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Abstract

A wavelet decomposition based technique is applied to air pressure data ob-
tained from laboratory-scale powder snow avalanches. This technique is shown
to be a powerful tool for identifying both repeatable and chaotic features at
any frequency within the signal. Additionally, this technique is demonstrated
to be a robust method for the removal of noise from the signal as well as being
capable of removing other contaminants from the signal. Whilst powder snow
avalanches are the focus of the experiments analysed here, the features identified
can provide insight to other particle-laden gravity currents and the technique
described is applicable to a wide variety of experimental signals.
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1. Introduction

Particle-laden gravity currents exist in many different forms throughout na-
ture, examples include powder snow avalanches, turbidity currents and pyroclas-
tic flows. These geophysical phenomena typically exhibit a dense, more granular
flow, however here we are concerned with the suspended material, where the in-
terplay between particle and interstitial fluid flow is paramount. These currents
can be extremely destructive, due to the large changes in pressure over very
short time periods, capable of subjecting structures to high stresses. The forces
exerted by these pressure changes can be up to four times that exerted through
hydrostatic pressure variation within the flows [21]. It is therefore of interest
to study fluid pressure signals obtained from particle-laden gravity currents in
order to gain a better insight into their internal structure and dynamics.

Here we are primarily motivated by powder snow avalanches (PSAs), but
the techniques discussed are equally applicable to other forms of particle-laden
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gravity current.
Due to their dangerous nature and unpredictability, obtaining air pressure

data from natural PSAs is extremely difficult. Laboratory-scale physical models
are therefore a useful tool for collecting repeatable and controlled data.

1.0.1. Similarity criteria

PSAs are non-Boussinesq, since the particulate material (snow) is relatively
dense compared with the ambient fluid (air) and the particles thus carry a
significant proportion of the current’s momentum.

Three different particulate materials have been used in order to create particle-
laden gravity currents that have density ratios that fall within the non-Boussinesq
regime - a sawdust and aluminium mixture [5], Expanded polystyrene (EPS)
[18, 20] and powder snow [20].

The particle Reynolds number

Rep =
ρaudp
µ

, (1)

is the ratio of the viscous and form drag forces (per unit volume) of a particle
with diameter dp and velocity u in ambient fluid of viscosity µ and density ρa
(Figure 1). The particle Reynolds number determines whether the drag is dom-
inated by viscous or pressure forces. PSAs typically have a Rep ≈ 3000 meaning
viscous drag forces play a minor role compared with the form drag of the par-
ticle. For values 500 < Rep < 105 the drag coefficient for a spherical particle is
essentially independent of Rep [15] and so within this range of Rep drag forces
in PSAs will be well modelled. It should be noted that both the natural and
model powder snow particles are henceforth assumed to be spherical. While it
is unlikely that the particles are perfectly spherical, a particle’s eccentricity will
only have an effect on it’s drag coefficient when Rep >≈ 105 [15], which is well
above the typical values of Rep observed in natural PSAs.

Laboratory-scale snow-air and polystyrene-air models have a Rep ≈ 150 due
to the currents reaching much lower speeds than PSAs. Therefore viscous forces
between the air and snow/polystyrene particles will have a greater effect on these
flows than in a PSA. However, for these models Rep is still large enough that
form drag will be dominant and viscous drag forces can be considered small,
especially compared with Bozhinskiy and Sukhanov’s experiments (Rep ≈ 0.1),
where the particles are so fine that drag force is dominated by viscous forces.

The Richardson number (Ri) is the ratio of potential energy to kinetic energy
of particles at the sheared interface between two fluids. The Richardson number
for a layer of height hc and velocity u on a slope at angle θ to the horizontal is

Ri =
g′hc cos θ

u2
. (2)

The reduced gravity is g′ = g∆ρ/ρa, where ∆ρ = ρ − ρa with ρ and ρa the
densities of the current and the ambient fluid respectively (Figure 1). The
Richardson number provides an indication of the stability of the flow [9]. If the

2



hc

g

u

θ

Particulate material:
ρp

Ambient fluid:
ρa
µ

Current:
ρ

Figure 1: Schematic diagram of a particulate gravity current of height hc, density ρ and
velocity u travelling down a plane inclined at an angle θ to the horizontal. Ambient fluid has
density ρa and viscosity µ, and individual particles have density ρp.

Ri value is low, a dense flow will entrain air on the upper surface and become
suspended. If the Ri value remains low the current will maintain the particles in
suspension and further entrain air. The value of Ri for natural PSAs is typically
≈ 1, meaning that the powder snow particles become, and remain suspended.
Due to the lower velocities of laboratory-scale snow-air and polystyrene-air flows,
very high slope angles have to be used in order to achieve values of Ri identical
to those observed in PSAs.

