
distribution scheme for regions Δ̂ of degree 6. That is, regions Δ̂ 	= Δ0 of degree 6 are located
for which c∗(Δ̂) > 0 and c∗(Δ̂) is distributed to near regions of Δ̂.

After completion of the second step, the following is proved in Section 8.

Proposition 4.2. If K0 = K then c(K0) �
∑

d(Δ̂)�8 c
∗(Δ̂); or if K0 	= K then c(K1) �∑

d(Δ̂)�8

Δ̂ �=Δ0

c∗(Δ̂) + c∗(Δ0).
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Figure 5. d(Δ) = 4.

After completion of the first two steps, for the third and final step the following is proved in
Sections 10 and 11.

Proposition 4.3. If d(Δ̂) � 8 and Δ̂ 	= Δ0 then c∗(Δ̂) � 0.

If K0 = K then Theorem 1.2 follows immediately since, combining the above results, we
obtain the contradiction c(K0) � 0.

If K0 	= K then noting that the positive curvature distribution schemes are exactly the
same with the proviso that if at any stage positive curvature is transferred to Δ0 then it
remains with Δ0, it follows that c(K1) � c∗(Δ0). Let d(Δ0) = k. It follows by inspection of
steps one and two above (in Sections 5–7) that the maximum amount of curvature any region
receives across an edge is π

3 . Therefore it can be seen from equation (3.2) that c∗(Δ0) �
(2 − k)π + k(2π

3 ) + k(π3 ) = 2π. This final contradiction completes the proof of Theorem 1.2.

5. Distribution of positive curvature from 4-gons

In this section we will describe the distribution of positive curvature from regions Δ 	= Δ0 of
the diagram K0 such that c(Δ) > 0. It follows from Lemma 3.5 that d(Δ) = 4 and Δ is given
by Figure 5 with neighbouring regions Δ̂i (1 � i � 4) and vertices vi (1 � i � 4) which we fix
for the remainder of this section. There are fifteen cases to consider according to which vertices
of Δ have degree 3. Our approach will be to consider neighbouring regions of Δ, the valency
and labels of their vertices and, if necessary, the neighbours of these also.

There will be exactly fourteen exceptions to the distribution of positive curvature rules given
for the fifteen cases. These are contained within six exceptional Configurations A–F and will
be fully described later in this section.

For the benefit of the reader let us indicate briefly that a general rule for distribution is to
try whenever possible to add curvature from Δ to neighbouring regions of degree greater than
4. Given this, we try to keep the number of times π

6 is exceeded to a minimum; and, given this,
to keep the number of times π

5 is exceeded to a minimum, see, for example, Figure 7(iii). When
avoidance of neighbouring regions of degree 4 is not possible we usually introduce distribution
paths from Δ to nearby regions of degree greater than 4. For example, in Figure 17(iv) there
is a distribution path of length 2 from Δ to Δ̂6; or in Figure 19(iii) there is a distribution path
of length 3 from Δ to Δ̂10. This approach turns out to be sufficient in almost all cases in terms
of compensating positive curvature by negatively curved regions. However, a more complicated
distribution scheme was required for some exceptional case and these are Configurations A–F
mentioned immediately above and treated in detail in what follows.

Notes. (1) In the figures, the upper bound of the amount of curvature transferred will
generally be indicated.

(2) It should be emphasised that whenever we identify regions, we do so modulo cyclic
permutation and inversion. For example, in what follows we will identify Δ of Figure 20(vi)
with Δ1 of Figure 31(i).
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Figure 6. d(vi) = 3 (1 � i � 4).

Figure 7. d(vi) = 3 (1 � i � 3).
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Figure 8. d(v1) = d(v2) = d(v4) = 3.

(3) Here and in what follows we use Lemma 3.4 to classify possible labelling of vertices.
(4) If K0 	= K then it is assumed Δ 	= Δ0 and if at any point positive curvature is transferred

to Δ0 then it remains with Δ0.

A complete description of the distribution of positive curvature from regions of degree 4 is
given by Figures 6–32. We give below an explanation for each case.

d(vi) = 3 (1 � i � 4). Figure 6. c(Δ) = 2π
3 is distributed as shown.

d(vi) = 3 (1 � i � 3). Figure 7. Either d(v4) > 5 and c(Δ) � π
3 ; or d(v4) = 5 and c(Δ) =

2π
5 ; or d(v4) = 4 and c(Δ) = π

2 (and distribute c(Δ) accordingly, as shown).
d(v1) = d(v2) = d(v4) = 3. Figure 8. Either d(v3) > 5 or d(v3) = 5 or d(v3) = 4.
d(v1) = d(v3) = d(v4) = 3. Figure 9. Either d(v2) > 4 or d(v2) = 4 and distribution of

c(Δ) is given by Figure 9(i)–(iii). There are two exceptions to these rules. There is an exception
to Figure 9(ii) when Δ = Δ1 of Configuration F in Figure 32(vi) and which, for convenience,
we have reproduced in Figure 9(iv) with a rotation of π/2 so that Figures 9(ii) and (iv) match
up. Thus the exceptional rule (which is again described later for Configuration F) is that in
Figure 9(iv) π

5 ,
2π
15 is added from Δ to Δ̂3, Δ̂4 instead of π

6 ,
π
6 (respectively) as in Figure 9(ii),

and the dotted lines in Figure 9(iv) indicate the changes made. The second exception is to
Figure 9(iii) and is when Δ = Δ1 of Configuration E in Figure 32(iv). Again, for convenience,
this has been reproduced (after inverting and rotating) in Figure 9(v). Thus the exceptional
rule (which is again described later for Configuration E) is that in Figure 9(v) 2π

15 ,
π
5 is added
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from Δ to Δ̂3, Δ̂4 instead of π
6 ,

π
6 (respectively) as in Figure 9(iii), and once more the dotted

lines in Figure 9(v) indicate the changes made.

d(vi) = 3 (2 � i � 4). Figure 10. Either d(v1) > 4 or d(v1) = 4.
d(v1) = d(v2) = 3. Figure 11. If d(v3) = 4 and d(v4) � 6 or d(v3) � 5 and d(v4) � 5 or

d(v3) � 6 and d(v4) = 4 then c(Δ) � c(3, 3, 4, 6) = π
6 is distributed as in Figure 11(i); otherwise

the distribution is described by Figure 11(ii)–(viii).
d(v2) = d(v3) = 3. Figure 12. If d(v1) = 4 and d(v4) � 6 or d(v1) � 5 and d(v4) � 5

or d(v1) � 6 and d(v4) = 4 then c(Δ) � π
6 is distributed as in Figure 12(i); otherwise the

distribution is described by Figure 12(ii)–(viii).
d(v3) = d(v4) = 3. Figure 13. Distribution of c(Δ) is given by Figure 13(i). There are

five exceptions to this rule. When Δ = Δ3 of Configuration A in Figure 31(ii)–(iv) and, for
convenience, Δ = Δ3 has been reproduced (after inverting and rotating) in Figure 13(ii); when
Δ = Δ of Configuration C in Figure 32(i) and Δ has been reproduced in Figure 13(iii);
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Figure 13. d(v3) = d(v4) = 3.
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and when Δ = Δ1 of Configuration E in Figure 32(iii) and Δ = Δ1 has been reproduced
(after inverting and rotating) in Figure 13(iv). Dotted lines in Figure 13(ii)–(iv) indicate the
exceptional rules, so, for example, Δ adds π

30 ,
3π
10 to Δ̂1, Δ̂3 (respectively) in Figure 13(ii)

instead of simply adding π
3 to Δ̂3 as in Figure 13(i).

d(v4) = d(v1) = 3. Figure 14. Distribution of c(Δ) is given by Figure 14(i). There are
five exceptions to this rule. When Δ = Δ3 of Configuration B in Figure 31(vi)–(viii) and, for
convenience, Δ = Δ3 has been reproduced (after inverting and rotating) in Figure 14(ii); when
Δ = Δ of Configuration D and Δ has been reproduced (after rotating) in Figure 14(iii); and
when Δ = Δ1 of Configuration F in Figure 32(v) and Δ = Δ1 has been reproduced (after
rotating) in Figure 14(iv). Dotted lines in Figure 14(ii)–(iv) indicate the exceptional rules. so,
for example, Δ adds π

30 ,
3π
10 to Δ̂2, Δ̂4 (respectively) in Figure 14(ii) instead of simply adding

π
3 to Δ̂4 as in Figure 13(i).
d(v2) = d(v4) = 4. Figures 15–19. There are four subcases.
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(1)(d(v1), d(v3)) �= (4, 4). Figure 15. Either (d(v1), d(v3)) ∈ {(> 5, 4), (5, 4), (4, > 5),
(4, 5)} and distribution of c(Δ) is given by Figure 15(i)–(vi) or d(v1) � 5 and d(v3) � 5,
c(Δ) � 2π

15 and distribution is given by Figure 15(vii)–(x).
Suppose now d(v1) = d(v3) = 4.
(2)(d(Δ̂3), d(Δ̂4)) /∈ {(4, 6), (4, 4), (6, 4)}. Figure 16. c(Δ) is distributed as shown.
(3)(d(Δ̂3), d(Δ̂4)) ∈ {(4, 6), (6, 4)}. Figure 17. In each case add π

10 from c(Δ) to each
of c(Δ̂1) and c(Δ̂2); and add π

15 from c(Δ) to each of c(Δ̂3) and c(Δ̂4). Let d(Δ̂3) = 4 and
d(Δ̂4) = 6. This is shown in Figure 17(i) in which d(u1) � 3 and d(u2) � 4. It remains to
describe the further transfer (if any) of positive curvature from c(Δ̂3).

If c(Δ̂3) � − π
15 then the π

15 from c(Δ) remains with c(Δ̂3) as in Figure 17(i); and if − π
15 <

c(Δ̂3) � 0 then π
15 + c(Δ̂3) � π

15 is added to c(Δ̂4) as in Figure 17(ii). Assume c(Δ̂3) > 0.
We now proceed according to the values of d(u1) and d(u2). If d(u1) = 4 and d(u2) = 5 then
(c(Δ̂3) = c(3, 4, 4, 5) = π

15 and) π
15 + c(Δ̂3) = 2π

15 so add π
15 to each of c(Δ̂4) and c(Δ̂6) as in

Figure 17(iii); if d(u1) = 4 = d(u2) then π
15 + c(Δ̂3) = 7π

30 so add π
15 to c(Δ̂4) and π

6 to c(Δ̂6)
as in (iv); if d(u1) = 5 and d(u2) = 4 then add π

15 + c(Δ̂3) = 2π
15 to c(Δ̂4) as in (v); if d(u1) = 3

and d(u2) � 6 then π
15 + c(Δ̂3) � 7π

30 so add π
15 to c(Δ̂4) and π

6 to c(Δ̂5) as in (vi); if d(u1) = 3
and d(u2) = 5 then π

15 + c(Δ̂3) = 9π
30 so add π

15 to c(Δ̂4) and c(Δ̂6), and add π
6 to c(Δ̂5) as

in (vii); and if d(u1) = 3 and d(u2) = 4 then π
15 + c(Δ̂3) = 6π

15 so add 2π
15 to c(Δ̂4) and 4π

15 to
c(Δ̂5) as in (viii).

Now let d(Δ̂3) = 6 and d(Δ̂4) = 4. This is shown in Figure 17(ix) where d(u3) � 3 and
d(u2) � 4. It remains to describe the further transfer (if any) of positive curvature from c(Δ̂4).
If c(Δ̂4) � − π

15 then the π
15 from c(Δ) remains with c(Δ̂4) as in Figure 17(ix); and if − π

15 <
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Figure 17. d(v2) = d(v4) = 3(subcase3).

c(Δ̂4) � 0 then π
15 + c(Δ̂4) � π

15 is added to c(Δ̂3) as in Figure 17(x). Assume c(Δ̂4) > 0. We
proceed according to the values of d(u2) and d(u3). If d(u3) = 4 and d(u2) = 5 then π

15 +
c(Δ̂4) = 2π

15 so add π
15 to each of c(Δ̂3) and c(Δ̂7) as in Figure 17(xi); if d(u3) = 4 = d(u2) then

π
15 + c(Δ̂4) = 7π

30 so add π
15 to c(Δ̂3) and π

6 to c(Δ̂7) as in (xii); if d(u3) = 5 and d(u2) = 4 then
add π

15 + c(Δ̂4) = 2π
15 to c(Δ̂3) as in (xiii); if d(u3) = 3 and d(u2) � 6 then add π

15 + c(Δ̂4) � 7π
30

to c(Δ̂8) as in (xiv); if d(u3) = 3 and d(u2) = 5 then π
15 + c(Δ̂4) = 3π

10 so add π
15 to c(Δ̂3) and

7π
30 to c(Δ̂8) as in (xv); and if d(u3) = 3 and d(u2) = 4 then π

15 + c(Δ̂4) = 6π
15 so add 2π

15 to
c(Δ̂3) and 4π

15 to c(Δ̂8) as in (xvi).
(4)d(Δ̂3) = d(Δ̂4) = 4. Figures 18 and 19. This subcase is shown in Figure 18(i) in which

d(u1) � 3, d(u2) � 4 and d(u3) � 3 and π
10 is distributed from c(Δ) to each of c(Δ̂1) and c(Δ̂2)

with 2π
15 remaining with c(Δ). If d(u1) = d(u3) = 4, d(u2) � 6 and d(Δ̂6) > 4 then distribute

this remaining 2π
15 from c(Δ) to c(Δ̂6) as shown in Figure 18(ii), noting that c(Δ̂3) � 0; or
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Figure 18. d(v2) = d(v4) = 3(subcase4).

if d(u1) = d(u3) = 4, d(u2) � 6 and d(Δ̂7) > 4 then distribute the 2π
15 from c(Δ) to c(Δ̂7) as

shown in Figure 18(ii), noting that c(Δ̂4) � 0. Assume from now on that neither of these sets
of conditions occur. Then π

15 is distributed from c(Δ) to each of c(Δ̂3) and c(Δ̂4) as shown
in Figure 18(iii). If c(Δ̂3) � − π

15 then the π
15 from c(Δ) remains with c(Δ̂3) and similarly

for c(Δ̂4), so assume from now on that c(Δ̂3) > − π
15 and c(Δ̂4) > − π

15 . It remains to describe
further transfer of positive curvature from c(Δ̂3) and c(Δ̂4) (and possibly c(Δ̂6) when d(Δ̂6) = 4
and c(Δ̂7) when d(Δ̂7) = 4).

Let d(u2) = 4. If d(u1) � 6 then add π
15 + c(Δ̂3) � π

15 to c(Δ̂6) as in Figure 18(iv); if d(u1) =
5 then add π

15 + c(Δ̂3) = 2π
15 to c(Δ̂6) if l(u1) is given by (v), or add π

15 to each of c(Δ̂5) and
c(Δ̂6) if l(u1) is given by (vi); if d(u1) = 4 then add π

15 + c(Δ̂3) = 7π
30 to c(Δ̂6) as in (vii); if

d(u1) = 3 then π
15 + c(Δ̂3) = 6π

15 so add 4π
15 to c(Δ̂5) and 2π

15 to c(Δ̂6) as in (viii); if d(u3) � 6
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Figure 19. d(v2) = d(v4) = 3(subcase4).

then add π
15 + c(Δ̂4) � π

15 to c(Δ̂7) as in (iv); if d(u3) = 5 then add π
15 + c(Δ̂4) = 2π

15 to c(Δ̂7)
if l(u3) is given by (ix), or add π

15 to each of c(Δ̂7) and c(Δ̂8) if l(u3) is given by (x); if d(u3) = 4
then add π

15 + c(Δ̂4) = 7π
30 to c(Δ̂7) as in (xi); and if d(u3) = 3 then π

15 + c(Δ̂4) = 6π
15 so add

2π
15 to c(Δ̂7) and 4π

15 to c(Δ̂8) as in (xii).
Let d(u2) = 5 and so l(u2) = a5. If d(u1) = 5 then add π

30 from c(Δ) to c(Δ̂3) = c(3, 4, 5, 5) =
− π

30 and π
30 from c(Δ) to c(Δ̂6) as in Figure 18(xiii) and (xiv); if d(u1) = 4 then add π

15 +
c(Δ̂3) = 2π

15 to c(Δ̂6) as in (xv); if d(u1) = 3 then add π
15 + c(Δ̂3) = 9π

30 to c(Δ̂5) as in (xvi);
if d(u3) = 5 then add π

30 from c(Δ) to c(Δ̂4) and π
30 from c(Δ) to c(Δ̂7) as in (xvii) and
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Figure 20. d(v1) = d(v3) = 3(subcase1).

(xviii); if d(u3) = 4 then add π
15 + c(Δ̂4) = 2π

15 to c(Δ̂7) as in (xix); and if d(u3) = 3 then add
π
15 + c(Δ̂4) = 3π

10 to c(Δ̂8) as in (xx).
Let d(u2) � 6 so that by assumption 3 � d(u1), d(u3) � 4 (since c(3, 4, 5, 6) = − π

10 ). If
d(u1) = 3 then add π

15 + c(Δ̂3) � 7π
30 to c(Δ̂5) as in Figure 18(xxi); and if d(u3) = 3 then add

π
15 + c(Δ̂4) � 7π

30 to c(Δ̂8) as in (xxii).
This leaves d(u1) = d(u3) = d(Δ̂6) = d(Δ̂7) = 4. First consider Δ̂6 as shown in Figure 19(i).

If d(u4) > 3 and d(u5) > 3 then add π
15 + c(Δ̂3) � π

15 to c(Δ̂6) � c(4, 4, 4, 6) = −π
6 as in 19(i);

if d(u4) = 3 and d(u5) > 3 then add π
15 + c(Δ̂3) + c(Δ̂6) � π

15 to c(Δ̂9) as in (ii); if d(u4) =
3 = d(u5) then π

15 + c(Δ̂3) + c(Δ̂6) � 7π
30 so add π

10 to c(Δ̂9) and 2π
15 to c(Δ̂10) as in (iii); if

d(u4) = 4, d(u5) = 3 and d(u2) > 6 then c(Δ̂3) � − π
21 so add π

21 from c(Δ) to c(Δ̂3) and the
remaining π

15 − π
21 = 2π

105 to c(Δ̂6) � − π
21 as in (iv); if d(u4) = 4, d(u5) = 3 and d(u2) = 6 then

(checking the star graph Γ0 for possible labels shows that) u2 is given by (v) in which case
add π

15 + c(Δ̂3) + c(Δ̂6) = π
15 to c(Δ̂11) as in (v); and if d(u4) > 4 and d(u5) = 3 then add

π
15 + c(Δ̂3) � π

15 to c(Δ̂6) � − π
10 as in (vi).

Now consider Δ̂7 as in Figure 19(vii). If d(u6) > 3 and d(u7) > 3 then add π
15 + c(Δ̂4) � π

15

to c(Δ̂7) � −π
6 as in 19(vii); if d(u7) = 3 and d(u6) > 3 then add π

15 + c(Δ̂6) � π
15 to c(Δ̂14)

as in (viii); if d(u7) = 3 = d(u6) then π
15 + c(Δ̂4) + c(Δ̂7) = 7π

30 so add 2π
15 to c(Δ̂13) and π

10 to
c(Δ̂14) as in (ix); if d(u7) = 4, d(u6) = 3 and d(u2) > 6 then c(Δ̂4) � − π

21 so add π
21 from c(Δ)

to c(Δ̂4) and the remaining π
15 − π

21 = 2π
105 to c(Δ̂7) � − π

21 as in (x); if d(u7) = 4, d(u6) = 3
and d(u2) = 6 then u2 is given by (xi) in which case add π

15 + c(Δ̂4) + c(Δ̂7) = π
15 to c(Δ̂12) as

in (xi); and if d(u7) > 4 and d(u6) = 3 then add π
15 + c(Δ̂4) � π

15 to c(Δ̂7) � − π
10 as in (xii).

d(v1) = d(v3) = 3. Figures 20–23. There are three subcases.
(1) ((d(v2), d(v4)) /∈ {(� 6, 5), (5,� 5)}. Figure 20. Distribution of c(Δ) is described in

Figure 20 according to possible d(v2) and d(v4). There are two exceptions to these rules.
When Δ is given by Figure 20(v), 7π

30 is added to Δ̂2 as indicated, except when Δ = Δ1 of
Configuration B in Figure 31(v,) in which case the dotted lines in Figure 20(v) indicate the
new rule, that is, π

30 ,
π
5 is added to Δ̂1, Δ̂2, respectively; and when Δ is given by Figure 20(v),
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Figure 21. d(v1) = d(v3) = 3(subcase2).
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Figure 22. d(v1) = d(v3) = 3(subcase2).
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Figure 23. d(v1) = d(v3) = 3(subcase3).

7π
30 is added to Δ̂1 as indicated, except when Δ = Δ1 of Configuration A in Figure 31(i), in
which case the dotted lines in Figure 20(vi) indicate the new rule, that is, π

5 ,
π
30 is added to

Δ̂1, Δ̂2 respectively.
(2) d(v2) � 6 and d(v4) = 5. Figures 21 and 22. If Δ is given by Figure 21(i) then

c(Δ) is distributed as shown. Otherwise l(v4) = a5 and this subcase is now considered using
Figures 21(ii)–(xx) and 22.

Let d(v2) � 6 and l(v4) = a5. Then c(Δ) � π
15 , half of which (� π

30 ) is distributed to c(Δ̂1)
and c(Δ̂4) whilst the other half is distributed to c(Δ̂2) and c(Δ̂3) (and this will be described in
the next paragraph). The distribution of 1

2c(Δ) to c(Δ̂1) and c(Δ̂4) is as follows. If d(Δ̂1) > 4
then add 1

2c(Δ) � π
30 to c(Δ̂1) as in Figure 21(ii), or if d(Δ̂1) = 4 and d(Δ̂4) > 4 then add

1
2c(Δ) � π

30 to c(Δ̂4) again as in (ii). It can be assumed therefore that Δ, Δ̂1 and Δ̂j (4 �
j � 8) are given by Figure 21(iii). We proceed according to d(u4) � 3, d(u5) � 4, d(u6) � 3 of
Figure 21(iii). If d(u6) = 3, d(u5) = 4 and d(u4) � 5 then add 1

2c(Δ) � π
30 to c(Δ̂4) � − π

30 as in
Figure 21(iv); if d(u6) = 3, d(u5) = 4 and d(u4) = 4 then add 1

2c(Δ) � π
30 to c(Δ̂4) and then add

π
30 + c(Δ̂4) � π

10 to c(Δ̂5) as in (v); if d(u6) = 3, d(u5) = 4 and d(u4) = 3 then add 1
2c(Δ) � π

30

to c(Δ̂4) and then add π
30 + c(Δ̂4) � 4π

15 to c(Δ̂6) as in (vi); if d(u6) = 3 and d(u5) = 5 then add
1
2c(Δ) � π

30 to c(Δ̂1) � π
15 and then add π

15 to c(Δ̂7) and add π
30 to c(Δ̂8) as in (vii); if d(u6) = 3

and d(u5) � 6 then add 1
2c(Δ) � π

30 to c(Δ̂1) � 0 and then add π
30 to c(Δ̂8) as in (viii). This

completes d(u6) = 3. If d(u6) = 4, d(u5) = 4 and d(v2) = 7 (note that c(3, 3, 5, 8) < 0) then
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add 1
2c(Δ) � π

105 to c(Δ̂1) � − π
21 as in (ix). Let d(u6) = 4, d(u5) = 4 and d(v2) = 6 so, in

particular, c(Δ̂1) = 0. If u6 is given by Figure 21(x) then add 1
2c(Δ) = π

30 to c(Δ̂7), so from
now on suppose that u6 is given by Figure 21(xi). If d(Δ̂8) > 4 then add 1

2c(Δ) = π
30 to Δ̂8

as shown in Figure 21(xi), so suppose from now on d(Δ̂8) = 4. Suppose that Δ̂8 is given
by Figure 21(xii). If d(u4) � 5 then add 1

2c(Δ) � π
30 to c(Δ̂4) � − π

30 as in Figure 21(xiii); if
d(u4) = 4 then add 1

2c(Δ) � π
30 to c(Δ̂4) and then add π

30 + c(Δ̂4) � π
10 to c(Δ̂5) as in (xiv);

and if d(u4) = 3 then add 1
2c(Δ) � π

30 to c(Δ̂4) and then add π
30 + c(Δ̂4) � 4π

15 to c(Δ̂6) as
in (xv). Suppose now that Δ̂8 is not given by Figure 21(xii). Then again add 1

2c(Δ) = π
30

to Δ̂8 as in Figure 21(xi). We proceed according to the degrees of the vertices w1 and w2

of Figure 21(xi). If d(w1) = d(w2) = 3 then 1
2c(Δ) + c(Δ̂8) = π

5 so add π
10 to c(Δ̂9) and π

10 to
c(Δ̂10) as shown in Figure 21(xvi); if d(w1) = 3 and d(w2) > 3 then 1

2c(Δ) + c(Δ̂8) = π
30 so add

π
30 to c(Δ̂9) as shown in (xvii); if d(w1) = 4 and d(w2) = 3 then by assumption Δ̂8 is given by
(xviii) and c(Δ̂8) = 0 so add 1

2c(Δ) + c(Δ̂8) = π
30 to c(Δ̂10) as shown; and if either d(w1) � 5

and d(w2) = 3 or d(w1) � 4 and d(w2) � 4 then add 1
2c(Δ) � π

30 to c(Δ̂8) � − π
10 as shown in

(xix). This completes d(u6) = d(u5) = 4. Finally if d(u6) � 4 and d(u5) � 5 or d(u6) � 5 and
d(u5) = 4 then add 1

2c(Δ) = π
30 to c(Δ̂1) � c(3, 4, 5, 6) = − π

10 as shown in Figure 21(xx).
The remaining 1

2c(Δ) � π
30 is distributed to c(Δ̂2) and c(Δ̂3) as follows. If d(Δ̂2) > 4 then add

1
2c(Δ) � π

30 to c(Δ̂2) as in Figure 21(ii), or if d(Δ̂2) = 4 and d(Δ̂3) > 4 then add 1
2c(Δ) � π

30

to c(Δ̂3) again as in (ii). It can be assumed therefore that Δ, Δ̂2, Δ̂3 and Δ̂j (5 � j � 8)
are now given by Figure 22(i). We proceed according to d(u1) � 3, d(u2) � 4, d(u3) � 3 of
Figure 22(i). If d(u1) = 3, d(u2) = 4 and d(u3) � 5 then add 1

2c(Δ) � π
30 to c(Δ̂3) � − π

30 as
in Figure 22(ii); if d(u1) = 3, d(u2) = 4 and d(u3) = 4 then add 1

2c(Δ) � π
30 to c(Δ̂3) and

then add π
30 + c(Δ̂3) � π

10 to c(Δ̂5) as in (iii); if d(u1) = 3, d(u2) = 4 and d(u3) = 3 then
add 1

2c(Δ) � π
30 to c(Δ̂3) and then add π

30 + c(Δ̂3) � 4π
15 to c(Δ̂6) as in (iv); if d(u1) = 3

and d(u2) = 5 then add 1
2c(Δ) � π

30 to c(Δ̂2) � π
15 and add π

15 to c(Δ̂7) and π
30 to c(Δ̂8)

as in (v); if d(u1) = 3 and d(u2) � 6 then add 1
2c(Δ) � π

30 to c(Δ̂2) � 0 and then add π
30

to c(Δ̂8) as in (vi). This completes d(u1) = 3. If d(u1) = 4, d(u2) = 4 and d(v2) = 7 then
add 1

2c(Δ) � π
105 to c(Δ̂2) � − π

21 as in (vii). Let d(u1) = 4, d(u2) = 4 and d(v2) = 6 so, in
particular, c(Δ̂2) = 0. If u2 is given by Figure 22(viii) then add 1

2c(Δ) = π
30 to c(Δ̂7), so from

now on suppose that u2 is given by Figure 22(ix). If d(Δ̂8) > 4 then add 1
2c(Δ) = π

30 to Δ̂8

as shown in Figure 22(ix), so suppose from now on d(Δ̂8) = 4. Suppose that Δ̂8 is given
by Figure 22(x). If d(u3) � 5 then add 1

2c(Δ) � π
30 to c(Δ̂3) � − π

30 as in Figure 22(xi); if
d(u3) = 4 then add 1

2c(Δ) � π
30 to c(Δ̂3) and then add π

30 + c(Δ̂3) � π
10 to c(Δ̂5) as in (xii);

and if d(u3) = 3 then add 1
2c(Δ) � π

30 to c(Δ̂3) and then add π
30 + c(Δ̂3) � 4π

15 to c(Δ̂6) as
in (xiii). Suppose now that Δ̂8 is not given by Figure 22(x). Then again add 1

2c(Δ) = π
30 to

Δ̂8 as in Figure 22(ix). We proceed according to the degrees of the vertices w3 and w4 of
Figure 22(ix). If d(w3) = d(w4) = 3 then 1

2c(Δ) + c(Δ̂8) = π
30 + π

6 = π
5 so add π

10 to c(Δ̂9) and
π
10 to c(Δ̂10) as shown in Figure 22(xiv); if d(w3) = 3 and d(w4) > 3 then 1

2c(Δ) + c(Δ̂8) = π
30

so add π
30 to c(Δ̂9) as shown in (xv); if d(w3) = 4 and d(w4) = 3 then by assumption Δ̂8 is

given by (xvi) and c(Δ̂8) = 0 so add 1
2c(Δ) = π

30 to c(Δ̂10) as shown; and if either d(w3) � 5
and d(w4) = 3 or d(w3) � 4 and d(w4) � 4 then add 1

2c(Δ) � π
30 to c(Δ̂8) � − π

10 as shown in
(xvii). This completes d(u1) = d(u2) = 4. Finally if d(u1) � 4 and d(u2) � 5 or d(u1) � 5 and
d(u2) = 4 then add 1

2c(Δ) = π
30 to c(Δ̂2) � c(3, 4, 5, 6) = − π

10 as shown in Figure 22(xviii).
(3) d(v2) = 5 and d(v4) � 5. Figure 23. If Δ is given by Figure 23(i) then add 1

2c(Δ) � π
15

to each of c(Δ̂1) and c(Δ̂2). Otherwise l(v2) = bx−1λz−1y and Δ is given by Figure 23(ii).



168 MARTIN EDJVET AND ARYE JUHÁSZ
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Figure 24. d(v1) = 3.

Here add 1
2c(Δ) � π

15 to c(Δ̂4) if d(Δ̂4) > 4, otherwise add 1
2c(Δ) � π

15 to c(Δ̂1); and add
1
2c(Δ) � π

15 to c(Δ̂3) if d(Δ̂3) > 4, otherwise add 1
2c(Δ) � π

15 to c(Δ̂2). If 1
2c(Δ) � π

15 is
added to c(Δ̂1) and d(Δ̂1) > 4 there is no further distribution of curvature from Δ̂1 and
the same statement holds for Δ̂2. This leaves the subcases d(Δ̂1) = d(Δ̂4) = 4 and d(Δ̂2) =
d(Δ̂3) = 4.

