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Coupling a mesoscopic conductor to a microwave cavity can lead to fascinating feedback effects
which generate strong correlations between the dynamics of photons and charges. We explore the
connection between cavity dynamics and charge transport in a model system consisting of a voltage-
biased Josephson junction embedded in a high-Q cavity, focussing on the behavior as the system
is tuned through a dynamical critical point. On one side of the critical point the noise is strongly
suppressed, signalling the existence of a novel regime of highly coherent transport, but on the other
side it switches abruptly to a much larger value. Using a semiclassical approach we show that this
behavior arises because of the strongly nonlinear cavity drive generated by the Cooper pairs. We
also uncover an equivalence between charge and photonic current noise in the system which opens
up a route to detecting the critical behavior through straightforward microwave measurements.

I. INTRODUCTION

Combining voltage-biased mesoscopic conductors with
high-Q superconducting cavities leads to a unique class
of hybrid devices. Recent experiments on such systems,
using conductors such as Josephson junction (JJ) de-
vices [1–3], or quantum dots [4, 5], have demonstrated
that coherent interactions between a conductor and a
cavity can generate large non-equilibrium photon popu-
lations. Parallels can be drawn between cavity-conductor
hybrids and quantum optical devices such as the micro-
maser in which a stream of excited atoms flows through
an optical cavity [6, 7]; in both cases the photons in the
cavity act back on the photon generation process lead-
ing to strongly nonlinear dynamics and dissipative phase
transitions. However, whilst the center of mass motion
of atoms flowing through a micromaser is independent
of the interaction with the cavity, the charge current in
cavity-conductor systems can be strongly correlated with
the cavity state leading to a rich interplay between the
quantum transport of charges and the quantum optics of
photons [8].

The interaction between the charge current and the
cavity dynamics is particularly interesting in the case
of a voltage biased JJ in series with a microwave cav-
ity [2, 3, 9–12]. The charge-photon interactions can be
tuned using the voltage to generate an effective cav-
ity drive which is strongly nonlinear [13–15], leading to
dissipative dynamics and critical behavior very different
from commonly studied nonlinear quantum oscillator sys-
tems [16–22]. Furthermore, all of the energy from the
voltage source can be converted into photons leading to
an average dc current that is strictly proportional to the
rate at which photons are produced [2, 11], unlike other
conductors such as semiconductor quantum dots, where
typically only a small fraction of the charges generate
photons [4, 23]. Theoretical [13, 14, 24–31] and experi-
mental studies [2, 3, 11, 32] of JJ-cavity systems over the

last few years have investigated the complex nonlinear
quantum dynamics that arises and the non-classicality of
the microwaves produced.
In this paper we explore the interplay between the

charge and photon dynamics in voltage-biased JJ-cavity
systems. The nonlinear cavity drive generated by the
Cooper pairs leads to a transition from incoherent single
Cooper pair transfer [11] to a novel regime of strongly
coherent transport [33], signalled by suppression of cur-
rent fluctuations. However, when the system reaches a
dissipative critical point the character of the transport
changes and the current noise can switch abruptly from
strongly sub-Poissonian to strongly super-Poissonian.
The current noise suppression on one side of the critical
point relies on a decoupling of the current fluctuations
from the critical slowing down, something which is not
seen at dissipative transitions in other systems where a
mesoscopic conductor generates a non-equilibrium pho-
ton or phonon population [34–41]. We use a semiclassical
approach to understand the key elements of the behavior
of the system and to show how they are linked to the
particular form of the nonlinearity generated by the in-
teractions between the photons and Cooper pairs. We
also demonstrate that the flow of photons through the
cavity becomes closely connected with the charge dynam-
ics, providing a convenient way of detecting the coherent
transport regime.