Polystyrene-air currents offer a significant advantage over snow-air currents
in that they allow much more control over initial conditions. Dry snow metamor-
phoses and sinters into clumps within seconds, and therefore has to be broken
up with a sieve shortly before or during release, greatly restricting control over
initial conditions of the flow.

1.1. Flow features

It has been demonstrated both theoretically [16] and experimentally [20]
that a gravity current head consists of a large rotating, vortex-like structure.
The driving component of gravity accelerates the EPS beads and air downslope
towards the front of the flow. At the front of the flow this acceleration is
countered by drag from the ambient air. Turbulent eddies forming along the
top surface of the flow entrain air and slow the flow at the top of the current.
Moving back from the front the turbulence decreases and the denser EPS beads
begin to settle and fall towards the chute. This forms a denser layer close to
the chute surface which then accelerates towards the front due to its greater
driving buoyancy force. The process then repeats creating a recirculating flow
inside the head (Figure 2). This recirculating flow causes a large positive peak
in basal pore pressure quickly followed by a negative peak of approximately
equal magnitude as the gravity current passes over a sensor (Figure 3). After
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Figure 2: Side-on image of an EPS bead gravity current. s is the distance into the current
from the nose, where at the foremost point of the nose, s = 0. z is the perpendicular distance
from the chute surface, where at the chute surface, z = 0. Black arrows indicate relative
motion of EPS beads within the gravity current head.
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Figure 3: A typical air pressure signal obtained from the chute surface of a laboratory scale
avalanche. The time origin, t = 0, corresponds to the time of maximum pressure when the
flow front reaches the sensor.
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Figure 4: Examples of different types of wavelet function.

reaching the negative peak, the air behind the head becomes turbulent and the
pressure returns to zero after the flow has passed.

1.2. Wavelet decomposition methods

This work makes use of a wavelet decomposition technique, to first de-noise
and filter air pressure signals obtained from laboratory-scale PSAs, and then to
visualize data and identify flow features. This technique was developed to be ap-
plied to air pressure data signals, but is applicable to any other data time-series
or one dimensional signal. Wavelet decomposition is a powerful technique that
can be applied to many situations. Similar to Fourier-transform based tech-
niques, time series data is transformed into the frequency domain. However,
the advantage that a wavelet-based technique has over Fourier-transform based
techniques is that time-domain information is retained during the transforma-
tion. This makes it particularly useful in our context for filtering, de-noising and
also identifying flow features. Wavelet-based techniques have also been shown to
be a robust tool for surrogate data generation [11], which is a powerful technique
in testing for nonlinearity in time series [19].

Where Fourier analysis consists of breaking up a signal into sine waves of
various frequencies, wavelet analysis is the breaking up of a signal into shifted
and scaled versions of a mother wavelet. A wavelet is a waveform of limited
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Figure 5: Front and side view schematic of the chute used for experiments.

duration that has an average value of zero. Unlike smooth and predictable sinu-
soids, they tend to be irregular and asymmetric. Examples of various different
types of wavelet function are shown in Figure 4.

Wavelets that have ‘sharp edges’ in the time domain (e.g. Haar (Figure
4(a)) or Daubechies type 2 (Figure 4(b))) have excellent temporal localization.
This means that the properties of the signal at a point in time will correspond
closely to the values for the wavelet coefficients at that point in time, with little
smearing of the coefficients across neighbouring time positions. However, the
frequency localization for this type of wavelet basis function is poor. Wavelets
with higher numbers of vanishing moments (e.g. Daubechies type 10 (Figure
4(c)) or Mexican Hat (Figure 4(d))) have the opposite tendency, with good
frequency localization and poor temporal localization [6].

The next section summarises the experimental setup where the air pressure
signals were obtained. A more detailed description can be found in Jackson
et al. [10].

2. Experimental set-up

These experiments created repeatable, laboratory-scale, fully suspended particle-
laden gravity currents using line releases of lightweight granular material in air.
The temporal variation of basal pore pressure as each gravity current passed was
recorded in order to provide information about the flows’ internal structure.
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The experiments were conducted on a 1 m wide, 1.9 m long, flat, open sided
wooden chute (Figure 5). The chute could be inclined at any angle between 60◦

and 90◦, where θ denotes the angle between the chute and the horizontal. To
create a pseudo two-dimensional line release, the lightweight granular material
was released from a linear hopper which had a semi-elliptical cross section with
aspect ratio 0.9 and a length of 0.85 m.

The air flow in front of and inside the flows was measured using three cal-
ibrated pressure transducers mounted in the surface of the chute (Figure 5).
The pressure sensors used were Validyne DP 103 differential pressure trans-
ducers with a range of 0 to 35 Pa. Similar to the experiments conducted by
McElwaine and Nishimura [17], the sampling frequency of the sensors was set
at 1 kHz. Given the mean velocity of the flows, u ≈ 2 m s−1, both the range and
sampling rate of the pressure sensors are high enough to adequately capture the
flow features including any turbulent fluctuations (≈ 10u [20]).