Assume first d(Δ̂1) = d(Δ̂4) = 4 in Figure 23(ii). Then Δ is given by Figure 23(iii). We
proceed according to d(u5) � 4 and d(u6) � 3. If d(u5) = 4 and d(u6) = 3 then π

15 + c(Δ̂1) � 3π
10

so add π
10 to c(Δ̂7) and π

5 to c(Δ̂8) as in Figure 23(iv); if d(u5) = 4 and d(u6) = 4 then add
1
2 ( π

15 + c(Δ̂1)) � π
15 to each of c(Δ̂7) and c(Δ̂8) if u6 is given by (v), or add π

15 + c(Δ̂1) � 2π
15 to

c(Δ̂8) if u6 is given by (vi); if d(u5) = 4 and d(u6) = 5 then c(Δ̂1) = − π
30 so add π

15 + c(Δ̂1) �
π
30 to c(Δ̂8) as in (vii); if d(u5) = 4 and d(u6) � 6 then add 1

2c(Δ) � π
15 to c(Δ̂1) � − π

10 as
in (viii); if d(u5) = 5 and d(u6) = 3 then π

15 + c(Δ̂1) � π
5 so add π

15 to c(Δ̂7) and 2π
15 to c(Δ̂8)

as in (ix); if d(u5) = 5 and d(u6) = 4 then c(Δ̂1) � − π
30 so add π

15 + c(Δ̂1) � π
30 to c(Δ̂8) as

shown in the two possibilities for u6, namely (x) and (xi); if d(u5) = 5 and d(u6) � 5 then add
1
2c(Δ) � π

15 to c(Δ̂1) � − 2π
15 as in (xii); if d(u5) > 5 and d(u6) = 3 then add π

15 + c(Δ̂1) � 2π
15

to c(Δ̂8) as in (xiii); and if d(u5) > 5 and d(u6) > 3 then add 1
2c(Δ) � π

15 to c(Δ̂1) � − π
10 as

in (xiv).
Now assume d(Δ̂2) = d(Δ̂3) = 4 in Figure 23(ii). Then Δ is given by Figure 23(xv). We

proceed according to d(u1) � 3 and d(u2) � 4. If d(u2) = 4 and d(u1) = 3 then π
15 + c(Δ̂2) � 3π

10

so add π
5 to c(Δ̂9) and π

10 to c(Δ̂10) as in Figure 23(xvi); if d(u2) = 4 and d(u1) = 4 then add
1
2 ( π

15 + c(Δ̂)) � π
15 to each of c(Δ̂9) and c(Δ̂10) if u1 is given by (xvii), or π

15 + c(Δ̂2) � 2π
15 to

c(Δ̂9) if u1 is given by (xviii); if d(u2) = 4 and d(u1) = 5 then c(Δ̂2) = − π
30 so π

15 + c(Δ̂2) � π
30

is added to c(Δ̂9) as shown in (xix); if d(u2) = 4 and d(u1) � 6 then add 1
2c(Δ) � π

15 to
c(Δ̂2) � − π

10 as in (xx); if d(u2) = 5 and d(u1) = 3 then π
15 + c(Δ̂2) � π

5 so add 2π
15 to c(Δ̂9) and

π
15 to c(Δ̂10) as in (xxi); if d(u2) = 5 and d(u1) = 4 then c(Δ̂2) = − π

30 so add π
15 + c(Δ̂2) = π

30

to c(Δ̂9) as shown in the two possibilities (xxii) and (xxiii); if d(u2) = 5 and d(u1) > 4 then add
1
2c(Δ) � π

15 to c(Δ̂2) � − 2π
15 as in (xxiv); if d(u2) > 5 and d(u1) = 3 then add π

15 + c(Δ̂2) � 2π
15

to c(Δ̂9) as in (xxv); and if d(u2) > 5 and d(u1) > 3 then add 1
2c(Δ) � π

15 to c(Δ̂2) � − π
10 as

in (xxvi).

d(v1) = 3. Figure 24. Either d(v3) = 5 or d(v4) = 5 or d(v3) = d(v4) = 4.
d(v2) = 3. Figure 25. Either d(v1) = 5 or d(v3) = 5 or d(v1) = d(v3) = 4.
d(v3) = 3. Figure 26. Either d(v1) = 5 or d(v4) = 5 or d(v1) = d(v4) = 4.
d(v4) = 3. Figures 27–30. There are four subcases.
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Figure 27. d(v4) = 3(subcase1).
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(1) (d(v1), d(v3), l(v2)) �= (4, 4, b5). Figure 27. Either d(v1) = 5 or d(v3) = 5 or d(v1) =
d(v3) = 4 but l(v2) 	= b5 and the distribution of curvature is as shown.

Assume from now on d(v1) = d(v3) = 4 and l(v2) = b5.
(2) (d(Δ̂3), d(Δ̂4)) �= (4, 4). Figure 28. c(Δ) = π

15 is distributed as shown.
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Figure 29. d(v4) = 3(subcase3).

Now assume d(Δ̂3) = d(Δ̂4) = 4 as shown in Figure 29(i). If c(Δ̂3) � − π
15 then add c(Δ) = π

15

to c(Δ̂3) or if c(Δ̂4) � − π
15 then add c(Δ) = π

15 to c(Δ̂4) as shown in Figure 29(i). Assume
c(Δ̂3) > − π

15 and c(Δ̂4) > − π
15 . There are two subcases according to d(u2) � 4.

(3) 4 � d(u2) � 5. Figure 29.
Let d(u2) = 4. If d(u1) � 6 then add c(Δ) + c(Δ̂3) � π

15 to c(Δ̂6) as in Figure 29(ii); if
d(u1) = 5 then add c(Δ) + c(Δ̂3) = 2π

15 to c(Δ̂6) if Δ̂3 is given by (iii), or add 1
2 (c(Δ) + c(Δ̂3)) =

π
15 to each of c(Δ̂5) and c(Δ̂6) if Δ̂3 is given by (iv); if d(u1) = 4 then add c(Δ) + c(Δ̂3) = 7π

30

to c(Δ̂6) as in (v); and if d(u1) = 3 then c(Δ) + c(Δ̂3) = 6π
15 so add 4π

15 to c(Δ̂5) and 2π
15 to

c(Δ̂6) as in (vi).
Let d(u2) = 5 in which case l(u2) = a5. In this case add 1

2c(Δ) = π
30 to each of c(Δ̂3) and

c(Δ̂4). If d(u1) � 5 then c(Δ̂3) � c(3, 4, 5, 5) = − π
30 and the π

30 from c(Δ) remains with c(Δ̂3)
as shown in Figure 29(vii); if d(u1) = 4 then add π

30 + c(Δ̂3) = π
10 to c(Δ̂6) as in (viii); and

if d(u1) = 3 then add π
30 + c(Δ̂3) = 4π

15 to c(Δ̂5) as in (ix). If d(u3) � 5 then c(Δ̂4) � − π
30

and the π
30 from c(Δ) remains with c(Δ̂4) as shown in Figure 29(vii); if d(u3) = 4 then add

π
30 + c(Δ̂4) = π

10 to c(Δ̂7) as in (x); and if d(u3) = 3 then add π
30 + c(Δ̂4) = 4π

15 to c(Δ̂8) as in
(xi).

(4) d(u2) � 6. Figure 30. If d(u1) > 4 then add c(Δ) = π
15 to c(Δ̂3) � − π

10 ; or if d(u3) > 4
then add c(Δ) = π

15 to c(Δ̂4) � − π
10 as in Figure 30(i). If d(u1) = 3 then add c(Δ) + c(Δ̂3) �

π
15 + π

6 = 7π
30 to c(Δ̂5) as shown in Figure 30(ii); or if d(u3) = 3 then add c(Δ) + c(Δ̂4) �

7π
30 to c(Δ̂8) as shown in Figure 30(ii). This leaves d(u1) = d(u3) = 4. If d(u2) � 7 then add
1
2c(Δ) = π

30 to each of c(Δ̂3) � − π
21 and c(Δ̂4) � − π

21 as in Figure 30(iii), so assume d(u2) = 6.
If d(Δ̂6) > 4 then add c(Δ) = π

15 to c(Δ̂6), or if d(Δ̂7) > 4 then add c(Δ) = π
15 to c(Δ̂7) as
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Figure 30. d(v4) = 3(subcase4).

in Figure 30(iv). It can be assumed d(Δ̂6) = d(Δ̂7) = 4 which forces l(u2) = aaxy−1xy−1 as
shown in Figure 30(v). If d(u4) > 3 and d(u5) > 3 in Figure 30(v) then add c(Δ) + c(Δ̂3) = π

15

to c(Δ̂6) � −π
6 as shown; if d(u4) = 3 and d(u5) > 3 then add c(Δ) + c(Δ̂3) + c(Δ̂6) � π

15

to c(Δ̂9) as in (vi); if d(u4) = d(u5) = 3 then c(Δ) + c(Δ̂3) + c(Δ̂6) = 7π
30 and so add π

10 to
c(Δ̂9), π

15 to c(Δ̂10) and π
15 to c(Δ̂11) as in (vii); and if d(u4) > 3 and d(u5) = 3 then add

c(Δ) + c(Δ̂3) + c(Δ̂6) = π
15 to c(Δ̂11) as in (viii).

This completes the description of distribution of curvature from Δ when d(Δ) = 4 except for
six exceptional configurations which we now describe and for which there is an amendment to
the rules given above. (Indeed the amendments, as they relate to Figures 9, 13, 14 and 20 have
already been described. In what follows we detail the amendments as they relate to Figures 31
and 32.)

Configuration A. This is shown in Figure 31(i) in which c(Δ1) = 7π
30 and c(Δ3) = π

3 . The
region Δ1 in Figure 31(i) corresponds to the region Δ in Figure 20(vi); and the region Δ3 in
Figure 31(i)–(iv) corresponds to the region Δ in Figure 13(ii). The new rule is: add π

5 from
c(Δ1) to c(Δ̂) and add π

30 from c(Δ1) to c(Δ̂1) as shown by dotted lines in Figure 31(i) except
when the neighbouring regions of Δ3 are given by Figure 31(ii)–(iv). There it is assumed that
Δ̂2 receives π

5 from Δ4; and so the region Δ4 of Figure 31(ii) and (iii) corresponds to the region
Δ of Figure 7(iii), and the region Δ4 of Figure 31(iv) corresponds to the region Δ of Figure
10. When Δ3 is given by 31(ii)–(iv) add all of c(Δ1) = 7π

30 to c(Δ̂) (as shown in Figure 31(i))
as usual and the new rule is as follows: add 3π

10 from c(Δ3) to c(Δ̂) and add π
30 from c(Δ3) to

c(Δ̂3) as shown by dotted lines. Moreover, if d(Δ̂3) = 4 then add π
30 + c(Δ̂3) = π

10 to c(Δ̂4) as
shown by dotted line in Figure 31(ii). Note that it is being assumed d(Δ̂3) 	= 4 in Figure 31(iii)
and (iv), in which case Δ̂3 is not given by Figure 4(ii) or (iii) and so d(Δ̂3) � 8.

Configuration B. This is shown in Figure 31(v) in which c(Δ1) = 7π
30 and c(Δ3) = π

3 . The
region Δ1 in Figure 31(v) corresponds to the region Δ in Figure 20(v); and the region Δ3 in
Figure 31(v)–(viii) corresponds to the region Δ in Figure 14(ii). The new rule is: add π

5 from
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c(Δ1) to c(Δ̂) and add π
30 from c(Δ1) to c(Δ̂1) as shown by dotted lines in Figure 31(v) except

when the neighbouring regions of Δ3 are given by Figure 31(vi)–(viii). There it is assumed
that Δ̂2 receives π

5 from Δ4; and so the region Δ4 in Figure 31(vi) and (vii) corresponds to the
region Δ in Figure 7(iii), and the region Δ4 in Figure 31(viii) corresponds to the region Δ in
Figure 8(iv). When Δ3 is given by Figure 31(vi)–(viii) add all of c(Δ1) = 7π

30 to c(Δ̂) (as shown
in Figure 31(v)) as usual and the new rule is as follows: add 3π

10 from c(Δ3) to c(Δ̂) and add π
30

as shown by dotted lines. Moreover, if d(Δ̂3) = 4 then add π
30 + c(Δ̂3) = π

10 to c(Δ̂4) as shown
by dotted line in Figure 31(vi). Note that it is being assumed d(Δ̂3) 	= 4 in Figure 31(vii) and
(viii), in which case Δ̂3 is not given by Figure 4(ii) or (iii) and so d(Δ̂3) � 8.

Configurations C and D. These are shown in Figure 32(i) and (ii). The region Δ of
Figure 32(i) corresponds to the region Δ of Figure 13(iii); and the region Δ of Figure 32(ii)
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corresponds to the region Δ of Figure 14(iii). In both cases the new rule (given by dotted lines)
is: add 3π

10 from c(Δ) to c(Δ̂) and add π
30 from c(Δ) to c(Δ̂1).

Configurations E and F. This is shown in Figure 32. There are two cases, namely when
d(v) � 4 and when d(v) = 3 for the vertex v indicated. If d(v) � 4 then the region Δ1 in
Figure 32(iii) corresponds to the region Δ of Figure 13(iv); and the region Δ1 of Figure 32(v)
corresponds to the region Δ in Figure 14(iv). If d(v) = 3 then the region Δ1 in Figure 32(iv)
corresponds to the region Δ in Figure 9(v); and the region Δ1 in Figure 32(vi) corresponds
to the region Δ in Figure 9(iv). For Figure 32(iii) and (v) the new rule is as follows: instead
of adding c(Δ1) � π

3 to c(Δ̂), as in Figures 13(i) and 14(i), add min{c(Δ1), π
5 } from c(Δ1) to

c(Δ̂1) via Δ̂ across the edge shown; and add (at most) 2π
15 from c(Δ1) to c(Δ̂). For Figure 32(iv)

and (vi) the new rule is as follows: instead of adding π
6 from c(Δ1) to each of c(Δ̂) and c(Δ̂1),

as in Figure 9(ii) and (iii), add π
5 from c(Δ1) to c(Δ̂1) and add 2π

15 from c(Δ1) to c(Δ̂) as shown
by the dotted lines. Note that d(Δ̂1) � 8 in Figure 32(iii)–(vi).

6. Proof of Proposition 4.1

Let Δ̂ (	= Δ0) be a region that receives positive curvature in Figures 6–32. Then inspection of
these figures shows d(Δ̂) � 6 in Figures 6– 12; 13(i), (iii), (iv); 14(i), (iii), (iv); 15 and 16; 20;
24–28 and 32.

Lemma 6.1. Let Δ̂ be a region of degree 4 that receives positive curvature across at least
one edge in Figures 6–32. Then one of the following holds.

(i) Δ̂ occurs in Figure 17, 18 or 19, in which case we say that Δ̂ is a T24 region.
(ii) Δ̂ occurs in Figure 21, 22 or 23, in which case we say that Δ̂ is a T13 region.
(iii) Δ̂ occurs in Figure 29 or 30, in which case we say that Δ̂ is a T4 region.
(iv) Δ̂ = Δ̂3 of Figure 31(ii) = Δ̂ of Figure 13(ii).
(v) Δ̂ = Δ̂3 of Figure 31(vi) = Δ̂ of Figure 14(ii).

Proof. The result for Figures 6–30 and 32 follows immediately from the statement preceding
the lemma. To complete the proof observe that all regions in Figure 31 other than Δ̂3 of (ii)
and (vi) that receive positive curvature have degree greater than 4. �

We remark here that if Δ̂ is a T24 region then an inspection of Figures 17–19 shows that
there are essentially six cases for Δ̂, namely Δ̂ = Δ̂3 of Figure 17(i) and this is again shown
in Figure 33(i); Δ̂ = Δ̂4 of Figure 17(ix), see Figure 33(ii); Δ̂ = Δ̂3 or Δ̂4 of Figure 18(iii),
see Figure 33(iii); Δ̂ = Δ̂6 of Figure 19(i) for which it is no longer assumed d(u4) > 3 or
d(u5) > 3, see Figure 33(iv); or Δ̂ = Δ̂7 of Figure 19(vii) for which it is no longer assumed
d(u6) > 3 or that d(u7) > 3, see Figure 33(v). If Δ̂ is a T13 region then an inspection of
Figures 21– 23 shows that there are six cases for Δ̂, namely Δ̂ = Δ̂1 of Figure 21(iii) but with
d(v2) � 5 to take Figure 23(iii)–(xiv) into account, see Figure 33(vi); Δ̂ = Δ̂4 of Figure 21(iii),
see Figure 33(vi); Δ̂ = Δ̂8 of Figure 21(xi) under the assumption that d(Δ̂8) = 4 and that Δ̂8

is not given by Figure 21(xii), see Figure 33(vii); Δ̂ = Δ̂2 of Figure 22(i) but with d(v2) � 5
to take Figure 23(xv)–(xxvi) into account, see Figure 33(viii); Δ̂ = Δ̂3 of Figure 22(i), see
Figure 33(viii); or Δ̂ = Δ̂8 of Figure 22(ix) under the assumption that d(Δ̂8) = 4 and that Δ̂8

is not given by Figure 22(x), see Figure 33(ix). If Δ̂ is a T4 region then inspecting Figures 29
and 30 shows that there are three cases for Δ̂, namely Δ̂ = Δ̂3 or Δ̂4 of Figure 29(i), see
Figure 33(x); or Δ̂ = Δ̂6 of Figure 30(v) where it is no longer assumed d(u4) > 3 or d(u5) > 3,
see Figure 33(xi). The two remaining possibilities for Δ̂, namely Δ̂ = Δ̂3 of Figure 31(ii) and
(vi) are given by Figure 33(xii) and (xiii).
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Figure 33. Curvature to degree 4 regions.

Lemma 6.2. Let Δ̂ be a region of degree 4 that receives positive curvature across at least
one edge. Then one of the following occurs:

(i) c∗(Δ̂) � 0;
(ii) c∗(Δ̂) > 0 is distributed to a region of degree greater than 4;
(iii) c∗(Δ̂) > 0 is distributed to a region Δ′ of degree 4 and either c∗(Δ′) � 0 or c∗(Δ′) > 0

is distributed to a region of degree greater than 4.

Proof. Let d(Δ̂) = 4. By Lemma 6.1, Δ̂ is a T24, T13 or T4 region or Δ̂ = Δ̂3 of Figure 31(ii)
and (vi). We divide the proof of the lemma into two parts. The first deals with the cases when
Δ̂ receives positive curvature across exactly one edge and the second part deals with the cases
in which Δ̂ receives positive curvature across at least two edges.

If Δ̂ receives positive curvature across exactly one edge then we see by inspection of
Figures 17–19, 21–23, 29 and 30, 31(ii) and (vi) that in all cases either c∗(Δ̂) � 0 or c∗(Δ̂) is
distributed from Δ̂ to a neighbouring region of degree greater than 4 except when Δ̂ is given
by Figures 19, 21(xi), 22(ix) or 30(v)–(viii) where c∗(Δ̂) may initially be distributed further
to a region Δ′ of degree 4. But in each of these cases either c∗(Δ′) � 0 (under the assumption
that Δ′ receives positive curvature across exactly one edge – the case when Δ′ may receive
across more than one edge is considered below) or c∗(Δ′) is again distributed to a region of
degree greater than 4.

Now suppose that Δ̂ receives positive curvature across at least two edges. An inspection
of the labelling and degrees of the vertices in each of these 17 possibilities for Δ̂ shown
in Figure 33 immediately rules out the following combinations: a T24 region with a T24; a
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Figure 34. Curvature across more than one edge.

T24 with a T4; a T4 with a T4; and either Figure 33(xii) or 33(xiii) with any of the other
sixteen possibilities. For example, Δ of Figure 33(viii) cannot coincide with the inverse of
Δ4 of (xii) as the degrees of the b-corner vertices differ. This leaves the possibility that
at least two T13 regions coincide or a T13 coincides with a T24 or a T13 coincides with
a T4.

Suppose that at least two T13 regions coincide. An inspection of the six T13 regions of
Figure 33(vi)–(ix) shows that all combinations are immediately ruled out by the labelling and
degree of vertices except for three cases. The first case is Δ̂ = Δ̂4 of Figure 33(vi) = Δ̂3 of
Figure 33(vii). This, for example, forces l(u5) = ybx−1w in Figure 33(vi), in particular, d(u5) >
4. But observe that if Δ̂4 has degree 4 and receives positive curvature from Δ in Figures 21–
23 then d(u5) = 4, a contradiction. The second case is Δ̂ = Δ̂8 of Figure 33(vii) = Δ̂8 of
Figure 33(ix). But this forces l(v2) = bx−1a−1ybw in Figure 33(vii), and the fact that d(v2) = 6
then forces l(v2) = bx−1a−1ybb, a label whose t-exponent sum is equal to 6, a contradiction.
The third case is Δ̂ = Δ̂1 of Figure 33(vi) = Δ̂2 of Figure 33(viii). This case can occur and
is shown in Figure 34(i). It follows that a combination of more than two T13 regions cannot
occur.

Consider Figure 34(i) in which Δ̂ receives positive curvature from the regions Δ1 and Δ2 each
contributing at most π

15 to c(Δ̂). (Note that we use Δ1,Δ2 and not Δ as before to denote regions
from which positive curvature is distributed.) Let d(w1) > 5 and d(w2) > 5. If d(u) > 3 then
c∗(Δ̂) � c(3, 4, 6, 6) + 2( π

30 ) < 0; and if d(u) = 3 then c(Δ̂) + 2( π
30 ) � c(3, 3, 6, 6) + 2( π

30 ) = π
15

so add π
30 to each of c( ˆ̂Δ1), c(

ˆ̂Δ2) as shown in Figure 34(ii). Let d(w1) > 5 and d(w2) = 5.
If d(u) > 3 then c∗(Δ̂) � c(3, 4, 5, 6) + π

30 + π
15 = 0; and if d(u) = 3 then c(Δ̂) + π

30 + π
15 �

c(3, 3, 5, 6) + π
30 + π

15 = π
6 so add 2π

15 to c( ˆ̂Δ1) and π
30 to c( ˆ̂Δ2) as shown in Figure 34(iii). Let

d(w1) = 5 and d(w2) > 5. If d(u) > 3 then c∗(Δ̂) � c(3, 4, 5, 6) + π
15 + π

30 = 0; and if d(u) = 3

then c(Δ̂) + π
15 + π

30 � c(3, 3, 5, 6) + π
15 + π

30 = π
6 so add π

30 to c( ˆ̂Δ1) and 2π
15 to c( ˆ̂Δ2) as shown

in Figure 34(iv). This leaves d(w1) = d(w2) = 5. If d(u) > 4 then c∗(Δ̂) � c(3, 5, 5, 5) + 2( π
15 ) =

0; if d(u) = 4 then c(Δ̂) + 2( π
15 ) = c(3, 4, 5, 5) + 2( π

15 ) = π
10 so add π

15 to c( ˆ̂Δ1) and π
30 to c( ˆ̂Δ2)

as shown in Figure 34(v) and (vi); and if d(u) = 3 then c(Δ̂) + 2( π
15 ) � c(3, 3, 5, 5) + 2π

15 = 4π
15
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so add 2π
15 to c( ˆ̂Δ1) and 2π

15 to c( ˆ̂Δ2) as shown in Figure 34(vii). Observe that d( ˆ̂Δ1) � 6 and

d( ˆ̂Δ2) � 6 in Figure 34(ii)–(vii).
Now suppose that a T4 region and a T13 region coincide. Again an inspection of Figure 33

of the labelling and degrees of the vertices involved immediately rules out all combinations
except for three cases. The first case is Δ̂3 of Figure 33(x) with Δ̂8 of Figure 33(vii), but
this forces Δ̂8 to be given by Figure 21(xii), a contradiction; and the second case is Δ̂4 of
Figure 33(x) with Δ̂8 of Figure 33(ix), but this forces Δ̂8 to be given by Figure 22(x), a
contradiction. The third case is when Δ̂ = Δ̂6 of Figure 33(xi) and Δ̂ = Δ̂8 of Figure 33(ix).
But then c∗(Δ̂) � c(4, 4, 6, 6) + π

15 + π
30 < 0. Note that we have also shown that a T4 region

coincides with at most one T13 region.
Finally suppose that a T24 region and a T13 region coincide. An inspection of the 36 possible

combinations immediately rules out all but the following 10 cases. If Δ̂ = Δ̂3 of Figure 33(i)
or 33(iii) and Δ̂ = Δ̂8 of Figure 33(vii) then this forces Δ̂8 to be given by Figure 21(xii),
a contradiction; or if Δ̂ = Δ̂4 of Figure 33(ii) or 33(iii) and Δ̂ = Δ̂8 of Figure 33(ix) then
this forces Δ̂8 to be given by Figure 22(x), a contradiction. If Δ̂ = Δ̂6 of Figure 33(iv) and
Δ̂ = Δ̂8 of Figure 33(ix), or if Δ̂ = Δ̂7 of Figure 33(v) and Δ̂ = Δ̂8 of Figure 33(vii) then
c∗(Δ̂) � c(4, 4, 6, 6) + π

15 + π
30 < 0.

This leaves Δ̂ = Δ̂6 of Figure 33(iv) and either Δ̂ = Δ̂1 of 33(vi) or or Δ̂ = Δ̂2 of 33(viii);
or Δ̂ = Δ̂7 of Figure 33(v) and again either Δ̂ = Δ̂1 of 33(vi) or Δ̂ = Δ̂2 of 33(viii). Observe
that if Δ̂6 of Figure 33(iv) = Δ̂1 of 33(vi) or if Δ̂6 of Figure 33(iv)= Δ̂2 of 33(viii) then l(u2) =
y−1a2xb−1w in Figure 33(iv) and so d(u2) � 7, and this is shown in Figure 34(viii). Moreover
if Δ̂7 of Figure 33(v) = Δ̂1 of 33(vi) or if Δ̂7 of Figure 33(v)= Δ̂2 of 33(viii) then l(u2) =
b−1y−1a2xw in Figure 33(v) and again d(u2) � 7, and this is shown in Figure 34(ix). It follows
in both Figure 34(viii) and (ix) that c(Δ̂1) � c(3, 4, 4, 7) = − π

21 and c(Δ2) � c(3, 3, 5, 7) = 2π
105 .

In both configurations π
21 is added from c(Δ1) = π

15 to c(Δ̂1) and the remaining π
15 − π

21 = 2π
105

to Δ̂ as shown. If Δ̂ does not receive positive curvature from Δ3 then c∗(Δ̂) � c(3, 4, 4, 7) +
2( 2π

105 ) < 0 so it can be assumed without any loss that Δ̂ receives from Δ1 (via Δ̂1), Δ2

and Δ3. But then Δ̂ = Δ̂2 of Figure 33(viii) forces d(u) � 5 in Figure 34(viii), and Δ̂ = Δ̂1

of Figure 33(vi) forces d(u) � 5 in Figure 34(ix); therefore in each case c∗(Δ̂ � c(3, 4, 5, 7) +
1
2c(3, 3, 5, 5) + 2( 2π

105 ) < 0. �

Proposition 4.1 follows immediately from Lemma 6.2 together with the fact that all
possibilities for distribution of curvature from a region of degree 4 have been covered by
Figures 6–32.

We end this section with a summary that will be helpful in subsequent sections.

Note. In Figure 35(i) the maximum amount of curvature, denoted by c(u, v), distributed
across an edge ei with endpoints u, v according to the description of curvature given in
Figures 6–32 and 34 is shown for each choice of corner labels. The list excludes (b, a)-edges
and excludes the (x, y)-edges of Figures 13 and 14. In Figure 35(ii) and (iii) c(u, v) is shown
when at least one of d(u), d(v) is greater than 4 apart from the two exceptional cases shown
in (iv) and (v) (see Figure 23(xvi) and (iv)). The integers shown are multiples of π

30 with 7 or
5, 4 or 2 meaning that if c(u, v) < 7π

30 ,
2π
15 then c(u, v) = π

6 ,
π
15 , respectively. This will be used

throughout what follows often without explicit reference.

7. Distribution of positive curvature from 6-gons

We turn now to step 2 of the proof of Theorem1.2 as described in Section 4. Let d(Δ̂) = 6 and
so Δ̂ is given by Figure 4(xii) and (xiii). In Figure 36 we fix the labelling of the six neighbours
Δ̂i (1 � i � 6) of Δ̂ as shown. We consider regions Δ̂ (	= Δ0) of degree 6 that have received
positive curvature in step 1 of Sections 5 and 6.
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Figure 35. Curvature distribution maxima.

Figure 36. Curvature from degree 6 regions.

Again for the benefit of the reader let us indicate briefly that a general rule for distribution
is to try whenever possible to add the positive curvature from Δ̂ to neighbouring regions of
degree greater than 6. It turns out that this is not possible for exactly four cases, namely, Δ̂1

of Figure 36(i) and (x); and Δ̂2 of Figures 37(iv) and 38(iv). These four exceptions are dealt
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Table 3. c(ui, ui+1) for regions of degree 6.

d(ui) d(ui+1) c(u1, u2) c(u2, u3) c(u3, u4) c(u4, u5) c(u5, u6) c(u6, u1)

3 3 0 0 0 6 0 0

3 4 0 3 0 0 0 2

4 3 0 0 0 0 7 0

3 5 0 2 2 0 0 0

5 3 0 2 2 2 2 0

3 6+ 0 2 2 2 0 0

6+ 3 0 2 2 2 2 0

4 4 7 0 0 0 0 0

4 5 2 0 0 2 0 0

5 4 2 2 0 0 4 0

4 6+ 4 0 1 0 2 0

6+ 4 2 0 0 0 1 4

5+ 5+ 1 0 0 1 1 0

with in greater detail in the next section. In all other cases in Figures 36 and 38 the curvature
is added to a region of degree at least 8.

First assume that Δ̂ is not Δ̂1 of Figure 31(i) (Configuration A) or Figure 31((v)
(Configuration B). Then checking the distribution of curvature described in Figures 6–32 and
34 yields Table 3 in which vertex subscripts are modulo 6; the entries under c(ui, ui+1) are
multiples of π

30 and denote the maximum amount of curvature that Δ̂ can receive across the
edge with endpoints ui, ui+1 according to Figure 35; and 5+, 6+ means � 5, � 6. Moreover
Table 3 applies to Δ̂ both of Figure 4(xii) and (xiii).