II. JOSEPHSON-CAVITY SYSTEM

The model system we study consists of a JJ in se-
ries with an LC oscillator to which a (sub-gap) voltage
bias, V , is applied [2, 11]. The oscillator is assumed to
be one of the modes of a high-Q superconducting mi-
crowave cavity which is weakly coupled to a transmis-
sion line through which photons leak out of the sys-
tem [13] at a rate γ. The Hamiltonian of this JJ-oscillator
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system contains a time-dependent effective drive term
H = ~ω0a

†a − EJ cos(ωJ t + ϕ) [13, 14], where a is the
lowering operator for the oscillator which has frequency
ω0 = 1/

√
LC, EJ is the Josephson energy of the junction

and ωJ = 2eV/~ the Josephson frequency set by the bias
voltage. The drive term is highly nonlinear because the
phase of the JJ is locked to the phase of the oscillator [42]
ϕ = ∆0(a

† + a) with ∆0 = (2e2/~)1/2(L/C)1/4 the os-
cillator’s zero point flux fluctuations in units of the flux
quantum.
Moving to a frame rotating at ωJ and making a

rotating wave approximation leads to an approximate
Hamiltonian for the region close to the one-photon reso-
nance [13, 14] where ωJ ≃ ω0,

HRWA = ~δa†a+ i
ẼJ

2
:
[

a† − a
] J1(2∆0

√
a†a)

(a†a)1/2
:, (1)

here the renormalized Josephson energy is defined as

ẼJ = EJe
−∆2

0
/2, the detuning is given by δ = ω0 − ωJ

and colons imply normal ordering. Including weak cou-
pling between the oscillator and its surroundings (i.e. the
transmission line), assumed to be at zero temperature for
simplicity, leads to a master equation for the cavity,

ρ̇ = − i

~
[HRWA, ρ] +

γ

2
(2aρa† − a†aρ− ρa†a) . (2)

By considering the phase difference across the JJ
we can write down the charge current operator, IJ =
(2e/~)EJ sin

[

ωJ t+∆0(a+ a†)
]

. Close to the one-
photon resonance the operator for the dc current of
Cooper pairs is obtained by moving to the rotating frame
and retaining the constant part:

ICP =
eẼJ

~
:
J1(2∆0

√
a†a)

(a†a)1/2
[

a+ a†
]

: . (3)

The current operator and the cavity occupation num-
ber, n = a†a, are connected by the relation ICP /2e =
i[HRWA, n]/~, reflecting the fact that each Cooper pair
in the dc current generates one photon. Hence, in the
steady state the average cavity occupation number and
current are strictly proportional, γ〈n〉 = 〈ICP 〉/2e.

III. CHARGE TRANSPORT AT THE

DISSIPATIVE CRITICAL POINT.

Increasing EJ enhances the tunneling of Cooper pairs,
and we naturally expect this to lead to a growth of the
current, hand in hand with the photon population of
the cavity. However, this intuitive picture breaks down
when the strong nonlinearities in the system start to
play a role. When the system is tuned to resonance,
δ = 0, a critical point emerges [13, 14] at EJ ≃ EB

J =

~γz1e
∆2

0
/2/[4J0(z1)∆

2
0] with z1 ≃ 1.841. The critical

point marks a rapid saturation in the current (and pho-
ton number), shown in Fig. 1(a). The evolution of the
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FIG. 1. (a) Average current as a function of EJ/E
B
J for δ = 0;

dashed lines are from the semiclassical calculation discussed
below. (b), (c), (d) Corresponding evolution of the Wigner
function, for EJ/E

B
J = 0.5, EJ/E

B
J = 1.0, EJ/E

B
J = 1.5

with ∆0 = 0.2. (e) Behavior of 〈p〉 as a function of (δ, EJ)
for ∆0 = 0.1; the system has a critical point at (0, EB

J ) and
a line of first order transitions along δ = 0 for EJ > EB

J .
Except where stated otherwise, these results are calculated
numerically using the full master equation (2) [43].

Wigner function of the system with EJ , shown in Figs.
1(b)-(d), tells us that a bistability develops for EJ > EB

J
where the steady-state becomes a mixture of two compo-
nents with equal position, 〈q〉 = 〈a+ a†〉/2, and opposite
momenta 〈p〉 = 〈i(a† − a)/2〉.
Looking at the behavior as a function of δ as well as

EJ , reveals that the critical point marks the beginning
of a line of first order transitions. The bistability in the
state of the system for EJ > EB