To maximize the frequency response each of the sensors was connected to the
chute using a very short tube (≈ 40 mm) with resonant frequency approximately
2 kHz, which is significantly higher than the frequency of any features of the flow
that we might expect to observe. The pressure sensors were connected to the
same DAQ device as the electromagnet that controls the release mechanism,
allowing acquisition of data from the pressure sensors to be synchronised with
the release of the EPS beads.

The release mechanism was attached to a completely separate structure that
surrounded the top and side edges of the chute. This meant that prior to release
the only part of the mechanism that was in contact with the chute was the release
hopper itself. As soon as the mechanism was operated all contact between the
chute and the mechanism was broken (Figure 5), preventing vibrations being
transmitted to the chute and affecting the readings from the sensitive pressure
sensors attached to the chute.

In order to estimate the density of the EPS avalanche head, ρ, several as-
sumptions were necessary. The head of a fully suspended EPS avalanche is often
modelled as being circular in cross section [2, 3, 21, 22]. Whist the heads formed
in the EPS-air currents used in this work (Figure 2) are not semi-circular, the
cross sectional area of the head is found to be approximately equal to that of
a semi-circle with radius equal to the maximum height of the current perpen-
dicular to the plane of the chute hc. Therefore in order to calculate ρ, the
head of the current is assumed to be semi-circular in cross section, with radius
equal to the current head height, hc. The volume of the current can then be
approximated as Vc = (πbh2

c)/2 where b is the width of the release hopper. In
Figure 2 it can also be seen that some of the EPS beads are detrained from the
rear of the head. Qualitatively the amount of material detrained from the rear
was observed to be relatively small, and is difficult to accurately quantify as the
current progresses down the chute. Therefore, for the purpose of calculating ρ
it is also assumed that all of the EPS beads released are contained within the
current head, meaning that the proportion of Vc made up of EPS beads will
be equal to Vi. The proportion of Vc that is made up of entrained air is then
obtained by subtracting the initial release volume, Vi from Vc. The density of
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the current is then calculated as ρ = [(1− V )ρa + V ρp], where V = Vi/Vc.

3. Air pressure signal noise removal

3.1. Discrete Fourier Transform

Typical examples of signals obtained from one of the chute-mounted pressure
sensors are shown in Figure 6. Whilst these signals display the features that we
would expect to see for flows of this kind, namely a large positive pressure peak
(Figure 6 - segment B) quickly followed by a negative peak (Figure 6 - segment
C), the signals also contain a couple of features that are not related to the dy-
namics of the flow. The first of these is low-amplitude, high-frequency electronic
noise along the entire length of the signal (Figure 6 - segments A→D). The other
is a wave of peak amplitude approximately 0.5 Pa and frequency approximately
8 Hz that occurs during the first 0.75 s after the release mechanism is triggered
(Figure 6 - segment A). This is approximately the same amount of time that
the release mechanism continued in motion for after the initial trigger, and is
most likely to be caused by low-frequency pressure waves emitted by the sliding
runners on the release mechanism being detected by the pressure sensors. The
pressure signals therefore first need to be processed in order to remove these
features before they can be used to study the dynamics of the flows.

Initially the signals were processed using a Fourier transform-based tech-
nique. This involves transforming the signals from a time-domain representa-
tion to a frequency-domain representation. For a pressure signal p(k) of length
Np this is achieved using a discrete Fourier transform (DFT), given by

P (j) =

Np∑
k=1

p(k)ω
(k−1)(j−1)
Np

(3)

where
ωNp = e(−2πi)/Np (4)

is an Npth root of unity. In order to increase speed and efficiency the signals
are first zero padded so that their length is equal to a power of 2, this allows
the implementation of a Fast Fourier transform (FFT) algorithm, reducing the
number of operations required from N2

p to approximately Np log2(Np) [8].
The DFT of the signal is a complex number; the power in each frequency

component represented by the DFT can be obtained by squaring the magnitude
of that frequency component. Thus, the power in the jth frequency component
is given by |P (j)|2. The power spectrum (Figure 7) obtained from the signal
displayed in Figure 6b shows a peak at approximately 1 Hz which corresponds
to the large positive and negative pressure peaks seen in the signal. Similar
peaks were observed in the power spectra obtained from the other signals shown
in Figure 6 (Appendix B.1). The signals also contain a wide range of higher
frequency (≈ 10 − 500 Hz) components whose power is close, but not equal, to
zero. Generally speaking, electronic noise is made up of constantly fluctuating
high frequency components. As a consequence of this constant fluctuation and
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Figure 7: Single-sided power spectrum of p(t) signal from an experiment with slope angle 80◦