Notes. (1) (See Figures 4 and 36.) d(u1) = 3 (⇒ d(Δ̂1) > 4, d(Δ̂2) > 4) ⇒ c(u1, u2) =
c(u6, u1) = 0; d(u2) = 3 ⇒ c(u1, u2) = 0; d(u2) = 4 ⇒ c(u2, u3) = 0; d(u5) = 3 ⇒ c(u5, u6) =
0; and d(u5) = 4 ⇒ c(u4, u5) = 0.

(2) c(u1, u2) > 0 and c(u2, u3) > 0 ⇒ (Table 3) c(u1, u2) + c(u2, u3) � 2π
15 + π

15 and since
c(u1, u2) � 7π

30 , c(u2, u3) � π
10 we have c(u1, u2) + c(u2, u3) � 7π

30 .
(3) c(u4, u5) > 0 and c(u5, u6) > 0 ⇒ c(u4, u5) + c(u5, u6) � π

15 + 2π
15 and since c(u4, u5) � π

5 ,
c(u5, u6) � 7π

30 we have c(u4, u5) + c(u5, u6) � 7π
30 .

(4) Let d(u5) = 5, d(u6) = 4. If c(u5, u6) = 2π
15 then checking l(u5), l(u6) shows c(u4, u5) = 2π

15
(see Figure 23(vi) and (xviii)); moreover (see Figure 35(ii) and (iii)) if c(u5, u6) 	= 2π

15 then
c(u5, u6) = π

15 .

In what follows much use will be made of Lemma 3.4 when determining the vertex labels
and Table 3 when determining c(u, v).

Lemma 7.1. If Δ̂ is given by Figure 4(xii)–(xiii) (with the assumption that Δ̂ is not Δ̂1 of
Figure 31) and Δ̂ receives positive curvature across at least one edge then c∗(Δ̂) � 2π

15 and if

c∗(Δ̂) > 0 then Δ̂ is given by one of the regions of Figure 36.

Proof. It follows from Table 3 and Notes 1–4 above that c∗(Δ̂) � c(Δ̂) + (c(u1, u2) +
c(u2, u3))+ c(u3, u4) + (c(u4, u5)+ c(u5, u6))+ c(u6, u1) � c(Δ̂)+ 7π

30 + π
15 + 7π

30 + 2π
15 = c(Δ̂) +

2π
3 . Therefore if Δ̂ has at most two vertices of degree 3 then c∗(Δ̂) � c(3, 3, 4, 4,

4, 4) + 2π
3 = 0.
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Let Δ̂ have exactly three vertices of degree 3 so that c(Δ̂) � −π
2 . If d(u1) = 3 then

c(u1, u2) = c(u6, u1) = 0 and c∗(Δ̂) � −π
2 + π

10 + π
15 + 7π

30 < 0, so assume d(u1) � 4. If d(u2) =
3 then c(u1, u2) = 0 so if d(u6) � 6 then c∗(Δ̂) � c(3, 3, 3, 4, 4, 6) + π

10 + π
15 + 7π

30 + 2π
15 < 0;

otherwise c(u6, u1) = π
15 and c∗(Δ̂) � −π

2 + π
10 + π

15 + 7π
30 + π

15 < 0; so assume d(u2) � 4. This
leaves four subcases. First let d(u3) = d(u4) = d(u5) = 3. Then c(u3, u4) = c(u5, u6) = 0.
Moreover if d(u6) < 6 then c(u6, u1) = 0 and c∗(Δ̂) � −π

2 + 7π
30 + π

5 = 0; and if d(u6) � 6 then
c∗(Δ̂) � c(3, 3, 3, 4, 4, 6) + 7π

30 + π
5 + 2π

15 < 0. Let d(u3) = d(u4) = d(u6) = 3. Then c(u2, u3) =
π
15 , c(u3, u4) = 0, c(u4, u5) + c(u5, u6) � 7π

30 and c(u6, u1) = π
15 . If either d(u1) > 4 or d(u2) > 4

then c(u1, u2) � 2π
15 and c∗(Δ̂) � c(3, 3, 3, 4, 4, 5) + π

2 < 0; otherwise d(u1) = d(u2) = 4 which
implies c(u2, u3) = 0 and the labelling (of u1, u2 and u6) either forces c(u1, u2) = 0 and
c∗(Δ̂) � −π

2 + 3π
10 < 0 or forces c(u6, u1) = 0 and c∗(Δ̂) � −π

2 + 7π
30 + 7π

30 < 0. Let d(u3) =
d(u5) = d(u6) = 3. Then c(u4, u5) = π

15 , c(u5, u6) = 0 and c(u6, u1) = π
15 . Therefore c∗(Δ̂) �

−π
2 + 7π

30 + π
15 + π

15 + π
15 < 0. Finally let d(u4) = d(u5) = d(u6) = 3. Then c(u5, u6) = 0 and

c(u6, u1) = π
15 . If d(u1) > 4 or d(u2) > 4 then c(u1, u2) = 2π

15 and c∗(Δ̂) � − 3π
5 + 2π

15 + π
15 +

π
15 + π

5 + π
15 < 0; otherwise d(u1) = d(u2) = 4 so c(u2, u3) = 0 and the labelling either forces

c(u1, u2) = 0 and c∗(Δ̂) � −π
2 + π

3 < 0 or forces c(u6, u1) = 0 and c∗(Δ̂) � −π
2 + 7π

30 + π
15 +

π
5 = 0.

Now let Δ̂ have exactly four vertices of degree 3 so that c(Δ̂) � −π
3 . There are fifteen cases

to consider. In fact if (d(u1), d(u2), d(u3), d(u4), d(u5), d(u6)) ∈ {(3, 3, 3, 3, ∗, ∗), (3, 3, 3, ∗, 3, ∗),
(3, 3, 3, ∗, ∗, 3), (3, 3, ∗, ∗, 3, 3), (3, ∗, 3, 3, 3, ∗), (3, ∗, 3, 3, ∗, 3), (3, ∗, 3, ∗, 3, 3), (3, ∗, ∗, 3, 3, 3),
(∗, 3, 3, 3, 3, ∗), (∗, 3, 3, 3, ∗, 3), (∗, 3, 3, ∗, 3, 3)} then a straightforward check using Table 3 and
Notes 1–4 shows c∗(Δ̂) � −π

3 + π
3 = 0. Let d(u1) = d(u2) = d(u4) = d(u5) = 3. Then

c(u1, u2) = c(u5, u6) = c(u6, u1) = 0. If d(u3) > 4 then c∗(Δ̂) � − 13π
30 + 11π

30 < 0; otherwise
d(u3) = 4 forcing c(u3, u4) = 0 and c∗(Δ̂) � −π

3 + 3π
10 < 0. Let d(u1) = d(u2) = d(u4) =

d(u6) = 3. Then c(u1, u2) = c(u6, u1) = 0. If d(u3) > 4 then c∗(Δ̂) � − 13π
30 + 2π

5 < 0;
otherwise d(u3) = 4 forcing c(u3, u4) = 0 and c∗(Δ̂) � −π

3 + π
3 = 0. Let d(u2) = d(u4) =

d(u5) = d(u6) = 3. Then c(u1, u2) = c(u5, u6) = 0 and c(u6, u1) = π
15 . If d(u1) > 4 or d(u3) > 4

then c∗(Δ̂) � − 13π
30 + 13π

30 = 0, so assume d(u1) = d(u3) = 4. Then c(u3, u4) = 0 and l(u1)
either forces c(u6, u1) = 0 and c∗(Δ̂) � −π

3 + 3π
10 < 0 or Δ̂ is given by Figure 36(i) or (x)) in

which the numbers assigned to each edge is the value of c(ui, ui+1) in multiples of π
30 and so

c∗(Δ̂) � −π
3 + π

10 + π
5 + π

15 = π
30 . (Note that if c∗(Δ̂) > 0 then Δ̂ must receive π

15 from Δ̂6

and, since d(Δ̂5) > 4, this forces Δ̂6 = Δ where Δ is given by Figure 16(i) which in turn forces
l(u) = b−1z−1λ in Figure 36(i), and l(u) = bμz in Figure 36(x); and Δ̂ must receive π

5 from Δ̂4.)
This leaves the case d(uj) = 3 (3 � j � 6). Then c(u3, u4) = c(u5, u6) = 0 and c(u6, u1) = π

15 .
If d(u1) � 5 and d(u2) � 5 then c∗(Δ̂) � − 8π

15 + π
2 < 0. If d(u1) = 4 and d(u2) = 5 or d(u1) � 5

and d(u2) = 4 then c(u1, u2) = π
15 and c∗(Δ̂) � c(3, 3, 3, 3, 4, 5) + π

15 + π
10 + π

5 + π
15 = 0; and

if d(u1) = 4 and d(u2) � 6 then c∗(Δ̂) � c(3, 3, 3, 3, 4, 6) + 2π
15 + π

10 + π
5 + π

15 = 0. Let d(u1) =
d(u2) = 4 so c(u2, u3) = 0. Then l(u1) either forces c(u1, u2) = 0 and c∗(Δ̂) � −π

3 + π
5 + π

15 < 0
or Δ̂ is given by Figure 36(ii) or (xi) where c∗(Δ̂) � −π

3 + 7π
30 + π

5 = π
10 .

Now suppose that Δ̂ has exactly five vertices of degree 3 so that c(Δ̂) � −π
6 . If d(u6) > 3

then c(u1, u2) = c(u2, u3) = c(u3, u4) = c(u5, u6) = c(u6, u1) = 0, c∗(Δ̂) � −π
6 + π

5 = π
30 and Δ̂

is given by Figure 36(iii) or (xii). If d(u5) > 3 then c(ui, ui+1) = 0 except for c(u4, u5) and
c(u5, u6). If d(u5) � 5 then c∗(Δ̂) � − 4π

15 + 7π
30 < 0; and if d(u5) = 4 then c∗(Δ̂) � −π

6 + 7π
30 =

π
15 and Δ̂ is given by Figure 36(iv) or (xiii). If d(u4) > 3 then c(ui, ui+1) = 0 except
for c(u3, u4) = c(u4, u5) = π

15 and c∗(Δ̂) � −π
6 + 2π

15 < 0. Let d(u3) > 3. Then c(u1, u2) =
c(u5, u6) = c(u6, u1) = 0. If d(u3) � 6 then c∗(Δ̂) � −π

3 + 2( π
15 ) + π

5 = 0; if d(u3) = 5 then
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l(u3) forces either c(u2, u3) = 0 or c(u3, u4) = 0 so c∗(Δ̂) � − 4π
15 + π

15 + π
5 = 0; and if d(u3) = 4

then c(u3, u4) = 0, c∗(Δ̂) � −π
6 + π

10 + π
5 = 2π

15 and Δ̂ is given by Figure 36(v) or (xiv).
If d(u2) > 3 then c(u1, u2) = c(u3, u4) = c(u5, u6) = c(u6, u1) = 0. If d(u2) � 5 then c∗(Δ̂) �
− 4π

15 + π
15 + π

5 = 0; and if d(u2) = 4 then c(u2, u3) = 0, c∗(Δ̂) � −π
6 + π

5 = π
30 and Δ̂ is given

by Figure 36(vi) or (xv). Finally if d(u1) > 3 then c(ui, ui+1) = 0 except for c(u4, u5) = π
5

and c(u6, u1) = π
15 . So if d(u1) � 5 then c∗(Δ̂) � − 4π

15 + 4π
15 = 0; and if d(u1) = 4 then either

c(u6, u1) = 0 or c(u6, u1) = π
15 , so either c∗(Δ̂) � −π

6 + π
5 = π

30 or c∗(Δ̂) � −π
6 + π

5 + π
15 = π

10

and the two cases for Δ̂ are shown in Figure 36(vii) and (viii) or Figure 36(xvi) and (xvii).
This leaves the case d(ui) = 3 (1 � i � 6). Then c(ui, ui+1) = 0 except for c(u4, u5) = π

5 ,
c∗(Δ̂) � 0 + π

5 = π
5 and Δ̂ is given by Figure 36(ix) or (xviii). �

We now describe the distribution of curvature from each of the eighteen regions Δ̂ of
Figure 36.

Figure 36(i) and (x): c∗(Δ̂) � −π
3 + 11π

30 ; distribute π
30 from Δ̂ to Δ̂1 in each case.

Figure 36(ii) and (xi): c∗(Δ̂) � −π
3 + 13π

30 ; distribute π
10 from Δ̂ to Δ̂6 in each case.

Figure 36(iii) and (xii): c∗(Δ̂) � −π
6 + π

5 ; distribute π
30 from Δ̂ to Δ̂2 in each case.

Figure 36(iv) and (xiii): c∗(Δ̂) � −π
6 + 7π

30 ; distribute π
15 from Δ̂ to Δ̂2 in each case.

Figure 36(v) and (xiv): c∗(Δ̂) � −π
6 + 3π

10 ; distribute 2π
15 from Δ̂ to Δ̂1 in each case.

Figure 36(vi) and (xv): c∗(Δ̂) � −π
6 + π

5 ; distribute π
30 from Δ̂ to Δ̂3 in each case.

Figure 36(vii) and (xvi): c∗(Δ̂) � −π
6 + π

5 ; distribute π
30 from Δ̂ to Δ̂2 in each case.

Figure 36(viii) and (xvii): c∗(Δ̂) � −π
6 + 4π

15 ; distribute π
15 from Δ̂ to Δ̂2 and π

30 from Δ̂ to
Δ̂3 in each case.

Figure 36(ix) and (xviii): c∗(Δ̂) � 0 + π
5 ; distribute π

10 from Δ̂ to Δ̂1, π
15 from Δ̂ to Δ̂2 and

π
30 from Δ̂ to Δ̂3 in each case.

Note: in all of the above cases d(Δ̂i) > 6 for each region Δ̂i that receives positive curvature
from Δ̂ except possibly for Δ̂1 in Figure 36(i) and (x).

Now assume that Δ̂ is Δ̂1 of Figure 31(i) or (v). Then Δ̂1 is given by Figures 37(i) and 38(i).
(Recall that for now we are only considering distribution of curvature from Sections 5 and 6.)

First assume d(u3) � 5. Then c(w1, u3) = π
15 and c(u3, u2) = 2π

15 by Figure 35(ii)–(v). Since
c(u1, u2) = 2π

15 it follows that c∗(Δ̂1) � c(Δ̂) + 7π
15 . If d(u1) > 3 then c(Δ̂1) � c(3, 3, 3, 4, 4, 5) =

− 9π
15 ; on the other hand if d(u1) = 3 then c(u1, u2) = 0 and c∗(Δ̂1) � c(3, 3, 3, 3, 4, 5) + π

3 < 0.
Now let d(u3) = 4. Then c(u1, u2) = 2π

15 , c(u2, u3) = 7π
30 and c(u3, w1) = 0 so c∗(Δ̂1) � c(Δ̂1) +

π
2 . If d(u1) > 3 or d(u2) > 3 then c(Δ̂1) � −π

2 ; on the other hand if d(u1) = d(u2) = 3 then
c∗(Δ̂1) � c(3, 3, 3, 3, 4, 4) + 11π

30 = π
30 as shown in Figures 37(ii) and 38(ii). Finally let d(u3) = 3.

Then c(u3, w1) = π
5 , c(u2, u1) = 2π

15 and c(u2, u3) = 0 so c∗(Δ̂1) � c(Δ̂1) + 7π
15 . If d(u1) = 3 then

c(u1, u2) = 0 and so d(u2) � 4 would imply c∗(Δ̂1) � c(3, 3, 3, 3, 4, 4) + π
3 = 0, whereas if also

d(u2) = 3 then c∗(Δ̂1) � π
6 as shown in Figures 37(iii) and 38(iii). Let d(u1) = 4. If d(u2) � 4

then c∗(Δ̂1) � c(3, 3, 3, 4, 4, 4) + 7π
15 < 0 so assume d(u2) = 3. Reading clockwise from the Δ̂1

corner label if l(u1) = bbx−1y, bx−1yb in Figures 37(i) and 38(i), respectively, then c(u1, u2) = 0
and c∗(Δ̂2) � −π

3 + π
3 = 0; otherwise c(u1, u2) = π

15 and Δ̂1 is given by Figures 37(iv) and
38(iv) and c∗(Δ̂1) � −π

3 + 6π
15 = π

15 as shown. This leaves d(u1) � 5 in which case c(u1, u2) = π
15

and c∗(Δ̂1) � c(3, 3, 3, 3, 4, 5) + 6π
15 < 0.

The distribution of curvature in Figures 37 and 38 is as follows.

Figure 37(ii) and 38(ii): c∗(Δ̂1) � −π
3 + 11π

30 ; distribute π
30 from Δ̂1 to Δ̂2 in each case.
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Figure 37. Configuration A.

Figure 38. Configuration B.

Figure 37(iiii) and 38(ii): c∗(Δ̂1) � −π
6 + π

3 ; distribute π
6 from Δ̂1 to Δ̂2 in each case.

Figure 37(iv) and 38(iv): c∗(Δ̂1) � −π
3 + 6π

15 ; distribute π
15 from Δ̂1 to Δ̂2 in each case.
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Lemma 7.2. According to the distribution of curvature so far, that is, in Figures 6–32, 34
and 36–38, Δ̂1 of Figures 37(i) and 38(i) does not receive positive curvature from Δ̂2, that is,
c(w2, u1) = 0.

Proof. Consider Δ̂1 of Figure 37(i). If c(w2, u1) > 0 then Δ̂2 of Figure 37(i) is (the inverse
of) Δ̂ of Figure 36(x) or Δ̂2 is Δ̂1 of Figure 38(iv). Suppose that Δ̂2 is Δ̂ of Figure 36(x) Then
since Δ̂ of Figure 36(x) must receive π

5 across its (v4, v5)-edge, the region Δ̂4 of Figure 36(x)
is given by Δ of Figure 7(iii); and this in turn forces Δ̂2 of Figure 37(i) to be given by
Figure 31(ii)–(iv) and not Configuration A of Figure 31(i), a contradiction. Moreover the region
Δ̂2 of Figure 37(i) cannot coincide with the region Δ̂1 of Figure 38(iv) since, for example, the
distribution of curvature from the region Δ2 of Figure 37(i) is not the same as the distribution
of curvature from the corresponding region Δ2 of Figure 38(iv).

Consider Δ̂1 of Figure 38(i). If c(w2, u1) > 0 then Δ̂2 of Figure 38(i) is Δ̂ of Figure 36(i)
or Δ̂2 is Δ̂1 of Figure 37(iv). If Δ̂2 is Δ̂ of Figure 36(i) then a similar argument to the one
above using Figures 36(i), 7(iii) and 31(vi)–(viii) applies to yield a contradiction; and Δ̂2 of
Figure 38(i) cannot coincide with the region Δ̂1 of Figure 37(iv) since as above the distribution
of curvature from the corresponding Δ2 differs. �

Note. The upper bounds c(u, v) of Figure 35 remain unchanged as a result of the distribution
of curvature described in this section.

8. Proof of Proposition 4.2

An inspection of all distribution of curvature described so far yields the following. If positive
curvature is distributed across an (x, a−1)-edge e into a region of degree greater than 4 then e
is given by Figure 21(ii) (two cases), Figure 23(ii) (two cases), Figure 21(xi) and Figure 31(v).
In particular if the x-corner vertex has degree 4 and the a−1-corner vertex has degree 3 then
e is given by Figure 31(v) (Configuration B). If positive curvature is distributed across an
(a−1, y−1)-edge e into a region of degree greater than 4 then e is given by Figure 21(ii)
(two cases), Figure 23(ii) (two cases), Figure 22(ix) and Figure 31(i). In particular if the
a−1-corner has degree 3 and the y−1-corner has degree 4 then e is given by Figure 31(i)
(Configuration A).

Lemma 8.1. Let Δ̂ be a region of degree 6 that receives positive curvature across at least
one edge. Then one of the following occurs.

(i) c∗(Δ̂) � 0;
(ii) c∗(Δ̂) > 0 is distributed to a region of degree greater than 6;
(iii) c∗(Δ̂) ∈ {

π
30 ,

π
15

}
is distributed to a region Δ′ of degree 6 and c∗(Δ′) � 0.

Proof. It is clear from Figures 36–38 that if (i) and (ii) do not hold then c∗(Δ̂) ∈ {
π
30 ,

π
15

)
is distributed to Δ̂1 of Figure 36(i) and (x) or Δ̂2 of Figures 37(iv) and 38(iv). It follows that
a region of degree 6 receives positive curvature from at most one region of degree 6. We treat
each pair of cases in turn.

Consider Δ̂1 of Figure 36(i) and (x). Then Δ̂1 is given by Figure 39(i) and (ii) in which

d(w4) > 3. Observe that d( ˆ̂Δ) > 4 and it follows that Δ̂1 does not receive any positive curvature

from ˆ̂Δ in Figure 39(i) and (ii). Note also from Figure 35 that c(w3, w4) = 2π
15 or π

15 ; c(u2, w4) =
π
10 ; and, from Note 3 following Table 3 at the start of Section 7, c(w1, w2) + c(w2, w3) = 7π

30 .
Therefore c∗(Δ̂1) � c(Δ̂1) + π

2 . If however c(w3, w4) = 2π
15 then from Figure 35(iii) it follows

that c(Δ̂1) � c(3, 3, 3, 4, 4, 5) = − 3π
5 and so c∗(Δ̂1) � 0; so assume c(w3, w4) = π

15 , c∗(Δ̂1) �
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Figure 39. Curvature to degree 6 regions.

c(Δ̂1) + 13π
30 . If Δ̂1 has at least three vertices of degree greater than 3 then c(Δ̂1) � −π

2 ; and if
d(w4) � 5 then c(Δ̂1) � c(3, 3, 3, 3, 4, 5) = − 13π

30 ; this leaves d(wi) = 3 (1 � i � 3) and d(w4) =
4 in which case c(w1, w2) = 0 and c(w2, w3) = π

5 . If c(w3, w4) = 0 then c∗(Δ̂1) � −π
3 + π

3 = 0.
On the other hand if c(w3, w4) > 0 then it follows from the remark preceding the statement of
the lemma that Δ̂1 of Figure 39(i) and (ii) must coincide with Δ̂1 of Figure 38(i) (Configuration
B), Figure 37(i) (Configuration A). But the fact that Δ̂1 receives π

30 from Δ̂ in Figure 39(i)
and (ii) contradicts Lemma 7.2

Now consider Δ̂2 of Figures 37(iv) and 38(iv) and assume d(Δ̂2) = 6. Then Δ̂2 is given by
Figure 39(iii) and (iv) in which (see Figure 35) the following hold: c(u2, w3) = π

10 ; c(u5, u6) =
7π
30 if d(u6) < 6; and c(u5, u6) = 2π

15 if d(u6) � 6. Note that if Δ̂1 of Figure 39(iii) and (iv)
does not receive π

30 from Δ1 then we are back in the previous case, so assume otherwise. In
particular, according to Configurations A and B of Figure 31, this implies c(u4, u5) 	= π

5 and so
c(u4, u5) = π

6 ; and note that if d(u4) = 6 then c(u4, u5) = 2π
15 . Applying the statement at the

beginning of this section, it follows by inspection of Figures 21(ii) and (xi), 22(ix), 23(ii) and
31(i) and (v) that if c(w3, u4) > 0 then Δ̂2 of Figure 39(iii) and (iv) coincides with region Δ̂8 of
Figures 21(xi) and 22(xi) in which case c(w3, u4) = π

30 and d(u4) = 6. Finally if c(u1, u2) = π
15

then Δ̂1 must receive π
15 from Δ which implies d(u) = 3 and d(Δ6) > 4 and so c(u1, u6) = 0.

On the other hand if c(u1, u2) = π
30 then (see Figure 35) either c(u1, u6) = 2π

15 in which case Δ̂2

is given by Δ̂3 or Δ̂4 of Figure 18(ii), in particular d(u6) � 6; or d(u6) < 6 and c(u1, u6) = π
15 .

It follows that if d(u6)< 6 then c∗(Δ̂2) = c(Δ̂2)+ c(u2, w3)+ c(w3, u4)+ c(u4, u5)+ c(u5, u6)
+ (c(u1, u2)+ c(u1, u6))� c(Δ̂2)+ π

10 + π
30 + π

6 + 7π
30 + π

10 = c(Δ̂2)+ 19π
30 ; or if d(u6) � 6 then

c∗(Δ̂2)� c(Δ̂2)+ π
10 + π

30 + π
6 + 2π

15 + π
6 = c(Δ̂2)+ 18π

30 .
Let d(u4) � 4. If d(u6) � 4 or d(u5) � 4 then c∗(Δ̂2) � − 2π

3 + 19π
30 < 0; on the other hand if

d(u6) = d(u5) = 3 then c(u5, u6) = 0 and c∗(Δ̂2) � c(3, 3, 3, 4, 4, 4) + (19π
30 − 7π

30 ) < 0.
Let d(u4) = 3 so, in particular, c(w3, u4) = 0. If d(u6) � 4 and d(u5) � 4 or if d(u6) = 3 and

d(u5) � 5 or if d(u6) � 5 and d(u5) = 3 then c(Δ̂2) � − 3π
5 and it follows that c∗(Δ̂2) � 0.

If d(u6) = 4 and d(u5) = 3 then d(Δ5) > 4, c(u5, u6) = 0 and c∗(Δ̂2) � −π
2 + π

10 + 0 + π
6 +
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Figure 40. c(u, v) > 2π/15.

0 + π
10 < 0; and if d(u6) = 3 and d(u5) = 4 then d(Δ4) > 4, c(u4, u5) = 0 and c∗(Δ̂) � −π

2 +
π
10 + 0 + 0 + 7π

30 + π
10 < 0. This leaves d(u5) = d(u6) = 3 in which case c(u5, u6) = 0. Moreover

d(Δ5) > 4 also means that if c(u1, u6) = π
15 then Δ6 is given by Δ of Figure 16(i) forcing

the region Δ of Figure 39(iii) and (iv) to have degree greater than 4, a contradiction,
so c(u1, u6) = π

30 . Since, as noted above, c(u1, u2) = π
15 implies c(u1, u6) = 0 it follows that

c(u1, u2) + c(u1, u6) = π
15 and c∗(Δ̂) � c(3, 3, 3, 3, 4, 4) + π

10 + 0 + π
6 + 0 + π

15 = 0. �

Proposition 4.2 follows immediately from Lemma 8.1.

9. Two lemmas

The first two steps of the proof have now been completed. Given this, only step three remains,
that is, it remains to consider regions Δ̂ of degree at least 8. To do this we partition such
Δ̂ 	= Δ0 into regions of type A or type B.

We say that Δ̂ is a region of type B if Δ̂ receives positive curvature from a region Δ of degree
4 shown in Figure 5 such that Δ has not received any positive curvature from any other region
of degree 4 and such that either d(v3) = d(v4) = 3 only or d(v4) = d(v1) = 3 only. Thus Δ̂ is
given by Δ̂3 of Figure 13(i) or Δ̂4 of Figure 14(i) or Δ̂ of Figure 31 or Δ̂ of Figure 32(i), (ii),
(iii) or (v). Otherwise we will say that Δ̂ is a region of type A.

There will be no further distribution of curvature in what follows and so we collect together
in this section results that will be useful in Sections 10 and 11. The statements in the following
lemma can be verified by inspecting Figures 6–39. Further details will appear in the proof of
Lemma 10.1.

Lemma 9.1. Let ei be an edge with endpoint u, v such that ei is neither a (b, a)-edge nor is
the edge of a region Δ across which positive curvature is transferred to a type B region.

(i) If c(ei) := c(u, v) > 2π
15 then c(ei) ∈ {π

6 ,
π
5 ,

7π
30 }.

(ii) If c(ei) ∈ {π
6 ,

π
5 ,

7π
30 } then ei is given by Figure 40 (in which possible c(ei) is given by

multiples of π
30 ).

(iii) If c(ei) > 2π
15 then either c(ei−1) = 0 or c(ei+1) = 0 except for ei of Figure 40(vii), (xi),

(xii) and (xvi).

Now assume that ei be a (b, a)-edge and that transfer of curvature to a type B region is
allowed.
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Figure 41. c(u, v) > 2π/15.
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Figure 42. Curvature across adjacent edges.

(iv) If c(ei) > 2π
15 then c(ei) ∈ {π

6 ,
π
5 ,

7π
30 ,

4π
15 ,

3π
10 }.

(v) If c(ei) ∈ {π
6 ,

π
5 ,

7π
30 ,

4π
15 ,

3π
10 } then ci is given by Figure 41.

(vi) If c(ei) > 2π
15 then either c(ei−1) = 0 or c(ei+1) = 0 except for ei of Figure 41(vii) and

(x).

Remarks. (1) In verifying statement (iii) note that Δ̂ of Figure 40(xix) and (xx)
corresponds to Δ̂1 of Figure 32(iii) and (v), respectively.

(2) In Figure 40(vii) if c(u, v) = π
6 then Δ̂ = Δ̂4 of Figure 8(i)–(iii); if c(u, v) = π

5 then
Δ̂ = Δ̂4 of Figure 8(iv); moreover the π

30 distributed across the ei+1 edge is given by
Figure 36(viii) and (ix). In Figure 40(xi), Δ̂ = Δ̂1 of Figure 27(vii). In Figure 40(xii), Δ̂ = Δ̂2

of Figure 27(viii). In Figure 40(xiii), Δ̂ = Δ̂2 of Figure 37(iii). In Figure 40(xiv), Δ̂ = Δ̂2 of
Figure 38(iii). In Figure 40(xvi), Δ̂ = Δ̂3 of Figure 10(i) and (ii); moreover the π

30 distributed
across the ei−1 edge is given by Figure 36(xvii) and (xviii).

(3) In Figure 41(vii) if c(u, v) = π
5 then Δ̂ is given by Figure 31(v); and in Figure 41(x) if

c(u, v) = π
5 then Δ̂ is given by Figure 31(i), in particular, Δ̂ in both cases is a type B region.

Lemma 9.2. Let the regions Δ̂, Δi and Δi+1 be given by Figure 42(i) or (vii).

(i) If ci = 9π
30 then ci+1 = 0.

(ii) If ci = 8π
30 then ci+1 � 5π

30 .
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Figure 43. Curvature from more than one region.

(iii) If ci = 8π
30 and ci+1 = 3π

30 then Δ̂ of Figure 42(i) is given by Figure 42(ii) in which

Δi+1 = Δ̂3 of Figure 22(xii) or Δi+1 = Δ̂4 of Figure 29(x); and Δ̂ of Figure 42(vii) is given
by Δ̂ of Figure 42(viii) in which Δi+1 = Δ̂4 of Figure 21(xiv) or Δi+1 = Δ̂3 of Figure 29(viii).