J and δ = 0 disappears
rapidly with increasing |δ|: only one of the two compo-
nents in the mixture survives, leading to a rapid increase
(or decrease) in 〈p〉 as can be seen in Fig. 1(e). The value
of ∆0 sets the overall size of the phase space accessible to
the system. Figure 1(a) shows that the average current
(and hence also the cavity occupation number) scales as
1/∆2

0. Hence ∆0 → 0 acts as the ‘thermodynamic’ and
semiclassical limit for this system [7, 21, 22].
The Cooper-pair current noise provides insight into the

nature of the charge transport and into the dynamics of
the system more generally [44]. It is given by

SCP = 2Re

∫ ∞

0

dτ〈δI(t + τ)δI(t)〉, (4)

where the long time (t → ∞) limit is assumed so that
the system is stationary and δI = ICP − 〈ICP 〉. Scaling
the noise by the average current gives the Fano factor,
FCP = SCP/(2e〈ICP 〉). It provides a convenient way of
quantifying deviations from the Poissonian limit (FCP =
1) of uncorrelated tunneling of individual Cooper pairs,
while a phase coherent supercurrent is characterized by
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FIG. 2. Current Fano factor, FCP as a function of EJ/E
B
J for

a range of ∆0, values. The inset shows the critical scaling of
∆2

0〈δI
2〉. In each case the full curves are numerical solutions

of the master equation, the dashed curves are the predictions
of the semiclassical calculation discussed below, and δ = 0.

FCP ≈ 0 [33].
One intuitively expects to see a growth in the current

noise as the dynamics slows down in the vicinity of dis-
sipative transitions [34–41]. However, numerical calcu-
lations reveal a far more interesting picture. Figure 2
shows that FCP ≃ 1 for very small, and very large values
of EJ . In between, the value of FCP drops towards zero,
implying that the flow of Cooper pairs becomes highly
coherent [33], before suddenly growing for EJ ≃ EB

J , and
then decaying again. For ∆0 ≪ 1 the critical point is
marked by an abrupt switching in the magnitude of the
current noise.
By combining information about the magnitude of fluc-

tuations in the current and time-scales of the system dy-
namics, the current noise provides a much more robust
signature of the critical point than either the average cur-
rent or the steady-state current fluctuations, 〈δI2〉 (see
the inset in Fig. 2).

IV. SEMICLASSICAL DESCRIPTION

When ∆0 is small, as is typically the case in exper-
iments [2, 11], the behavior of the system is well de-
scribed using a semiclassical approach in which the clas-
sical Hamiltonian of the system, H(α, α∗), obtained by
replacing the operator a(†) in Eq. (1) by the complex am-
plitude α(∗), plays the key role (see Appendix A for de-
tails). We move to a displaced frame, ρ̃ = D†(α)ρD(α),

with D(α) = eαa
†−α∗a and neglect operator terms be-

yond quadratic order in the Hamiltonian [18]. The value
of α is chosen to match one of the classical fixed points
of the system, solutions of ∂αH = −i~γα∗/2. The semi-
classical master equation is

dρ̃

dt
= − i

~
[H2, ρ̃] +

γ

2

(

2aρ̃a† − a†aρ̃− ρ̃a†a
)

, (5)

with the quadratic Hamiltonian

H2 = (∂αα∗H)a†a+
1

2

[

∂α∗α∗H (a†)2 + ∂ααH a2
]

, (6)

2∆0Re[α]
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FIG. 3. Behavior of the amplitude, A/A0, where A0 =
z1/2∆0, (a) and phase, φ, (b) of the classical stable (unstable)
fixed points shown as black (red) lines. (c) Classical current

function, I(α, α∗)/ẼJ , overlaid by the locus of fixed points
(black line). The maximum in I coincides with the critical
point (red dot). In each case δ = 0.

where the derivatives are evaluated at the corresponding
fixed point [cf. Eqs. (A3) and (A4)]. The eigenvalues,