(e.g. Figure 6(b)), main: x-axis shortened for clarity, inset: full x-axis shown.
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wide range of frequencies involved, the power associated with each frequency
component remains low. It can be deduced that the high frequency, low power
components of the power spectrum shown in Figure 7 represent the electronic
noise present in the signal. The power spectrum can therefore be used to filter
out the electronic noise by identifying and removing the low power frequency
components from the signal. This is achieved by setting a threshold power
level, Φ, and identifying the frequency components for which |P (j)|2 < Φ. Once
identified, these components are set to zero, P (j) = 0, and the inverse DFT,

p(k) =
1

Np

Np∑
j=1

P (j)ω
−(k−1)(j−1)
Np

, (5)

is applied in order to convert the signal, with the low power frequency compo-
nents removed, back into the time-domain.

The effect on the output of the inverse DFT of applying different values of
Φ to the power spectrum is shown in Figure 8, and it highlights the importance
of selecting an appropriate value for Φ. Setting the value too low will mean that
the electronic noise is not completely removed from the signal (Figure 8(a)).
Whereas setting it too high will result in low power frequency components that
are not necessarily electronic noise being removed from the signal (Figure 8(e)).
It is reasonable to expect that the pressure signals obtained from the experi-
ments will contain some higher frequency components arising from fluctuations
in the flow caused by turbulence. The nature of the turbulence is such that these
fluctuations are likely to be over short timescales and a wide range of frequen-
cies and therefore, as with electronic noise, the power levels of these frequency
components will be low. A drawback of using a DFT-based filtering technique
to remove electronic noise is that it is extremely difficult to identify which of the
lower power frequency components relate to noise and which relate to genuine
flow features, and set an appropriate value of Φ accordingly. Another drawback
of this technique is that in order to remove the ≈ 8 Hz wave in the early part of
the signal the value of Φ needs to be relatively high. This also results in features
with the same frequency, and frequencies with the same or lower power levels,
that occur later in the signal being filtered out.

Applying a power-level based threshold in the frequency domain is not the
only available method of filtering using the DFT of a signal. A frequency-level
based threshold whereby any frequencies above a certain value are removed can
also be applied to the output of the DFT. Whilst this avoids the problem of
unwanted removal of low-power, low-frequency signal features, the problem of
setting a threshold that retains low-power, higher frequency signal features while
removing unwanted electronic noise still remains.

3.2. Wavelet analysis

The drawbacks of the DFT-based filtering technique stem from the fact that
once the signal has been transformed into the frequency domain, all time infor-
mation is lost. Electronic noise is present at all points in time along the pressure
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signal. Therefore if in addition to frequency and power, time information was
also available, electronic noise would be easily identifiable as the low power,
high frequency components that occur at all points in time along the signal.
This is in contrast to other high-frequency components, such as those relating
to turbulence, that only occur at certain periods of time along the signal. Simi-
larly, time information could be used to easily remove the pressure wave at the
beginning of the signal by identifying all of the frequency components of ≈ 8 Hz
that occur during the first 0.75 s of the signal.

Attempts can be made to address these drawbacks by adapting the Fourier
transform to analyse only a small section, or window, of the signal at a time.
The short-time Fourier transform (STFT), maps a signal into a two-dimensional
function of time and frequency, providing a compromise between the time- and
frequency-based views of the signal. Different values of Φ could then be applied
when filtering different parts of the signal. However, the information about when
and at what frequencies a signal feature occurs at can only be obtained with
limited precision, and that precision is determined by the size of the window [1].
Once a particular size for the time window has been chosen, that window is the
same for all frequencies. A more flexible approach is required where the window
size can be varied in order to determine more accurately time or frequency data
relating to signal features.

This more flexible approach exists in the form of wavelet analysis. Wavelet
analysis allows the use of long time intervals where more precise low-frequency
is required, and shorter regions where high-frequency information is required
[14].

Wavelet analysis is performed by the translation and dilation of the mother
wavelet along a signal and the convolution of this function with the signal. The
continuous wavelet transform (CWT) for a signal p that varies with time t based
on a mother wavelet ψ is given by

CWT (j, k) =
1√
j

∫ +∞

−∞
p(t)ψ

(
t− k
j

)
dt, (6)

where j and k are the dilation and translation parameters of the mother wavelet
ψ. If the length of the signal is Np, the CWT produces Np coefficients at every
scale analysed. The wavelet basis function used here is a Daubechies wavelet
with 5 vanishing moments (Figure 9, described mathematically in Daubechies
[6] chapter 6), which was selected as a good compromise between time and
frequency localization. This is suitable since the signals contain a wide range of
a wide range of time variant frequencies (Figure 6).

