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Single sentence summary:
We have mapped the molecules carried by the auxin uptake carrier AUX1 and developed a
picture of allowable substrates. We find that many synthetic auxin herbicides are not

accumulated through this transporter.



Summary

(1) Developmental responses to auxin are regulated by facilitated uptake and efflux, but
detailed molecular understanding of the carrier proteins isincomplete.

(2) We have used pharmacological tools to explore the chemical space that defines substrate
preferences for the auxin uptake carrier AUX1. Total and partia |oss-of-function auxl
mutants were assessed against wild-type for dose dependent resistance to a range of auxins
and analogues. We then developed an auxin accumulation assay with associated
mathematical modelling to enumerate accurate 1Csp values for asmall library of auxin
anaogues. The structure activity relationship data was analysed using molecular field
analyses to create a pharmacophoric atlas of AUX1 substrates.

(3) The uptake carrier exhibits avery high level of selectivity towards small substrates
including the natural indole-3-acetic acid, and the synthetic auxin 2,4-dichlorophenoxyacetic
acid. No AUX1 activity was observed for herbicides based on benzoic acid (dicamba),
pyridinyloxyacetic acid (triclopyr), or the 6-arylpicolinates (halauxifen), and very low affinity
was found for picolinic acid-based auxins (picloram) and quinolinecarboxylic acids
(quinclorac).

(4) The atlas demonstrates why some widely used auxin herbicides are not, or are very poor
substrates. We list molecular descriptors for AUX 1 substrates and discuss our findingsin

terms of herbicide resistance management.

KEY WORDS
Auxin transport, cheminformatics, herbicide, herbicide resistance, molecular field maps,

pharmacophore, structure-activity relationship, uptake carrier.
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Introduction

Auxins are increasingly important as agrochemicals, with their primary market as selective
herbicides. This market isincreasing due to high efficacy, along history of low environmental
impact, just afew instances of resistance (Mithila et al., 2011), the recent introduction of stacked
herbicide resistant crops (Behrens et a., 2007; Wright et a., 2010), and a new generation of low
field-rate auxins known as the 6-aryl-picolinates (Epp et a., 2016). Despite this, and the
wondrous diversity of responses to the endogenous auxin indole-3-acetic acid (IAA), our
descriptions for what defines an auxin remain rudimentary. Y et, cheminformatic tools have
progressed markedly, and target sites for auxin action have been identified. Past models of
auxins have, necessarily, been based on data derived from whole plant bioassays, but it is now
possible to access each step in the pathway and generate advanced pharmacophoric maps which
may help in therationa design of novel auxins.

Transport proteins are likely to be the first auxin-selective target sites encountered by exogenous
auxin applications. The presence of an auxin uptake carrier was first identified from kinetic
analyses of auxin accumulation in avariety of systems (Hertel 1983; Hertel et al., 1983; Lomax
et a., 1985; Benning 1986; Geler et a., 1990) following devel opment of the chemiosmotic
model for auxin transport and accumulation (Rubery and Sheldrake 1974). The energetics of
accumulation demonstrated that active indole-3-acetic acid (IAA) uptake was driven by proton
cotransport, two protons being required for each IAA™ anion (Lomax et al., 1985; Benning 1986).
Little more was learnt about uptake until it was shown that AUX1 coded for a putative auxin
uptake carrier (Bennett et a., 1996). The auxin insensitive 1 (aux1) mutant was known to be
tolerant to 2,4-dichlorophenoxyacetic acid (2,4-D) and agravitropic (Maher and Martindale,

1980). Subsequent work has then confirmed that AUX1 is an auxin uptake carrier that is
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essential for root gravitropism and other morphogenic responses (Marchant et a., 1999; Swarup
et a., 2004; Steiger et al., 2002; Bainbridge et al., 2008; Jones et a., 2008), including
embryogenesis (Robert et al., 2015).

The AUX1 protein is amember of the amino acid permease, proton co-transporter superfamily
(Fischer et al., 1998). A small series of auxin-like molecules were screened as potential
inhibitors of uptake and efflux using tobacco cell suspension cultures (Delbarre et ., 1996;
Imhoff et a., 2000). Tritiated 2,4-D was shown to be a strong, AUX 1-selective substrate, and
inhibition of efflux using 1-naphthylphthalamic acid (NPA) alowed a 2-dimensional model of
AUX1 substrates to be presented (Imhoff et al., 2000). Expression of AUX1 in Xenopus oocytes
(Yang et a., 2006) and insect cells using baculovirus (Carrier et a., 2008) confirmed the pH-
dependence of uptake, low micromolar estimates of affinity, and affirmed the substrate
preference for IAA and 2,4-D. None of these experiments covered the full range of compounds
with auxin activity, including a number of scaffolds on which commercially important herbicides
are based, including the benzoates, picolinates, and quinolinecarboxylates.

Early decades of auxin research were led by advancesin chemistry, using whole-plant bioassays
for devel oping structure-activity relationships (SARs) to account for the hormonal activities of
natural and synthetic auxins (Napier, 2001). The drive for new drugs has driven medicinal
chemistry to develop advanced chemical informatics tools. Amongst the more widely used are
molecular similarity indices that are based on advances in physical parameterisation of
molecules. These tools need accurate biological datato build useful pharmacophoric maps
(Kaserer et ., 2015). In thisreport several families of compounds with distinct chemical
scaffolds have been screened for AUX1 substrate activity, adding to earlier substrate preference

listings (Imhoff et al., 2000). Based on an optimized molecul e screening assay and derivation of
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amathematical Competitive Transport Model, accurate AUX1-related transport parameters were

then combined to generate pharmacophoric molecular field maps of AUX1 selectivity.
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Materrialsand Methods

Plant material and auxin herbicides

Arabidopsis thaliana ecotypes Wassilewskija (Ws) and Landsberg erecta (Ler) were used as
controls according to the mutant lines being assayed. The loss-of-function line aux1-T was
derived from transposon insertion into Ws, null alele wavs-33 and partial loss-of-function line
aux1-2 were derived from Ler (Marchant and Bennett, 1998). Full sequences for each mutant
allele have been obtained and confirm that the basis of the phenotype lies within the AUX1 gene
and further phenotypic datais presented el sewhere (Swarup et a., 2004). Auxins and other
compounds were the purest available Sigma Aldrich, UK. DAS534 and halauxifen (the product
isformulated as Arylex™) were gifts from Dow Agrosciences, Indianapolis, USA.

Root growth bioassays

Arabidopsis thaliana ecotype Wassilewskija (Ws) and aux1-100 mutant seed lines were spotted
onto 1.5% agar with half strength Murashige and Skoog medium plus 0.5% sucrose, and
stratified in the dark at 4°C for 48 hours. After 6 days at 12 h 22°C day and 12 h 18°C night,
seedlings were transferred onto serial dilution plates in the same medium, and the position of the
primary root tip was marked. Plates were placed vertical for afurther 4 days, before being
scanned and root growth from the marked point was measured in Image J (Schneider et al.,
2012). The dose response curves were fitted to a non-linear regression model of [inhibitor] vs.
response — Variable slope (four parameters) using aleast squares (ordinary fit) with constrains of
Ocm for the bottom value and 2.5cm as the maximum to yield an 1Cso value (GraphPad Prism
v7). Each Y value was considered as an individual point with no weighting applied. Confidence
intervals were set at the 95% level. For each compound we compared the best independent fit

between the Ws and aux1-100 with a null hypothesis that the ICsp is the same, and the alternative
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hypothesis being that the ICso is different for each data set. An Extra sum-of-squares F test
comparison method was used to reject the null hypothesis for P values less than 0.05.