(iv) If ci = 8π
30 then ci+1 	= 4π

30 .

(v) If ci = 8π
30 and ci+1 = 5π

30 then Δ̂ of Figure 42(i) is given by Figure 42(iii) in which

Δi+1 = Δ of Figure 24(viii); and Δ̂ of Figure 42(vii) is given by Figure 42(ix) in which Δi+1 =
Δ of Figure 26(vi).

(vi) If ci = 7π
30 then ci+1 � 7π

30 .

(vii) If ci = 7π
30 and ci+1 = 5π

30 then Δ̂ of Figure 42(i) is given by Figure 42(iv) and (v)

in which Δi+1 = Δ̂4 of Figure 17(xii) and Δi+1 = Δ of Figure 24(viii), respectively; and Δ̂
of Figure 42(vii) is given by Figure 42(x) and (xi) in which Δi+1 = Δ̂2 of Figure 17(iv) and
Δi+1 = Δ of Figure 26(vi), respectively.

(viii) If ci = 7π
30 then ci+1 	= 6π

30 .

(ix) If ci = ci+1 = 7π
30 then Δ̂ of Figure 42(i) is given by Figure 42(vi) in which Δi+1 = Δ̂4

of Figure 18(xi); and Δ̂ of Figure 42(vii) is given by Figure 42(xii) in which Δi+1 = Δ̂2 of
Figure 18(vii) or of Figure 29(v).

Proof. Statements (i), (vi) and (viii) follow from an inspection of Figures 40 and 41.
Moreover if Δ̂ is given by Figure 42(i) and ci = 8π

30 then it can be assumed without any loss
that either Δi = Δ̂2 of Figure 22(iv) or (xiii) or Δi = Δ̂4 of Figure 29(xi); and if Δ̂ is given
by Figure 42(vii) and ci = 8π

30 then it can be assumed without any loss that either Δi = Δ̂4 of
Figure 21(vi) or (xv) or Δi = Δ̂2 of Figure 29(ix).

(ii) Let Δ̂ be given by Figure 42(i). If ci+1 > 5π
30 then the only possibility is given by

Figure 40(ix) in which case ci+1 = 7π
30 and Δi+1 = Δ̂2 of Figure 18(xi) where we note that (in

Δ) d(v1) = 4 and d(v2) = 3. However if Δi = Δ̂2 of Figure 22(iv) then the vertex corresponding
to v1 is u1 (see Figure 22(i)) which has degree 3; or if Δi = Δ̂4 of Figure 29(xi) then the vertex
corresponding to v1 is v2 of Δ which has degree 5, in each case a contradiction. This leaves
Δi = Δ̂2 of Figure 22(xiii), where Δi+1 = Δ̂7 and this is shown in Figure 43(i) (recall that Δ̂8

of Figure 22(xiii) is given by Δ̂8 of Figure 22(x), hence w3 of Figure 43(i)). But observe that
w3 is the vertex of Figure 43(i) that corresponds to v2 of Figure 18(xi) and since w3 has degree
4 again there is a contradiction.

Now let Δ̂ be given by Figure 42(vii). If ci+1 > 5π
30 then the only possibility is given by

Figure 40(x) in which case ci+1 = 7π
30 and either Δi+1 = Δ̂2 of Figure 18(vii) where in Δ

d(v2) = 3 and d(v3) = 4 or Δi+1 = Δ̂2 of Figure 29(v) where in Δd(v2) = 5 and d(v3) = 4.
However if Δi = Δ̂4 of Figure 21(vi) the vertex corresponding to v3 (both cases) is u6 (see
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Figure 21(iii)) which has degree 3; or if Δi = Δ̂2 of Figure 29(ix) the vertex corresponding to
v3 (both cases) is v2 which has degree 5, in all cases a contradiction. This leaves Δi = Δ̂4 of
Figure 21(xv) where Δi+1 = Δ̂7 and this is shown in Figure 43(ii) (and here recall that Δ̂8 of
Figure 21(xv) is given by Δ̂8 of Figure 21(xii), hence w1 of Figure 43(ii)). But observe that
the vertex of Figure 43(ii) corresponding to v2 of Figures 18(vii), 29(v) is w1 which has degree
4, again a contradiction.

(iii) Checking Figures 6–39 shows if ci+1 = 3π
30 in Figure 42(i) then Δi+1 must be one of

Figures 11(vii) and (viii), 22(iii) and (xii), 29(x) or 31(ii). Given that Δi = Δ̂2 of Figure 22(iv)
or (xiii) or Δi = Δ̂4 of Figure 29(xi) there is a vertex (degree or labelling) contradiction in each
possible combination except when Δi+1 is given by Figure 22(xii) or Figure 29(x) and these
each yield Figure 42(ii). If ci+1 = 3π

30 in Figure 43(ii) then Δi+1 must be one of Figures 12(vii)
and (viii), 21(v) and (xiv), 29(viii) or 31(vi). Given that Δi = Δ̂4 of Figure 21(vi) or (xv) or
Δi = Δ̂2 of Figure 29(ix) again there is a vertex contradiction in each case except when Δi+1

is given by Figure 21(xiv) or Figure 29(viii) and these yield Figure 42(viii).
(iv) If ci+1 = 4π

30 in Figure 42(i) then Δi+1 must be one of the Figures 16(iii), 18(ii) and (xix)
or 31(v), but in each case there is a vertex contradiction when compared with Figure 22(iv)
and (xiii) or 29(xi). (When comparing Figures 18(xix) and 22(xiii) we use Figure 43(i) for
22(xiii) as in case (ii) above.) If ci+1 = 4π

30 in Figure 42(vii) then Δi+1 must be one of
Figures 16(ii), 18(ii), 18(xv) or 31(i), and again in each case there is a vertex contradiction
when compared Figure 21(vi) and (xv) or 29(ix). (When comparing Figures 18(xv) and 21(xv)
we use Figure 43(ii) for 21(xv) again as in case (ii) above.)

(v) The possibilities for Δi+1 of Figure 42(i) are (see Figures 40(ix) and 41(v)) Δ̂4 of
Figure 17(xii) which yields a vertex contradiction when compared with Figure 22(iv) and (xiii)
or 29(xi) and Δ of Figure 24(viii) which is given by Figure 42(iii); and for Δi+1 of Figure 42(vii)
are (see Figures 40(x) and 41(iii)) Δ̂2 of Figure 17(iv) which yields a vertex contradiction when
compared with Figure 21(vi) and 21(xv) or Figure 29(ix) and Δ of Figure 26(vi) which is given
by Figure 42(ix).

Finally statement (vii) appears in the proof of (v); and statement (ix) appears in the proof
of (ii). �

10. Type A regions

Throughout this section many assertions will be based on previous lemmas. Moreover checking
means checking Figures 6–34 and 36–39. The reader is also referred to Figures 35, 40, 41
and 42.

The surplus si of an edge ei is defined by si = ci − 2π
15 (1 � i � k) where ci is the maximum

amount of curvature that is transferred across ei. If we add si to ci+1, ci−1 we will say that
ei+1, ei−1 (respectively) absorbs si from ci. Checking Figures 40 and 41 shows, for example,
that if d(ui) = d(ui+1) = 3 in Figure 43(iii) then si � π

15 . The deficit δi of a vertex ui of degree
di is defined by δi = 2π( 1

di
− 1

3 ) and so if di � 4 then δi � −π
6 . If we add si−1, si (respectively)

to δi we will say that ui absorbs si−1, si from ei−1, ei (respectively).

Lemma 10.1. Let Δ̂ be a type A region of degree k. Then the following statement holds.
c∗(Δ̂) � (2 − k) + k. 2π3 + k. 2π15 .

Proof. Denote the vertices of Δ̂ by vi (1 � i � k), the edges by ei (1 � i � k) and the
degrees of the vi by di (1 � i � k). Let ci denote the amount of curvature Δ̂ receives across
the edge ei (1 � i � k). Consider the edge ei of Δ̂ as shown in Figure 43(iii). If ci � 2π

15 there is
nothing to consider, so let ci > 2π

15 . Then by Lemma 9.1, ci ∈ {π
6 ,

π
5 ,

7π
30 ,

4π
15 ,

3π
10 } and Δ̂ is given

by Figures 40 and 41. First assume that ei is not given by Figure 32(iii) or (v).
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Let Δ̂ be given by Figure 40. If Δ̂ is given by Figure 40(i), (vii), (viii), (xiv) or (xv) then
the edge ei+1 absorbs si � π

15 (from ci). Note that in these cases (di+1, ci+1) ∈ {(3, 0), (3, π
30 )}.

If Δ̂ is given by Figure 40(ii), (iii), (vi), (xiii), (xvi), (xix) or (xx) then ei−1 absorbs si � π
15 .

Note that (di, ci−1) ∈ {(3, 0), (3, π
30 )}. If Δ̂ is given by Figure 40(iv), (x) or (xviii) then the

vertex vi absorbs si � π
10 . Note that (di, ci−1) ∈ {(4, 0), (5, 0)}. If Δ̂ is given by Figure 40(v),

(ix) or (xvii) then vi+1 absorbs si � π
10 . Note that (di+1, ci+1) ∈ {(4, 0), (5, 0)}. This leaves

Figure 40(xi) and (xii) to be considered. If Δ̂ is given by Figure 40(xi) or (xii) then vi absorbs
si = π

30 . Note that di = 4.
Now let Δ̂ be given by Figure 41. If Δ̂ is given by Figure 41(i) or (ix) then the edge ei+1

absorbs si = π
30 . Note that (di+1, ci+1) = (3, 0). If Δ̂ is given by Figure 41(ii) or (viii) restricted

to the case ci = 5π
30 then ei−1 absorbs si = π

30 . Note that (di, ci−1) = (3, 0). If Δ̂ is given by
Figure 41(iii), (vi) or (xi) then vi+1 absorbs si � π

6 . Note that (di+1, ci+1) = (4, 0). If Δ̂ is given
by Figure 41(iv), (v) or (xii) then vi absorbs si � π

6 . Note that (di, ci−1) = (4, 0). This leaves
the cases Figure 41(vii) and (viii) with ci = 8π

30 and (x). If Δ̂ is given by Figure 41(vii) then
vi absorbs si � 2π

15 . Note that di = 4. If Δ̂ is given by Figure 41(viii) or (x) then vi+1 absorbs
si � 2π

15 . Note that di+1 = 4.
This completes absorption by edges or vertices when ei is not given by Figure 32(iii) or

(v) (and these correspond to cases of Figure 40(xix) and (xx)). Observe that if an edge
ej absorbs positive curvature aj , say, then aj � π

15 and either cj = 0 or cj = π
30 ; moreover

ej always absorbs across a vertex of degree 3. If cj = 0 then cj + aj � 2π
15 so let cj = π

30 .
We claim that in this case we also have cj + aj � 2π

15 . The only possible way this fails is
if sj−1 = sj+1 = π

15 , that is, cj−1 = cj+1 = π
5 . Thus ej = ei+1 of Figure 40(vii) and Δ̂ = Δ̂4

of Figure 8(iv); and also ej = ei−1 of Figure 40(xvi) and Δ̂ = Δ̂3 of Figure 10(i) and (ii).
But any attempt at labelling shows that this is impossible and so our claim follows. Observe
further that any pair of vertices each absorbing more than π

30 cannot coincide. This follows
immediately from the fact that either ci−1 = 0 or ci+1 = 0 or the vertex is given by vi of
Figure 41(vii) or vi+1 of Figure 41(x) and clearly these cannot coincide. Also observe that if
a vertex vi say absorbs more than 2π

15 from ei or ei−1 (respectively) then it absorbs 0 from
ei−1 or ei (respectively). Therefore any given vertex can absorb at most π

6 + 0 = π
6 as in

Figure 41(iv) and (vi), or at most 2π
15 + π

30 = π
6 . But since any vertex that absorbs curvature

has degree at least 4 and so a deficit of at most −π
6 , the statement of the lemma holds for these

cases.
Finally let ei be given by Figure 32(iii) or (v). Since d(v) � 4 in both figures it follows that

ei−1 does not absorb any surplus from ei−2. If si+1 > π
15 then according to the above it must

be absorbed by vi+2 = w (of Figure 32(iii) and (v)) and in this case ei−1 absorbs si � π
15 ; or if

si+1 � π
15 then let ei−1 absorb si + si+1 � 2π

15 . Again the statement follows. �

Proposition 10.2. If Δ̂ is a type A region of degree k and k � 10 then c∗(Δ̂) � 0.

Proof. This follows from Lemma 10.1 and the fact that (2 − k) + k. 2π3 + k. 2π15 � 0 if and
only if k � 10. �

It follows from Proposition 10.2 that we need only consider type A regions of degree at most
9. The following lemma applies to all regions Δ̂.

Lemma 10.3. If 7 � d(Δ̂) � 9 then (up to cycle-permutation and corner labelling)
either d(Δ̂) = 8 and Δ̂ is given by Figure 44(i)–(xi) or d(Δ̂) = 9 and Δ̂ is given by
Figure 44(xii).
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Figure 44. Degree 8 regions.

Proof. If 7 � d(Δ̂) � 9 then Δ̂ is given by Figure 4(iv)–(xi). It turns out that there is (up
to cyclic permutation and inversion) exactly one way to label Δ̂ of Figure 4(iv), (v), (ix) and
(xi); four ways to label Δ̂ of (vi); six ways to label Δ̂ of (vii); and two ways to label Δ̂ of (viii)
and (x). The resulting set of seventeen labelled regions contains some repeats with respect to
corner labelling and deleting these leaves the twelve Δ̂ of Figure 44(i)–(xii). �

Notation. Let d(Δ̂) = k and suppose that the vertices of Δ̂ are ui (1 � i � k). We write
cv(Δ̂) = (a1, . . . , ak), where each ai is a non-negative integer, to denote the fact that the total
amount of curvature Δ̂ receives is bounded above by (a1 + · · · + ak) π

30 with the understanding
that ai

π
30 is transferred to Δ̂ across the (ui, ui+1)-edge (subscripts mod k).

Notation. In the proof of Proposition 10.4 we will use non-negative integers a1, a2, b1, b2,
c1, c2, d1, d2, e1, e2, h1, h2, where

a1 + a2 = 7; b1 + b2 = 8; c1 + c2 = 9; d1 + d2 = 10; e1 + e2 = 11;h1 + h2 = 14.

Let c(Δ) = c(d1, . . . , dm). Suppose m = m1 + m2 + m3 = 8 + k where k � 0 and suppose
further that Δ contains m1,m2,m3 vertices of degrees 3, 4, 5 (respectively). Then we will use
the following formula (here and in the next section)

c(Δ) = c(3, . . . , 3, 4, . . . , 4, 5, . . . , 5) = − (20 + 10k + 5m2 + 8m3)π
30

.

Remark. Much use will be made here and in Section 11 of the fact that the region Δ̂1 of
Figure 36(i) and (x) receives no curvature from the region Δ shown. If Δ̂2 of Figure 37(iv),
38(iv) receives π

15 from Δ̂1 then Δ̂2 receives no curvature from the region Δ6 shown; however
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if Δ̂2 receives π
30 from Δ̂1 then Δ̂2 may receive curvature from Δ6 although note that Δ̂2 has

at least two vertices of degree greater than 3.

Proposition 10.4. If Δ̂ is a type A region and 7 � d(Δ̂) � 9 then c∗(Δ̂) � 0.

Proof. It follows from Lemma 10.3 that we need only consider Δ̂ of Figure 44 in which
the label α(β) at the edge with endpoints u, v indicates c(u, v) = απ

30 or c(u, v) = βπ
30 when

d(u) = d(v) = 3. We treat each of the twelve cases of Figure 44 in turn. (We will make extensive
use of checking and Figures 35, 40, 41 and 42 often without explicit reference although for the
reader’s benefit full details will be given in Cases 1 and 4.)

Case 1. Let Δ̂ be given by Figure 44(i). Note that Δ̂ cannot be Δ̂2 of Figure 37 or
38. If c(u1, u2) > 2π

15 then, noting that Figure 40(xiv) does not apply to Δ̂, d(u1) > 3 and
c(u8, u1) = 0 (see Figure 40(xvii)); and if π

15 < c(u1, u2) < π
5 then c(u1, u2) ∈

{
2π
15 ,

π
10

}
and

either c(u8, u1) = 0 or c(u2, u3) = 0 (see Figures 15(iii), 18(ix), 23(ix) and (xiii), 34(iv) and
(vii) and 36(xiv) and (xviii)). Similar statements hold for each of (u2, u3), (u3, u4), (u7, u8) and
(u8, u1). In particular it follows that c(u7, u8) + c(u8, u1) + c(u1, u2) + c(u2, u3) + c(u3, u4) �
2π
3 . Indeed the maximum is given by (6 + 4 + 0 + 6 + 4) π

30 . If c(u4, u5) > 2π
15 then (see

Figure 40(ix)) d(u4) = d(u5) = 4 and c(u3, u4) = 0; if c(u6, u7) > 2π
15 then (see Figure 40(i)

and (vi)) d(u6) = d(u7) = 3 and either c(u5, u6) = 0 or c(u7, u8) = 0; and by Lemma 9.2
(see Figure 42(vi)), c(u4, u5) + c(u5, u6) � 7π

15 . Therefore if c(u4, u5) > 2π
15 then cv(Δ̂) =

(0, 6, 0, h1, h2, 6, 0, 6); and if c(u4, u5) � 2π
15 then c(u4, u5) + c(u5, u6) � 11π

30 (see Figure 42) and
cv(Δ̂) = (4, 0, 6, e1, e2, 6, 0, 6). So if Δ̂ has at least three vertices of degree greater than 3 then
c∗(Δ̂) � − 35π

30 + 33π
30 < 0. If d(u1) = d(u2) = 3 and c(u1, u2) > 0 then Δ̂ is given by Δ̂1 of

Figure 36(xiv) or (xviii) therefore c(u1, u2) = 2π
15 and c(u2, u3) = 0. Again similar statements

hold for (u2, u3), (u3, u4), (u7, u8) and (u8, u1). Suppose that Δ̂ has no vertices of degree
greater than 3. In particular l(u4) = λb−1z−1 and l(u5) = b−1z−1λ. Then c(u4, u5) = 0 and
c(u5, u6) = π

15 (see Figure 36(i)–(ix)) so it follows that cv(Δ̂) = (4, 0, 4, 0, 2, 4, 4, 0) and c∗(Δ̂) �
− 2π

3 + 3π
5 < 0. Suppose that Δ̂ has exactly one vertex of degree greater than 3. If d(u5) = 3 then

c(u4, u5) = 0 and c(u5, u6) = π
15 (see Figure 36) and it follows that cv(Δ̂) = (0, 6, 4, 0, 2, 6, 0, 4);

and if d(u5) > 3 then d(u4) = 3 and c(u4, u5) = π
30 (see Figure 36(x)–(xviii)) so cv(Δ̂) =

(4, 0, 4, c1, c2, 4, 4, 0). Therefore c∗(Δ̂) � − 5π
6 + 5π

6 = 0. Finally suppose that Δ̂ has exactly two
vertices ui, uj of degree greater than 3. If d(u5) = 3 then c∗(Δ̂) < 0 so it can be assumed without
any loss that i = 5. If j = 1 then (since l(u8) = λb−1z−1) c(u8, u1) = 0 and if c(u4, u5) > 0
then c(u4, u5) = π

30 and c(u5, u6) = 0 (see Figure 36(x)) so cv(Δ̂) = (6, 0, 4, c1, c2, 4, 4, 0); if
j = 2 then c(u1, u2) = 0 and cv(Δ̂) = (0, 6, 4, c1, c2, 6, 0, 4); if j = 3 then c(u2, u3) = 0 and
cv(Δ̂) = (4, 0, 6, c1, c2, 4, 4, 0); if j = 4 then c(u3, u4) = 0 and cv(Δ̂) = (0, 4, 0, h1, h2, 6, 0, 4); if
j = 6 then c(u4, u5) = 0, c(u5, u6) = π

6 and cv(Δ̂) = (4, 0, 4, 0, 5, 4, 4, 0); if j = 7 then cv(Δ̂) =
(4, 0, 4, c1, c2, 4, 4, 0); and if j = 8 then c(u7, u8) = 0 and cv(Δ̂) = (4, 0, 4, c1, c2, 6, 0, 6). It
follows that c∗(Δ̂) � −π + 29π

30 < 0.

Case 2. Let Δ̂ be given by Figure 44(ii). If c(u3, u4) > 2π
15 then, see Figure 40(ix),

(d(u3), d(u4)) = (4, 4) and c(u2, u3) = 0; and if c(u5, u6) > 2π
15 then, see Figure 40(v),

(d(u5), d(u6)) = (3, 4) and c(u6, u7) = 0. It follows that if at least three of ui have degree
at least 4 then c∗(Δ̂) � − 7π

6 + 7π
6 = 0, so assume otherwise. Note that if d(u2) = d(u3) = 3

and c(u2, u3) > 2π
15 then Δ̂ is given by Δ̂2 of Figure 38(iii); in particular, c(u2, u3) = π

6 and
d(u1) = 4. If Δ̂ has no vertices of degree greater than 3 then we see (from Fig-
ure 44(ii) and Figure 38(iii)) that cv(Δ̂) = (0, 4, 0, 0, 0, 4, 6, 0) and c∗(Δ̂) � − 2π

3 + 7π
15 < 0.

Let Δ̂ have exactly one vertex ui of degree greater than 3. Then the following holds.
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If i = 1 then cv(Δ̂) = (3, 5, 0, 0, 0, 4, 6, 2); if i = 2 then cv(Δ̂) = (3, 6, 0, 0, 0, 4, 6, 0); if i =
3 then cv(Δ̂) = (0, 6, 4, 0, 0, 4, 6, 0); if i = 4 then cv(Δ̂) = (0, 4, 4, 4, 0, 4, 6, 0); if i = 5 then
cv(Δ̂) = (0, 4, 0, 4, 4, 4, 6, 0); if i = 6 then cv(Δ̂) = (0, 4, 0, 0, d1, d2, 6, 0); if i = 7 then cv(Δ̂) =
(0, 4, 0, 0, 0, 6, 6, 0); and if i = 8 then cv(Δ̂) = (0, 4, 0, 0, 0, 4, 6, 2). It follows that c∗(Δ̂) �
− 5π

6 + 11π
15 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u3) =

d(u4) = d(u5) = 3 or d(u4) = d(u5) = d(u6) = 3 then c∗(Δ̂) � −π + π = 0. This leaves 14 of
28 cases to be considered. If (i, j) = (1, 4) then cv(Δ̂) = (3, 5, 4, 4, 0, 4, 6, 2); if (1, 5) then
(3, 5, 0, 4, 4, 4, 6, 2); if (2, 4) then (3, 6, 4, 4, 0, 4, 6, 0); if (2, 5) then (3, 6, 0, 4, 4, 4, 6, 0); if (3, 4)
then (0, d1, d2, 4, 0, 4, 6, 0); if (3, 5) then (0, 6, 4, 4, 4, 4, 6, 0); if (3, 6) then (0, 6, 4, 0, d1, d2, 6, 0);
if (4, 5) then (0, 4, 4, 4, 4, 4, 6, 0); if (4, 6) then (0, 4, 4, 4, d1, d2, 6, 0); if (4, 7) then
(0, 4, 4, 4, 0, 6, 6, 0); if (4, 8) then (0, 4, 4, 4, 0, 4, 6, 2); if (5, 6) then (0, 4, 0, 4, 4, 6, 6, 0); if (5, 7)
then (0, 4, 0, 4, 4, 6, 6, 0); and if (5, 8) then (0, 4, 0, 4, 4, 4, 6, 2). It follows that c∗(Δ̂) � −π +
14π
15 < 0.

Case 3. Let Δ̂ be given by Figure 44(iii). If c(u2, u3) > 2π
15 then (d(u2), d(u3)) = (4, 3) and

c(u1, u2) = 0; if c(u4, u5) > 2π
15 then, see Figure 40(x), (d(u4), d(u5)) = (4, 4) and c(u3, u4) =

0; if c(u5, u6) > 2π
15 then (d(u5), d(u6)) = (4, 4) and c(u6, u7) = 0; if c(u7, u8) > 2π

15 then,
see Figure 40(iv), (d(u7), d(u8)) = (3, 4) and c(u8, u1) = 0. Moreover if c(u1, u2) > 2π

15 then
d(u2) = 3 and c(u2, u3) = 0; and if c(u8, u1) > 2π

15 then d(u8) = 3 and c(u7, u8) = 0. It
follows that c(u1, u2) + c(u2, u3) � 4π

15 ; c(u3, u4) + c(u4, u5) � 7π
30 ; c(u5, u6) + c(u6, u7) � 7π

30 ;
and c(u7, u8) + c(u8, u1) � 4π

15 . Therefore if Δ̂ has at least two vertices of degree greater
than 3 then c∗(Δ̂) � −π + π = 0. Suppose that Δ̂ contains no vertices of degree greater
than 3. Then we see (from Figure 44(iii)) that cv(Δ̂) = (6, 0, 0, 0, 0, 0, 0, 6) and c∗(Δ̂) �
− 2π

3 + 2π
5 < 0. Let Δ̂ have exactly one vertex ui of degree greater than 3. Then the following

holds: if i = 1 then cv(Δ̂) = (6, 0, 0, 0, 0, 0, 0, 6); if i = 2 then cv(Δ̂) = (b1, b2, 0, 0, 0, 0, 0, 6);
if i = 3 then cv(Δ̂) = (6, 0, 3, 0, 0, 0, 0, 6); if i = 4 then cv(Δ̂) = (6, 0, 3, 4, 0, 0, 0, 6); if i =
5 then cv(Δ̂) = (6, 0, 0, 4, 4, 0, 0, 6); if i = 6 then cv(Δ̂) = (6, 0, 0, 0, 4, 3, 0, 6); if i = 7 then
cv(Δ̂) = (6, 0, 0, 0, 0, 3, 0, 6); and if i = 8 then cv(Δ̂) = (6, 0, 0, 0, 0, 0, b1, b2). Therefore c∗(Δ̂) �
− 5π

6 + 2π
3 < 0.

Case 4. Let Δ̂ be given by Figure 44(iv). If c(u1, u2) > 2π
15 then c(u2, u3) = 0; if c(u2, u3) > 2π

15
then c(u1, u2) = 0; if c(u8, u1) > 2π

15 then c(u7, u8) = 0; if c(u7, u8) > 2π
15 then c(u8, u1) = 0; if

c(u4, u5) = 3π
10 then, see Figure 41(iv), c(u3, u4) = 0; if c(u4, u5) = 4π

15 then c(u3, u4) = π
15 (see

Figure 42); if c(u5, u6) = 3π
10 then, see Figure 41(vi), c(u6, u7) = 0; and if c(u5, u6) = 4π

15 then
c(u6, u7) = π

15 (see Figure 42). It follows that c(u3, u4) + c(u4, u5) + c(u5, u6) + c(u6, u7) = 11π
15 .

Therefore c∗(Δ̂) � c(Δ) + 19π
15 so if Δ̂ has at least four vertices of degree greater than 3 then

c∗(Δ̂) < 0. Let Δ̂ have no vertices of degree greater than 3. Then cv(Δ̂) = (6, 0, 0, 2, 2, 0, 0, 6)
and c∗(Δ̂) � − 2π

3 + 8π
15 < 0. Let Δ̂ have exactly one vertex ui of degree greater than 3.

If d(u4) = 3 then c(u3, u4) = 0 and c(u4, u5) = π
15 ; and if d(u6) = 3 then c(u5, u6) = π

15

and c(u6, u7) = 0. Thus if d(u4) = d(u6) = 3 then c∗(Δ̂) � − 5π
6 + 2π

3 < 0; if d(u4) > 3 then
cv(Δ̂) = (6, 0, e1, e2, 2, 0, 0, 6); and if d(u6) > 3 then cv(Δ̂) = (6, 0, 0, 2, e1, e2, 0, 6). Therefore
c∗(Δ̂) � − 5π

6 + 5π
6 = 0. Let Δ̂ have exactly two vertices of degree greater than 3. If d(u4) = 3

or d(u6) = 3 then c∗(Δ̂) � −π + 29π
30 < 0 so it can be assumed d(u4) > 3 and d(u6) > 3.

Then d(u2) = 3 implies d(Δ2) > 4 and c(u2, u3) = 0; and d(u8) = 3 implies d(Δ7) > 4 and
c(u7, u8) = 0. This then prevents c(u3, u4) = 2π

15 or c(u6, u7) = 2π
15 (see Figure 16(ii) and (iii))

so c(u3, u4) = c(u7, u8) = π
15 . Since c(u1, u2) = c(u8, u1) = π

5 it follows that if c(u4, u5) 	= 4π
15

and c(u5, u6) 	= 4π
15 then cv(Δ̂) = (6, 0, c1, c2, c1, c2, 0, 6) and c∗(Δ̂) � −π + π = 0. Suppose

c(u4, u5) = 4π
15 , say. If c(u3, u4) > 0 then Δ̂ = Δ̂5 of Figure 29(vi) or (ix) where l(v2) = b5 and

so c(u3, u4) > 0 implies Δ3 = Δ of Figure 28. But d(Δ2) > 4 forces Δ3 = Δ of Figure 28(i)
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and c(u3, u4) = π
30 . Similarly if c(u5, u6) = 4π

15 and c(u6, u7) > 0 then we see from Figure 29(xi)
and Figure 28(i) and (iii) that c(u6, u7) = π

30 . It follows that if c(u4, u5) = 4π
15 or c(u5, u6) = 4π

15

then c∗(Δ̂) � −π + π = 0. Finally let Δ̂ have exactly three vertices ui, uj , jk of degree greater
than 3. Then c(Δ̂) � − 7π

6 . If d(u2) = d(u8) = 3 then c(u2, u3) = c(u7, u8) = 0 and cv(Δ̂) =
(6, 0, e1, e2, e1, e2, 0, 6); if d(u4) = 3 then cv(Δ̂) = (b1, b2, 0, 2, e1, e2, b1, b2); and if d(u6) = 3
then cv(Δ̂) = (b1, b2, e1, e2, 2, 0, b1, b2). So it can be assumed (i, j, k) = (2, 4, 6) or (4, 6, 8) and
in both cases c∗(Δ̂) � c(Δ̂) + 36π

30 . If d(ui) or d(uj) or d(uk) is greater than 4 then c∗(Δ̂) < 0 so
assume otherwise. But now d(u2) = 4 implies l(u2) = λz−1a−2 and c(u1, u2) = 0; and d(u8) = 4
forces c(u8, u1) = 0. It follows that cv(Δ̂) = (0, 7, e1, e2, e1, e2, 0, 6) or (6, 0, e1, e2, e1, e2, 7, 0) so
c∗(Δ̂) � − 7π

6 + 7π
6 = 0.