Wavelet analysis can be performed more efficiently by replacing the CWT
with the discrete wavelet transform (DWT). In this case, the dilation is per-
formed in powers of two, with the mother wavelet starting at its minimum
width and is doubled at each dyadic scale j. The DWT is calculated using a
hierarchical cascade of filter banks, making it more efficient numerically, while
dramatically reducing the number of wavelet coefficients produced.

The DWT of a time series sampled at Np = 2j points can be formulated
over the dyadic scales 2j , j = 1, . . . , J using a filter bank of high and low pass
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Figure 9: Daubechies Db5 wavelet function [6].
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quadrature mirror filters of even filter width, Λ, where hl (l = 0, . . . ,Λ − 1) is
the high pass (or wavelet) filter, gl is the low pass (or scaling) filter and

gl ≡ (−1)l+1hΛ−1−l (7)

At the first stage of the algorithm, j = 1, these filters are circularly convolved
with p(t) and the downsampled by a factor of 2 to give a set of wavelet, w, and
approximation, A, coefficients of length Np/2:

w1,k ≡
√

2w̃1,2k+1 k = 0, . . . ,
Np
2
− 1

√
2w̃1,k ≡

Λ−1∑
l=0

hlpt−l mod Np
k = 0, . . . , Np − 1 (8)

A1,k ≡
√

2Ã1,2k+1 k = 0, . . . ,
Np
2
− 1

√
2Ã1,k ≡

Λ−1∑
l=0

glpt−l mod Np k = 0, . . . , Np − 1 (9)

At subsequent stages of the algorithm, j, the approximation from the previous
stage of the algorithm, Aj−1,k is used instead of p(t) in Equations 8 and 9 to
give wavelet coefficients over all scales j = 1, . . . , J and a final approximation
coefficient.

A drawback of the DWT is that as the scale doubles, the number of wavelet
coefficients halves, which makes comparative analysis between scales problem-
atic. Therefore the stationary wavelet transform (SWT) is instead used, which
retains the efficiency of working with dyadic scales only but is an undecimated
transform, as the downsampling undertaken in the DWT is eliminated. This
means that each point in time has a unique coefficient for each scale, i.e. there
are Np wavelet coefficients at each scale, making between-scale analysis eas-
ier. A detailed description of the implementation of the SWT can be found in
Appendix A.

A minor drawback of the SWT is that 2j has to be a factor of the length of
the signal, Np, for j = 1, . . . , J . However, this can be overcome in this situation
by extending the signal up to the next dyadic scale using zero padding at the end
of the signal. The fact that the signal already starts and finishes with values of
approximately zero, the addition of zero padding does not cause any significant
discontinuities in the signal that may affect the SWT, and the padding can be
removed after the filtering has been performed.

Figure 10 shows the output of multiscale SWT when applied to the pressure
signal shown in Figure 6(b). The signal has been decomposed into approxima-
tion coefficients at scale j = 7 and wavelet coefficients at scales j = 1, . . . , 7.
Although it is impossible to directly convert a wavelet scale into a frequency, a
pseudo-frequency corresponding to a scale can be calculated in order to give an
approximate associated frequency. This is done by associating with the wavelet
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Wavelet Db5
Centre frequency approximation, Fc =

2
3

Figure 11: Comparison of wavelet db5 and centre frequency based approximation.
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Scale, Pseudo-frequency,
j Fj (Hz)
1 333
2 167
3 83
4 41
5 21
6 10
7 5

Table 1: Wavelet scales and their equivalent pseudo-frequencies.

a purely periodic signal of frequency Fc (Figure 11), known as the centre fre-
quency. Fc is equal to the frequency that maximises the fast Fourier transform of
the wavelet modulus, which for the Db5 wavelet is 2

3 Hz. The pseudo-frequency,
Fj , in Hz is then given by

Fj =
Fc
j ·∆

, (10)

where j is the scale and ∆ is the sampling period. The pseudo-frequencies
corresponding to the wavelet scales from the SWT decomposition in Figure 10
are shown in Table 1.

Looking at the multiscale SWT decomposition of the pressure signal (Fig-
ure 10), it can be seen that the high-frequency components of the signal that
are filtered into wavelet scales w1,k and w2,k are rapidly fluctuating but with
approximately constant magnitude throughout the entire length of the signal
Np. Wavelet scales w3,k, w4,k and w5,k also contain some low-amplitude, time-
invariant components. Similar features were observed in the multiscale SWT
decompositions of other signals (shown in Figure 6 and Appendix B.2). The fact
that the components are high-frequency, time-invariant and present throughout
the entire length of the signals, suggests that they correspond to the effects of
electronic noise on the signal.