Accumul ation assays

The accumulation of radiolabelled 2,4-D by BY -2 tobacco cell culture cells was measured as
described in Hosek et al. (2012). To calculate accurate inhibition constant (ICso) values for a
range of auxins and anal ogues the setup of the accumulation assays was adjusted. [H]2,4-D was
accumulated in the presence of 0, 1, 3, 10, 30 and 100 uM of each tested compound in three
repetitions. Samples were collected precisely 1 min and 2 min after the addition of [*H]2,4-D. To
allow for the optimisation of [3H]2,4-D diffusion parameters, for each batch of compounds 12
min accumulations were run in the presence of 30 uM CHPAA and 10 uM NPA and samples
were collected each minute.

Mathematical modelling

The original model of [3H]2,4-D transport in BY -2 tobacco cells (Hosek et al., 2012) was
modified (i) by adding a Michaelis-Menten representation of competition on AUX1-mediated
influx, (ii) by adding a representation of extracellular contamination with the tracer from the
mediathat is linearly proportional to the extracellular tracer concentration, and (iii) by omitting
the representation of NPA-sensitive efflux, which was blocked with NPA in all assays. By
neglecting the contribution of the [3H]2,4-D itself to the saturation of influx, afinal ordinary
differential equation of the model was obtained (Methods Sla, b) and analytically solved
(Methods S1c). The diffusion-only variant of the model was derived from the final solution by
substituting zero for Vmax, thus eliminating the terms appropriate to AUX 1-mediated influx

from the equation. The model was implemented and optimized in MATLAB (The MathWorks
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Inc., Natick, MA), the optimization was carried out by aleast-square method using the
optimization tool box.

Cheminformatics

Details about compounds were compiled into Data Warrior (http://www.openmolecules.org)
using the inbuilt features to cal culate many molecular descriptors. Some additiona features were

calculated using Marvin (http://www.chemaxon.com). Forge is distributed by Cresset, UK.

Marvin was used for drawing, displaying and characterizing chemical structures, substructures
and reactions. Calculator Plugins were used for structure property prediction and calculation

Marvin v15.10.12.0, 2015, ChemAxon (http://www.chemaxon.com). Structures were viewed

using the PyMOL Molecular Graphics Systemm (MacPyMol for Mac OSX, 2006 version

DeLano Scientific, LLC).

10
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Results

Wild-type and aux1 mutants are differentially-sensitive to most auxin compounds, however,
many auxin herbicides are not substrates for AUX1.

The aux1 2,4-D-insensitive mutants of A. thaliana (Maher and Martindale 1980; Y amamoto and
Y amamoto 1998; Swarup et al., 2004) provide the framework for an in vivo assay for AUX1
substrate specificity. We used the aux1 knockout line aux1-100 and its wild-type line
Wassilewskija (Ws; Figure 1, Supplementary Figure 1), and the knockout Wav 5-33, partial loss
of function alele aux 1-2 and their wild-type Landsberg erecta (Ler; Supplementary Figures 2
and 3). As anticipated, AUX1 knockout seedlings showed aresistanceto 2,4-D (Figure 1b) and to
applied IAA (Figure 1a), but not to 1-NAA (Supplementary Figure 2b). We then tested several
classes of synthetic auxins that are used as commercia herbicides (Figure 1c, d, Supplementary
Figure 1) and quantified their effectivity in Ws and aux1-100 in terms of growth ICsp values
(Table 1). The substituted benzoates such as dicamba (3,6-dichloro-2-methoxybenzoic acid), the
quinolate quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) and the picolinate auxins
picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), and fluroxypyr ([(3,5-dichloro-4-
amino-6-fluoro-2-pyridinyl)oxy]acetic acid) were all potent auxinsin the assay, inhibiting root
growth at low concentrations. However, in each case there was no differential sensitivity
recorded between wild-type and aux1 lines suggesting that these compounds are not transported
by AUX1. A number of other auxin analogues were aso evaluated (Supplementary Figures 2, 3,

4.

11
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Figure 1. Root elongation dose dependence assays in Arabidopsis lines. Primary root growth of
aux1-100 mutant and wild-type Ws lines were recorded after four days on plates holding a dose
series of auxin herbicides. (a) IAA, (b) 2,4-D, (c) picloram, (d) dicamba. Values are averaged
over 15-20 seedlings and data presented as the mean +/- SE of the mean. Modelled fits were

used to calculate IC50 values (Table 1).

12
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Table 1. Estimates of the growth ICso values calculated from Arabidopsis root growth data using

Ws and aux1-100 plants.

WS

AUX1-100

COMPOUND

[AA
2,4-D
PICLORAM
TRYPTOPHAN
FLUROXYPYR
DICAMBA
DAS534
CHPAA
QUINCLORAC
S-DICHLOROPROP

R-DICHLOROPROP

ICso (uM) Std. err.

0.008
0.068
10.2
306.5
2.845
4.192
0.502
45.4
50.9
2.425
0.017

0.001
0.036
0.911
233
0.297
0.216
0.18
2.734
3.716
0.148
0.002

[Cso (uM) Std. err.

0.299
0.3
125
504.7
2.681
4.900
0.451
89.0
51.8
9.911
0.074

0.032
0.036
1.211
104.6
0.389
0.478
0.149
5.818
3.496
0.827
0.013

P-VALUE 1Cso
(ICs0 RATIO
DIFFERS (AUX1-
BETWEEN 100/
WS AND WS)
AUX1-100)
<0.0001 37.38
<0.0001 441
ns 1.23
0.0036 1.65
ns 0.94
ns 1.17
ns 0.90
<0.0001 1.96
ns 1.02
<0.0001 4.09
<0.0001 4.35

Parameterisation of an auxin accumulation model using tritiated 2,4-D accumulation assays

provides accurate AUX1 substrate affinities.

Radiolabel accumulation into BY -2 tobacco cell suspension cultures has been used as a

definitive measure of auxin uptake and efflux since the formative paper of Delbarre et a. (1996).

The phenoxy auxin 2,4-D was found to be an excellent substrate for monitoring uptake through

AUX1 and thus we used the competitive accumulation of [°H]2,4-D by BY -2 cellsin the

presence of tested compounds as a measure of their affinity towards AUX1. There have been

reports that 2,4-D can aso be carried by efflux proteins (Hosek et al., 2012) and possibly

ABCB4 as aninflux protein (Kubes et ., 2012), and so we included NPA (10 uM) in the assay

13
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to avoid selective dampening of accumulation by active efflux and minimizing an alternative
active influx pathway. In our results [3H]2,4-D (2 nM) uptake was competitively inhibited by
cold 2,4-D and IAA (Figure 2), which isin agreement with previous reports (Delbarre et al .,
1996). Similarly, the known uptake inhibitor 3-chloro-4-hydroxyphenylacetic acid (CHPAA)
also showed effective inhibition of tracer uptake (Figure 2c).