Case 5. Let Δ̂ be given by Figure 44(v). If c(u1, u2) = 9π
30 then c(u8, u1) = 0; if c(u1, u2) = 4π

15
then c(u8, u1) = π

10 (see Figure 42); if c(u8, u1) = 3π
10 then c(u1, u2) = 0; if c(u8, u1) = 4π

15 then
c(u1, u2) = π

10 ; if c(u4, u5) > 2π
15 then c(u3, u4) = 0; and if c(u5, u6) > 2π

15 then c(u6, u7) = 0. It
follows that c(u8, u1) + c(u1, u2) = 7π

15 ; c(u3, u4) + c(u4, u5) = 7π
30 ; and c(u5, u6) + c(u6, u7) =

7π
30 so c∗(Δ̂) � c(Δ̂) + 16π

15 . Therefore if Δ̂ has at least three vertices of degree greater than 3
then c∗(Δ̂) < 0. If Δ̂ has no vertices of degree greater than 3 then we see (from Figure 44(v))
that c∗(Δ̂) � 2π

3 + 2π
15 < 0. Observe that if d(u1) = 3 then c(u8, u1) + c(u1, u2) = 2π

15 ; and if
d(u5) = 3 then c(u4, u5) = c(u5, u6) = 0. It follows that if d(u1) = 3 or d(u5) = 3 then c∗(Δ̂) �
c(Δ̂) + 11π

15 < 0 and so if Δ̂ has exactly one vertex of degree greater than 3 then c∗(Δ̂) < 0. If
Δ̂ has exactly two vertices ui, uj of degree greater than 3 it can be assumed (i, j) = (1, 5) in
which case cv(Δ̂) = (h1, 0, 0, 7, 7, 0, 0, h2). Therefore c∗(Δ̂) � −π + 14π

15 < 0.

Case 6. Let Δ̂ be given by Figure 44(vi). If c(u4, u5) = 3π
10 then c(u3, u4) = 0; if c(u4, u5) = 4π

15
then c(u3, u4) = π

15 (see Figure 42); if c(u5, u6) = 3π
10 then c(u6, u7) = 0; if c(u5, u6) = 4π

15 then
c(u6, u7) = π

15 ; and as in Case 5, c(u8, u1) + c(u1, u2) = 7π
15 . It follows that c∗(Δ̂) � c(Δ̂) + 4π

3

so if Δ̂ has at least four vertices of degree greater than 3 then c∗(Δ̂) � 0. Let Δ̂ have no
vertices of degree greater than 3. Then cv(Δ̂) = (2, 0, 0, 2, 2, 0, 0, 2) and c∗(Δ̂) � − 2π

3 + 4π
15 <

0. Let Δ̂ have exactly one vertex ui of degree greater than 3. Note that if d(u1) = 3
then c(u8, u1) = c(u1, u2) = π

15 ; if d(u4) = 3 then c(u3, u4) = 0 and c(u4, u5) = π
15 ; and if

d(u6) = 3 then c(u5, u6) = π
15 and c(u6, u7) = 0. If i = 1 then cv(Δ̂) = (h1, 0, 0, 2, 2, 0, 0, h2); if

i = 2 then cv(Δ̂) = (2, 2, 0, 2, 2, 0, 0, 2); if i = 3 then cv(Δ̂) = (2, 2, 4, 2, 2, 0, 0, 2); if i = 4 then
cv(Δ̂) = (2, 0, e1, e2, 2, 0, 0, 2); if i = 5 then cv(Δ̂) = (2, 0, 0, 9, 9, 0, 0, 2); if i = 6 then cv(Δ̂) =
(2, 0, 0, 2, e1, e2, 0, 2); if i = 7 then cv(Δ̂) = (2, 0, 0, 2, 2, 4, 2, 2); and if i = 8 then cv(Δ̂) =
(2, 0, 0, 2, 2, 0, 2, 2). Therefore c∗(Δ̂) � − 5π

6 + 11π
15 < 0. Let Δ̂ have exactly two vertices ui, uj

of degree greater than 3. Then c(Δ̂) � −π. If d(u1) = 3 then cv(Δ̂) = (2, 2, e1, e2, e1, e2, 2, 2)
and c∗(Δ̂) � 0 so it can be assumed i = 1. If j = 2 then cv(Δ̂) = (h1, 2, 0, 2, 2, 0, 0, h2); if
j = 3 then cv(Δ̂) = (h1, 2, 4, 2, 2, 0, 0, h2); if j = 4 then cv(Δ̂) = (h1, 0, e1, e2, 2, 0, 0, h2); if
j = 5 then cv(Δ̂) = (h1, 0, 0, 2, 2, 0, 0, h2); if j = 6 then cv(Δ̂) = (h1, 0, 0, 2, e1, e2, 0, h2); if j = 7
then cv(Δ̂) = (h1, 0, 0, 2, 2, 4, 2, h2); and if j = 8 then cv(Δ̂) = (h1, 0, 0, 2, 2, 0, 2, h2). Therefore
c∗(Δ̂) � −π + 9π

10 < 0. Let Δ̂ have exactly three vertices of degree greater than 3 so that
c(Δ̂) � − 7π

6 . If d(u1) = 3 then c∗(Δ̂) � − 7π
6 + π; if d(u4) = 3 then c∗(Δ̂) � − 7π

6 + 31π
30 ; and

if d(u6) = 3 then c∗(Δ̂) � 7π
6 + 31π

30 . So it can be assumed d(u1) > 3, d(u4) > 3 and d(u6) > 3
in which case cv(Δ̂) = (h1, 0, e1, e2, e1, e2, 0, h2). If d(u1) > 4 then c∗(Δ̂) � − 19

15π + 18
15π < 0,

whereas if d(u1) = 4 then the fact that d(u2) = d(u8) = 3 means that l(u1) = bbx−1y forces
either c(u1, u2) = 0 or c(u8, u1) = 0 and c∗(Δ̂) � − 7π

6 + 31π
30 < 0.

Case 7. Let Δ̂ be given by Figure 44(vii) and note that Δ̂ cannot be Δ̂2 of Figure 37(iv) or
38(iv). If c(u1, u2) > 2π

15 then d(u1) = 3 and c(u8, u1) = π
30 ; if c(u4, u5) > 2π

15 then c(u5, u6) = 0;
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if c(u5, u6) > 2π
15 then d(u5) = 3 and c(u4, u5) = π

30 ; and if c(u8, u1) > 2π
15 then c(u1, u2) = 0.

It follows that c(u8, u1) + c(u1, u2) � 4π
15 and c(u4, u5) + c(u5, u6) � 4π

15 . If Δ̂ has at least
two vertices of degree greater than 3 then c∗(Δ̂) � −π + 14π

15 < 0. If Δ̂ has no vertices of
degree greater than 3 then we see (from Figure 44(vii)) that c∗(Δ̂) � − 2π

3 + 8π
15 < 0. Let

Δ̂ have exactly one vertex of degree greater than 3. If d(u3) = d(u4) = 3 then c(u3, u4) = 0
and c∗(Δ̂) � − 5π

6 + 4π
5 < 0; if d(u3) > 3 then cv(Δ̂) = (6, 2, 4, 0, 6, 0, 0, 0); if d(u4) > 3 then

cv(Δ̂) = (6, 0, 4, b1, b2, 0, 0, 0); and it follows that c∗(Δ̂) � − 5π
6 + 18π

30 < 0.

Case 8. Let Δ̂ be given by Figure 44(viii). Then cv(Δ̂) = (4, 4, 6, 2, 2, 4, 9, 2) so if Δ̂ has
at least three vertices of degree 2 then c∗(Δ̂) � − 7π

6 + 11π
10 < 0. Note that if d(u2) = 3

then c(u1, u2) = c(u2, u3) = 0 and if d(u7) = 3 then c(u6, u7) = 0. If Δ̂ has no vertices of
degree greater than 3 then cv(Δ̂) = (0, 0, 6, 0, 0, 0, 2, 0) and c∗(Δ̂) � − 2π

3 + 4π
15 < 0. Let Δ̂ have

exactly one vertex ui of degree greater than 3. If i = 1 then cv(Δ̂) = (0, 0, 6, 0, 0, 0, 2, 2); if
i = 2 then cv(Δ̂) = (4, 4, 6, 0, 0, 0, 2, 0); if i = 3 then cv(Δ̂) = (0, 0, 6, 0, 0, 0, 2, 0); if i = 4 then
cv(Δ̂) = (0, 0, 6, 2, 0, 0, 2, 0); if i = 5 then cv(Δ̂) = (0, 0, 6, 2, 2, 0, 2, 0); if i = 6 then cv(Δ̂) =
(0, 0, 6, 0, 2, 0, 2, 0); if i = 7 then cv(Δ̂) = (0, 0, 0, 6, 0, 0, 4, 9, 0); and if i = 8 then cv(Δ̂) =
(0, 0, 6, 0, 0, 0, 9, 2). Therefore c∗(Δ̂) � − 5π

6 + 19π
30 < 0. Let Δ̂ have exactly two vertices of

degree greater than 3. If d(u2) = 3 or d(u7) = 3 then c∗(Δ̂) � −π + 29π
30 < 0 so assume that

d(u2) > 3 and d(u7) > 3. Then cv(Δ̂) = (4, 4, 6, 0, 0, 4, 9, 0) and c∗(Δ̂) � −π + 9π
10 < 0.

Case 9. Let Δ̂ be given by Figure 44(ix). If c(u4, u5) > 2π
15 then d(u4) = 4 and c(u3, u4) = 0;

and if c(u6, u7) > 2π
15 then (d(u6), d(u7)) = (4, 4) and c(u7, u8) = 0. It follows that if at least

three of the ui have degree at least 4 then c∗(Δ̂) � − 7π
6 + 7π

6 = 0, so assume otherwise. If Δ̂ has
no vertices of degree greater than 3 then we see (from Figure 44(ix) and the fact that Δ̂ cannot
then be Δ̂2 of Figure 37(iii)) that cv(Δ̂) = (0, 6, 4, 0, 0, 0, 4, 0) and c∗(Δ̂) � − 2π

3 + 7π
30 < 0.

Let Δ̂ have exactly one vertex ui of degree greater than 3. Then the following holds.
If i = 1 then cv(Δ̂) = (2, 6, 4, 0, 0, 0, 5, 3); if i = 2 then cv(Δ̂) = (2, 6, 4, 0, 0, 0, 4, 0);
if i = 3 then cv(Δ̂) = (0, 6, 6, 0, 0, 0, 4, 0); if i = 4 then cv(Δ̂) = (0, 6, d1, d2, 0, 0, 4, 0);
if i = 5 then cv(Δ̂) = (0, 6, 4, 4, 4, 0, 4, 0); if i = 6 then cv(Δ̂) = (0, 6, 4, 0, 4, 4, 4, 0); if
i = 7 then cv(Δ̂) = (0, 6, 4, 0, 0, 4, 6, 0); and if i = 8 then cv(Δ̂) = (0, 6, 4, 0, 0, 0, 6, 3).
It follows that c∗(Δ̂) � − 5π

6 + 11π
15 < 0. Let Δ̂ have exactly two vertices ui, uj of

degree greater than 3. If d(u4) = d(u5) = d(u6) = 3 or d(u5) = d(u6) = d(u7) = 3 then
c∗(Δ̂) � −π + π = 0. This leaves 14 of 28 cases to be considered. If (i, j) = (1, 5) then
cv(Δ̂) = (2, 6, 4, 4, 4, 0, 5, 3); if (i, j) = (1, 6) then cv(Δ̂) = (2, 6, 4, 0, 4, 4, 5, 3); if (i, j) = (2, 5)
then cv(Δ̂) = (2, 6, 4, 4, 4, 0, 4, 0); if (i, j) = (2, 6) then cv(Δ̂) = (2, 6, 4, 0, 4, 4, 4, 0); if (i, j) =
(3, 5) then cv(Δ̂) = (0, 6, 6, 4, 4, 0, 4, 0); if (i, j) = (3, 6) then cv(Δ̂) = (0, 6, 6, 0, 4, 4, 4, 0);
if (i, j) = (4, 5) then cv(Δ̂) = (0, 6, d1, d2, 4, 0, 4, 0); if (i, j) = (4, 6) then cv(Δ̂) =
(0, 6, d1, d2, 4, 4, 4, 0); if (i, j) = (4, 7) then cv(Δ̂) = (0, 6, d1, d2, 0, 4, 4, 0); if (i, j) = (5, 6) then
cv(Δ̂) = (0, 6, 4, 4, 4, 4, 4, 0); if (i, j) = (5, 7) then cv(Δ̂) = (0, 6, 4, 4, 4, 4, 4, 0); if (i, j) = (5, 8)
then cv(Δ̂) = (0, 6, 4, 4, 4, 0, 4, 3); if (i, j) = (6, 7) then cv(Δ̂) = (0, 6, 4, 0, 4, d1, d2, 0); and if
(i, j) = (6, 8) then cv(Δ̂) = (0, 6, 4, 0, 4, 4, 4, 3). It follows that c∗(Δ̂) �= −π + 14π

15 < 0.

Case 10. Let Δ̂ be given by Figure 44(x). If c(u1, u2) > 2π
15 then (d(u1), d(u2)) = (4, 4)

and c(u8, u1) = 0; if c(u7, u8) > 2π
15 then (d(u7), d(u8)) = (4, 3) and c(u6, u7) = 0; and if

c(u6, u7) > 2π
15 then d(u7) = 3 forcing c(u7, u8) = 0. It follows that c(u8, u1) + c(u1, u2) � 7π

30 ;
and c(u6, u7) + c(u7, u8) � 4π

15 . If Δ̂ has at least three vertices of degree greater than 3 then
c∗(Δ̂) � − 7π

6 + 11π
10 < 0. If Δ̂ has no vertices of degree greater than 3 then we see (from

Figure 44(x)) that cv(Δ̂) = (0, 0, 6, 6, 0, 6, 0, 0) and c∗(Δ̂) � − 2π
3 + 18π

30 < 0. Let Δ̂ have exactly
one vertex ui of degree greater than 3. Then the following holds. If i = 1 then d(u2) = 3 and so
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cv(Δ̂) = (0, 0, 6, 6, 0, 6, 0, 3); if i = 2 then d(u1) = 3 and so cv(Δ̂) = (x1, y1, 6, 6, 0, 6, 0, 0) where,
by the remark preceding this lemma, x1 + y1 = 4; if i = 3 then cv(Δ̂) = (0, 4, 6, 6, 0, 6, 0, 0);
if i = 4 then cv(Δ̂) = (0, 0, 6, 6, 0, 6, 0, 0); if i = 5 then cv(Δ̂) = (0, 0, 6, 6, 2, 6, 0, 0); if i = 6
then cv(Δ̂) = (0, 0, 6, 6, 2, 6, 0, 0); if i = 7 then cv(Δ̂) = (0, 0, 6, 6, 0, b1, b2, 0); and if i = 8
then d(u7) = 3 so cv(Δ̂) = (0, 0, 6, 6, 0, 6, 0, 3). Therefore c∗(Δ̂) � − 5π

6 + 11π
15 < 0. Let Δ̂ have

exactly two vertices of degree greater than 3. If d(u1) = 3 or d(u2) = 3 then cv(Δ̂) =
(x2, y2, 6, 6, 2, b1, b2, 3) where, again by the above remark, x2 + y2 = 5 and c∗(Δ̂) � −π + π = 0.
On the other hand if d(u1) > 3 and d(u2) > 3 then cv(Δ̂) = (a1, 4, 6, 6, 0, 6, 0, a2) and c∗(Δ̂) �
−π + 29π

30 < 0.

Case 11. Let Δ̂ be given by Figure 44(xi). If c(u1, u2) > 2π
15 then d(u1) = 3 and c(u8, u1) = 0;

if c(u8, u1) > 2π
15 then c(u1, u2) = 0; and if c(u6, u7) > 2π

15 then c(u7, u8) = 0. Therefore cv(Δ̂) =
(b1, 2, 6, 6, 4, a1, a2, b2). It follows that c∗(Δ̂) � c(Δ) + 11π

10 and so if Δ̂ has at least three vertices
of degree greater than 3 then c∗(Δ̂) < 0. If Δ̂ has no vertices of degree greater than 3 then
we see (from Figure 44(xi)) that c∗(Δ̂) � − 2π

3 + 3π
5 < 0. Let Δ̂ have exactly one vertex ui

of degree greater than 3. If d(u6) = d(u7) = d(u8) = 3 then c(u5, u6) = c(u6, u7) = c(u7, u8) =
0; if i = 6 then cv(Δ̂) = (6, 0, 6, 6, 4, 1, 0, 0); if i = 7 then cv(Δ̂) = (6, 0, 6, 6, 0, 0, 3, 0); and if
i = 8 then cv(Δ̂) = (6, 0, 6, 6, 0, 0, 3, 0). It follows that c∗(Δ̂) � − 5π

6 + 11π
15 < 0. Let Δ̂ have

exactly two vertices of degree greater than 3. If d(u6) = 3 then c(u5, u6) = 0 and cv(Δ̂) =
(b1, 2, 6, 6, 0, a1, a2, b2); if d(u7) = 3 then cv(Δ̂) = (b1, 2, 6, 6, x2, y2, 3, b2) where again x2 + y2 =
5; if d(u6) > 3 and d(u7) > 3 then cv(Δ̂) = (6, 0, 6, 6, 4, a1, a2, 0). It follows that c∗(Δ̂) � −π +
π = 0.

Case 12. Finally let Δ̂ be the region of Figure 44(xii). Suppose that Δ̂ has at least one
vertex of degree greater than 4. Using a similar analysis as done for Case 1, it follows
that c∗(Δ̂) � − 38π

30 + 36π
30 < 0. Indeed the maximum 36π

30 can only be obtained when cv(Δ̂) =
(0, 6, 0, h1, h2, 6, 0, 6, 4). Suppose that Δ̂ has no vertices of degree greater than 4 and at
least one vertex of degree 4. Then noting again that Δ̂ is not given by Figure 40(xvii), we
see from Figure 40(xiv) that c(ui, uj) = 2π

15 for (i, j) ∈ {(7, 8), (8, 9), (9, 1), (1, 2), (2, 3), (3, 4)}.
It follows that c∗(Δ̂) � − 35π

30 + 32π
30 < 0, the maximum 32π

30 being obtained when cv(Δ̂) =
(0, 4, 0, h1, h2, 6, 0, 4, 4). But if Δ̂ has no vertices of degree greater than 3 then c(u4, u5) = 0,
c(u5, u6) = π

15 and, as in Case 1, for example either c(u1, u2) = 0 or c(u1, u2) = 2π
15 and

c(u2, u3) = 0. It follows that cv(Δ̂) = (4, 0, 4, 0, 2, 6, 0, 4, 0) and c∗(Δ̂) � −π + 2π
3 < 0. This

completes the proof. �

11. Regions of type B
Let Δ̂ be a type B region as defined at the start of Section 9. Therefore Δ̂ is given by
Figures 13(i), 14(i) and 31 or Figure 32(i), (ii), (iii) or (v); in particular d(Δ̂) � 8. A b-segment of
Δ̂ of length k is a sequence of edges e1, . . . , ek of Δ̂ maximal with respect to each vertex having
degree 3 with vertex label a(aλ)(b−1μ) = axy−1 and which (up to inversion) contribute one of
four possible alternating sequences to the corner labelling of Δ̂, namely: x−1, y−1, . . . , x−1, y−1;
x−1, y−1, . . . , y−1, x−1; y−1, x−1; y−1, x−1, . . . , y−1, x−1; y−1, x−1, . . . , x−1, y−1. An example
showing the first sequence is given in Figure 45(i) and so maximal in this case means that
either d(u0) > 3 or d(u0) = 3 but does not extend the sequence to ȳ, x̄, ȳ, . . . , x̄, ȳ; and that
either d(uk+2) > 3 or d(uk+2) = 3 but does not extend the sequence to x̄, ȳ, . . . , x̄, ȳ, x̄. Since
Δ̂ is of type B, it must contain at least one b-segment in which at least one of the regions
Δi (1 � i � k) is given by the region Δ in Figures 13(i) and 14(i) and we will from now on
call such a region Δi a b-region. Therefore a b-region contributes at most π

3 to Δ̂. (If Δi is
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not a b-region then, as shown in Figure 35, it contributes at most π
5 to Δ̂.) The absorption

rules for edges and vertices described in Section 10 apply also to Δ̂. In Figure 31 Δ̂ receives
π
5 ,

2π
15 from Δ1,Δ2 so the vertex of degree 4 with label b−1b−1y−1x is used to absorb π

15 ; and
in Figure 32(i) and (ii) Δ̂ receives π

5 across an edge, e say, but checking Figures 36– 38 shows
that Δ̂ receives no curvature from Δ̂1 across the neighbouring edge which is used to absorb
π
15 noting from Figure 32(i) and (ii) that this is all the curvature that this edge will absorb
(relative to curvature transferred to Δ̂).

It follows from the above paragraph and as in the proof of Lemma 10.1 that if the
b-segments containing at least one b-region of Δ̂ contribute a total of n1 edges to Δ̂ then
putting n = n1 + n2,

c∗(Δ̂) � (2 − (n1 + n2))π + 2(n1 + n2)
π

3
+ n1

π

3
+ n2

2π
15

= π
(
2 − n2

5

)
. (†)

Therefore if n2 � 10 then c∗(Δ̂) � 0. The next result improves this bound slightly.

Lemma 11.1. If n2 � 9 and Δ̂ is not given by Figure 46 (in which the b-segment contains
at least one b-region) then c∗(Δ̂) � 0.
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Proof. We will show that the existence of a b-segment in which at least one Δi (1 � i � k)
is a b-region allows us to decrease the upper bound (†) for c∗(Δ̂) given above. First consider
the region Δ0 of Figure 45(i) or (ii). In each case if Δ1 is not a b-region then Δ̂ receives at
most π

5 from Δ1 and the upper bound for c∗(Δ̂) is reduced by at least π
3 − π

5 = 2π
15 , so assume

the Δ1 is a b-region. In particular, according to the rules in Section 10 and at the start of
this section, e0 absorbs no positive curvature from Δ1. Let d(u0) � 5 and so u0 can absorb at
least 2π

3 − 2π
5 = 4π

15 . Since Δ̂ then receives at most π
15 from Δ0 (see Figure 35(ii)) and since

the maximum amount any vertex absorbs is π
6 , in particular u0 from Δ−1, u0 can absorb the

π
15 crossing e0 and so n2 in (†) is reduced by 1, that is, c∗(Δ̂) is reduced by at least 2π

15 . Let
d(u0) = 4 and so u0 can absorb 2π

3 − π
2 = π

6 . If the total curvature Δ̂ receives across e0 and
e−1 is at most 3π

10 then c∗(Δ̂) is reduced by at least 2π
15 , so assume otherwise. In particular Δ̂

must receive curvature from Δ0 which forces l(u0) to be as shown in Figure 45(iii) and (iv)
and so (see Figure 35(i)) Δ̂ receives at most 2π

15 from Δ0. To exceed a total of 3π
10 , therefore,

it follows that Δ̂ must receive at least π
5 across e−1 and so (see Figure 40) l(u−1) must be as

shown in Figure 45(iii) and (iv) and in these figures the maximum combination Δ̂ can receive
across e−1, e0 is 7π

30 , 2π
15 (see Figure 42), therefore c∗(Δ̂) is reduced by at least π

15 . Let d(u0) = 3.
Note that we use the fact that l(u0) 	= axy−1 in Figure 45(i) or (ii) for otherwise the b-segment
would be extended, a contradiction. Given this, l(u0) = bμz forces d(Δ0) � 6 and d(Δ−1) � 6
and checking Figures 36– 38 shows that Δ̂ does not receive curvature across e0 and at most
2π
15 across e−1 so c∗(Δ̂) is reduced by at least 2π

15 .
Now consider the region Δk+1 of Figure 45(i) and (v). Again if Δk is not a b-region then

c∗(Δ̂) is reduced by 2π
15 so assume otherwise. In particular ek+1 absorbs no positive curvature

from Δk. Moreover, if Δk is given by Δ1 of Figure 32(iii) or (v) (Configurations E and F)
then c∗(Δ̂) is again reduced by π

5 , so assume otherwise, in particular uk+2 is not given by the
corresponding vertex of Δ2 of Figure 32(iii) or (v). Let d(uk+2) � 5 and so uk+2 can absorb
4π
15 . Since Δ̂ then receives at most π

15 from Δk+1 (see Figure 35(ii)) and since the maximum
amount uk+1 absorbs from Δk+2 is π

6 , uk+2 can absorb the π
15 crossing ek+1 and so c∗(Δ̂)

is reduced by at least 2π
15 . Let d(uk+2) = 4 and so uk+2 can absorb π

6 . If Δ̂ does not receive
curvature from Δk+1 then c∗(Δ̂) is reduced by 2π

15 ; otherwise checking possible vertex labels
for uk+2 shows l(uk+2) = aazμ and Δ̂ receives at most 7π

30 across ek+1 and 0 across ek+2, so
c∗(Δ̂) is reduced by 2π

15 . Let d(uk+2) = 3 and so using the maximality of the b-segment and the
fact that uk+2 is not given by Figure 32(iii) or (v) it follows that l(uk+2) must be as shown
in Figure 45(vi) and (vii). Then d(Δk+1) � 6 and checking Figures 36– 38 show that Δ̂ does
not receive curvature from Δk+1. It follows that c∗(Δ̂) is reduced by 2π

15 except possibly when
d(uk+3) = 3 and Δ̂ receives π

6 or π
5 from Δk+2 (see Figure 40). There are four cases. Two (see

Figure 40(i), (ii), (vi) and (xv)) are given by Figure 45(vi) and (vii) where Δ̂ can receive π
5

from Δk+2 and c∗(Δ̂) is reduced by π
15 ; and two (see Figure 40(xiii) and (xiv)) are given by

Figures 37(iii) and 38(iii) in which the region Δ̂2, Δ̂1, Δ2 (respectively) plays the role of the
region Δ̂, Δk+2, Δk+3 (respectively) which implies l(uk+4) = bbx−1y so, in particular, ek+3

does not absorb curvature from ek+4 (relative to Δ̂). In each of these last two cases Δ̂ receives
π
6 from Δk+2 and π

10 from Δk+3, and since Δ̂ does not receive curvature from Δk+1 it follows
that c∗(Δ̂) is reduced by 2π

15 .
It follows from the above that if the b-segment of Figure 45(i) is not given by Figure 46 then

there is a reduction of at least π
15 + 2π

15 = 3π
15 to c∗(Δ̂) (if ek+2 = e0 the reduction is also 3π

35 )
therefore c∗(Δ̂) � π(2 − n2

5 ) − 3π
15 and so n2 � 9 ⇒ c∗(Δ̂) � 0. �

Lemma 11.2. Let Δ̂ be a type B region such that d(Δ̂) � 10.

(i) If Δ̂ has exactly three b-segments that contain a b-region then n2 � 8.
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Figure 47. Exactly 2 or 3 b-segments.

Assume now that Δ̂ has exactly two b-segments B1 and B2 that contain a b-region as shown in
Figure 47(i) and assume (m,n) ∈ {(2, j) (2 � j � 6), (3, 3), (3, 4), (3, 5), (4, 4)} where m,n are
given by Figure 47(i).

(ii) Δ̂ must contain a shadow edge with an endpoint in B1 and the other endpoint in B2

except when Δ̂ is given by Figure 47(ii)–(v).
(iii) If v ∈ Δ̂ is a vertex of B1 or B2 and (m,n) 	= (2, 6) then ideg(v) = 1 where ideg(v)

denotes the number of shadow edges in Δ̂ incident at v.
(iv) If (m,n) ∈ {(3, 3), (3, 4), (3, 5), (4, 4)} and Δ̂ is not given by Figure 47(ii)–(v) there must

be a shadow edge in Δ̂ either from 1 to B2 or from 4 to B1; and there must be a shadow edge
in Δ̂ either from 2 to B2 or from 3 to B1.

Finally assume that Δ̂ has exactly one b-segment containing a b-region.
(v) If n2 � 8 then Δ̂ is given by Figure 48.
(vi) If n2 = 9 and Δ̂ is given by Figure 46 then Δ̂ is one of the regions of Figure 49.

Proof. The proof is elementary but lengthy so we have omitted it. (Full details can be found
at http://arxiv.org/abs/1708.01194.) As an illustration we give part of the proof of (i).

Let Δ̂ have exactly three b-segments and suppose by way of contradiction that n2 � 7.
Since there are at least two edges between any two b-segments it follows that Δ̂ is given by
Figure 47(vi) (n2 = 6) or 47(vii) (n2 = 7) in which 2, 6, 10 refer to the (possibly empty) set

http://arxiv.org/abs/1708.01194.
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(vi)(v)

(iii)(i) (ii)

(viii)(vii)

(iv)

Figure 48. At most 8 non b-segment edges.

Figure 49. Exactly 9 non b-segment edges.

of vertices between vertices 1 and 3, 5 and 7, 9 and 11. We will consider the case n2 = 6
only.

We remark here that if the corner label at a vertex v of Δ̂ is x or y then it follows from
equations (3.1) in Section 3 that there must be an odd number of shadow edges in Δ̂ incident
at v and it is clear that there are no shadow edges in Δ̂ connecting two vertices in the same
b-segment. We write (ab) to indicate there is a shadow edge between vertices a and b with the
understanding that if a = 2, for example, we mean a vertex belonging to a.

Consider Figure 47(vi). By the previous remark the number of (ab) involving each of 1, 3,
5, 7, 9 and 11 must be odd. It also follows that if {a, b} ⊆ {12, 1, 2, 3, 4} or {4, 5, 6, 7, 8} or
{8, 9, 10, 11, 12} then (ab) does not occur. Moreover (18) forces (19), (1 11) and this in turn
forces a basic labelling contradiction (see Section 3), termed LAC. It follows that the only
pairs involving 4, 8 or 12 are (4 10), (28) and (6 12). First assume that none of (35), (79) or
(1 11) occur. Then since (15), (16) and (17) each forces (35), and (19), (1 10) each forces (1 11),
we get a contradiction. Assume exactly one of (35), (79), (1 11) occurs — without any loss
(79). Then again (15), (16) and (17) each force (35), and (19) and (1 10) each force (1 11), a
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contradiction. Assume exactly two of (35), (75), (1 11) occur — without any loss (35) and (79).
Then (19) and (1 10) each forces (1 11), a contradiction; and (16) and (17) each forces a basic
length contradiction at (35) (a shadow edge of length n− 1) or forces either the pair (52), (52)
or (52), (51) or (36), (36) or (36), (37) yielding LAC. This leaves (15). Since the number of (ab)
involving 5 must be odd at least one of (59), (5 10) or (5 11) occurs. But (59) forces (11 5) and
(5 10); (5 10) forces (11 5) and another (5 10); and (5 11) forces either a length contradiction
at (79) or forces (95), (96) or (96), (96) or (7 10), (7 10) or (7 10), (7 11) yielding LAC in all
cases.