It is likely that there will be various forms of electronic noise present in the
signals obtained from the pressure sensing equipment. This electronic noise is
approximately white, with power spectral density nearly constant throughout
the frequency spectrum and its amplitude will have very nearly a Gaussian prob-
ability density function. The mean value of the wavelet scale w1,k coefficients
is approximately zero and they follow an approximately Gaussian distribution
(Figure 12), so it is therefore assumed that they correspond to the electronic
noise present in the signal. This wavelet scale is therefore used to set a thresh-
old value for filtering out the electronic noise from the signal. The threshold
value is obtained using estimates of the wavelet scale w1,k coefficients’ standard
deviation. The estimator used is based on the median absolute deviation, and
has been shown to be well suited to zero mean Gaussian white noise [7]. The
median absolute deviation is then used as part of a penalization method [4]
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Figure 12: Histogram of wavelet scale w1,k coefficient values (grey bars) corresponding to
electronic noise for (a) data from an experiment with slope angle 80◦ and (b) combined
data from three experiments with slope angles 75◦, 80◦ and 85◦. Black line shows a normal
(Gaussian) density function fitted to the data. The dashed black line represents the mean
value of the data. It can be seen that the shape of the distribution is not significantly affected
across the different experiments/pressure signals.
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applied to the wavelet scale w1,k coefficients in order to determine the threshold
value.

Once the threshold value has been obtained it is applied to all the wavelet
scales, but not the approximation coefficients, and coefficients with magnitude
less than the threshold value are set to zero (Figure 13). The de-noised signal
and residuals (calculated by subtracting the de-noised signal from the original
signal) are shown in Figure 14. The mean value of the residuals, R̄, is approxi-
mately zero and the approximately constant level of variation across the entire
length of the signal, indicate that the wavelet coefficients of the signal removed
during the de-noising process correspond only to the electronic noise present in
the signal and that no other signal features have been lost. This thresholding
technique was also applied to the multiscale SWT decompositions obtained from
the other two signals in Figure 6(a) and (c). The results of which are shown in
Appendix B.3 and demonstrate that the technique is also effective in removing
white noise from other signals.

Attention is now turned to the removal of the low-frequency pressure waves
that appear at the beginning of the signal. Conversely to the electronic noise,
the bulk of the coefficients that correspond to these pressure waves are found
in wavelet scales w7,k and w6,k, and a minority are found in wavelet scales
w5,k, w4,k and w3,k (Figure 10). This is to be expected as, as previously noted,
the pressure wave has a frequency of ≈ 8 Hz and wavelet scales w7,k and w6,k

correspond to a frequency range of ≈ 5 - 10 Hz. The fact that the effects of the
pressure wave are only observed during the early part of the signal means that
the wavelet scales can be split by introducing an interval at a certain value of t
(or k), and filtering only applied to pre-interval wavelet coefficients.

A wavelet coefficient variance or autocorrelation based technique could be
used in order to identify coefficients that correspond to the unwanted part of
the signal (i.e. the soundwave) and then remove them. This would then give the
advantage of being able to remove unwanted periodic signal elements no matter
whereabouts they occur in the signal.

While sophisticated automated interval identification algorithms do exist
[7, 13, 23], scrutinisation of a large number of pressure signals revealed that
the pressure wave consistently occurred during the first 0.75 s of the signal,
additionally the earliest positive pressure peaks caused by the current arriving at
the first (lowest value of s) sensor occurred at≈ 0.85 s. Given these observations,
coupled with the fact the main aim of studying these pressure signals is to gain
information about the internal dynamics of the currents (i.e. from the positive
pressure peak and onwards), use of automated interval identification algorithms
was deemed unnecessary, and instead a fixed interval separation point was placed
at 0.75 s (or k = 750) for all wavelet scales. All wavelet coefficients occurring
before this interval separation point were then set to zero (Figure 15). The
interval-filtered signal and residuals are shown in Figure 16, and it can be seen
that this method has successfully removed the low frequency pressure wave from
the early part of the signal without effecting the rest of the signals features. This
filtering technique was also applied to de-noised versions of the pressure signals
in Figure 6(a) and (c). The results of which are shown in Appendix B.4 and
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Figure 14: (a) Original signal, (b) de-noised signal and (c) residuals of the de-noised signal.
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Figure 16: (a) De-noised signal, (b) interval-filtered signal and (c) residuals of the interval-
filtered signal.
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demonstrate that this technique was also effective when applied to other signals.