−Γ± = −γ

2
± 1

~

√

|∂ααH|2 − (∂αα∗H)2. (7)

determine the stability of the fixed points and the dy-
namics of correlation functions.
On-resonance, one has H = ẼJ sinφJ1(2∆0A), where

the (real) amplitude A and phase φ are defined via α =
Aeiφ. Since fixed points obey the condition [45] ∂AH =
0, they occur, due to the anti-symmetry H(A,−φ) =
−H(A, φ), either with zero phase or in pairs with equal
and opposite phases. Furthermore, either their ampli-
tude or phase must be ‘locked’ in the sense that it does
not change with EJ . The existence of such phase- and
amplitude-locked dynamics follows generically from the
factorizing form of H found for a nonlinear drive on-
resonance. Indeed it also occurs in a similar manner
for higher-photon resonances. The behavior of the fixed
points as EJ is increased from zero is shown in Fig.
3(a,b). Initially the system behaves like a linearly driven
harmonic oscillator: there is a single stable fixed point
whose amplitude increases with EJ , but the phase re-
mains locked to zero. Then Γ+ vanishes at the critical
point EJ = EB

J where two stable fixed points emerge.
They have the same amplitude, which locks to the fixed
value A0 = z1/2∆0, but opposite phases.
The simplest approximation for the average current

is 〈ICP 〉 = I(α, α∗) where I is the classical current
function, obtained by setting a(†) → α(∗) in Eq. (3),
with the complex amplitudes taking their fixed point val-
ues, cf. Eq. (A2). Since {A2, φ} form a conjugate pair
and ICP ∼ [n,HRWA], the properties of both the re-
sulting current and current fluctuations δI follow from
the local properties of H(A, φ). The charge current

I = (2e/~)∂φH takes the same value for both of the fixed
points when EJ > EB

J . Comparison with numerical solu-
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tions of the full master equation in Fig. 1(a) shows that
this approximation works well for ∆0 ≪ 1, though there
are deviations close to the critical point and these grow
progressively as ∆0 is increased.
The form of I(α, α∗) along the locus of fixed points

also plays an important role for the behavior of cur-

rent fluctuations. To lowest order we can approximate
δI = ∂αI a+∂α∗I a†, where the derivatives are evaluated
at the fixed point. Figure 3(c) shows that the fixed points
coincide with lines of saddle points in I, thus ∂φI = 0
below (EJ < EB

J ) and ∂AI = 0 above (EJ > EB
J ) the

critical point. Because of this, δI = (∂AI)q below the
critical point, but δI ∼ (∂φI)p/A as the critical point is
approached from above. The maximum in I coincides
with the critical point which suggests that the current
fluctuations should vanish there. However, the very dif-
ferent roles that the quadratures q and p play near the
critical point is crucial: It is in the p-direction, in which
the fixed point splits [see Figs. 3(c) and 1(c),(d)]. Thus, p
is the soft mode whose dynamics becomes slow and whose
fluctuations, 〈p2〉, diverge at the critical point. Explicitly,
we find that below the critical point, EJ ≤ EB

J , the dy-
namics is overdamped (real Γ±) with 〈q̇〉 = −Γ−〈q〉 and
〈ṗ〉 = −Γ+〈p〉. Consequently, the current fluctuations
below the critical point are decoupled from the critical
fluctuations, while the opposite is true above.
To examine the critical scaling in detail (see also Ap-

pendix B), we quantify the distance from the critical
point by ǫ = 1 − EB

J /EJ . Below the critical point,
SCP = 2〈δI2〉/Γ− = 2(∂AI)2〈q2〉/Γ−. This vanishes as
the critical point is approached because ∂AI ∼ (A −
A0) ∼ ǫ [cf. Fig. 3(a), (c)] whilst Γ− and 〈q2〉 remain
finite. However, when the critical point is approached
from above there is a divergence: SCP ≃ 2〈δI2〉/Γ+ ≃
2(∂φI)2〈p2〉/(A2Γ+) ∼ 1/ǫ because the current fluctu-
ations are now dominated by the critical dynamics of
the soft mode: ∂φI ∼ φ ∼ √

ǫ [cf. Fig. 3(b), (c)], but
〈p2〉/Γ+ ∼ 1/ǫ2.
Thus the semiclassical description predicts a discon-

tinuity in the current noise at the critical point which
in turn gives rise, smoothed over by higher order cor-
rections, to the sudden switching in FCP around EB

J for
small ∆0 (Fig. 2). Physically, this unusual behavior is a
direct consequence of the cavity drive (JJ) being strongly
nonlinear: the back-action of the photon field onto the
photon-generating charge flow leads to a saturation of
the mean current when the threshold is passed, which is
accompanied by a jump in the current noise from being
strongly sub-Poissonian to strongly super-Poissonian.