In order to quantify the substrate affinities for AUX1 in terms of transport half-saturation
concentrations (transport |Cso — as opposed to the growth ICsp assessed in the root-growth
experiment), the compounds in our panel were screened in short-time [2H] 2,4-D accumulation

assays over a series of compound concentrations (0—100 uM).

14
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Figure 2. Competitive accumul ation assays for a series of auxin-active compounds using

tobacco BY -2 cells. Accumulation of [*H]2,4-D is reduced by the addition of unlabelled 2,4-D

(@), IAA (b) and CHPAA (c), suggesting that these compounds compete with the [3H]2,4-D for

uptake. In contrast, 1-NAA (d) exhibits little or no competition, indicating its poor affinity

towards uptake. Similarly, the two auxin efflux inhibitors BUM (€) and Gravacin (f) cause no

reduction of tracer accumulation. [>H]2,4-D was applied at a concentration of 2 nM, all

competing compounds at 10 uM. Means of two or three independent measurements are shown

with their ranges (min—max).
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Having optimised the assay, transport 1Cso values were then obtained by fitting a mathematical
model to the resulting competition curves (Figure 3, Table 2). Instead of a simple semi-empirical
equation describing competitive accumulation, as used in former studies (Delbarre et al., 1996;
Imhoff et a., 2000), a Competitive Transport Model was used for transport 1Cso estimation. The
Competitive Transport Model was derived from our earlier mathematical model of auxin
transport (Hosek et a., 2012) that was extended by a more detailed representation of
competitively-inhibited AUX 1-mediated influx of [*H]2,4-D according to Michaelis-Menten
kinetics (see Methods S1 for details). The Model outputs the intracel lular concentration of
accumulated [*H]2,4-D as afunction of: (i) competitor transport 1Cso and Vmax, Which were
optimised for each compound; (ii) competitor concentration and accumulation time, which were
both known experimental conditions; and (iii) diffusion parameters of [3H]2,4-D, which needed
to be determined before the model could be optimised. In order to obtain diffusion parameters,
each batch of screened compounds was accompanied by alonger (12 min) accumulation assay of
[3H]2,4-D with active transport inhibited by CHPAA (30 uM) and NPA (10 uM as before). The
diffusion parameters were then obtained by optimisation of a modified diffusion-only model
using these data, after which our Competitive Transport Model was used to fit the short-time
competitive accumulation data using two sampling times in one optimization problem, thus
obtaining a single transport 1Csp estimate valid for both time points. The validity of these ICso
estimates (Table 2) is supported by the fact that the ratio of V max/ICso Was consistent across the
compounds (relative standard deviation 22.3%, Supplementary Figure 5), suggesting both stable

performance of the model as well as stable overall efflux activity from the cells throughout the

16
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assays. Similarly, the diffusion parameters obtained for individual screen batches showed

reasonable mutual consistency (Supplementary Figure 6).
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Figure 3. Transport |Cso estimations dereived from tobacco cell accumulation assays. The
Competitive Transport Model was fitted to [*H]2,4-D accumulation data collected after 1 min
(red) and 2 min (blue), in presence of a series of competitor concentrations (0—100 pM). IAA (a)
and 2,4-D (b) showed effective inhibition of tracer uptake at low concentrations, thus confirming
them to be good AUX1 substrates. On the other hand, picloram (c) and dicamba (d) competed
only weakly or not at al (respectively). Transport | Cso values estimated by the Competitive
Transport Model are shown aongside the estimates made from the same data, but using the

semi-empirical model of Delbarre et a. (1996).
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Alongside the Competitive Transport Model, we applied the simple semi-empirical equation
(Imhoff et al., 2000; Delbarre et a., 1996) and the resulting transport | Csp estimates were
compared (Supplementary Figure 7). Although somewhat more laborious in its application, the
Competitive Transport Model allowed reliable ICso estimations for weak competitors even where
full inhibition was not reached within the concentration range tested. In such situations (ICso >
ca. 25 uM), the semi-empirical equation struggled as the baseline ‘non-saturable component’ of
the accumulation (mainly diffusion) could not be optimised from the data. Even for stronger
competitors (ICso < 25 pM), the semi-empirical equation consistently overestimated the ICsp by
an average of 50.5% (SD 20.3) in comparison to the Competitive Transport Model
(Supplementary Figure 7). However this overestimation was significantly (Wilcoxon Matched
Pairstest, p = 0.0007, n = 15) less serious when samples accumulated for 1 min were processed
with the semi-empirica equation (34.2% average overestimation in comparison to the
Competitive Transport Model) than in samples accumulated for 2 min (66.9%). Therefore, the 30
s accumul ation times used by Imhoff et a. (2000) and Delbarre et al. (1996) were beneficial to
the accuracy of their semi-empirical method, making their transport ICso data compatible with

our own for further analyses.

In agreement with the seedling root growth assay, many herbicides are not substrates for AUX1.
Having established arobust model for accumulation assays, accurate inhibition constant
(transport 1Cso) values were cal culated for a range of auxins and analogues (Table 2). The
endogenous auxin IAA was found to have the highest affinity for the carrier (lowest 1Cso

concentration, 0.5 uM), with 2,4-D also avery good substrate (ICso = 1.4 uM). Some isomers of

18
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2,4-D had been tested previously (Imhoff et a., 2000), and some of these were rerun to provide a
comparative dataset (e.g. Supplementary Figure 3). The commercially-important
phenoxypropionates have not been assessed previously and so were included in our current
analysis. Assays showed clearly that these phenoxy auxins are strong competitive inhibitors of
2,4-D accumulation, suggesting that they are effective substrates of AUX1 (Table 2; transport

ICs0 mecoprop = 1.8 uM; dichlorprop = 1.6 puM).

Many other auxin herbicides had no effect on [3H]2,4-D accumulation (Figures 3 and 4d, Table
2), suggesting that they are not substrates for AUX1. These included quinolinates (e.g.
quinclorac), and benzoates (e.g. dicamba; Figure 3d), which is consistent with the results from
the primary root growth assay (Supplementary Figure 1g, Figure 1d, respectively). The
Competitive Transport Model was able to assign atransport |Csp value to picloram (Figure 3c,
Table 2), suggesting that it is aweak substrate with an affinity for AUX1 over 100-fold weaker
than that of IAA, but other picolinates of the 6-aryl picolinate class, such as DAS 534 and

hal auxifen, were found not to be substrates (Table 2).