Finally assume that (1 11), (35) and (79) occur. Since the length of each is n− 1 we must
have more pairs otherwise there is a length contradiction. Assume without any loss that 1
is involved in further pairs. Since (16) and (17) each forces either (36), (36) or (36)(37) or
(52), (52) or (52)(51) yielding LAC it follows that at least two of (15), (19) and (1 10) occur.
However (19), (1 10) and (1 10), (1 10) yield LAC and (15), (19) forces (59) and LAC. This leaves
(15), (1 10) together with at least one of (25), (59), (5 10). But (25) yields LAC; (59) forces
(19) or (69) and LAC; and finally (5 10) forces either a length contradiction or one of (7 10),
(7 10) or (59)(69) or (69)(69) and LAC, our final contradiction. �

Notation. Throughout the following proofs we will use non-negative integers
a1, a2, b1, b2, c1, c2, d1, d2, e1, e2, f1, f2 where: a1 + a2 = 7; b1 + b2 = 8; c1 + c2 = 9; d1 + d2 =
10; e1 + e2 = 11; and f1 + f2 = 12.

Proposition 11.3. Let Δ̂ be a type B region. If d(Δ̂) < 10 then c∗(Δ̂) � 0.

Proof. If d(Δ̂) < 10 then by Lemma 10.3 Δ̂ is given by Figure 44(viii), (x) or (xi).

Case 1. Let Δ̂ be given by Figure 44(viii) in which it is now assumed d(u3)= d(u4) = 3.
Observe from Figures 41 and 42 that c(u6, u7) + c(u7, u8) � 11π

30 . Therefore cv(Δ̂) =
(4, 4, 10, 2, 2, e1, e2, 2) so c∗(Δ̂) � c(Δ̂) + 7π

6 and if Δ̂ has at least three vertices of degree at least
4 then c∗(Δ̂) � 0. If Δ̂ has no vertices of degree greater than 3 then cv(Δ̂) = (0, 0, 10, 0, 0, 0, 2, 0)
and c∗(Δ̂) � − 2π

3 + 2π
5 < 0. Let Δ̂ have exactly one vertex ui of degree greater than 3. If

i = 1 then cv(Δ̂) = (4, 0, 10, 0, 0, 0, 2, 2); if i = 2 then cv(Δ̂) = (4, 4, 10, 0, 0, 0, 2, 0); if i = 5
then cv(Δ̂) = (0, 0, 10, 2, 2, 0, 2, 0); if i = 6 then cv(Δ̂) = (0, 0, 10, 0, 2, 4, 2, 0); if i = 7 then
cv(Δ̂) = (0, 0, 10, 0, 0, e1, e2, 0); and if i = 8 then cv(Δ̂) = (0, 0, 10, 0, 0, 0, 9, 2). It follows that
c∗(Δ̂) � − 5π

6 + 21π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If

d(u7) = 3 then cv(Δ̂) = (4, 4, 10, 2, 2, 4, 2, 2) and c∗(Δ̂) � −π + π = 0 so assume i = 7. If j = 1
then cv(Δ̂) = (4, 0, 10, 0, 0, e1, e2, 2); if j = 2 then cv(Δ̂) = (4, 4, 10, 0, 0, e1, e2, 0); if j = 5 then
cv(Δ̂) = (0, 0, 10, 2, 2, e1, e2, 0); if j = 6 then cv(Δ̂) = (0, 0, 10, 0, 2, e1, e2, 0); and if j = 8 then
cv(Δ̂) = (0, 0, 10, 0, 0, e1, e2, 2). It follows that c∗(Δ̂) � −π + 29π

30 < 0.

Remark 1. If Δ̂ is given by Figure 44(x) or (xi) then it is now assumed d(u4) = 3, at
least one of d(u3), d(u5) equals 3 and d(u) > 3 Note that in both figures if d(u) > 4 and
d(u3) = 3 then c(u3, u4) = 7π

30 ; if d(u) > 4 and d(u3) > 3 then c(u3, u4) = π
5 ; if d(u) > 4 and

d(u5) = 3 then c(u4, u5) = 7π
30 ; and if d(u) > 4 and d(u5) > 3 then c(u4, u5) = π

5 . Note also
that if d(u) = 4, d(u5) = d(u6) = 3 in Figure 44(x) or d(u2) = d(u3) = 3 in Figure 44(xi )and
Δ̂ receives more than 2π

15 across the (u4, u5)-edge, (u3, u4)-edge (respectively) then according
to Configuration E in Figure 32(iii), Configuration F in Figure 32(v) (respectively) the surplus
of at most π

5 is distributed out of Δ̂.

Remark 2. In Figure 44(x) if d(u1) = 3 then, by the remark immediately preceding Propo-
sition 10.4, c(u1, u2) + c(u2, u3) � π

6 and this bound can only be attained when c(u1, u2) = π
30 ,
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c(u2, u3) = 2π
15 , Δ̂ = Δ̂2 of Figure 37(iv) and checking shows that Δ6 of Figure 37(iv) must

then be Δ̂4 of Figure 18(ii); in particular, the vertices u2, u3 and u8 of Δ̂ have degree greater
than 3. Similarly if d(u7) = 3 in Figure 44(xi) then c(u5, u6) + c(u6, u7) = π

6 forces the vertices
u5, u6 and u8 of Δ̂ to have degree greater than 3 (see Figure 38(iv)).

Case 2. Let Δ̂ be given by Figure 44(x) in which case (see Proposition 10.4 and Case 10)
cv(Δ̂) = (a2, 4, 10, 10, 2, b1, b2, a1), so c∗(Δ̂) � c(Δ̂) + 41π

30 and if Δ̂ has at least five vertices
of degree greater than 3 then c∗(Δ̂) � 0. If Δ̂ has no vertices of degree greater than 3
then it follows by Remark 1 that either d(u) = 4, cv(Δ̂) = (0, 0, 10, 10, 0, 6, 0, 0) and c∗(Δ̂) �
− 2π

3 + 13π
15 − π

5 = 0 or d(u) > 4, cv(Δ̂) = (0, 0, 7, 7, 0, 6, 0, 0) and c∗(Δ̂) � − 2π
3 + 2π

3 = 0. Let
Δ̂ have exactly one vertex ui of degree greater than 3 and assume that d(u) = 4. If i = 1 then
l(u2) = bμz implies cv(Δ̂) = (0, 0, 10, 10, 0, 6, 0, 3); if i = 2 then cv(Δ̂) = (x1, y1, 10, 10, 0, 6, 0, 0)
where x1 + y1 = 4 by Remark 2; if i = 3 then cv(Δ̂) = (0, 0, 6, 10, 0, 6, 0, 0); if i = 5 then
cv(Δ̂) = (0, 0, 10, 6, 2, 6, 0, 0); if i = 6 and d(u6) = 4 then cv(Δ̂) = (0, 0, 10, 10, 2, 0, 0, 0); if i = 6
and d(u6) > 4 then cv(Δ̂) = (0, 0, 10, 10, 2, 2, 0, 0); if i = 7 then cv(Δ̂) = (0, 0, 10, 10, 0, b1, b2, 0);
and if i = 8 then l(u7) = λb−1z−1 implies cv(Δ̂) = (0, 0, 10, 10, 0, 6, 0, 3). It follows that
if d(u5) = d(u6) = 3 then c∗(Δ̂) � − 5π

6 + π − π
5 < 0; otherwise c∗(Δ̂) � − 5π

6 + 24π
30 < 0. If

now d(u) > 4 then each cv(Δ̂) is altered by replacing each 10 by 7 and it follows that
c∗(Δ̂) � − 5π

6 + 24π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater than 3 and

assume d(u) = 4. If (i, j) = (1, 2) then cv(Δ̂) = (a2, 4, 10, 10, 0, 6, 0, a1) and so if d(u1) > 4 or
d(u2) > 4 then c∗(Δ̂) � − 11π

10 + 37π
30 − π

5 < 0; and if d(u1) = d(u2) = 4 then c(u8, u1) = 0 and,
moreover, c(u1, u2) > 2π

15 and l(u3) = axy−1 together imply (see Figure 40(x)) c(u2, u3) = 0 so
cv(Δ̂) = (b1, b2, 10, 10, 0, 6, 0, 0) and c∗(Δ̂ � −π + 17π

15 − π
5 < 0. If (i, j) = (1, 3) then cv(Δ̂) =

(0, 0, 6, 10, 0, 6, 0, 3); if (i, j) = (1, 5) then cv(Δ̂) = (0, 0, 10, 6, 2, 6, 0, 3); if (i, j) = (1, 6) and
d(u6) = 4 then cv(Δ̂) = (0, 0, 10, 10, 2, 0, 0, 3); if (i, j) = (1, 6) and d(u6) > 4 then cv(Δ̂) =
(0, 0, 10, 10, 2, 2, 0, 3); if (i, j) = (1, 7) then (see Proposition 10.4 and Case 10) cv(Δ̂) =
(0, 0, 10, 10, 0, b1, b2, 3); if (i, j) = (1, 8) then cv(Δ̂) = (0, 0, 10, 10, 0, 6, 0, 3); if (i, j) = (2, 3)
then cv(Δ̂) = (x1, y1, 6, 10, 0, 6, 0, 0); if (i, j) = (2, 5) then cv(Δ̂) = (x1, y1, 10, 6, 2, 6, 0, 0); if
(i, j) = (2, 6) and d(u6) = 4 then cv(Δ̂) = (x1, y1, 10, 10, 2, 0, 0, 0); if (i, j) = (2, 6) and d(u6) >
4 then cv(Δ̂) = (x1, y1, 10, 10, 2, 2, 0, 0); if (i, j) = (2, 7) then cv(Δ̂) = (x1, y1, 10, 10, 0, b1, b2, 0);
if (i, j) = (2, 8) then cv(Δ̂) = (x1, y1, 10, 10, 0, 6, 0, 3); if (i, j) = (3, 6) then cv(Δ̂) =
(0, 0, 6, 10, 2, 6, 0, 0); if (i, j) = (3, 7) then cv(Δ̂) = (0, 0, 6, 10, 0, b1, b2, 0); if (i, j) = (3, 8) then
cv(Δ̂) = (0, 0, 6, 10, 0, 6, 0, 3); if (i, j) = (5, 6) then cv(Δ̂) = (0, 0, 10, 6, 2, 6, 0, 0); if (i, j) =
(5, 7) then cv(Δ̂) = (0, 0, 10, 6, 2, b1, b2, 0); if (i, j) = (5, 8) then cv(Δ̂) = (0, 0, 10, 6, 2, 6, 0, 3); if
(i, j) = (6, 7) then cv(Δ̂) = (0, 0, 10, 10, 2, b1, b2, 0); if (i, j) = (6, 8) and d(u6) = 4 then cv(Δ̂) =
(0, 0, 10, 10, 2, 0, 0, 3); if (i, j) = (6, 8) and d(u6) > 4 then cv(Δ̂) = (0, 0, 10, 10, 2, 2, 0, 3); and
if (i, j) = (7, 8) then cv(Δ̂) = (0, 0, 10, 10, 0, b1, b2, 3). It follows that if (i, j) 	= (1, 2) and if
d(u5) = d(u6) = 3 then c∗(Δ̂) � −π + 11π

10 − π
5 < 0; or if d(u5) > 3 or d(u6) > 3 then c∗(Δ̂) �

−π + π = 0. If now d(u) > 4 then, as before, replacing each 10 by 7 in the above yields
c∗(Δ̂) � −π + 28π

30 < 0 except when (i, j) = (1, 2) and either d(u1) > 4 or d(u2) > 4 and
c∗(Δ̂) � − 11π

10 + 31π
30 < 0. Let Δ̂ have exactly three vertices ui, uj , uk of degree greater than

3. If d(u2) = 3 then cv(Δ̂) = (0, 0, 10, 10, 2, b1, b2, 3) and c∗(Δ̂) � − 7π
6 + 11π

10 < 0; or if d(u5) =
d(u6) = 3 then c∗(Δ̂) � − 7π

6 + 41π
30 − π

5 = 0, so assume otherwise. If d(u3) = 4 then (d(u4) = 3
implies) c(u3, u4) = 0 and if d(u3) � 5 then c(u3, u4) = π

15 , and in both cases c∗(Δ̂ � 0.
Similarly if d(u5) 	= 3 then c∗(Δ̂) � 0, so it can be assumed d(u3) = d(u5) = 3. If (i, j, k) =
(1, 2, 6) and d(u6) = 4 then cv(Δ̂) = (a2, 4, 10, 10, 2, 0, 0, a1) and c∗(Δ̂) � − 7π

6 + 11π
10 < 0; or

if d(u6) > 4 then cv(Δ̂) = (a2, 4, 10, 10, 2, 2, 0, a1) and c∗(Δ̂) � − 19π
15 + 7π

6 < 0. If (i, j, k) =
(2, 6, 7) then cv(Δ̂) = (x1, y1, 10, 10, 2, b1, b2, 0) (by Remark 2); and if (i, j, k) = (2, 6, 8) then



THE INFINITE FIBONACCI GROUPS AND RELATIVE ASPHERICITY 201

cv(Δ̂) = (x1, y1, 10, 10, 2, 6, 0, 3). In both cases c∗(Δ̂) � 0. Finally let Δ̂ have exactly four
vertices of degree greater than 3 and so c(Δ̂) � − 4π

3 . If any vertex has degree greater than
4 or if any of u1, u2, u6 or u7 has degree 3 then clearly c∗(Δ̂) � 0, so assume otherwise. But
then d(u1) = d(u2) = 4 and d(u3) = 3 together imply either c(u1, u2) = 0 or c(u2, u3) = 0 and
c∗(Δ̂) < 0.

Case 3. Let Δ̂ be given by Figure 44(xi) in which case (see Proposition 10.4 and Case 11)
cv(Δ̂) = (b2, 2, 10, 10, 4, a1, a2, b1) = 41π

30 so if Δ̂ has at least five vertices of degree at least 4
then c∗(Δ̂) � 0. If Δ̂ has no vertices of degree greater than 3 then by Remark 1 preceding
Case 2 either d(u) = 4, cv(Δ̂) = (6, 0, 10, 10, 0, 0, 0, 0) and c∗(Δ̂) � − 2π

3 + 13π
15 − π

5 = 0
or d(u) > 4, cv(Δ̂) = (6, 0, 7, 7, 0, 0, 0, 0) and c∗(Δ̂) � − 2π

3 + 2π
3 − 0. Let Δ̂ have exactly

one vertex ui of degree greater than 3 and assume d(u) = 4. If i = 1 then cv(Δ̂) =
(b2, 0, 10, 10, 0, 0, 0, b1); if i = 2 and d(u2) = 4 then l(u1) = z−1λb−1 forces c(u1, u2) = 0 and
cv(Δ̂) = (0, 2, 10, 10, 0, 0, 0, 0); if i = 2 and d(u2) > 4 then cv(Δ̂) = (2, 2, 10, 10, 0, 0, 0, 0);
if i = 3 then cv(Δ̂) = (6, 2, 6, 10, 0, 0, 0, 0); if i = 5 then (l(u6) = bμz and so) cv(Δ̂) =
(6, 0, 10, 6, 0, 0, 0, 0); if i = 6 then cv(Δ̂) = (6, 0, 10, 10, x1, y1, 0, 0) (where x1 + y1 = 4
by Remark 2); if i = 7 then cv(Δ̂) = (6, 0, 10, 10, 0, 0, 3, 0); if i = 8 and d(u8) = 4 then
cv(Δ̂) = (6, 0, 10, 10, 0, 0, 3, 0); and if i = 8 and d(u8) > 4 then cv(Δ̂) = (6, 0, 10, 10, 0, 0, 2, 2).
Therefore c∗(Δ̂) � − 5π

6 + 24π
30 when (d(u2), d(u3)) 	= (3, 3); and if d(u2) = d(u3) = 3 then

c∗(Δ̂) � − 5π
6 + π − π

5 < 0. If now d(u) > 4 then replacing each 10 by 7 in the above yields
c∗(Δ̂) � − 5π

6 + 24π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater than 3

and assume d(u) = 4. If (i, j) = (1, 2) then cv(Δ̂) = (b2, 2, 10, 10, 0, 0, 0, b1); if (i, j) = (1, 3)
then cv(Δ̂) = (b2, 2, 6, 10, 0, 0, 0, b1); if (i, j) = (1, 5) then cv(Δ̂) = (b2, 0, 10, 6, 0, 0, 0, b1);
if (i, j) = (1, 6) then cv(Δ̂) = (b2, 0, 10, 10, x1, y1, 0, b1); if (i, j) = (1, 7) then cv(Δ̂) =
(b2, 0, 10, 10, 0, 0, 3, b1); if (i, j) = (1, 8) then cv(Δ̂) = (b2, 0, 10, 10, 0, 0, 3, b1); if (i, j) = (2, 3)
then cv(Δ̂) = (6, 2, 6, 10, 0, 0, 0, 0); if (i, j) = (2, 5) then cv(Δ̂) = (6, 2, 10, 6, 0, 0, 0, 0); if
(i, j) = (2, 6) and d(u2) = 4 then cv(Δ̂) = (0, 2, 10, 10, x1, y1, 0, 0); if (i, j) = (2, 6) and
d(u2) > 4 then cv(Δ̂) = (2, 2, 10, 10, x1, y1, 0, 0); if (i, j) = (2, 7) and d(u2) = 4 then cv(Δ̂) =
c(0, 2, 10, 10, 0, 0, 3, 0); if (i, j) = (2, 7) and d(u2) > 4 then cv(Δ̂) = c(2, 2, 10, 10, 0, 0, 3, 0); if
(i, j) = (2, 8) and d(u2) = 4 then cv(Δ̂) = (0, 2, 10, 10, 0, 0, 3, 0); if (i, j) = (2, 8) and d(u2) > 4
then cv(Δ̂) = (2, 2, 10, 10, 0, 0, 3, 0); if (i, j) = (3, 6) then cv(Δ̂) = (6, 2, 6, 10, x1, y1, 0, 0);
if (i, j) = (3, 7) then cv(Δ̂) = (6, 2, 6, 10, 0, 0, 3, 0); if (i, j) = (3, 8) then cv(Δ̂) =
(6, 2, 6, 10, 0, 0, 3, 0); if (i, j) = (5, 6) then cv(Δ̂) = (6, 0, 10, 6, x1, y1, 0, 0); if (i, j) = (5, 7)
then cv(Δ̂) = (6, 0, 10, 6, 0, 0, 3, 0); if (i, j) = (5, 8) then cv(Δ̂) = (6, 0, 10, 6, 0, 0, 3, 0); if
(i, j) = (6, 7) then cv(Δ̂) = (6, 0, 10, 10, 4, a1, a2, 0) and so if d(u6) > 4 or d(u7) > 4 then
c∗(Δ̂) � − 11π

10 + 37π
30 − π

5 < 0, or if d(u6) = d(u7) = 4 then c(u7, u8) = 0 and, moreover,
c(u6, u7) � 2π

15 and l(u5) = axy−1 together imply (see Figure 40(ix)) c(u5, u6) = 0
so cv(Δ̂) = (6, 0, 10, 10, b1, b2, 0, and c∗(Δ̂ � −π + 17π

15 − π
5 < 0; if (i, j) = (6, 8) then

cv(Δ̂) = (6, 0, 10, 10, x1, y1, 3, 0); and if (i, j) = (7, 8) then cv(Δ̂) = (6, 0, 10, 10, 0, 0, 3, 0).
It follows that if (i, j) 	= (6, 7) and if d(u2) = d(u3) = 3 then c∗(Δ̂) � −π + 11π

10 − π
5 < 0; or if

d(u2) > 3 or d(u3) > 3 then c∗(Δ̂) � −π + π = 0. If now d(u) > 4 then replacing each 10 by 7
in the above yields c∗(Δ̂) � −π + 14π

15 < 0. Let Δ̂ have exactly three vertices ui, uj , uk of degree
greater than 3. If d(u6) = 3 then cv(Δ̂) = (b2, 2, 10, 10, 0, 0, 3, b1) and c∗(Δ̂) � − 7π

6 + 11π
10 < 0;

or if d(u2) = d(u3) = 3 then c∗(Δ̂) � − 7π
6 + 41π

30 − π
5 = 0, so assume otherwise. If d(u3) = 4,

d(u5) = 4 (respectively) then d(u4) = 3 implies c(u3, u4) = 0, c(u4, u5) = 0 (respectively) or
if d(u3) � 5, d(u5) � 5 (respectively) then c(u3, u4) = π

15 , c(u4, u5) = π
15 (respectively)and

in each case c∗(Δ̂ � 0. So it can be assumed d(u3) = d(u5) = 3. If (i, j, k) = (6, 2, 7) and
d(u2) = 4 then cv(Δ̂) = (0, 2, 10, 10, 4, a1, a2, 0); if (i, j, k) = (6, 2, 7) and d(u2) > 4 then
cv(Δ̂) = (2, 2, 10, 10, 4, a1, a2, 0); if (i, j, k) = (6, 2, 8) then cv(Δ̂) = (2, 2, 10, 10, x1, y1, 3, 0)
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Figure 50. Regions for Figure 47(ii)–(v).

(by Remark 2); or if (i, j, k) = (6, 2, 1) then cv(Δ̂) = (b2, 2, 10, 10, x1, y1, 0, b1). In each case
c∗(Δ̂) � 0 so assume that Δ̂ has exactly four vertices of degree greater than 3. Then
c(Δ̂) � − 4π

3 . If d(u1) = 3 then cv(Δ̂) = (6, 2, 10, 10, 4, a1, a2, 0) = 39π
30 ; or if d(u1) = 4 then

cv(Δ̂) = (0, 2, 10, 10, 4, a1, a2, 7) = 40π
30 and in both cases c∗(Δ̂) � 0. On the other hand if

d(u1) � 5 then c∗(Δ̂) � c(Δ̂) + cv(Δ̂) � − 43π
30 + 41π

30 < 0. �

Lemma 11.4. Let Δ̂ be a type B region. If Δ̂ is given by Figure 47(ii)–(v), 48 or 49 then
c∗(Δ̂) � 0.

Proof. Let Δ̂ be given by Figure 47(ii)–(v). Then (up to cyclic permutation and inversion)
there are two ways to label each of (ii) and (iii); and one way to label each of (iv) and (v) and
so Δ̂ is given by Figure 50. There are six a-cases. As usual we rely heavily on Figures 35–38
and 40–42.

Case a1. Let Δ̂ be given by Figure 50(i) in which (it can be seen from Figure 47(ii)
that) d(u1) = d(u2) = d(u3) = d(u7) = d(u8) = 3 and d(u6) > 3. Then (see Figure 40) cv(Δ̂) =
(10, 10, 2, d1, d2, 6, 10, 4, a1, a2) so c∗(Δ̂) � c(Δ̂) + 59π

30 . Let Δ̂ have exactly one vertex u6

of degree greater than 3. Then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 10, 0, 0, 0) and c∗(Δ̂) � − 45π
30 +

42π
30 < 0. Let Δ̂ have exactly two vertices u6, ui of degree greater than 3. If i = 4

then cv(Δ̂) = (10, 10, 2, 6, 0, 6, 10, 0, 0, 0); if i = 5 then cv(Δ̂) = (10, 10, 0, d1, d2, 6, 10, 0, 0, 0);
if i = 9 then (using d(u5) = d(u10) = 3) cv(Δ̂) = (10, 10, 0, 6, 0, 6, 10, 4, 2, 0); and if i =
10 then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 10, 0, a1, a2). It follows that c∗(Δ̂) � − 50π

30 + 49π
30 < 0. Let

Δ̂ have exactly three vertices u6, ui, uj of degree greater than 3. If d(u5) = 3 then
cv(Δ̂) = (10, 10, 2, 6, 0, 6, 10, 4, a1, a2); if d(u10) = 3 then cv(Δ̂) = (10, 10, 2, d1, d2, 6, 10, 4, 2, 0);
and if (i, j) = (5, 10) then cv(Δ̂) = (10, 10, 0, d1, d2, 6, 10, 0, a1, a2). It follows that c∗(Δ̂) �
− 55π

30 + 55π
30 = 0. If Δ̂ has more than three vertices of degree greater than 3 then

c∗(Δ̂) � − 60π
30 + 59π

30 < 0.

Case a2. Let Δ̂ be given by Figure 50(ii) in which d(u1) = d(u2) = d(u3) = d(u7) = d(u8) = 3
and d(u6) > 3. Then cv(Δ̂) = (10, 10, 4, a1, a2, 6, 10, 2, d1, d2) so c∗(Δ̂) � c(Δ̂) + 59π

30 . Let Δ̂
have exactly one vertex u6 of degree greater than 3. Then cv(Δ̂) = (10, 10, 0, 0, 3, 6, 10, 0, 6, 0)
and c∗(Δ̂) � − 45π

30 + 45π
30 = 0. Let Δ̂ have exactly two vertices u6, ui of degree greater than 3. If

i = 4 and d(u6) = 4 then (l(u6) together with l(u7) force) cv(Δ̂) = (10, 10, 4, 2, 3, 0, 10, 0, 6, 0);
if i = 4 and d(u6) > 4 then (see Figure 35(ii)) cv(Δ̂) = (10, 10, 4, 2, 2, 2, 10, 0, 6, 0); if i = 5
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then cv(Δ̂) = (10, 10, 0, a1, a2, 6, 10, 0, 6, 0); if i = 9 then cv(Δ̂) = (10, 10, 0, 0, 3, 6, 10, 2, 6, 0);
and if i = 10 then cv(Δ̂) = (10, 10, 0, 0, 3, 6, 10, 0, d1, d2). It follows that either c∗(Δ̂) �
− 50π

30 + 49π
30 < 0 or c∗(Δ̂) � − 53π

30 + 46π
30 < 0. Let Δ̂ have exactly three vertices u6, ui, uj

of degree greater than 3. If d(u10) = 3 then cv(Δ̂) = (10, 10, 4, a1, a2, 6, 10, 2, 6, 0) and
c∗(Δ̂) � − 55π

30 + 55π
30 = 0, so assume i = 10 and j ∈ {4, 5, 9}. If j = 4 then cv(Δ̂) =

(10, 10, 4, 2, 3, 6, 10, 0, d1, d2); if j = 5 then cv(Δ̂) = (10, 10, 0, a1, a2, 6, 10, 0, d1, d2); and if j = 9
then cv(Δ̂) = (10, 10, 0, 0, 3, 6, 10, 2, d1, d2). It follows that c∗(Δ̂) � − 55π

30 + 55π
30 = 0. If Δ̂ has

more than three vertices of degree greater than 3 then c∗(Δ̂) � − 60π
30 + 59π

30 = 0.

Case a3. Let Δ̂ be given by Figure 50(iii) in which (see Figure 47(iii)) d(u1) = d(u2) =
d(u7) = d(u8) = 3, d(u3) > 3 and d(u6) > 3. Then cv(Δ̂) = (10, 6, a1, a2, 4, 6, 10, d1, d2, 2) and
c∗(Δ̂) � c(Δ̂) + 55π

30 . If Δ̂ has at least three vertices of degree greater than 3 then
c∗(Δ̂) � − 55π

30 + 55π
30 = 0. This leaves the case d(u3) > 3 and d(u6) > 3 only. Then cv(Δ̂) =

(10, 6, 3, 0, 4, 6, 10, 0, 6, 0) and c∗(Δ̂) � − 50π
30 + 45π

30 < 0.

Case a4. Let Δ̂ be given by Figure 50(iv) in which d(u1) = d(u2) = d(u7) = d(u8) = 3,
d(u3) > 3 and d(u6) > 3. Then cv(Δ̂) = (10, 6, d1, d2, 2, 6, 10, a1, a2, 4) and c∗(Δ̂) � c(Δ̂) + 55π

30 .
If Δ̂ has at least three vertices of degree greater than 3 then c∗(Δ̂) � − 55π

30 + 55π
30 = 0. This

leaves the case d(u3) > 3 and d(u6) > 3 only. Then cv(Δ̂) = (10, 6, 7, 6, 2, 6, 10, 0, 0, 0) and
c∗(Δ̂) � − 50π

30 + 47π
30 < 0.

Case a5. Let Δ̂ be given by Figure 50(v) in which (see Figure 47(iv)) d(u1) = d(u2) =
d(u3) = d(u7) = d(u8) = d(u9) = 3. Then cv(Δ̂) = (10, 10, d1, d2, 6, 2, 10, 10, 3, d1, d2, 4)
so c∗(Δ̂) � c(Δ̂) + 75π

30 . If Δ̂ has no vertices of degree greater than 3 then cv(Δ̂) =
(10, 10, 0, 0, 6, 0, 10, 10, 0, 0, 0, 0) and c∗(Δ̂) � − 60π

30 + 46π
30 < 0. Let Δ̂ have exactly one vertex

ui of degree greater than 3. If i = 4 then cv(Δ̂) = (10, 10, d1, d2, 6, 0, 10, 10, 0, 0, 0, 0);
if i = 5 then cv(Δ̂) = (10, 10, 0, 6, 6, 0, 10, 10, 0, 0, 0, 0); if i = 6 then cv(Δ̂) =
(10, 10, 0, 0, 6, 2, 10, 10, 0, 0, 0, 0); if i = 10 then cv(Δ̂) = (10, 10, 0, 0, 6, 0, 10, 10, 3, 6, 0, 0);
if i = 11 then cv(Δ̂) = (10, 10, 0, 0, 6, 0, 10, 10, 0, d1, d2, 0); and if i = 12 then
cv(Δ̂) = (10, 10, 0, 0, 6, 0, 10, 10, 0, 0, 7, 4). It follows that c∗(Δ̂) � − 65π

30 + 57π
30 < 0. Let

Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u4) = d(u5) = 3
then cv(Δ̂) = (10, 10, 0, 0, 6, 2, 10, 10, 3, d1, d2, 4); if d(u10) = d(u11) = 3 then cv(Δ̂) =
(10, 10, d1, d2, 6, 2, 10, 10, 3, 0, 2, 4); and if d(u12) = 3 then cv(Δ̂) = (10, 10, d1, d2, 6, 2, 10,
10, 3, 6, 0, 0). It follows that c∗(Δ̂) � − 70π

30 + 67π
30 . If Δ̂ has at least three vertices of degree

greater than 3 then c∗(Δ̂) � − 75π
30 + 75π

30 = 0.