V. PHOTONIC PERSPECTIVE

In contrast to the micromaser, where measurements
focused on the internal states of the atoms [46], in the
JJ-cavity hybrid the behavior of the charge current is
mirrored by the flow of photons leaking out of the cavity
into the transmission line. The average of this photon
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FIG. 4. (a) Evolution of the photonic Fano factor, Fph(ω),
with EJ/E

B
J . Calculated numerically using the full master

equation with ∆0 = 0.2, δ = 0. (b) Comparison of the loca-
tions of the minima in Fph(ω) (red points) with the imaginary
parts of the semiclassical eigenvalues Γ± (black dashes).

current is 〈Iph〉 = γ〈n〉 which matches 〈ICP 〉/2e. The
photon current noise is [23, 47]

Sph(ω) = 2Re

∫ ∞

0

dτeiωτ
[

〈Iph(t+ τ)Iph(t)〉 − 〈Iph〉2
]

= 〈Iph〉+ 2〈Iph〉2 Re
∫ ∞

0

dτ eiωτ
[

g(2)(τ)− 1
]

, (8)

where g(2)(τ) = 〈a†(t)a†(t+ τ)a(t+ τ)a(t)〉/〈a†(t)a(t)〉2,
and we again assume the stationary limit (t → ∞). The
fact that the photons are always generated in one-to-
one correspondence with the Cooper pair current means
that the linkage between photonic and charge currents ex-
tends beyond their averages and we find (see Appendix C
and cf. Ref. [35]) that: Fph(0) = FCP where the Fano
factor for the photon current is defined as Fph(ω) =
Sph(ω)/〈Iph〉. This has important consequences as it
means that the charge current noise can be inferred from
the photon correlation function g(2)(τ), a quantity which
is now routinely measured in experiments using super-
conducting cavities [32, 48].
As the system is tuned through the critical point, the

behavior of Fph at ω = 0 simply matches that of FCP ,
but there is additional information at finite frequencies,
see Fig. 4. For very small EJ the spectrum is almost
flat, but a pronounced dip develops around ω = 0 as EJ

is increased. Growth in Fph at ω = 0 starts just be-
fore EB

J and is associated with the development of dips
in Fph(ω) at a finite frequency. This reflects the fact
that fluctuations about the steady state are no longer
overdamped—the frequencies of the minima are approx-
imately described by emerging imaginary parts of the
semiclassical eigenvalues Γ±. The dips move out to pro-
gressively larger frequencies as EJ is increased further
whilst Fph(0) gradually returns towards unity, the level
set by the shot noise in the system. Notably, despite sim-
ilarities in the behavior of FCP , the transport at large
EJ is not the same as for EJ → 0: strong correlations
remain, but at finite frequency.
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VI. CONCLUSIONS AND OUTLOOK

We have analysed the charge transport in a voltage-
biased JJ coupled to a high-Q cavity. We predict the
emergence of an unusual regime of highly coherent trans-
port of Cooper pairs and photons due to the nonlinear
drive experienced by the cavity. This regime ends at a
dynamical critical point where the current noise switches
abruptly from sub- to super-Poissonian.

Although our theoretical treatment involves some sim-
plifications, we nevertheless expect the main features to
be readily detectable in experiment (see Appendix D
for a detailed discussion). In current experimental re-
alizations both of the circuit parameters, EJ and ∆0,
can be varied: EJ by a tunable magnetic flux [3, 13] to
move through the critical point and ∆0 by circuit de-
sign from the low (∆0 ≪ 1 [2, 11]) to the high (∆0 ∼ 1
[49, 50]) impedance regime to study the semiclassical-
quantum crossover. The switching in the noise is most
easily accessible from a time-integrated measurement of
∫

dτ [g(2)(τ)− 1], see (8), which does not rely on fast de-
tectors.