The results of the [*H]2,4-D accumulation screen show good agreement with the observations
from the primary root growth assay, where good AUX1 substrates (low transport 1Cso in the
screen) exhibited high increases of resistance in aux1-100 mutants, while there was little or no
change in resistance to poor substrates (Figure 4a). An exception to this coherence was S
dichlorprop that, athough being a poor AUX1 substrate, showed a significant increase of
resistance in the aux1-100 mutant. This could be attributed to potential isomerization of S
dichlorprop into its R- enantiomer (very good AUX1 substrate, 1Cso = 0.89 uM), which could

occur within the time scale of the root growth assay, but not in the short-time uptake
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experiments. Enantiomerization of dichlorprop in the environment has been reported, athough

not specifically in planta (Katagi, 2012).
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Table 2. Transport | Cso value estimates by the Competitive Transport Model from the
tobacco cell transport inhibition screen. Theseinhibition constant data were used to
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generate molecular field mapsfor AUX1.

Scaffold

Compound

Transport | Cso (uM)

Pyrene acetic acid

Indoles

Phenylacetic acids

Phenoxy acids

Benzoic acids

Pyridinyl acids

Picolinic acids

Pyrene-1-acetic acid

IAA

4-Cl IAA

5-Cl IAA

I ndol e-3-acetal dehyde
3-Methyl Indole
ICA
Indole-3-Carbinol
Indole-3-glyoxylate
IPA

Tryptophan
Tryptophol
Tryptamin

IPYyA
Indole-3-lactic Acid
IBA

PCIB

CHPAA

2,4-D

MCPA

2,3,6-T

2,45-T

Mecoprop

R-Dichlorprop
S-Dichlorprop

(R/'S) Dichlorprop (racemic)
Fenoprop

Dicamba
Chloramben
2,4-DB

Triclopyr

Picloram
Fluoroxypyr
DAS534
Halauxifen

4.564

0.462

1.330

3.997
118.575

no inhibition
14.552

no inhibition
4.343

1.332

no inhibition
no inhibition
no inhibition
6.671
26.402

no inhibition
no inhibition

1.986

1.434

2.233

no inhibition
12.099
1.759

0.883
58.315
1.645

8.080

no inhibition
no inhibition
26.845

no inhibition

57.325
76.789
no inhibition
no inhibition
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Quinolinic acids Quinclorac no inhibition

Benzothiazolin acid Benazolin 43.221

Together, the results confirm that cellular uptake of several major classes of auxin herbicideis
not, or only very weakly, facilitated by auxin uptake carriers. Thisisillustrated by the looseness

of the relationship between their affinity for AUX1 and their effectivity in plants (Figure 4b).

(a) o (b) 01

s 1AA s IAA
= . < = <
- R-Dichlorprop —
X 14 [ ] X 4 [ ]
2 CHPAA - 2 CHPAA 24D g R-Dichlorprop
o ] 2,4-D 5 |
L L

8 3
(50 © Weak/not substrates (&)
= 10 4 [ ] Goqd substrates g 10 4

8. Left to right: A S-Dichlorprop %

0] DAS534, Fluroxypyr, © IAA N

% Quinclorag, Dicamba, E #?yf;(tc:wp:g: 1:Qumclora(:
= Picloram, Tgptcphan S-Dichl. = Picloram, Dicamba, S-Dichl.

o Flurgxypyr, DAS534 o
100 000 O ) . ) ) 100 ¥ (O o o o
0.5 1 2 4 B 16 32 B4 1000 100 10 1 01 0.01 0.001
Fold-chanae of arowth IC., in aux1-100 relative to Ws Growth IC.; in Ws (uM)

Figure 4. Comparisons of growth and transport 1C50 values for selected compounds. The fold-
change of Arabidopsisroot growth ICsg in the aux1-100 mutant (relative to Ws, i.e. theratio
aux1-100/Ws) corresponds closealy with the transport | Csp values measured in the tobacco cell
radiolabel competition assay (a). Weak substrates (red) showed no notable increase of resistance
in aux1-100, good substrates (green) exhibited between 2- to 4-fold increase in resistance, and
IAA (blue) being by far the best substrate showed a resistance increase of amost 40-fold (Table
1). The exception to this rule was S-dichlorprop (magenta) that was significantly more tolerated
by the aux1-100 mutant despite being a poor substrate of AUX1 (transport IC50 = 58.3 uM). In
contrast, the rel ationship between the compound’ s affinity for AUX1 and its absolute activity in
terms of root growth inhibition (in Ws plants) is much looser (b). There is considerable overlap
intheir biological effectivity even though they are well-separated on thy Y -axis by transport

1Cso.
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Arylcarboxylate indoles reveal high AUX1 selectivity for an acetyl side chain and limitationsin
the seedling bioassay.

A comparison of the capacity of AUX1 to transport the 3-arylcarboxylate series of indoles
suggested a distinct selectivity for the 2 carbon acetate side-chain of IAA in the root growth
assay (Supplementary Figure 2c—f). The null alele line wavs-33 showed greatly increased
resistance to IAA (Supplementary Figure 2d), but none for indole-3-carboxylic acid, -propionic
acid or -butyric acid. However, indole-3-carboxylic acid had no auxin activity (no inhibition of
root growth even at high concentrations), and so it isnull in the assay.

The indolic amino acid tryptophan is another compound for which the root assay for auxl
resistance is null. Such null results show that the differential growth bioassay is limited, as may
be anticipated given that it requires an auxin-driven response as read-out. Reporter assays using
e.g. DR5-driven enzyme or fluorescence activity will be restricted in the same manner. The
accumulation assay requires no such auxin response, and it was possible to measure 1Cso values
for the 3-arylcarboxylates. The accumulation data show a clear preference for IAA (ICso = 0.5
MM), but ICA (14.6 uM) and IPA (1.3 uM) were both found to be AUX1 substrates too. The 4
carbon aryl side-chain IBA was not a substrate, and tryptophan was confirmed not to be a

substrate (Table 2; Marchant et a., 1999), nor was tryptophol.

Precursors of |AA and other indoles
The metabolic precursors of IAA, indoleacetaldehyde (IAAId), indolepyruvic acid (IpyA) and

indoleacetonitrile (IAN) were all tested as substrates for AUX1 using the root growth assay
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(Supplementary Figure 4), and the activity plots showed resistance in aux1-T, suggesting each
was a substrate. However, one other limitation of the root growth assay is the duration of
treatment. We considered the possibility that each compound might diffuse into the cell, become
converted to IAA which isthen transported out via the efflux carrier. This compound-derived
IAA load could then both inhibit growth, and be a substrate for AUX1 in adjacent cells.
Consequently, for these potential IAA precursor compounds we included the |oss-of-function
PIN2 mutant allele agr3 (Muller et a., 1998) to minimise IAA efflux from root cells, both asa
control line and in the aux1/agr3 double mutant. The wild-type background for agr3 was Ws and
so aux1-T was used for the cross and Ws for the control. The loss-of-function aux1-T line
conferred significant resistance to increasing concentrations of each compound compared to Ws
and agr3. Theresistance in the double mutant was reduced in each case, but only for IAN was
resistance reduced to levels close to wild-type. Consequently, the data suggested that both IAAld
and IpyA are substrates of AUX1. Once again we can turn to the accumulation assays for greater
insight, and IPyA was shown to be areasonably good substrate (ICso = 6.7 uM). Unfortunately
IAN and IAAId were not assayed, but other indoles were included. Indoles with side chains no
longer than 3 atoms and with hydrogen ion acceptors (indole glycolate, indole lactate, indole
pyruvate) were all substrates with low micromolar transport | Csp values (Table 2), as were 4- and
5-chlorolAAs.