4. Wavelet-based visualisation of air pressure signal features

An additional advantage of using the wavelet-based method for de-noising of
the signals is that it forms the basis of, and can easily be extended to, a method
for visualization of a signal’s features developed by Keylock [12]. This technique
makes use of the wavelet decomposition data and allows wavelet coefficients
and scales that actively contribute to flow features to be identified. In order to
achieve this the variance of the wavelet coefficients, both on a global and scale-
by-scale level, is first calculated. All wavelet coefficients are set to zero where
the sign of the coefficient at a point in time is opposite that of the sum of the
coefficients at that point in time. The remaining coefficients are then normalised
by the global (Figure 17(b)) or scale-by-scale (Figure 17(c)) standard deviations
for each component.

The advantage of this method over a standard SWT decomposition, is that
only wavelet coefficients that contribute to a particular flow event are shaded,
since coefficients with an opposite sign are in white. This makes it easier to
focus upon the relevant scales for generating a particular flow event and hence
the likely processes in operation. Scaling with respect to the global variance
indicates the scales that dominate the whole flow (Figure 17(b)), but makes
it harder to determine the importance of a contribution at a particular scale
to the detected flow event. Normalising with respect to scale-by-scale variances
(Figure 17(c)) compensates for differences in energy between scales and produces
a wavelet spectrum analogous to the Fourier spectrum. It can be seen in Figure
17(b) that overall the flow is dominated by the high amount of energy at level 7,
correlating with the peak at ≈ 1 Hz in the power spectrum produced from the
DFT of the signal. This energy corresponds to the large positive and negative
pressure peaks caused by the large vortex-like structure at the centre of the
flow. However when differences in energy between scales are accounted for, it
is found that higher frequency (scales 2–6) components that occur around and
after the negative pressure peak are equally significant (Figure 17(c)). It seems
likely that these high frequency components correspond to fluctuations in the
flow velocity caused by turbulence.

De-noised and filtered pressure signals from a series of experiments with the
same release volume, EPS bead diameter and slope angle have been superim-
posed in Figure 18(a). The low frequency signal features are highly repeatable
and are well represented by the ensemble average signal (RMS residual from
ensemble mean = 3.3 × 10−2)(Figure 18(b)). However information about the
small magnitude, high-frequency turbulent fluctuations in air pressure observed
around and after the negative pressure peak is lost. Whilst ensemble averaging
is a useful tool for removing statistically random elements of signals, thus allow-
ing underlying trends to be observed, this strength becomes a weakness when
analyzing chaotic features such as turbulence. By applying the wavelet-based
visualisation technique to air pressure signals from individual experiments, in-
formation about the scale of the coefficients that contribute to flow events is
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Figure 17: Wavelet-based visualisation of flow features. (a) De-noised and filtered pressure
signal. (b) Wavelet coefficients normalised by the global wavelet variance. (c) Wavelet coef-
ficients normalised by scale-by-scale wavelet variance. For (b) and (c), darker values indicate
a higher value for the coefficients and coefficients that are opposite in sign to the detected
fluctuation are set to zero.
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Figure 18: (a) Air pressure signals from five 3300 cm3 of 2.7 mm diameter EPS bead currents
at a slope angle of 80◦. (b) Ensemble mean of signals shown in (a) (solid line) plus or minus
the standard deviation from the ensemble mean (dashed line).
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Figure 19: Ensemble wavelet-based visualisation of flow features. Wavelet coefficients nor-
malised by scale-by-scale wavelet variance. Darker values indicate a higher value for the
coefficients and coefficients that are opposite in sign to the detected fluctuation are set to
zero.

obtained. The wavelet coefficient data collected from each individual experi-
ment can then be used to produce an ensemble of all the experiments conducted
(Figure 19), and general trends in the scale and occurrence of flow features iden-
tified.

Similar to the results from an individual experiment (Figure 17(b)) there are
peaks in the energy levels of wavelet coefficient scales 6 and 7 that coincide with
the occurrence to the positive and negative air pressure peaks. The strength of
these peaks in coefficient energy level and the short time period over which they
occur in the ensemble plot suggest that they were a regular, repeatable feature
in the signals. The lower scale (3–5) coefficients appear over approximately the
same time period, but are more evenly distributed and less significant (when
compared with scales 6 and 7) than those seen in the individual experiment
result. The scale (corresponding to high frequencies) and temporal position of
these relatively high energy level wavelet coefficients provides further evidence
for them relating to the turbulent fluctuations observed in the air pressure sig-
nals. This is further backed-up by the differences in distribution and significance
when the ensemble result is compared to an individual result. By its very defi-
nition a turbulent fluctuation will not always occur at a certain time, therefore
when looking at ensemble data of a turbulent process we would expect to see
occurrences spread across the time period where turbulence is expected. This
spreading of occurrences leads to a reduction in peak wavelet coefficient energy
levels and a reduction in significance in the ensemble data. However, despite
the reduction of significance caused by the averaging of the data, the contribu-
tion made to the air pressure signals by the lower scale wavelet coefficients is
still significant and represents a regularly occurring process in the flow, which
is most likely turbulent.
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5. Conclusions

Wavelet-based analysis techniques have been demonstrated to be an ex-
tremely useful tool for processing and studying air pressure signals obtained
from laboratory-scale PSAs. As well as de-noising and filtering the signals,
wavelet-based analysis has been demonstrated to be capable of enabling visu-
alisation of flow data and identification of important flow events. Information
about both the time and frequency levels of these events can be obtained as well
as their energy levels relative to both the energy of other events with similar
frequencies and to the total energy of the signal as a whole. In addition to being
applied to data obtained from laboratory-scale experiments, these wavelet-based
techniques could also be applied to field or large-scale model PSA air pressure
data, or indeed any other kind of time series data.