Case a6. Let Δ̂ be given by Figure 50(vi) in which (see Figure 47(v)) d(u1) = d(u2) = d(u6) =
d(u7) = 3, d(u3) > 3 and d(u8) > 3. Then cv(Δ̂) = (10, 6, d1, d2, 2, 10, 6, a1, a2, 4) and c∗(Δ) �
c(Δ̂) + 55π

30 . If Δ̂ has at least three vertices of degree greater than 3 then c∗(Δ̂) � − 55π
30 + 55π

30 =
0. This leaves the case d(u3) > 3 and d(u8) > 3 only. Then cv(Δ̂) = (10, 6, 0, 6, 0, 10, 6, 3, 0, 0)
and c∗(Δ̂) � − 50π

30 + 41π
30 < 0.

Now let Δ̂ be one of the regions of Figure 48. It turns out that (up to cyclic permutation
and inversion) there are two ways to label each of Figure 48(i), (ii), (iii) and (iv); four ways to
label (v); two ways to label each of (vi) and (vii); and four ways to label (viii). However the
labelled regions produced by (vii) already appear in those produced by (vi); and two of the
labelled regions produced by (viii) already appear in those produced by (ii), leaving a total of
sixteen regions and Δ̂ is given by Figure 51. Table 4 gives c(ui, ui+1) (1 � i � 8) in multiples
of π

30 for each of the sixteen regions of Figure 51 with the total plus the contribution made via
the b-segment in the final column. We note here that Lemma 9.2 is used for the bounds e1, e2
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Figure 51. Regions for Figure 48.

and f1, f2 in rows (iii), (iv), (ix) and (xii); and that Figure 40(iv), (x), (xiii) and (xviii) is used
to obtain the other bounds a1, a2, b1, b2 and d1, d2 in the table.

The regions in Figure 51(i), (ii), (v) and (vi) each have degree 12 and so c(Δ̂) � (2 − 12)π +
24π
3 = −2π, whereas the rest have degree 10 and in these cases c(Δ̂) � − 4π

3 . It follows from
Table 4 that if Δ̂ has at least two vertices of degree greater than 3 then c∗(Δ̂) � 0 for (x); if
at least three then c∗(Δ̂) � 0 for (i), (ii), (iii), (v), (vi), (vii), (viii), (xi), (xii), (xiii), (xiv) and
(xvi); and if at least four then c∗(Δ̂) � − 40π

30 + 40π
30 = 0.

If Δ̂ has no vertices of degree greater than 3 then we see from Figure 51 that c∗(Δ̂) �
− 20π

30 + 18π
30 < 0.

We consider each of the sixteen b-cases in turn.

Case b1. Let Δ̂ be given by Figure 51(i). Suppose that Δ̂ has exactly one vertex ui

of degree greater than 3. If d(u3) = d(u8) = 3 then cv(Δ̂) = (10, 10, 10, 10, 2, 6, 0, 6, 6, 3, 0, 0);
if i = 3 then cv(Δ̂) = (10, 10, 10, 10, 0, d1, d2, 6, 6, 0, 0, 0); and if i = 8 then cv(Δ̂) =
(10, 10, 10, 10, 0, 6, 0, 6, 6, 0, 2, 4). It follows that c∗(Δ̂) � − 65π

30 + 64π
30 < 0. Let Δ̂ have

exactly two vertices ui, uj of degree greater than 3. If d(u3) = d(u7) = 3 then cv(Δ̂) =
(10, 10, 10, 10, 2, 6, 0, 6, 6, 3, 2, 4); if d(u8) = 3 then cv(Δ̂) = (10, 10, 10, 10, 2, d1, d2, 6, 6, 3, 0, 0);
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Table 4. c(ui, ui+1) for Figure 51.

(i) 2 d1 d2 6 6 a1 a2 4 35 + 40 = 75

(ii) 4 a1 a2 6 6 d1 d2 2 35 + 40 = 75

(iii) 4 d1 d2 3 2 f1 f2 2 33 + 20 = 53

(iv) 2 6 d1 d2 e1 e2 e1 e2 40 + 20 = 60

(v) 4 b1 b2 3 d1 d2 6 2 33 + 40 = 73

(vi) 2 6 d1 d2 3 d1 d2 4 35 + 40 = 75

(vii) d1 d2 2 6 6 a1 a2 4 35 + 20 = 55

(viii) 2 d1 d2 6 6 4 a1 a2 35 + 20 = 55

(ix) e1 e2 e1 e2 b1 b2 6 2 38 + 20 = 58

(x) a1 a2 a1 a2 b1 b2 6 2 30 + 20 = 50

(xi) d1 d2 d1 d2 3 b1 b2 4 35 + 20 = 55

(xii) 2 f1 f2 2 3 b1 b2 4 31 + 20 = 51

(xiii) a1 a2 4 6 6 d1 d2 2 35 + 20 = 55

(xiv) d1 d2 2 6 6 a1 a2 4 35 + 20 = 55

(xv) 4 d1 d2 3 d1 d2 d1 d2 37 + 20 = 57

(xvi) 2 6 d1 d2 a1 a2 a1 a2 32 + 20 = 52

if (i, j) = (3, 8) then c∗(Δ̂) = (10, 10, 10, 10, 0, d1, d2, 6, 6, 0, 2, 4); and if (i, j) = (7, 8) then
cv(Δ̂) = (10, 10, 10, 10, 0, 6, 0, 6, 6, a1, a2, 4). It follows that c∗(Δ̂) � − 70π

30 + 69π
30 < 0.

Case b2. Let Δ̂ be given by Figure 51(ii). Suppose that Δ̂ has exactly one vertex
ui of degree greater than 3. If d(u2) = d(u7) = 3 then cv(Δ̂) = (10, 10, 10, 10, 0, 0,
3, 6, 6, 0, 6, 2); if i = 2 then cv(Δ̂) = (10, 10, 10, 10, 4, 2, 0, 6, 6, 0, 6, 0); and if i = 7 then
cv(Δ̂) = (10, 10, 10, 10, 0, 0, 0, 6, 6, d1, d2, 2). It follows that c∗(Δ̂) � − 65π

30 + 64π
30 < 0.

Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u2) = 3
then cv(Δ̂) = (10, 10, 10, 10, 0, 0, 3, 6, 6, d1, d2, 2); if d(u3) = d(u7) = 3 then cv(Δ̂) =
(10, 10, 10, 10, 4, 2, 3, 6, 6, 0, 6, 2); if (i, j) = (2, 3) then cv(Δ̂) = (10, 10, 10, 10, 4, a1, a2, 6, 6, 0,
6, 0); and if (i, j) = (2, 7) then cv(Δ̂) = (10, 10, 10, 10, 4, 2, 0, 6, 6, d1, d2, 0). It follows that
c∗(Δ̂) � − 70π

30 + 69π
30 < 0.

Case b3. Let Δ̂ be given by Figure 51(iii). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u7) = 3 then cv(Δ̂) = (10, 10, 4, d1, d2, 3, 2, 2, 2, 2); if i = 7 then
(see Lemma 9.2) cv(Δ̂) = (10, 10, 0, 0, 5, 0, 0, f1, f2, 0). It follows that c∗(Δ̂) � − 45π

30 + 45π
30 . Let

Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u7) = 3 then c∗(Δ̂) < 0;
if d(u2) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 0, 6, 3, 2, f1, f2, 0); if (i, j) = (7, 2) then cv(Δ̂) =
(10, 10, 4, 2, 5, 0, 0, f1, f2, 0); and if (i, j) = (7, 8) then cv(Δ̂) = (10, 10, 0, 0, 5, 0, 0, f1, f2, 2). It
follows that c∗(Δ̂) � − 50π

30 + 43π
30 < 0.

Case b4. Let Δ̂ be given by Figure 51(iv). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u4) = d(u6) = d(u8) = 3 then cv(Δ̂) = c(10, 10, 2, 6, 6, 0, 0, 2, 2, 0);
if i = 4 then (see Figure 36) cv(Δ̂) = (10, 10, 0, 6, 0, 7, 0, 2, 2, 0); if i = 6 then cv(Δ̂) =
(10, 10, 0, 6, 4, 0, e1, e2, 2, 0); and if i = 8 then cv(Δ̂) = (10, 10, 0, 6, 4, 0, 0, 2, e1, e2). Therefore
c∗(Δ̂) � − 45π

30 + 43π
30 . Let Δ̂ have exactly two vertices ui, uj of degree greater than 3.

If d(u2) = d(u6) = 3 then cv(Δ̂) = (10, 10, 0, 6, d1, d2, 0, 2, e1, e2); if d(u4) = d(u8) = 3 then
cv(Δ̂) = (10, 10, 2, d1, d2, 0, e1, e2, 2, 0); if (i, j) = (2, 4) then cv(Δ̂) = (10, 10, 2, 6, 0, 7, 0, 2, 2, 0);
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if (i, j) = (2, 8) then cv(Δ̂) = (10, 10, 2, 6, 4, 0, 0, 2, e1, e2); if (i, j) = (6, 4) then cv(Δ̂) =
(10, 10, 0, 6, 0, 7, e1, e2, 2, 0); and if (i, j) = (6, 8) then cv(Δ̂) = (10, 10, 0, 6, 4, 0, e1, e2, e1, e2). It
follows that either c∗(Δ̂) � − 50π

30 + 49π
30 < 0 or (i, j) = (6, 8), but here either d(u) = 4 and π

5

is distributed from Δ̂ across the (u1, u2) edge according to Configuration E of Figure 32(iii)
and so c∗(Δ̂) � − 50π

30 + 53π
30 − π

5 < 0 or d(u) > 4, cv(Δ̂) = (7, 7, 0, 6, 4, 0, e1, e2, e1, e2) and so
c∗(Δ̂) � − 50π

30 + 46π
30 < 0. Let Δ̂ have exactly three vertices ui, uj , uk of degree greater than 3.

If d(u4) = 3 then (see Figure 40(xiv) and (xvii)) cv(Δ̂) = (10, 10, 2, d1, d2, 0, e1, e2, e1, e2) and
c∗(Δ̂) � − 55π

30 + 54π
30 < 0; or if d(u6) = 3 or d(u8) = 3 then c∗(Δ̂) � − 55π

30 + 51π
30 < 0; and if

(i, j, k) = (4, 6, 8) then cv(Δ̂) = (10, 10, 0, 6, 0, 7, e1, e2, e1, e2) and c∗(Δ̂) � − 55π
30 + 55π

30 = 0.

Case b5. Let Δ̂ be given by Figure 51(v). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u2) = d(u6) = 3 then cv(Δ̂) = (10, 10, 10, 10, 0, 0, 6, 3, 0, d1, d2, 2);
if i = 2 then cv(Δ̂) = (10, 10, 10, 10, 4, 2, 5, 0, 0, 4, 6, 0); and if i = 6 then cv(Δ̂) =
(10, 10, 10, 10, 0, 0, 5, 0, 7, 0, 6, 0). It follows that c∗(Δ̂) � − 65π

30 + 61π
30 < 0. Let Δ̂ have

exactly two vertices ui, uj of degree greater than 3. If d(u2) = 3 or d(u6) = 3 then in each case
c∗(Δ̂) � − 70π

30 + 67π
30 < 0; and if (i, j) = (2, 6) then cv(Δ̂) = (10, 10, 10, 10, 4, 2, 5, 0, 7, 0, 6, 0)

and c∗(Δ̂) < 0.

Case b6. Let Δ̂ be given by Figure 51(vi). Suppose that Δ̂ has exactly one ver-
tex ui of degree greater than 3. If d(u4) = d(u8) = 3 then cv(Δ̂) = (10, 10, 10, 10, 2, 6, 6, 0,
3, 6, 0, 0); if i = 4 then cv(Δ̂) = (10, 10, 10, 10, 0, 6, d1, d2, 0, 5, 0, 0); and if i = 8 then
cv(Δ̂) = (10, 10, 10, 10, 0, 6, 4, 0, 0, 5, 2, 4). It follows that c∗(Δ̂) � − 65π

30 + 63π
30 < 0. Let Δ̂

have exactly two vertices ui, uj of degree greater than 3. If d(u8) = 3 then
cv(Δ̂) = (10, 10, 10, 10, 2, 6, d1, d2, 3, 6, 0, 0); if d(u2) = d(u4) = 3 then cv(Δ̂) = (10, 10, 10, 10,
0, 6, 6, 0, 3, d1, d2, 4); if (i, j) = (8, 2) then cv(Δ̂) = (10, 10, 10, 10, 2, 6, 4, 0, 0, 5, 2, 4); and if
(i, j) = (8, 4) then cv(Δ̂) = (10, 10, 10, 10, 0, 6, d1, d2, 0, 5, 2, 4). It follows that c∗(Δ̂) � − 70π

30 +
69π
30 < 0.

Case b7. Let Δ̂ be given by Figure 51(vii). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u2) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 6, 2, 6, 6, 3, 0, 0); if i = 2
then cv(Δ̂) = (10, 10, d1, d2, 0, 6, 6, 0, 0, 0); and if i = 8 then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, 0, 2, 4).
It follows that c∗(Δ̂) � − 45π

30 + 44π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree

greater than 3. If d(u8) = 3 then cv(Δ̂) = (10, 10, d1, d2, 2, 6, 6, 3, 0, 0); if d(u2) = d(u7) = 3 then
cv(Δ̂) = (10, 10, 0, 6, 2, 6, 6, 3, 2, 4); if (i, j) = (8, 2) then cv(Δ̂) = (10, 10, d1, d2, 0, 6, 6, 0, 2, 4);
and if (i, j) = (8, 7) then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, a1, a2, 4). It follows that c∗(Δ̂) � − 50π

30 +
49π
30 < 0.

Case b8. Let Δ̂ be given by Figure 51(viii). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u3) = d(u7) = 3 then cv(Δ̂) = (10, 10, 2, 6, 0, 6, 6, 0, 0, 3); if i = 3
then cv(Δ̂) = (10, 10, 0, d1, d2, 6, 6, 0, 0, 0); and if i = 7 then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, 4, 2, 0).
It follows that c∗(Δ̂) � − 45π

30 + 44π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree

greater than 3. If d(u7) = 3 then cv(Δ̂) = (10, 10, 2, d1, d2, 6, 6, 0, 0, 3); if d(u2) = d(u3) = 3 then
cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, 4, a1, a2); if (i, j) = (7, 2) then cv(Δ̂) = (10, 10, 2, 6, 0, 6, 6, 4, 2, 0);
and if (i, j) = (7, 3) then cv(Δ̂) = (10, 10, 0, d1, d2, 6, 6, 4, 2, 0). It follows that c∗(Δ̂) � − 50π

30 +
49π
30 < 0.

Case b9. Let Δ̂ be given by Figure 51(ix). Suppose that Δ̂ has exactly one vertex ui of degree
greater than 3. If d(u2) = d(u4) = 3 then cv(Δ̂) = (10, 10, 0, 2, 2, 0, b1, b2, 6, 2); if i = 2 then
cv(Δ̂) = (10, 10, e1, e2, 2, 0, 0, 4, 6, 0); and if i = 4 then cv(Δ̂) = (10, 10, 0, 2, e1, e2, 0, 4, 6, 0). It
follows that c∗(Δ̂) � − 45π

30 + 43π
30 < 0.
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Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u2) =
d(u4) = 3 then c∗(Δ̂) < 0; if d(u2) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 2, e1, e2, b1, b2, 6, 0); if
d(u4) = d(u8) = 3 then cv(Δ̂) = (10, 10, e1, e2, 2, 0, b1, b2, 6, 0); if (i, j) = (2, 4) then cv(Δ̂) =
(10, 10, e1, e2, e1, e2, 0, 4, 6, 0); if (i, j) = (2, 8) then cv(Δ̂) = (10, 10, e1, e2, 2, 0, 0, 4, 6, 2); and if
(i, j) = (4, 8) then cv(Δ̂) = (10, 10, 0, 2, e1, e2, 0, 4, 6, 2). It follows that c∗(Δ̂) � − 50π

30 + 47π
30 < 0

except for (i, j) = (2, 4), in which case either d(u) = 4 and π
5 is distributed from Δ̂ across

the (u8, u9) edge according to Configuration F of Figure 32(v) and c∗(Δ̂) � − 50π
30 + 52π

30 −
π
5 < 0 or d(u) > 4, cv(Δ̂) = (7, 7, e1, e2, e1, e2, 0, 4, 6, 0) and c∗(Δ̂) � − 50π

30 + 46π
30 < 0. Let Δ̂

have exactly three vertices ui, uj , uk of degree greater than 3. If d(u2) = 3 or d(u4) = 3
then c∗(Δ̂) < 0; if d(u6) = d(u8) = 3 then cv(Δ̂) = (10, 10, e1, e2, e1, e2, 0, 6, 6, 0); if (i, j, k) =
(2, 4, 6) then cv(Δ̂) = (10, 10, e1, e2, e1, e2, 7, 0, 6, 0); and if (i, j, k) = (2, 4, 8) then cv(Δ̂) =
(10, 10, e1, e2, e1, e2, 0, 4, 6, 2). It follows that c∗(Δ̂) � − 55π

30 + 55π
30 = 0.

Case b10. Let Δ̂ be given by Figure 51(x). Let Δ̂ have exactly one vertex ui of degree greater
than 3. If d(u3) = d(u6) = 3 then cv(Δ̂) = c(10, 10, 3, 0, 0, 3, 0, 6, 6, 2); if i = 3 then cv(Δ̂) =
(10, 10, 0, 2, 2, 0, 0, 4, 6, 0); and if i = 6 then cv(Δ̂) = (10, 10, 0, 0, 0, 0, 7, 0, 6, 0). It follows that
c∗(Δ̂) � − 45π

30 + 40π
30 < 0.

Case b11. Let Δ̂ be given by Figure 51(xi). Let Δ̂ have exactly one vertex ui of degree greater
than 3. If d(u2) = d(u4) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 6, 6, 0, 3, 6, 2, 0); if i = 2 then
cv(Δ̂) = (10, 10, d1, d2, 6, 0, 0, 5, 0, 0); if i = 4 then cv(Δ̂) = (10, 10, 0, 6, d1, d2, 0, 5, 0, 0); and if
i = 8 then cv(Δ̂) = (10, 10, 0, 6, 6, 0, 0, 5, 2, 4). It follows that c∗(Δ̂) � − 45π

30 + 43π
30 < 0. Let Δ̂

have exactly two vertices ui, uj of degree greater than 3. If d(u2) = d(u4) = 3 then cv(Δ̂) =
(10, 10, 0, 6, 6, 0, 3, b1, b2, 4); if d(u2) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 6, d1, d2, 3, 6, 0, 0); if
d(u4) = d(u8) = 3 then cv(Δ̂) = (10, 10, d1, d2, 6, 0, 3, 6, 0, 0); if (i, j) = (2, 4) then cv(Δ̂) =
(10, 10, d1, d2, d1, d2, 0, 5, 0, 0); if (i, j) = (2, 8) then cv(Δ̂) = (10, 10, d1, d2, 6, 0, 0, 5, 2, 4); and if
(i, j) = (4, 8) then cv(Δ̂) = (10, 10, 0, 6, d1, d2, 0, 5, 2, 4). It follows that c∗(Δ̂) � − 50π

30 + 47π
30 <

0.

Case b12. Let Δ̂ be given by Figure 51(xii). Suppose that Δ̂ has exactly one vertex ui

of degree greater than 3. If d(u3) = 3 then cv(Δ̂) = (10, 10, 2, 2, 2, 2, 3, b1, b2, 4); and if i = 3
then cv(Δ̂) = (10, 10, 0, f1, f2, 0, 0, 5, 0, 0). It follows that c∗(Δ̂) � − 45π

30 + 43π
30 < 0. Let Δ̂ have

exactly two vertices u3, uj of degree greater than 3. If d(u7) = d(u8) = 3 then cv(Δ̂) =
(10, 10, 2, f1, f2, 2, 3, 6, 0, 0); if j = 7 then cv(Δ̂) = (10, 10, 0, f1, f2, 0, 0, 6, 0, 0); and if j = 8 then
cv(Δ̂) = (10, 10, 0, f1, f2, 0, 0, 5, 2, 4). It follows that c∗(Δ̂) � − 50π

30 + 45π
30 < 0.

Case b13. Let Δ̂ be given by Figure 51(xiii). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u2) = d(u3) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 0, 0, 6, 6, d1, d2, 0);
if i = 2 then cv(Δ̂) = (10, 10, 3, 0, 0, 6, 6, 0, 6, 0); if i = 3 then cv(Δ̂) = (10, 10, 0, 2, 4, 6, 6, 0, 6, 0);
and if i = 8 then cv(Δ̂) = (10, 10, 0, 0, 0, 6, 6, 0, 6, 2). It follows that c∗(Δ̂) � − 45π

30 + 44π
30 <

0. Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u2) = 3 then
cv(Δ̂) = (10, 10, 0, 2, 4, 6, 6, d1, d2, 2); if d(u3) = 3 then cv(Δ̂) = (10, 10, 3, 0, 0, 6, 6, d1, d2, 2);
and if (i, j) = (2, 3) then cv(Δ̂) = (10, 10, a1, a2, 4, 6, 6, 0, 6, 0). It follows that c∗(Δ̂) � − 50π

30 +
50π
30 = 0.

Case b14. Let Δ̂ be given by Figure 51(xiv). Suppose that Δ̂ has exactly one vertex ui

of degree greater than 3. If d(u2) = d(u8) = 3 then cv(Δ̂) = (10, 10, 0, 6, 2, 6, 6, 3, 0, 0); if i = 2
then cv(Δ̂) = (10, 10, d1, d2, 0, 6, 6, 0, 0, 0); and if i = 8 then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, 0, 2, 4).
It follows that c∗(Δ̂) � − 45π

30 + 44π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree

greater than 3. If d(u8) = 3 then cv(Δ̂) = (10, 10, d1, d2, 2, 6, 6, 3, 0, 0); if d(u6) = d(u7) = 3 then
cv(Δ̂) = (10, 10, d1, d2, 2, 6, 6, 0, 2, 4); if (i, j) = (8, 6) then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, 3, 2, 4);
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Figure 52. Regions for Figure 49.

and if (i, j) = (8, 7) then cv(Δ̂) = (10, 10, 0, 6, 0, 6, 6, a1, a2, 4). It follows that cv(Δ̂) � − 50π
30 +

50π
30 = 0.

Case b15. Let Δ̂ be given by Figure 51(xv). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u2) = d(u6) = 3 then cv(Δ̂) = (10, 10, 0, 0, 6, 3, 0, 6, d1, d2); if i = 2
then cv(Δ̂) = (10, 10, 4, 2, 5, 0, 0, 6, 6, 0); and if i = 6 then cv(Δ̂) = (10, 10, 0, 0, 5, 0, d1, d2, 6, 0).
It follows that c∗(Δ̂) � − 45π

30 + 45π
30 = 0. Let Δ̂ have exactly two vertices ui, uj of degree greater

than 3. If d(u2) = 3 then cv(Δ̂) = (10, 10, 0, 0, 6, 3, d1, d2, d1, d2); if d(u6) = d(u8) = 3 then
cv(Δ̂) = (10, 10, 4, d1, d2, 3, 0, 6, 6, 0), if (i, j) = (2, 6) then cv(Δ̂) = (10, 10, 4, 2, 5, 0, d1, d2, 6, 0);
and if (i, j) = (2, 8) then cv(Δ̂) = (10, 10, 4, 2, 5, 0, 0, 6, d1, d2). It follows that c∗(Δ̂) � − 50π

30 +
49π
30 < 0. Let Δ̂ have exactly three vertices of degree greater than 3. If d(u2) = 3 or
d(u6) = 3 or d(u8) = 3 then c∗(Δ̂) � − 55π

30 + 53π
30 < 0; and if (i, j, k) = (2, 6, 8) then cv(Δ̂) =

(10, 10, 4, 2, 5, 0, d1, d2, d1, d2) and c∗(Δ̂) � − 55π
30 + 51π

30 < 0.

Case b16. Let Δ̂ be given by Figure 51(xvi). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u4) = d(u8) = 3 then c∗(Δ̂) = (10, 10, 2, 6, 6, 0, a1, a2, 2, 0); if i = 4
then cv(Δ̂) = (10, 10, 0, 6, d1, d2, 0, 0, 0, 0); and if i = 8 then cv(Δ̂) = (10, 10, 0, 6, 5, 0, 0, 0, 2, 3).
It follows that c∗(Δ̂) � − 45π

30 + 43π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree

greater than 3. If d(u4) = 3 or d(u8) = 3 then c∗(Δ̂) < 0; and if (i, j) = (4, 8) then cv(Δ̂) =
(10, 10, 0, 6, d1, d2, a1, a2, a1, a2). It follows that c∗(Δ̂) � − 50π

30 + 50π
30 .

Finally let Δ̂ be given by one of the regions of Figure 49. It turns out that (up to cyclic
permutations and inversion) there is one way to label each of Figure 49(i), (ii), (iii), (v) and
(vi); two ways to label (iv); five ways to label (vii) or (viii); three ways to label (ix) or (x);
seven ways to label (xi) or (xii) or (xiii); and seven ways to label (xiv) or (xv) or (xvi) or (xvii).
This yields a total of 29 regions. There are however several coincidences amongst these regions
resulting in Δ̂ being one of the eight regions given by Figure 52. Table 5 gives c(ui, ui+1)
(1 � i � 9) in multiples of π/30 for each of the eight regions of Figure 52 with the total plus
the contribution via the b-segment in the final column.

We claim that x1 + y1 + z1 = 15 in Table 5. To see this let Δ̂ be given by Figure 52(i).
If c(u5, u6) = 0 then x1 + y1 + z1 = 14, so assume otherwise, in which case c(u4, u5) = 2π

15
(Figure 40(ix)). If now c(u5, u6) = 2π

15 then x1 + y1 + z1 = 15 by Lemma 9.2. On the other hand
if c(u5, u6) > 2π

15 then d(u5) = 3 (see Figure 40) forcing c(u4, u5) = π
30 and x1 + y1 + z1 = 15.

Note that we use here and below the fact that labelling prevents Δ̂ = Δ̂2 of Figure 38. The
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Table 5. c(ui, ui+1) for Figure 52.

(i) d1 d2 x1 y1 z1 6 6 e1 e2 48 + 10 = 58

(ii) e1 e2 6 d1 d2 d1 d2 d1 d2 47 + 30 = 77

(iii) d1 d2 x1 y1 z1 f1 f2 e1 e2 48 + 30 = 78

(iv) d1 d2 f1 f2 x1 y1 z1 e1 e2 48 + 30 = 78

(v) d1 d2 f1 f2 x1 y1 z1 e1 e2 48 + 50 = 98

(vi) e1 e2 d1 d2 d1 d2 6 d1 d2 47 + 50 = 97

(vii) d1 d2 x1 y1 z1 f1 f2 e1 e2 48 + 50 = 98

(viii) d1 d2 6 6 x1 y1 z1 e1 e2 48 + 70 = 118

arguments for Δ̂ of Figure 52(iii), (iv), (v), (vii) and (viii) are similar although for (v), (vii)
and (viii) we use the fact, again both here and below, that Δ̂ 	= Δ̂2 of Figure 37.

Observe that d(Δ̂) = 10 in (i); d(Δ̂) = 12 in (ii)–(iv); d(Δ̂) = 14 in (v)–(vii); and d(Δ̂) = 16
in (viii). It follows that if Δ̂ has at least four vertices of degree greater than 3 then c∗(Δ̂) � 0.
If Δ̂ has no vertices of degree greater than 3 then we see from Figure 52 that c∗(Δ̂) � −7π +
18π
3 + 24π

30 < 0.

We deal with each of the eight c-cases in turn.

Case c1. Let Δ̂ be given by Figure 52(i). Suppose that Δ̂ has exactly one vertex ui of
degree greater than 3. If d(u4) = d(u9) = 3 then cv(Δ̂) = (10, d1, d2, 2, 0, 6, 6, 6, 2, 0); if i = 4
then cv(Δ̂) = (10, 0, 6, c1, c2, 4, 4, 6, 2, 0) (the c1, c2 follows from Δ̂ 	= Δ̂2 of Figure 38(iv)); and
if i = 9 then cv(Δ̂) = (10, 0, 6, 2, 0, 4, 4, 6, e1, e2). It follows that c∗(Δ̂) � − 45π

30 + 43π
30 < 0. Let

Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u2) = d(u4) = 3 then cv(Δ̂) =
(10, 0, 6, 2, 0, 6, 6, 6, e1, e2); if d(u2) = d(u9) = 3 then cv(Δ̂) = (10, 0, 6, x1, y1, z1, 6, 6, 2, 0); if
d(u4) = d(u9) = 3 then cv(Δ̂) = (10, d1, d2, 2, 0, 6, 6, 6, 2, 0); if (i, j) = (2, 4) then cv(Δ̂) =
(10, d1, d2, c1, c2, 4, 4, 6, 2, 0); if (i, j) = (2, 9) then cv(Δ̂) = (10, d1, d2, 2, 0, 4, 4, 6, e1, e2); if
(i, j) = (4, 9) then cv(Δ̂) = (10, 0, 6, c1, c2, 4, 4, 6, e1, e2). It follows that c∗(Δ̂) � − 50π

30 + 50π
30 =

0. Let Δ̂ have exactly three vertices ui, uj , uk of degree greater than 3. If d(u4) =
3 or d(u9) = 3 then c∗(Δ̂) < 0; if d(u2) = d(u7) = 3 then (see Figure 40(xiv)) cv(Δ̂) =
(10, 0, 6, x1, y1, z1, 4, 6, e1, e2); if (i, j, k) = (4, 9, 2) then cv(Δ̂) = (10, d1, d2, c1, c2, 4, 4, 6, e1, e2);
and if (i, j, k) = (4, 9, 7) then cv(Δ̂) = (10, 0, 6, c1, c2, 4, 6, 6, e1, e2). It follows that c∗(Δ̂) �
− 55π

30 + 54π
30 < 0.

Case c2. Let Δ̂ be given by Figure 52(ii). Suppose that Δ̂ has exactly one vertex
ui of degree greater than 3. If d(u2) = d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 0, 2, 6, d1,
d2, d1, d2, 6, 0); if i = 2 then cv(Δ̂) = (10, 10, 10, e1, e2, 6, 4, 0, 0, 6, 6, 0); and if i = 9
then cv(Δ̂) = (10, 10, 10, 0, 2, 6, 4, 0, 0, 6, d1, d2). It follows that c∗(Δ̂) � − 65π

30 + 64π
30 < 0.

Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If d(u2) = 3 then
cv(Δ̂) = (10, 10, 10, 0, 2, 6, d1, d2, d1, d2, d1, d2); if d(u6) = 3 then cv(Δ̂) = (10, 10, 10, e1, e2, 6, 6,
0, 0, 6, d1, d2); and if (i, j) = (2, 6) then cv(Δ̂) = (10, 10, 10, e1, e2, 6, 4, 2, 2, 6, 6, 0).
It follows that c∗(Δ̂) � − 70π

30 + 69π
30 . Let Δ̂ have exactly three vertices ui, uj , uk of degree

greater than 3. If d(u2) = 3 or d(u6) = 3 or d(u9) = 3 then c∗(Δ̂) � − 75π
30 + 73π

30 < 0; and if
(i, j, k) = (2, 6, 9) then cv(Δ̂) =(10, 10, 10, e1, e2, 6, 4, 2, 2, 6, d1, d2) and c∗(Δ̂) � − 75π

30 + 71π
30 <

0.

Case c3. Let Δ̂ be given by Figure 52(iii). Suppose that Δ̂ has exactly one vertex
ui of degree greater than 3. If d(u7) = d(u9) = 3 then cv(Δ̂) = (10, 10, 10, d1, d2,
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x1, y1, z1, 2, 2, 2, 0); if i = 7 then cv(Δ̂) = (10, 10, 10, 0, 6, 2, 0, 6, f1, f2, 2, 0); and
if i = 9 then cv(Δ̂) = (10, 10, 10, 0, 6, 2, 0, 6, 2, 2, e1, e2). It follows that c∗(Δ̂) �
− 65π

30 + 61π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater

than 3. If d(u2) = d(u7) = 3 then cv(Δ̂) = (10, 10, 10, 0, 6, x1, y1, z1, 2, 2, e1, e2);
if d(u9) = 3 then cv(Δ̂) = (10, 10, 10, d1, d2, x1, y1, z1, f1, f2, 2, 0); if (i, j) = (9, 2)
then cv(Δ̂) = (10, 10, 10, d1, d2, 2, 0, 6, 2, 2, e1, e2); and if (i, j) = (9, 7) then cv(Δ̂) =
(10, 10, 10, 0, 6, 2, 0, 6, f1, f2, e1, e2). It follows that c∗(Δ̂) � − 70π

30 + 69π
30 = 0. Let Δ̂

have exactly three vertices ui, uj , uk of degree greater than 3. If d(u2) = 3 or
d(u7) = 3 or d(u9) = 3 then c∗(Δ̂) � − 75π

30 + 74π
30 < 0; and if (i, j, k) = (2, 7, 9) then

cv(Δ̂) = (10, 10, 10, d1, d2, 2, 0, 6, f1, f2, e1, e2) and c∗(Δ̂) � − 75π
30 + 71π

30 < 0.

Case c4. Let Δ̂ be given by Figure 52(iv). Suppose that Δ̂ has exactly one vertex
ui of degree greater than 3. If d(u4) = d(u9) = 3 then c∗(Δ̂) = (10, 10, 10, d1, d2,
2, 2, x1, y1, z1, 2, 0); if i = 4 then cv(Δ̂) = (10, 10, 10, 0, 6, f1, f2, 2, 0, 6, 2, 0); and
if i = 9 then c∗(Δ̂) = (10, 10, 10, 0, 6, 2, 2, 2, 0, 6, e1, e2). It follows that c∗(Δ̂) �
− 65π

30 + 61π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater than

3. If d(u9) = 3 then cv(Δ̂) = (10, 10, 10, d1, d2, f1, f2, x1, y1, z1, 2, 0); if d(u2) =
d(u4) = 3 then cv(Δ̂) = (10, 10, 10, 0, 6, 2, 2, x1, y1, z1, e1, e2); if (i, j) = (9, 2) then
cv(Δ̂) = (10, 10, 10, d1, d2, 2, 2, 2, 0, 6, e1, e2); and if (i, j) = (9, 4) then cv(Δ̂) =
(10, 10, 10, 0, 6, f1, f2, 2, 0, 6, e1, e2). It follows that c∗(Δ̂) � − 70π

30 + 69π
30 = 0. Let Δ̂

have exactly three vertices ui, uj , uk of degree greater than 3. If d(u2) = 3 or
d(u4) = 3 or d(u9) = 3 then c∗(Δ̂) � − 75π

30 + 74π
30 < 0; and if (i, j, k) = (2, 4, 9) then

cv(Δ̂) = (10, 10, 10, d1, d2, f1, f2, 2, 0, 6, e1, e2) and c∗(Δ̂) � − 75π
30 + 71π

30 < 0.

Case c5. Let Δ̂ be given by Figure 52(v). Suppose that Δ̂ has exactly one vertex
ui of degree greater than 3. If d(u4) = d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, d1,
d2, 2, 2, x1, y1, z1, 2, 0); if i = 4 then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 6, f1, f2, 6, 0, 2, 2, 0);
and if i = 9 then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 6, 2, 2, 6, 0, 2, e1, e2). It follows that
c∗(Δ̂) � − 85π

30 + 81π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater

than 3. If d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, d1, d2, f1, f2, x1, y1, z1, 2, 0); if
d(u2) = d(u4) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 6, 2, 2, x1, y1, z1, e1, e2); if (i, j) = (9, 2)
then cv(Δ̂) = (10, 10, 10, 10, 10, d1, d2, 2, 2, 6, 0, 2, e1, e2); and if (i, j) = (9, 4) then
cv(Δ̂) = (10, 10, 10, 10, 10, 0, 6, f1, f2, 6, 0, 2, e1, e2). It follows that c∗(Δ̂) � − 90π

30 + 89π
30 = 0.

Let Δ̂ have exactly three vertices ui, uj , uk of degree greater than 3. If d(u2) = 3 or
d(u4) = 3 or d(u9) = 3 then c∗(Δ̂) � − 95π

30 + 94π
30 < 0; and if (i, j, k) = (2, 4, 9) then

cv(Δ̂) = (10, 10, 10, 10, 10, d1, d2, f1, f2, 6, 0, 2, e1, e2) and c∗(Δ̂) � − 95π
30 + 91π

30 < 0.

Case c6. Let Δ̂ be given by Figure 52(vi). Suppose that Δ̂ has exactly one vertex ui of degree
greater than 3. If d(u2) = d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 2, d1, d2, d1, d2, 6, 6, 0);
if i = 2 then cv(Δ̂) = (10, 10, 10, 10, 10, e1, e2, 6, 0, 0, 4, 6, 6, 0); and if i = 9 then
cv(Δ̂) = (10, 10, 10, 10, 10, 0, 2, 6, 0, 0, 4, 6, d1, d2). It follows that c∗(Δ̂) � − 85π

30 +
84π
30 < 0. Let Δ̂ have exactly two vertices ui, uj of degree greater than 3. If
d(u2) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 2, d1, d2, d1, d2, 6, d1, d2); if d(u5) = 3
then cv(Δ̂) = (10, 10, 10, 10, 10, e1, e2, 6, 0, 0, 6, 6, d1, d2); and if (i, j) = (2, 5) then
cv(Δ̂) = (10, 10, 10, 10, 10, e1, e2, 6, 2, 2, 4, 6, 6, 0). It follows that c∗(Δ̂) � − 90π

30 + 89π
30 .

Let Δ̂ have exactly three vertices ui, uj , uk of degree greater than 3. If d(u2) = 3
or d(u5) = 3 or d(u9) = 3 then c∗(Δ̂) � − 95π

30 + 93π
30 < 0; and if (i, j, k) = (2, 5, 9) then

cv(Δ̂) =(10, 10, 10, 10, 10, e1, e2, 6, 2, 2, 4, 6, d1, d2) and c∗(Δ̂) � − 95π
30 + 91π

30 < 0.
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Case c7. Let Δ̂ be given by Figure 52(vii). Suppose that Δ̂ has exactly one vertex ui of degree
greater than 3. If d(u7) = d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, d1, d2, x1, y1, z1, 2, 2, 2, 0);
if i = 7 then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 6, 6, 0, 2, f1, f2, 2, 0); and if i = 9 then cv(Δ̂) =
(10, 10, 10, 10, 10, 0, 6, 6, 0, 2, 2, 2, e1, e2). It follows that c∗(Δ̂) � − 85π

30 + 81π
30 < 0. Let Δ̂ have

exactly two vertices ui, uj of degree greater than 3. If d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 10,
10, d1, d2, x1, y1, z1, f1, f2, 2, 0); if d(u2) = d(u7) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, 0,
6, x1, y1, z1, 2, 2, e1, e2); if (i, j) = (9, 2) then cv(Δ̂) = (10, 10, 10, 10, 10, d1, d2, 6, 0, 2, 2, 2, e1, e2);
and if (i, j) = (9, 7) then cv(Δ̂) = (10, 10, 10, 10, 10, 0, 6, 6, 0, 2, f1, f2, e1, e2). It follows that
c∗(Δ̂) � − 90π

30 + 89π
30 = 0. Let Δ̂ have exactly three vertices ui, uj , uk of degree greater than 3.

If d(u2) = 3 or d(u7) = 3 or d(u9) = 3 then c∗(Δ̂) � − 95π
30 + 94π

30 < 0; if (i, j, k) = (2, 7, 9) then
cv(Δ̂) = (10, 10, 10, 10, 10, d1, d2, 6, 0, 2, f1, f2, e1, e2) and c∗(Δ̂) � − 95π

30 + 91π
30 < 0.

Case c8. Let Δ̂ be given by Figure 52(viii). Suppose that Δ̂ has exactly one vertex
ui of degree greater than 3. If d(u7) = d(u9) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10,
d1, d2, 6, 6, 6, 0, 2, 2, 0); if i = 7 then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, 4, c1, c2, 2, 0)
(the c1, c2 follows from Δ̂ 	= Δ̂2 of Figure 37(iv)); and if i = 9 then cv(Δ̂) =
(10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, 4, 0, 2, e1, e2). It follows that c∗(Δ̂) � − 105π

30 + 103π
30 = 0.

Let Δ̂ have exactly two vertices, ui, uj of degree greater than 3. If d(u2) = d(u7) = 3
then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 6, 6, 0, 2, e1, e2); if d(u2) = d(u9) = 3 then
cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 6, x1, y1, z1, 2, 0); if d(u7) = d(u9) = 3 then c∗(Δ̂) �
− 110π

30 + 102π
30 ; if (i, j) = (2, 7) then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 4, 4, c1, c2, 2, 0);

if (i, j) = (2, 9) then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 4, 4, 0, 2, e1, e2); and if
(i, j) = (7, 9) then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, 4, c1, c2, e1, e2). It follows
that c∗(Δ̂) � − 110π

30 + 110π
30 = 0. Let Δ̂ have exactly three vertices ui, uj , uk of

degree greater than 3. If d(u7) = 3 or d(u9) = 3 then c∗(Δ̂) � − 115π
30 + 111π

30 < 0; if
d(u2) = d(u4) = 3 then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 4, x1, y1, z1, e1, e2); if (i, j, k) =
(7, 9, 2) then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, d1, d2, 6, 4, 4, c1, c2, e1, e2); and if (i, j, k) =
(7, 9, 4) then cv(Δ̂) = (10, 10, 10, 10, 10, 10, 10, 0, 6, 6, 6, 4, c1, c2, e1, e2). It follows that
cv(Δ̂) � − 115π

30 + 114π
30 < 0. �

The next result completes the proof of Proposition 4.3.

Proposition 11.5. If Δ̂ is a type B region and d(Δ̂) � 10 then c∗(Δ̂) � 0.

Proof. It can be assumed d(Δ̂) � 10 and that Δ̂ is not one of the regions of Figures 47(ii)–
(v), 48 or 49, otherwise Lemma 11.4 applies. Moreover if n2 � 10 then c∗(Δ̂) � 0 so assume that
n2 � 9. It follows from the proof of Lemma 11.1 that the upper bound (†) immediately preceding
Lemma 11.1 is reduced by at least 2π

15 for each gap between two b-segments that contain
b-regions so if there are at least three such b-segments then c∗(Δ̂) � π(2 − n2

5 ) − 3( 2π
15 ) implying

c∗(Δ̂) � 0 for n2 � 8. Since there are at least two edges between b-segments it follows that if
Δ̂ contains more than three such b-segments then c∗(Δ̂) � 0 or if exactly three then n2 � 8 by
Lemma 11.2(i) and again c∗(Δ̂) � 0. If Δ̂ has exactly one b-segment that contains a b-region
then c∗(Δ̂) � 0 by Lemma 11.4 together with Lemma 11.2(v) and (vi) so suppose from now
on that Δ̂ contains exactly two such segments. Then c∗(Δ̂) � π(2 − n2

5 ) − 2( 2π
15 ) which implies

c∗(Δ̂) � 0 for n2 � 9, so assume n2 � 8 in which case Δ̂ is given by Figure 47(i) where (m,n) ∈
{(2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (3, 3), (3, 4), (3, 5), (4, 4)}. Applying Lemmas 11.4 and 11.2(ii)
shows it can be assumed that there is at least one shadow edge in Δ̂ between the two b-segments.

Let m = 2. It follows from the statement at the end of the above paragraph that Δ̂ contains
the shadow edge (14) (of length n− 1) and Δ̂ is given by Figure 53(i) and (ii). If (m,n) 	= (2, 6)
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Figure 53. m = 2.

Δ

Δn−3

(vi)

1

4

Δ

4

n−3

(vii)

1

Δ

(viii)

4

1

1

Δn−2

(v)
4

Δ

1

4

(ix)

n−3

Δ

1

4

1

(iv)

Δn−3

1

4
(iii)

Δ

1

4

n−2

(ii)
4

1

n−2

(i)

1

Figure 54. m = 3 or 4.

then ideg(1) = ideg(4) = 1 by Lemma 11.2(iii) and this leads to a length contradiction so let
(m,n) = (2, 6). We claim that there is a reduction to (†) of 4π

15 between vertices 1 and 4. Given
this and the fact that there is a reduction of 2π

15 between 2 and 3 we obtain c∗(Δ̂) � π(2 − n2
5 ) −

6π
15 and c∗(Δ̂) � 0 for n2 � 8, in particular when (m,n) = (2, 6). To prove the claim observe
that if d(a1) = 3 in Figure 53(i) or (ii) then c1 = c2 = 0; and if d(a1) � 4 then c1 + c2 � 2π

15
(see Figure 35). In the first instance there is a deficit of at least (2π

3 + 2(2π
15 )) − 2π

3 = 4π
15 ; and

in the second case the deficit is at least ( 2π
3 + 2(2π

15 )) − ( 2π
4 + 2π

15 ) = 3π
10 .

Let m = 3 or 4. Applying Lemma 11.2(ii)–(iv) and Lemma 11.4 it can be assumed that Δ̂ is
given by Figure 54 with the understanding that the segment of Δ̂ between vertices 2 and 3 is also
one of these nine possibilities. (Note that in Figure 54 the length of the shadow edge incident at
vertex 1 is shown.) We claim that if m = 3 then the edges between 1 and 4 produce a deficit of at
least 2π

5 ; and if m = 4 then the reduction is at least π
5 . Given this, if (m,n) = (3, 3) then c∗(Δ̂) �

π(2 − 6
5 ) − 4π

5 = 0; if (m,n) = (3, 4) then c∗(Δ̂) � π(2 − 7
5 ) − 3π

5 = 0; if (m,n) = (3, 5) then
c∗(Δ̂) � π(2 − 8

5 ) − ( 2π
5 + 2π

15 ) < 0; and if (m,n) = (4, 4) then c∗(Δ̂) � π(2 − 8
5 ) − 2(π5 ) = 0, so

it remains to prove the claim for the possible labellings of the regions of Figure 54 and these are
shown in Figure 55(i)–(xx). Indeed there are four ways to label each of Figure 54(iv) and (vi);
and two ways to label each of the others. However the labelling obtained from Figure 54(vii)
already appears in Figure 54(vi).

Let m = 3. Then Tables 6–9 give maximum values for κ1, κ2 and κ3 of Figure 55(i)–(iii) as
multiples of π

30 . Also indicated in each case as a multiple of π
30 is the deficit = π( 2

3 − 2
d(v1)

) +
π(2

3 − 2
d(v2)

) + ( π
30 )(12 − (κ1 + κ2 + κ3)). The entries in each final column show that the deficit

in each case is 2π
5 , as required, except for d(v1) = d(v2) = 3 and d(u) > 4 in Figure 55(i) and

we consider this below. Note that in Tables 6 and 8 when d(u) = 4 in Figure 55(i) and (iii)
and either d(v1) = d(v2) = 3 or d(v1) = 3, d(v2) = 4, π

5 is distributed from Δ̂ according to
Configurations E and F of Figure 32(iii) and (v) resulting in deficits of 12 and 16 as shown.
Note that in Table 7 when d(v1) = 3 and d(v2) = 4 the region Δ̂ cannot be Δ̂2 of Figure 38(iv)
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Figure 55. Labelling for m = 3 or 4.

Table 6. Deficit for Figure 55(i).

d(v1) d(v2) κ1 κ2 κ3 Deficit

(i) 3 3 0 6 0 12 (9) (Note)

(i) 4 3 2 0 0 15

(i) 3 4 0 0 7 16 (13) (Note)

(i) 5+ 3 2 2 0 16

(i) 3 5+ 0 2 2 16

(i) 4 4 2 0 7 13

(i) 4 5+ 2 4 2 17

(i) 5+ 4 2 4 7 12

(i) 5+ 5+ 2 2 2 22

because d(w) = 3 in Figure 55(ii) but the corresponding vertex in Figure 38(ii) has degree 4,
and so κ2 = 1 by Figure 36(x). Similarly in Table 9 when d(v1) = 4 and d(v2) = (3) the region
Δ̂ cannot be Δ̂2 of Figure 37(iv); and so κ2 = 1 by Figure 36(i).

Suppose d(u) > 4 in Figure 55(i) in which the vertex v corresponds to the vertex 4 of
Figure 54(i). If there are at least two regions in the b-segment between vertices 4 and 3
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Table 7. Deficit for Figure 55(ii).

d(v1) d(v2) κ1 κ2 κ3 Deficit

(ii) 3 3 0 0 0 12

(ii) 4 3 0 0 0 17

(ii) 3 4 0 1 4 12 (Note)

(ii) 5+ 3 2 2 0 16

(ii) 3 5+ 0 2 2 16

(ii) 4 4 0 7 0 15

(ii) 4 4 0 0 4 18

(ii) 4 5+ 0 4 2 19

(ii) 5+ 4 2 4 4 15

(ii) 5+ 5+ 2 2 2 22

Table 8. Deficit for Figure 55(iii).

d(v1) d(v2) κ1 κ2 κ3 Deficit

(iii) 3 3 0 6 0 12 (Note)

(iii) 4 3 2 0 0 15

(iii) 3 4 0 0 7 16 (Note)

(iii) 5+ 3 2 2 0 16

(iii) 3 5+ 0 2 2 16

(iii) 4 4 2 0 7 13

(iii) 4 5+ 2 4 2 17

(iii) 5+ 4 2 4 7 12

(iii) 5+ 5+ 2 2 2 22

then 2(10π
30 − 7π

30 ) = π
5 is contributed to the deficit and so we obtain the totals 12π

30 when
d(v1) = d(v2) = 3 and 16π

30 when d(v1) = 3, d(v2) = 4 as shown in Table 6. If however there
is exactly one region in the b-segment then only 10π

30 − 7π
30 = π

10 is contributed to the deficit
and so the total is 9π

30 when d(v1) = d(v2) = 3 and 13π
30 when d(v1) = 3, d(v2) = 4 as shown in

parentheses in Table 6. If (m,n) = (3, 5) then c∗(Δ̂) � π(2 − 8
5 ) − ( 9π

30 + 2π
15 ) < 0 so it can be

assumed n ∈ {3, 4}. But given that there are no vertices between 4 and 3, it follows immediately
from length considerations that (i) of Figure 54 can only be combined with (iv) or (viii), and
so, in particular, n = 4. Any attempt at labelling shows that (i) with (viii) is impossible and
the unique region Δ̂ obtained from (i) with (iv) is given by Figure 53(iii) in which the segment
of vertices from 2 to 3 corresponds to Figure 55(x). We show below that for Figure 55(x), the
deficit is at least π

3 and so c∗(Δ̂) � π(2 − 7
5 ) − 19π

30 < 0. If d(u) > 4 in Figure 55(iii) in which
the vertex v corresponds to the vertex 4 of Figure 54(ii), then since there are at least two
regions in the b-segment between 4 and 3 it follows that, as in the above case, the total deficit
is 12 and 16 as shown in Table 8.

Now let m = 4 and consider Figure 55. (Recall that it remains to show that there is a deficit
of at least π

5 in all cases except for Figure 55(x) where we must show that there is a deficit of
at least π

3 .) Checking Figures 35–38, 40 and 41 and Lemma 9.1 shows κ1 + κ2 + κ3 + κ4 � 11π
15

for (xiv); and κ1 + κ2 + κ3 + κ4 � 9π
15 in all other cases. Indeed the upper bounds are shown in

Table 10. Note that κ4 � 2 in (vii)–(x), (xvii) and (xviii) follows from the fact that d(v3) � 4
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Table 9. Deficit for Figure 55(iv).

d(v1) d(v2) κ1 κ2 κ3 Deficit

(iv) 3 3 0 0 0 12

(iv) 4 3 4 1 0 12 (Note)

(iv) 3 4 0 0 0 17

(iv) 5+ 3 2 2 0 16

(iv) 3 5+ 0 2 2 16

(iv) 4 4 4 0 0 18

(iv) 4 4 0 7 0 15

(iv) 4 5+ 4 4 2 15

(iv) 5+ 4 2 4 0 19

(iv) 5+ 5+ 2 4 2 20

Table 10. Upper bounds for m = 4.

κ1 κ2 κ3 κ4 κ1 κ2 κ3 κ4

(v) b1 b2 6 2 16 (xiii) x1 x2 x3 x4 18

(vi) 3 d1 d2 4 17 (xiv) e1 e2 e1 e2 22

(vii) 2 6 7 2 17 (xv) y1 y2 y3 y4 17

(viii) 3 7 4 2 16 (xvi) a1 a2 a1 a2 14

(ix) 7 6 2 2 17 (xvii) 4 7 3 2 16

(x) 4 7 3 2 16 (xviii) 2 6 7 2 17

(xi) 2 2 6 7 17 (xix) 2 6 d1 d2 18

(xii) 2 4 7 3 16 (xx) 4 d1 d2 3 17

and if d(v3) = 4 then κ4 = 0; κ1 � 2 in (xi) and (xii) follows from the fact that d(v1) � 4 and
if d(v1) = 4 then κ1 = 0. Note further that in (v) κ1 > 4 implies κ2 = 0 and κ2 > 4 implies
κ1 = 0; in (vi) that κ3 > 4 implies κ2 = 0; that x1 + x2 + x3 + x4 � 18 in (xiii) follows from
the fact that d(v1) = 3 implies κ1 = 0, d(v1) > 3 implies κ2 = 5, d(v3) = 3 implies κ4 = 0 and
d(v3) > 3 implies κ3 = 5; that in (xiv) κ2 = 9 or 8 forces κ1 = 0 or 2, that κ2 � 4 and that
similar statements hold for κ3 and κ4; in (xv) the fact that κ1 > 4 implies κ2 = 0, κ2 > 4
implies κ1 = 0 or κ3 = 0, κ3 > 4 implies κ2 = 0 or κ4 = 0 and κ4 > 4 implies κ3 = 0 forces
y1 + y2 + y3 + y4 � 17; in (xvi) that κ2 > 4 implies κ1 = 0 and κ3 > 4 implies κ4 = 0; in (xix)
κ4 > 4 implies κ3 = 0; and in (xx) κ2 > 4 implies κ3 = 0. All other numerical entries for the
upper bounds in Table 10 can be read directly from Figure 35.

In the cases where κ1 + κ2 + κ3 + κ4 � 9π
15 if at least one of v1, v2, v3 has degree at least

5 then there is a deficit of at least (2π
3 + 8π

15 ) − ( 2π
5 + 9π

15 ) = π
5 ; and if at least two have

degree at least 4 then the deficit is at least (4π
3 + 8π

15 ) − (π + 9π
15 ) = 4π

15 , so it can be assumed
(d(v1), d(v2), d(v3)) ∈ {(3, 3, 3), (4, 3, 3), (3, 4, 3), (3, 3, 4)}. For cases (vii)–(x) and (xvii)–(xviii),
d(v3) = 4 which forces κ4 = 0 and so κ1 + κ2 + κ3 + κ4 � π

2 which gives a deficit of at least π
5 .

For (xi) and (xii), d(v1) = 4 which forces κ1 = 0 and so κ1 + κ2 + κ3 + κ4 � π
2 which gives a

deficit of at least π
5 . In fact for case (x), d(v3) � 4 and so if at least one of v1 or v2 has degree

at least 4 then the deficit is at least π
3 ; or if d(v1) = d(v2) = 3 then κ1 = κ2 = 0 and we see

from Table 10 that the deficit is at least 8π
15 , as required.

Table 11 shows the deficit for (v), (vi), (xiii), (xv), (xvi), (xix) and (xx).
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Table 11. Deficit for Figure 55(v), (vi), (xiii), (xv), (xvi), (xix) and (xx).

d(v1) d(v2) d(v3) κ1 κ2 κ3 κ4 Deficit

(v) 3 3 3 0 4 6 0 6

(v) 4 3 3 7 0 6 0 8

(v) 3 4 3 0 0 0 0 21

(v) 3 3 4 0 4 0 2 15

(vi) 3 3 3 0 5 0 0 11

(vi) 4 3 3 0 0 0 0 21

(vi) 3 4 3 0 0 0 0 21

(vi) 3 3 4 0 5 2 4 10

(xiii) 3 3 3 0 2 2 0 12

(xiii) 4 3 3 2 0 2 0 17

(xiii) 3 4 3 0 9 0 0 12

(xiii) 3 4 3 0 0 9 0 12

(xiii) 3 3 4 0 2 0 2 17

(xv) 3 3 3 0 6 6 0 6 (Note)

(xv) 4 3 3 7 0 6 0 8

(xv) 3 4 3 0 0 0 0 21

(xv) 3 3 4 0 6 0 7 8

(xvi) 3 3 3 0 0 0 0 16

(xvi) 4 3 3 0 0 0 0 21

(xvi) 3 4 3 0 2 2 0 17

(xvi) 3 3 4 0 0 0 0 21

(xix) 3 3 3 0 6 4 0 6

(xix) 4 3 3 2 0 4 0 15

(xix) 3 4 3 0 0 0 0 21

(xix) 3 3 4 0 6 0 7 8

(xx) 3 3 3 0 0 5 0 11

(xx) 4 3 3 4 2 5 0 10

(xx) 3 4 3 0 0 0 0 21

(xx) 3 3 4 0 0 0 0 21

As can be seen from Table 11 for these cases it remains to explain the first row for (xv).
Consider (xv) with d(v1) = d(v2) = d(v3) = 3. Then κ1 = κ4 = 0, κ2 � π

5 and κ3 � π
5 . If κ1 +

κ2 � π
3 then the deficit is at least π

5 so assume otherwise. If Δ̂ receives less than π
5 from each

of Δ2 and Δ3 then deficit � π
5 , so assume otherwise. If Δ̂ receives π

5 from Δ2 then Δ2 is given
by Δ of Figure 7(iii) or Figure 8(iv). But if Δ2 is Δ of Figure 8(iv) then Δ̂ does not receive
any curvature from Δ3 and we are done; and if Δ2 is Δ of Figure 7(iii) then according to
Configuration D of Figure 32(ii), Δ̂ receives 3π

10 from Δ0 and the deficit is increased by π
30 . If

Δ̂ receives π
5 from Δ3 then Δ3 is given by Figure 7(iii) or Figure 10(i) and (ii). But if Δ3 is Δ

of Figure 10(i) and (ii) then Δ̂ does not receive any curvature from Δ2 and we are done; and if
Δ3 is Δ of Figure 7(iii) then according to Configuration C of Figure 32(i), Δ̂ receives 3π

10 from
Δ5 and the deficit is increased by π

30 . It follows that the deficit is at least 2π
15 + 2π

30 = π
5 .
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Table 12. Deficit for Figure 55(xiv).

d(v1) d(v2) d(v3) κ1 κ2 κ3 κ4 Deficit

(xiv) 3 3 3 0 2 2 0 12

(xiv) 4 3 3 e1 e2 2 0 8

(xiv) 3 4 3 0 0 0 0 21

(xiv) 3 3 4 0 2 e1 e2 8

(xiv) 5+ 3 3 2 2 2 0 18

(xiv) 3 5+ 3 0 2 2 0 20

(xiv) 3 3 5+ 0 2 2 2 18

(xiv) 4 4 3 x1 x2 0 0 17

(xiv) 4 3 4 e1 e2 e1 e2 4(6) (Note)

(xiv) 3 4 4 0 0 x1 x2 17

Finally the case Figure 55(xiv) is given by Table 12. Note that d(v1) = d(v2) = 4 implies
κ1 = 0 or κ2 = 0 and that d(v3) = d(v4) = 4 implies κ3 = 0 or κ4 = 0 which implies x1 + x2 = 5
in Table 12; and the e1, e2 entries are explained by Figure 42 and Lemma 9.2(iv). Since (see
Table 10) κ1 + κ2 + κ3 + κ4 � 11π

15 , if there is a vertex of degree at least 4 and one of degree
at least 5 it follows that the deficit is at least 7π

30 ; and if there are at least three vertices of
degree at least 4 then the deficit � 3π

10 and so we see from Table 12 that to complete the proof
the penultimate row for (xiv), that is, case (xiv) with d(v1) = d(v3) = 4 and d(v2) = 3 must be
considered. Note that for this subcase the deficit is at least 2π

15 and so it remains to show that
the deficit is in fact at least π

5 . If κ1 + κ2 � π
3 and κ3 + κ4 � π

3 then the deficit � π
5 , so assume

otherwise. If κ1 + κ2 > π
3 then the only way this can occur (see Figure 42) is if κ1 = 2π

15 and
κ2 = 7π

30 forcing Δ1 to be given by Δ of Figure 20(v) and Δ2 to be given by Δ of Figure 16(iii).
But either this gives Configuration B of Figure 31(v), a contradiction since then κ2 = π

5 only, or
d(u) > 4 in Figure 31(v) and the deficit is at least 2π

15 + (π3 − 7π
30 ) = 7π

30 . If κ3 + κ4 > π
3 then the

only way this can occur is if κ3 = 7π
30 and κ4 = 2π

15 forcing Δ3 to be given by Δ of Figure 20(vi)
and Δ4 to be given by Δ of Figure 16(ii). But either this gives Configuration A of Figure 31(i),
a contradiction since then κ3 = π

5 only, or d(u) > 4 in Figure 31(i) and again the deficit is at
least 7π

30 . �

The proof of Proposition 4.3 follows from 10.2, 10.4, 11.3 and 11.5.
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