Molecular similarity indices of AUX1 substrate molecules

The availability of additional SAR data combined with existing data (Imhoff et a., 2000)
encouraged usto apply new cheminformatic tools to analyse AUX1 selectivity. We entered the
guantitative values into the pharmacophoric software Forge (Cresset plc). Using molecular

descriptor analysis features calculated in Data Warrior (openmol ecul es.org), the compounds are
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summarised by physicochemiocal features (Table 3). All conform to Lipinski’srule of five
(Lipinski et a., 1997; Lipinski and Hopkins, 2004) and more recent ana yses of agrochemical

properties (Tice, 2001; Avram et al., 2014).

Table 3. Lipinski-type molecular descriptors for the compounds tested as AUX 1 substrates.

No. Descriptor Value

1 Molecular weight <350 (Lipinski <500)
2. Number of aromatic rings <4

3. H bond Donors <3 (Lipinski <5)

4. H Bond Acceptors <4 (Lipinski <5)

5. Rotatable Bonds <4

6. Octanol-water partition coefficient, logP <4 (Lipinski <5)

7. pKa <5

8. Aqueous solubility, clogS -2to-4log (mol/L)
9. Polar surface area 15t0 90 A2

A molecular field atlas for AUX1

A structural model for AUX1 substrate selectivity has stood since 2000 (Imhoff et al., 2000). It is
based on the 2-dimensional structural profile of the strong uptake inhibitor pyrene-1-acetic acid.
Compounds are compared based on their profile overlap. When aigned by their carboxylic acid
groups, active uptake competitors can be superimposed onto the pyrene-1-acetic acid template
without projections. Less active competitors generally have electron-rich groups, such as
chlorines, protruding past the edges of the template, or polar groups within the large hydrophobic

platform of the pyrene ring system, and for many years this model has helped us understand
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AUX1 selectivity. We started to map auxins onto the Imhoff model using ChemAxon’s Marvin
Sketch 3D alignment cal culator plug-in, which allows compounds to be modelled in 3-
dimensions (Figure 5). Whilst there was agreement in a number of cases, such asfor IAA
(AUX1 substrate; Supplementary Figure 8a) and picloram (very poor substrate; Supplementary
Figure 8b), in other cases fitsin the 3-dimensional model failed to reflect substrate effectiveness,
such as for the classic substrate 2,4-D (Supplementary Figure 8c). Therefore, we adopted the
molecular field mapping approach using Forge software (Cheeseright et a., 2006) whichisa
suite of computational tools designed to help users understand SARs by generating quantitative,
3-dimensional models of pharmacophore activity.

In order to establish a spatial template for the AUX1 pharmacophore, we selected poses for IAA
(PDB code 2P1Q) and 2,4-D (2P1N) from their crysta structuresin TIR1 (Tan et a., 2007).
These poses are identical to independently ipso-crystallised structures in the Cambridge
Structure Database (INACET03 and CPXACAOQL). We extracted the 3D coordinates for each
compound and introduced them into Forge Field Templater as reference structures. The
molecular interaction fields for each reference were calculated in Forge which uses field point
scoring and field point extrema, rather than quantum chemistry calcul ations for complete
surfaces in order to reduce computational time (Cheeseright et al., 2006). Figure 5 shows field
points observed from 2 perspectives. Most field features for IAA and 2,4-D are common, such as
hydrophobicity from their aromatic rings (Figure 5a, b), and steric volume (indicated by the van
der Waals field maps, Figure 5g, h) with the 2 chlorines of 2,4-D compensating for the lack of a
second aromatic ring.

All the compounds from our accumulation set (Table 2) and al non-duplicated compounds from

Imhoff et a. (2000) were imported into Forge as a training set, along with their activity data. For
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each compound Forge generated an energetically feasible conformer, before aligning this to the
reference template. Compounds were given equal weighting for field and shape similarities,
which gave good alignments and overlaps between their interaction fields and structural features.
Each alignment was visually inspected against the reference compounds to ensure conformers
and aignments were plausible. An activity atlas was generated in a series of 3D maps, linking
activity data to the template and revealing features promoting or compromising affinity (Figure

6).
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Figure 5. Forge-generated field point map features for IAA and 2,4-D. Crystal structures were
overlaid for IAA (grey) and 2,4-D (dark grey) with field points spherical and octahedral,
respectively, and sown from above (lIeft panels; a, ¢, e, g) and the side (right panels; b, d, f, h).
Maps are shown for hydrophobicity (a, b), negative electrostatics (c, d), positive electrostatics (e,
f) and shape (van der Waals; g, h). The size of each field point symbol represents the strength of
that property. Note the consistency between the hydrophobic, negative electrostatic and van der
Waals force maps, with most spheres and octahedrons appearing close to each other. In the
positive electrostatics, note the absence of an octahedral (2,4-D) field point adjacent to strong

sphere adjacent to the indole nitrogen of 1AA.
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]

Figure 6. Summary AUX1 molecular field activity maps illustrated with 2,4-D for reference.
The average shape map for active substrates is seen from above (a), and from the side (b), and
with shape activity cliffs overlaid (c and d). Magenta represents unfavourable, and green
favourable space around each activity map. Similarly, the hydrophobicity map is shown (e and
f), and together with the hydrophobicity activity cliffs (g and h). In the summary el ectrostatic
molecular field map (i and j), negative charge (blue) surrounds the carboxylic acid moiety as
well as areas above and below the aromatic ring. Small areas of positive charge are present
adjacent to where the indole nitrogen would sit in e.g. IAA, and adjacent to the a-carbon

position.
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The molecular field atlas for AUX1 explains why many herbicides are not substrates

The Forge atlas is made up from a series of maps. The AUX1 substrate average shape map
indicates that there is space that may be exploited by substrates at e.g. the 3-position of a
phenoxy ring (Figure 6a and b) and, perhaps, the 5-position. Overlaying the average shape and
shape cliff maps (Figure 6¢ and d) indicates, for example, that substituents around the side group
a-carbon position (Supplementary Figure 9) are favourable as long as they have R-chirality
(green), whereas substitutions in the S-chiral position are unfavourable (magenta). The
hydrophobicity map (Figure 6e, f) superimposes well onto the shape map, with unfavourable
hydrophobicity activity cliffs at the S-chiral a-carbon position and at the 6-phenoxy position
(magentain Figure 6g, h), whereas hydrophobicity at the 3-, 4- and 5- positionsis favoured
(green).