Appendix A. The Stationary Wavelet Transform

In order to implement the stationary wavelet transform (SWT), the filters
first need to be rescaled to account for the lack of downsampling. Defining the
filter width at scale j as Λj ≡ (2j − 1)(Λ− 1) + 1, the jth level SWT high and
low pass filters are expressed as

h̃j,l ≡ hj,l/2j/2

g̃j,l ≡ gj,l/2j/2. (A.1)

The SWT wavelet and approximation coefficients (equivalent to the DWT ex-
pressions in Equations 8 and 9) are then given as

wj,k ≡
Λi−1∑
l=0

h̃j,l pk−l mod Np

Aj,k ≡
Λi−1∑
l=0

g̃j,l pk−l mod Np
. (A.2)

The filters then require periodization so that, instead of an explicit circu-
lar convolution with Equation A.1, implicit circular filtering using a standard
convolution and a periodized filter is performed, where

h̃◦j,l ≡
+∞∑

n=−∞
h̃j,l + nNp. (A.3)

Expressing Equation A.2 in terms of Equation A.3 gives

w◦j,k ≡
Np−1∑
l=0

h̃◦j,l pk−l mod Np

A◦j,k ≡
Np−1∑
l=0

g̃◦j,l pk−l mod Np
. (A.4)
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Figure B.20: Single-sided power spectra of p(t) signal from an experiment with slope angle
75◦ (e.g. Figure 6(a)), main: x-axis shortened for clarity, inset: full x-axis shown.

Equation A.4 can then be evaluated from a recursion which states that, given
the approximation A◦j,k, w◦j+1,k and A◦j+1,k can be obtained from

w◦j+1,k =

Λ−1∑
l=0

h̃◦lA
◦
j,k−2j l mod Np

A◦j+1,k =

Λ−1∑
l=0

g̃◦l A
◦
j,k−2j l mod Np

(A.5)

Appendix B. Wavelet Analysis of Other Pressure Signals

Appendix B.1. Power Spectra of Pressure Signals

Power spectra obtained from the DFT of the pressure signals from experi-
ments with slope angles 75◦ (e.g. Figure 6(a)) and 85◦ (e.g. Figure 6(c)) are
shown in Figures B.20 and B.21 respectively.
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Figure B.21: Single-sided power spectra of p(t) from an experiment with slope angle 85◦ (e.g.
Figure 6(c)), main: x-axis shortened for clarity, inset: full x-axis shown.
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Appendix B.2. Multiscale SWT Decomposition of Pressure Signals

Multiscale SWT decompositions of the pressure signals from experiments
with slope angles 75◦ (e.g. Figure 6(a)) and 85◦ (e.g. Figure 6(c)) are shown in
Figures B.22 and B.23 respectively.

Appendix B.3. De-noised Pressure Signals

Wavelet coefficients and de-noising threshold levels of the pressure signals
from experiments with slope angles 75◦ (e.g. Figure 6(a)) and 85◦ (e.g. Figure
6(c)) are shown in Figure B.24. The original signals, de-noised signals and
residuals of the de-noised signals are shown in Figure B.25.

Appendix B.4. Interval-filtered Pressure Signals

Wavelet coefficients and filtering intervals of the pressure signals from ex-
periments with slope angles 75◦ (e.g. Figure 6(a)) and 85◦ (e.g. Figure 6(c))
are shown in Figure B.26. The de-noised signals, interval-filtered signals and
residuals of the filtered signals are shown in Figure B.27.
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Figure B.24: Original (left hand column) and de-noised (right hand column) wavelet coeffi-
cients at all scales for pressure signals from experiments with slope angle: (a) 75◦ (e.g. Figure
6(a)) and (b) 85◦ (e.g. Figure 6(c)). Black dashed lines indicate threshold value.
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Figure B.26: De-noised (left hand column) and interval-filtered (right hand column) wavelet
coefficients at all scales for pressure signals from experiments with slope angle: (a) 75◦ (e.g.
Figure 6(a)) and (b) 85◦ (e.g. Figure 6(c)). Black dashed lines indicate the interval separation
point.
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