Our work also raises a number of new questions. For
example, how charge and photonic dynamics behave
when the critical point is passed nonadiabatically and if
links to Kibble-Zurek or Landau-Zener like mechanisms
can be established [51, 52]. Further, the realization of mi-
crowave sources with tunable quantum/classical charac-
teristics or current sources with tailored noise properties
may be attractive in device applications.
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Appendix A: Semiclassical Approximations

In this Appendix we will provide additional calcu-
lational details about the semiclassical approximation.
Starting points are the classical Hamiltonian and current
functions given by

H = ~δ|α|2 + i
ẼJ

2
(α∗ − α)

J1(2∆0|α|)
|α| (A1)

I =
eẼJ

~
(α∗ + α)

J1(2∆0|α|)
|α| . (A2)

Hence the quantities ∂ααH and ∂αα∗H that appear in the
effective quadratic Hamiltonian H2 [Eq. (6)] are defined

as follows:

∂ααH = i
ẼJ∆

2
0

2

(

J1(2∆0A)e
−iφ + J3(2∆0A)e

−i3φ
)

(A3)

∂αα∗H = ~δ − ẼJ∆
2
0J1(2∆0A) sinφ, (A4)

with A and φ the amplitude and phase of the classical
fixed point [13].
The current noise is calculated using the linear current

fluctuations

δI = ∂αIδa+ ∂α∗Iδa†, (A5)

with

∂αI =
eẼJ∆0

~

[

J0(2∆0A)− J2(2∆0A)e
−i2φ

]

. (A6)

The correlation functions for the current fluctuations can
be calculated using the regression formula [53], leading to
a simple expression for the current noise

SCP = γ

∣

∣

∣

∣

∣

∂αI
[

i
~
∂αα∗H− γ/2

]

− i
~
(∂α∗I)∂ααH

Γ+Γ−

∣

∣

∣

∣

∣

2

.

(A7)
The denominator in this expression is written in terms
of the eigenvalues that describe the evolution of the lin-
ear fluctuations, Γ± [see Eq. (7)]. This connection is
important for understanding the behavior in the vicinity
of the bifurcations which the system undergoes: one of
the eigenvalues vanishes at these points, implying a di-
vergence in the noise provided the denominator remains
non-zero.
Below the critical point (EJ < EB

J ), the Fano factor
can be written as

FCP =
(J0(z)− J2(z))

2/(J0(z) + J2(z))
2

[

1 + EJ

EB

J

z1
4J0(z1)

(J1(z) + J3(z))
]2 , (A8)

where z = 2∆0A. In the limit EJ → 0, the fixed
point amplitude vanishes (A → 0) and hence the usual
Poissonian result is recovered, FCP → 1, implying in-
coherent Cooper pair tunneling. However, as EJ is in-
creased the value of FCP drops and the semi-classical
calculation predicts that FCP → 0 as EJ/E

B
J → 1 since

J0(z)/J2(z) → 1 in this limit. This result occurs despite
the vanishing of the denominator at the critical point
because ∂αI also vanishes in this limit.

Appendix B: Critical Scaling

The fixed points of the system (defined in terms of
amplitude and phase α = Aeiφ) obey the relations,

~γA = ẼJ∆0 cosφ [J0(2∆0A) + J2(2∆0A)] (B1)

2A~δ = −ẼJ∆0 sinφ [J0(2∆0A)− J2(2∆0A)] , (B2)
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with the critical point values z = 2∆0A = z1 and φ = 0.
Close to the critical point these can be written as
(

1 +
δz

z1

)

(1− ǫ) = cosφ
[J0(z1 + δz)− J ′

1(z1 + δz)]

J0(z1)
(B3)

δ = −
√

1− cos2 φJ ′
1(z1 + δz), (B4)

where we have introduced the small quantities δz = z−z1
and ǫ = 1 − EB

J /EJ to quantify the distance from the

critical point; the scaled detuning, δ = δ/[2γJ0(z1)], is
also assumed to be small. Note that J ′

1(z1) = 0. By
solving (B3) for cosφ and inserting the result into (B4)
and expanding in the small parameters, one obtains

(ǫ− µδz)δz2 =

(

δ√
2J ′′

1 (z1)

)2

(B5)

where µ = 1/z1 − [J ′
0(z1)− J ′′

1 (z1)]/J0(z1) ≃ 1.1.
On-resonance δ = 0, hence δz = ǫ/µ for ǫ < 0 whilst

δz ≡ 0 for ǫ > 0. The scaling of the phase for ǫ > 0
(φ ≡ 0 for ǫ < 0) is obtained by expanding cosφ ≃ 1 −
φ2/2 in (B3), which gives φ = ±

√
2ǫ. These scalings can

then be used in turn to determine those of more complex
functions of the fixed point amplitude and phase.