Examples of the compounds contributing to these rules are R- and S-dichlorprop. Both
enantiomers share the 2,4-dichlorophenoxy ring system, yet affinity is determined by chirality at
the a-carbon. The R- isomer is the preferred substrate (1Cso = 0.88 UM vs S-dichlorprop 1Cso =
58.3 uM) and it can be seen (Supplementary Figure 10) that the chiral methyl group of the S
isomer protrudes into the unfavoured shape and hydrophobic activity cliffs, whilst in the R-
isomer it projectsinto favourable space. Elsewhere around the phenoxy scaffold, the substrate
shape and hydrophobicity maps show that substitutions at the 6-position reduce activity, with e.g.
2,6-D exhibiting very poor activity (ICso > 300 UM, Imhoff et al., 2000), explained by the
hydrophobicity cliff map as the 6-chlorine projecting into a space unfavourable for

hydrophobicity (Supplementary Figure 11).
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If we consider electrostatic potentials (Figure 6i, j), al auxins are carboxylic acids yielding a
core area of electronegativity. The electron-rich areas above and below the aromatic ring system
also map as electronegative. There is an electropositive area adjacent to the a—carbon, and the
position occupied by the indole nitrogen in IAA. The amine group of picolinates mapsto this
electropositive area (compare picloram in Figure 7b with the electrostatic activity map in Figure
6i). However, accumul ation and root growth assays showed that many herbicides, including the
picolinates, are not AUX1 substrates, or are very poor substrates. Thisis explained by the
molecular field maps (Figure 7), which show that these compounds do not fit into e.g. the
average shape. Although some contraventions appear small, van der Waals surfaces are not
included on the compounds for clarity. Picloram (Figure 7b) extends past the shape boundary by

one chlorine, yet this leads to a 100-fold decline in substrate ICso from IAA (Table 2).

()] Pyrene-1-acetic acid Picloram Dicamba
Active Inactive Inactive

DAS534 Chloramben Quinclorac
Inactive Inactive Inactive

Figure 7. Selected compounds superimposed onto the shape map for AUX 1 substrates. Despite
its large, conjugated benzene ring system pyrene-1-acetic acid (a) fits within the boundaries of
the map and is an effective competitor for 2,4-D accumulation. On the other hand, picloram (b),
dicamba (c), DAS534 (d), chloramben (€) and quinclorac (f) are not substrates. It can be seen

that each of the latter molecules project partially out of the limits of the space map.
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Both the data of Imhoff et al. (2000) and our own data (Table 2) indicate that the large,
conjugated ring system of pyrene-1-acetic acid is an effective competitor for [*H]2,4-D
accumulation. The molecular field maps do not distinguish compounds that are competitive
substrates from those that are competitive inhibitors. Both options are consistent with a 1:1
Langmuir interaction. The former would reduce accumulation of label by substituting for the
tracer, the latter would bind to the same recognition site, but fail to transit, blocking
accumulation of tracer. Hence the field maps describe molecules that bind specifically to AUX1.
To distinguish substrates from inhibitors we will need an assay that can follow the transit of
every compound into the cell, not just the reduced accumulation of labelled 2,4-D. Nevertheless,
the molecular field maps do reflect alack of uptake for many auxin herbicides through AUX1.
Whilst pyrene-1-acetic acid is large and permitted (Figure 7a), the larger picolinates such as
DAS534 (Figure 7d), are not substrates. In this case it is seen that chlorine groups at the two
opposite ends, as well as the polar amine group all protrude from the space envelope. Indeed,
even the small picloram fails (Figure 7b). Similar observations can be made for benzoates (e.g.
chloramben, Figure 7€) and quinolates (e.g. quinclorac, Figure 7f). In conclusion, the 3D

molecular field atlas for AUX1 appears to explain substrate activity very well.

Discussion
Structure-activity assays have been used to extend the chemical search space for AUX1 substrate
specificity. The differential seedling root growth assay is helpful, but it depends on the test

compound having auxin activity. Due to the duration of treatment it may also suffer from

32



\E ]:]I‘\_'['t'!|:'lgi<['

distortions arising from compound metabolism. Nevertheless, this assay did suggest that several
classes of synthetic auxin were not transported by AUX1. In order to get accurate and direct
estimates of substrate activity for alarger range of compounds, the widely accepted tobacco BY -
2 cell suspension accumulation assay was adapted so that we could incorporate Michaglis-
Menten kinetics and derive terms to account fully for diffusion. The resulting Competitive
Transport Model compared favourably with the more traditional, empirical approach, revealing
benefitsin terms of accuracy and range, particularly with competitors of lower affinity.
Quantitative SAR data for accumulation of [3H]2,4-D in competition with each test compound
defined the structural preferences of AUX1, and illustrated that several classes of auxin herbicide
are not substrates for this uptake carrier.

In the past severa heterologous expression systems have contributed estimates of the affinity of
AUX1 for IAA and afew other substrates. Xenopus oocytes yielded uptake kinetics with a
Michaelis constant (Km) for IAA of 0.8uM (Yang et al., 2006), and a baculovirus system gave
an equilibrium dissociation constant for IAA binding (Kdiaa) of 2.6 uM (Carrier et al., 2008).
These values may be compared to ICsp values for IAA from plant cells of 0.6 uM (Imhoff et al.,
2000), 0.45 uM (Table 2) and 1-5 uM (Rubery and Sheldrake, 1974). For 2,4-D, other estimates
of affinity are 1Cso 2,40 = 40 UM from baculovirus-infected insect cells (Carrier et al., 2008), 3.3
MM from plant cells (Imhoff et a., 2000) and 1.4 uM (Table 2). Only the study of Imhoff et al.
(2000) and the current work have attempted a quantitative SAR survey, although some of these
compounds have been evaluated qualitatively as substrates and inhibitors in a number of
publications. Consistent with the data reported here, IBA was not a substrate in the Xenopus
assay (Yang et a., 2006), nor in a previous report using tobacco (Simon et al., 2013). Also, 1-

naphthoxyacetic acid (1-NOA), 2-NOA and CHPAA are competitive inhibitors of AUX1
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(Imhoff et al., 2000; Parry et al., 2001; Ottenschl&ger et a., 2003; Lankovaet al., 2010), and the
alkyloxy auxinsinhibit all auxin transporter systemsincluding AUX1 (Tsudaet a., 2011).
Overall, this survey has shown that the uptake carrier AUX1 has considerable selectivity, greater
than that shown by the receptors TIR1 and AFB5 for example (Lee at a., 2014). Both assay
formats demonstrate that active herbicidal auxins of the benzoic acid, quinolinic acid and
picolinic acid families are not substrates of AUX1, or only very weak substrates (Table 2, Figure
4b). Hence, AUX1 does not contribute to the activity of these herbicides. Despite this, the
compounds remain effective and some of the picolinates have very low effective field dose rates
(Epp et d., 2016). A list of summary rules governing AUX1 substratesis presented
(Supplementary Table 1, 2).

Recent advances in cheminformatics have presented chemists, pharmacol ogists and biologists
with ever more powerful computational tools for exploring and describing chemical space. We
have presented a summary set of physicochemical descriptors which cluster substrates of AUX1
(Table 3), but are not sufficient to define substrates. On the other hand, molecular field maps
(Figure 6) are able to define substrate molecules and explain selectivity. Together, these maps
and the cheminformatics analysis do reveal features of AUX1 substrates which may be useful in
rational design to improve, or moderate uptake of auxins as agrochemicals.

If we consider herbicidal activity with respect to carrier-mediated uptake of auxins, the lack of
affinity by AUX1 for many herbicidal compounds shows clearly that AUX1 uptake is not apre-
requisite for accumulation and subsequent death. The work of Delbarrre and colleagues (1996)
explained the high activity of 2,4-D by measuring both uptake (excellent substrate) and efflux
(poor substrate) kinetics, and the consequent concentration in the cytoplasm relative to

extracellular supply. In comparison, 2,4-D isarelatively poor substrate for the auxin receptors
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TIR1 and the AFBSs, showing in particular fast off-rate kineticsrelative to e.g. IAA (Leeet d.,
2014). Nevertheless, with constant accumulation the nett response will be supra-optimal and
herbicidal.

AUX1 isthe dominant route for uptake of IAA into plant cells, accounting for 75% of
accumulation activity (Delbarre et a., 1996; Rutschow et a., 2014), a situation common to
Arabidopsis and tobacco BY -2 cells (Seifertova et a. 2014). In common with the current debates
on drug permeation into cells (Kell and Oliver, 2014; Mendes et al., 2015), it remains unclear
exactly how the auxin herbicides which are not AUX1 substrates enter plant cells. Our
measurements of diffusive accumulation to parameterise the model illustrate that thistermis
significant. Following the arguments of Kell and colleagues, thisis unlikely to be bilayer lipoidal
permeability even though this pathway has been considered or implied as a consistent contributor
to auxin accumulation in all transport and accumulation models to date. Instead, the
accumulation attributed to our diffusive term should be considered as facilitated diffusion
(Mendes et a., 2015) and comprises relatively slow, unspecific, but long-term accumulation
through other small molecule transporters (Rutschow et al., 2014).

Clearly, there are features of herbicide behaviour in terms of long-distance transport in xylem
and/or phloem, compartmentation, and particularly metabolism, which are not yet fully explained
for al the auxins. Intracellular concentration of 2,4-D is recognised, linking it with uptake carrier
activity, but it istransported little within plants (McCready and Jacobs, 1963), which is
consistent with it being a poor substrate for efflux and polar auxin transport. Y et, sufficient
compound is carried through target plants to be lethal over time. Indeed, one instance of field
resistence to 2,4-D has been linked with reduced transport from source leaves to sink leaves

(Goggin et al., 2016). The mechanistic basis of thisresistanceis not yet known, but this example
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of evolved resistance does demonstrate that impaired |ong-distance transport can provide
resistance. This challenge of distribution and accumulation is still more acute for the auxin
herbicides which are not AUX1 substrates and, consequently, may not become concentrated
intracellularly in the manner of 2,4-D.

The cheminformatic survey could be extended to allow useful prediction of additional AUX1
substrates or to design carrier—friendly features onto other auxin molecules. Perhaps more
importantly, this set of molecular field maps may contribute to a greatly improved understanding
of its mechanism of action. There is not crystallographic structure yet for AUX1, athough
structures for some transport proteins in the same group are now available (e.g. Sun et al., 2014).
A structure for AUX1 would be instructive, but without a molecular mechanism for molecule
selection and proton-coupling the structure has limited value.

In times when resistance to auxin herbicidesis on theincrease (Mithilaet al., 2011), it is of
interest to identify the role played by AUX1 in accumulation of natural and synthetic auxinsin
order to evaluate the role played by facilitated auxin uptake. By redefining the selectivity profile
of AUX1 using molecular field maps, we reflect on the contribution the uptake carrier AUX1
plays in herbicide resistance mechanisms.

In conclusion, a set of molecular field maps (a 3-dimensiona pharmacophoric atlas) has been
generated from quantitative SAR data for the auxin uptake carrier AUX1. This protein is highly
selective and cheminformatic analysis has contributed new insights to the systemic movement of
auxinsin plants. Several families of commercially important auxins are not substrates, or are
very poor substrates of AUX1 and this information contributes to the discussion on mechanisms

of auxin herbicide accumulation and resi stance.
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Supplementary Information:

Fig. S1 Arabidopsis root elongation dose dependence assays of the aux1-100 mutant and
wild-type Ws lines with a series of auxin herbicides. Values are averaged over 15-20 seedlings,

+/- SE of the mean. Colour codes for data and statistical fits are indicated, lower right.
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Fig. S2 Arabidopsis root growth dose response curves showing tolerance to 2,4-D (a), but not
to 1-NAA (b), and for a series of indole-3-aryl acetic acids (c-f). Data are shown from the lines
aux1-T (-o-) and its wild-type Ws (-e-; top panels), and using loss-of-function line aux1-2 (-0-),
partial-loss-of-function line Wav5-33 (- ¥), and their wild-type line Ler (-e-) in panels C-F. Values
are expressed as percentages of root elongation in that line in the absence of compound,

averaged over 15-20 seedlings, +/- SE of the mean.
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Fig. S3 Arabidopsis root growth dose response curves showing tolerance to some 2,4-D

isomers. Data are shown from the loss-of-function line aux1-2 (-o-), partial-loss-of-function line

Wav5-33 (-'¥), and their wild-type line Ler (-®-). Values are expressed as percentages of root

elongation in that line in the absence of compound, averaged over 15-20 seedlings, +/- SE of

the mean.
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Fig. S4 Arabidopsis root growth dose response curves showing tolerance to some auxin

metabolic intermediates. Data are shown from the lines aux1-T (-0-) and its wild-type WS (-e-),

supplemented with the auxin efflux carrier mutant agr3 (- ¥, Bell and Maher, 1990) and a
double mutant aux1-T/agr3 (-0-). In each case, the tolerance shown in AUX1 knock-out lines

was not corrected by loss of PIN2 efflux activity and may be attributed to the loss of uptake

activity.
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Fig. S5 Log-log scatter plots of transport ICso and Vmax estimates produced by the Competitive
Transport Model. The fact that the points are close to the fitted line (dashed line, fixed zero intercept)
reflects that the ratio of Vimax / ICso was close to constant between compounds. Left — values for all

compounds; right — reasonable competitors (/Cso < 40 uM) only.

Commentary: It may seem counter-intuitive that the Vyax estimates themselves are not constant
throughout the compound screens, but that the Vimax/ ICso ratios are instead. The explanation is that the
Vmax parameter in the model is neither actual Michaelis-Menten maximum transport rate of the
compound nor that of the tracer. Instead, as the Vmax is expressed in terms of tracer accumulation with
respect to each test compound, defined as
ICs

Vinax = ICEEBW M
where [Csg is the half-saturation concentration of the test compound, /Cso'™" is the half-saturation
concentration of the tracer, and Vi is the maximum transport rate of the tracer ([*H]2,4-D) in terms of

Michaelis-Menten kinetics. From this we can see that
Vmax VM

TCyy ~ TCT

where both Vi and /Cso™" are fixed parameters of the tracer compound, and thus their ratio should be

stable across the screen, as observed.