Appendix C: Relationship between current Fano

factors

The approach used to demonstrate that the (zero-
frequency) current Fano factor is the same at different
points in a mesoscopic conductor connected between two
leads [35] can be used to show that the Fano factors for
the Cooper-pair and photon currents obey the relation
FCP = Fph(0). In the following we sketch out the main
steps.
The analysis is carried out most conveniently using

a Liouville space representation [35, 38, 47, 54] where a
Hilbert space operator b becomes a vector |b〉〉. The inner
product is defined as 〈〈c|b〉〉 = Tr[c†b]. A superopera-
tor, J which maps one operator into another operator
in Hilbert space maps one Liouville space vector into an-
other vector, for example if c = J b then equivalently
|c〉〉 = J |b〉〉. Thus, for example, the average photonic
current can be re-written using Liouville space notation
as

〈Iph〉 = 〈〈1|Iph|ρs〉〉, (C1)

where |ρs〉〉 and 〈〈1| are Liouville vectors corresponding
to the steady state density operator and the identity op-
erator, respectively [35, 38, 54]. The superoperator Iph
is defined by Iphρ = γaρa†.
We start by noting that the zero frequency photon cur-

rent noise [Eq. (8)] with ω = 0] can be written in the
form [23, 35, 47, 54]

Sph(0) = 〈〈1|Iph|ρs〉〉 − 2〈〈1|IphRIph|ρs〉〉 (C2)

where R = QL−1Q is the pseudo-inverse of the Liou-
villian L of the master equation, ρ̇ = Lρ, with Q =
1− |ρs〉〉〈〈1|.
To treat the Cooper-pair current and the photon cur-

rent on the same footing we introduce symmetrized su-
peroperator forms for the dc current operator

ICPρ =
1

2
(ICP ρ+ ρICP ) (C3)

and the number operator, n = a†a,

Nρ =
1

2
(nρ+ ρn) . (C4)

Using these definitions we find

[N ,L] = 1

2e
ICP − Iph. (C5)

Using this equation and the relations 〈〈1|L = L|ρs〉〉 = 0,
we recover current conservation

1

2e
〈〈1|ICP |ρs〉〉 = 〈〈1|Iph|ρs〉〉. (C6)

The Cooper-pair current noise [Eq. (4)] can be written
as [35, 38, 54]

SCP = −2〈〈1|ICPRICP |ρs〉〉. (C7)

Although this expression for the Cooper-pair noise seems
at first to be quite different to the photon noise in Eq.
(C2), we can readily show that the two are in fact pro-
portional using Eq. (C5).
Since 〈〈1|L = L|ρs〉〉 = 0 we also have LQ = QL = L

and hence LR = RL = Q. Applying these relations and
Eq. (C5) we obtain

1

2e
SCP = −〈〈1| (ICPRIph + IphRICP ) |ρs〉〉 (C8)

where we have also used the fact that 〈〈1| [ICP ,N ] |ρs〉〉 =
0. Again making the substitution (1/2e)ICP = Iph +
[N ,L] we find

SCP

4e2
= −2〈〈1|IphRIph|ρs〉〉+ 〈〈1| [Iph,N ] |ρs〉〉
= −2〈〈1|IphRIph|ρs〉〉+ 〈〈1|Iph|ρs〉〉
= Sph(0). (C9)

Combining this with the current conservation relation
[Eq. (C6)] and the definitions, FCP = SCP /(2e〈ICP 〉)
and Fph(0) = Sph(0)/〈Iph〉, we finally obtain FCP =
Fph(0).

Appendix D: Experimental realization

In the main text of the paper, we describe how to ar-
rive at the rotating-wave Hamiltonian, HRWA, and the
Lindblad-type master equation, which governs the dy-
namics investigated thereafter. Here, we will briefly dis-
cuss the validity of the involved approximations for ex-
perimental Josephson-cavity setups.
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FIG. 5. Current Fano factor, FCP , as a function of EJ/E
B
J

for large quantum fluctuations, ∆0 = 0.5 (green), and closer
to the semiclassical limit, ∆0 = 0.2 (red). Results from the
extended quantum-master equation incorporating an explicit
junction degree of freedom converge to the approach with-
out fluctuations of the bias voltage (solid lines, cf. Fig. 2) for
γJ/γ → 0. The impact of low-frequency voltage noise is seen
most strongly, when the system is close to the (classical) dy-
namical critical point, i.e., EJ ≈ EB

J , ∆0 ≪ 1. Notably, the
exact correspondence of the current Fano factor, FCP , and
the photonic Fano factor, Fph(ω = 0) (symbols) accessed via

g(2) [cf. Eq. (8)], persists for finite γJ .

1. Rotating-wave approximation

The fact, that the Josephson coupling at the criti-

cal point, EB
J ∼ ~γe∆

2

0
/2/∆2

0, can become quite large
(e. g., when approaching the semiclassical regime), ne-
cessitates a closer look at the rotating wave approxima-
tion. Counter-rotating terms not included in the discus-
sion based on Eq. (1) scale as EJ/~ω0, so that validity
of the RWA relies on

EB
J

~ω0
∼ γ

ω0∆2
0

≪ 1 ⇔ Q ≫ ∆−2
0 . (D1)

Even for the cavities with a comparatively low quality
factor, Q ≈ 40, as employed in the most recent experi-
ment of the Saclay group [32] non-RWA corrections would
consequently be small in the relevant regime and will re-
main so deep into the semiclassical regime for realistically
achievable Q values.

2. Voltage noise

One important requirement for an actual experimental
realization of the investigated dynamics is a sufficiently

stable voltage bias across the Josephson junction. In fact,
low-frequency fluctuations of the voltage constitute a fur-
ther source of dissipation, which appears in addition to
the damping of the cavity due to photon decay. The ex-
istence and impact of these local voltage fluctuations at
the JJ are most directly apparent in the broadening of
the spectrum of emitted microwave radiation [11, 14].
The simplest theoretical description (see the Supple-

mentary Material of Ref. [14]) relies on explicitly includ-
ing an extra degree of freedom for the number of Cooper
pairsN transported across the junction together with the
associated junction phase η. In the RWA-Hamiltonian
the

[

a† − a
]

term is replaced by
[

eiη a† − e−iη a
]

, where

e±iη =
∑

N |N〉〈N ± 1|. Furthermore, an additional dis-
sipator of form L[N, ρ] = γJ(2NρN−N2 ρ−ρN2)/2 has
to be appended to the master equation. Reference [14]
expresses γJ in terms of circuit quantities and describes
how the corresponding quantum master equation can be
treated in the extended JJ-resonator space.

Extracting γJ from the experimentally observed spec-
tral broadening one typically finds γJ ≪ γ (see for exam-
ple Ref. [11] with a ratio γJ/γ ≈ 0.04). Then, for many
observables, e. g., for the mean cavity occupation, the os-
cillator damping will play the dominant role, while local
voltage fluctuations can be neglected; the Hamiltonian
and Liouvillian without the additional degree of freedom
should thus be sufficient.

In Figure 5, we show the Fano factor resulting from
such an extended description including an extra junction
degree of freedom with fluctuations of varying strength,
γJ/γ < 1. While voltage fluctuations have to be strongly
suppressed to be completely negligible, they do not
change the qualitative behavior of noise switching. As
might be intuited, the low-frequency voltage fluctuations
affect the Fano factor most strongly around the dynami-
cal critical point, where the fluctuation dynamics is crit-
ically slowed down. This is in agreement with recent
results in [31]. Conclusions for experiments drawn from
the results shown in Fig. 5 are then the following: Low-
frequency voltage noise will not pose much of a problem
for moderate quantum fluctuations. This presumably
is the most immediately accessible experimental regime,
since the critical Josephson energy remains small. Inves-
tigating details of the scaling in the semiclassical limit
is more challenging requiring high quality cavities and
excellent bias stability.
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