1.E+05 - 2 A
1.E+04 o0 N 8
Q- y=0.0286x ,°
y=00234x & 172 4 e
1.E+03 - L _ P
< P &°
£ a’ é 1/4 4 /I’
E 1E+02 R o o °
. ‘ £ o]
(% = 18 A P
° g 2 .
E 1.E+01 & = - o o
% ‘ & 1116 - L
£ o > X
1.E+00 4 0@ 132 0,70
® %o ©
1.E-01 4 % 1/64
@ o
s
1.E-02 L . r . . . \ 11128 . . . : . ; . :
1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 025 05 1 2 4 8 16 32 64
IC50 (M) 1Cs0 (UM)

48



Fig. S6 Comparison of diffusion parameter estimates among screen batches. In the first batch

(data0, marked grey), the diffusion was assessed using 4-minute-long accumulation runs; in the

remaining batches (black), the duration was optimised to 12 min.
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Fig. S7 Comparison of ICso values estimated with the Competitive Transport Model and the
estimates made from the same data using the method of Delbarre et al. (1996). While the
Competitive Transport Model produced one global estimate for both time points, Delbarre’s
method provided two independent values for each compound. The estimates made by
Delbarre’s method are consistently higher (by a stable ratio) than the Competitive Transport
Model estimates. The estimates from the Delbarre method and 1 min accumulation data are

closer to the Model estimates than the 2 min Delbarre estimates.
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Fig. S8 Numbering of positions on the scaffolds of indole-3-acetic acid (a) and phenoxyacetic
acid (b).
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Fig. S9 Representation of the model for AUX1 defined by Imhoff et al. (2000), but using 3-D
molecular models (Chemaxon Marvinview). Compounds (dark blue) are aligned with pyrene-1-
acetic acid as a template (cyan), in each case viewed from above (left panels) and from the side

(right panels). (a) IAA, (b) picloram, and (c) 2,4-D.

52



Fig. $10 Molecular field map of AUX1 substrates with dichlorporop enantiomers. The
molecular field map of hydrophobicity cliffs shows that the methyl group of S-dichlorprop (S-
2,4-dichlorophenoxyisopropionic acid) projects into the unfavourable magenta activity cliff,
whereas in the R-isomer it projects out into available space. The methyl groups are shown with
non-polar hydrogens (white). The IC50 values for S-dichlorprop are 58.3 uM (our results, Table
2) and 66 UM (Imhoff et al., 2000); while for R-dichlorprop these were 0.88 uM and 2.3 uM

(again our results and Imhoff et al., 2000, respectively).

R-Dichlorprop S-Dichlorprop




Fig. S11 Molecular field map of AUX1 substrates and substitutions around the phenoxy
scaffold. As shown on the example of 2,4,5-T (a), chlorines at the 2-, 4- and 5- positions are not
projecting into unfavourable magenta spaces and thus 2,4,5-T is tolerated as a substrate (IC50 =
12.1 uM, Table 2). The non-polar hydrogen at position 6 (a; white) is not computed to project
into the unfavourable magenta cloud, in contrast to the larger electronic surface of chlorine in

2,6-D (b; arrowed). 2,6-D is not a substrate of AUX1 (Imhoff et al., 2000).

2,4,5-trichlorophenoxyacetic acid (2,4,5-T) ] 2,6-dichlorophenoxyacetic acid (2,6-D)




Table S1 Rulesfor AUX1 substrates

Rule Description Rationale
>
1 Presence of carboxylic Recognition at AUX1
acid and an aromatic ring | binding site
o]
2 [ ﬂJ\ OH Vduefornis0or >3 Sé)rtl;t:gi?]?snd space
n
Ar
X
3 | Not pyridine
_~N
NH, Hydrogen bond
o donors/acceptors not
4 Not aniline compatible with AUX 1
recognition site
NH,,
5 | N Not pyridin-4-amine
=
N
(0] OH
j/ O
6 © or Not di-ortho substituted | Space and charge
>< > >< > aromatics constraints
R3
o o Substituents need to be Space and hydrophaobicity
! \ / R1 \ // R- at apha carbon constraints
N/
R4 R OH
Active IF:
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| RLand R2=H and only if R1 or R2isCH;
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Table S2 Table of compoundstable of rules broken by compoundsfound not to be substrates
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uptake IC50: 300
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H OH
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HO
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N Cl
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NH,

uptake IC50: 300

O Cl
HO
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Cl
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NH,
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Cl
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uptake IC50: 300
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uptake IC50: 300

Cl
HO
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Cl

C A

NH,

uptake IC50: 300
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HO

cl

uptake IC50: 300

42

uptake IC50: 300

Grid 1: Compoundsthat break rules

Rules broken
Structure no. Rule 2 = too short; (35, 39, 46, 36, 33, 44,)
33 too long; 43
34
35 Rule 3 = 35, 36, 46, 33, 44 ,42 41
36
37 Rule 4 = 35, 39, 46, 36, 42
38
39 Rule 5 =35, 39, 46, 42
40
41 Rule 6 = 34, 37
42
43 Rule 7 = 38, 40
44
45
46
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Methods S1 The Competitive Transport Model: this mathematical model describes
competitively-inhibited AUX1-mediated influx as well as diffusion of [3H]2,4-D.

a: The model is defined by the following two ordinary differential equations describing the dynamics of its state

variables: C(t) —intracellular concentration of [3H]2,4-D; Cg(t) — concentration of [3H]2,4-D in the medium.

dCI(t) Vmax
FTE kp [peCe(t)-piGi(D)] + m Ce(t)

dCE(t) _ dens - VC dCI (t)
dt _-1—dens-VC dt

b: The output of the model — Y (t), which corresponds to the predicted accumulation of
[3H]2,4-D in the cells, is then defined as:

Y(t) = Gi(t) + kcCe(t)
¢: Final analytical solution of the model

74
kppeCe(0) + IC5¢ Ce(0)

Y(t, Ceomp) = (1-kcf) 0 Comp T [y (rorerelom e B ) s ko)
kppef + kpp, +mf
where
f= dens - V¢ .
1 —dens -V
d. Table of symbolsand units:
Notation  Meaning Unit
Ce Extracellular concentration of [*H]2,4-D mol/m3
Ci Intracellular concentration of [*H]2,4-D mol/m3
Y Output of the model, measured accumulation of [°*H]2,4-D mol/m3
T Time of accumulation Min
ICso0 ICso of the tested compound mol/m3
Vmax Vmax of AUX1-mediated influx of [3H]2,4-D with respect to the mol m-3 min-t
tested compound
Cecomp Concentration of the competitor, i.e. tested compound mol/m3
Dens Suspension density (number of cells per volume of suspension) 1/ms3
Vc Average volume of one BY-2 tobacco cell m3
Pe Extracellular fraction of protonated [*H]2,4-D -
pi Intracellular fraction of protonated [3H]2,4-D -
ko Diffusion rate constant 1/min
kc Cell surface contamination coefficient -
Colour code:
State variables; Known experimental conditions; Optimised from the diffusion assay; Optimised

from the competition assay
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