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Variation in the shell coiling, or chirality, of land snails provides an opportunity to investigate the potential for “single-gene”

speciation, because mating between individuals of opposite chirality is believed not possible if the snails mate in a face-to-face

position. However, the evidence in support of single-gene speciation is sparse, mostly based upon single-gene mitochondrial

studies and patterns of chiral variation between species. Previously, we used a theoretical model to show that as the chiral

phenotype of offspring is determined by the maternal genotype, occasional chiral reversals may take place and enable gene

flow between mirror image morphs, preventing speciation. Here, we show empirically that there is recent or ongoing gene flow

between the different chiral types of Japanese Euhadra species. We also report evidence of mating between mirror-image morphs,

directly showing the potential for gene flow. Thus, theoretical models are suggestive of gene flow between oppositely coiled

snails, and our empirical study shows that they can mate and that there is gene flow in Euhadra. More than a single gene is

required before chiral variation in shell coiling can be considered to have created a new species.
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Impact Summary
Although most snails have a right-handed spiraling shell, rare

“mirror-image” individuals have a shell that coils to the left.

This curious inherited condition has attracted attention because

the genitals of mirror image snails are on different sides of the

head, and so mating is difficult or impossible. If they are unable

to mate, then does a change in the direction of the shell coil

make a new species? In investigating a Japanese snail genus,

Euhadra, we were surprised to find that different-coiling in-

dividuals can sometimes mate, against expectations, and that

there is evidence for this in their genetic make-up. It turns

out that the mating problem is mainly behavioral, rather than

a physical incompatibility. This new work therefore suggests

that the two types of Japanese snail should be considered a

single species, and has implications for the classification of

other snail species. As it is has previously been shown that

the same sets of genes that make mirror image snails are also

involved in making mirror image bodies in other animals–

including humans–then further research using the natural vari-

ation snails could offer the chance to develop an understanding

of how organs are placed in the body and why this process can

sometimes go wrong.

Understanding the extent and underlying causes of specia-

tion under gene flow is a longstanding challenge in evolution-

ary biology. Strong reproductive isolation usually depends upon

the evolution and maintenance of associations between multiple

traits contributing to different reproductive barriers (Coyne and

Orr 2004). However, a problem is that gene flow is fundamentally

antagonistic to this process because it is expected to homoge-

nize divergence at individual loci, and through recombination,

randomize associations between the different loci contributing to

reproductive isolation (Felsenstein 1981; Coyne and Orr 2004;

Gavrilets 2004; Servedio 2009). Consequently, the complete ces-

sation of gene flow by means of geographic isolation has tra-

ditionally been viewed as necessary for reproductive isolation to
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evolve. Unopposed by recombination, processes such as mutation,

selection, and genetic drift can drive genome-wide divergence be-

tween allopatric populations, leading to the build-up of linkage

disequilibrium between loci contributing to reproductive barriers

(Felsenstein 1981; Coyne and Orr 2004).

Despite the theoretical difficulties, it is now clear that spe-

ciation with gene flow may be relatively common in nature

(Servedio and Noor 2003; Gavrilets 2004; Bolnick and Fitzpatrick

2007; Nosil 2008; Smadja and Butlin 2011). For instance, de

novo divergence in sympatry may occur through assortative mat-

ing resulting from associations between loci subject to divergent

ecological selection (e.g., differential local adaptation to habi-

tat, or predation) and loci underlying mating traits (Rundle and

Nosil 2005). Alternatively, geographic isolation may be impor-

tant for initiating speciation, with divergent ecological selection,

or reinforcement strengthening reproductive barriers following

secondary contact (Servedio and Noor 2003; Rundle and Nosil

2005). The challenge is in determining the relative contributions

of spatial isolation and gene flow to the evolution of reproductive

isolation (Smadja and Butlin 2011; Martin et al. 2013), and eluci-

dating mechanisms that act in lieu of spatial isolation to prevent

recombination from disrupting associations between the different

components of reproductive isolation (Smadja and Butlin 2011).

One exceptional means by which speciation with gene flow

could be facilitated is through occasional reversals of left-right

asymmetry, or chirality, in snails. Due to pleiotropic effects of the

maternal effect locus that determines snail chirality (Boycott and

Diver 1923; Sturtevant 1923; Schilthuizen and Davison 2005),

mating is believed not possible between mirror-image individuals

with low spired shells. Switches in chirality may therefore be a

driver of so-called “single-gene” speciation (Gittenberger 1988;

Asami et al. 1998; Coyne and Orr 2004; Schilthuizen and Davison

2005; Hoso et al. 2010). However, the likelihood of single-gene

speciation in snails, and the mechanisms by which it could occur

have been the subject of much debate because it is both theoret-

ically challenging (Johnson et al. 1990; Orr 1991; Davison et al.

2005) and the empirical evidence is extremely limited.

First, theoretical models have shown that while individual

snails of opposite coil may be unable to mate, gene flow could be

substantial between morphs. As the chiral phenotype of offspring

is determined by the maternal genotype, occasional chiral rever-

sals will take place and enable gene flow, unless there is complete

reciprocal fixation of chirality-determining alleles (Davison et al.

2005).

Second, as predicted by classic two-locus models of spe-

ciation (Orr 1996), fixation of a novel chiral allele is unlikely

because the new chiral morph might lack potential intrachiral

mating partners (Johnson 1982; Orr 1991, 1996). Consequently,

several studies have investigated the conditions under which this

mating disadvantage could be overcome, including founder ef-

fects, population size, and density, as well as selection, such as

reproduction character displacement or predation (Johnson 1982;

Orr 1991; van Batenburg and Gittenberger 1996; Davison et al.

2005; Yamamichi and Sasaki 2013).

Third, sparse empirical data mean that putative instances of

single-gene speciation have been inferred from single-gene mito-

chondrial phylogenies (Ueshima and Asami 2003; Davison et al.

2005; Uit de Weerd et al. 2006; Feher et al. 2013; Modica et al.

2016), or by combining single mitochondrial genes with relatively

invariable ribosomal RNA sequences (Hoso et al. 2010; Kornilios

et al. 2015). From this data alone, it is impossible to definitively

distinguish between low levels of gene flow, introgressive hy-

bridization, or speciation.

Finally, the other main approach has been to investigate and

compare patterns of chiral variation between species, across wide

geographical scales (Hoso et al. 2010; Gittenberger et al. 2012).

While this is useful in understanding broad patterns, especially

in explaining the high frequency of sinistrals in South East Asia

(Hoso et al. 2010), the phylogenetic relationship between the

species is often not clear, and beset by the taxonomic prob-

lem that species are sometimes defined on the basis of chirality

alone.

Chiral reversal in the Japanese snail genus Euhadra perhaps

presents one of the best candidate systems for investigating the

potential for single-gene speciation, but also illustrates the lack

of empirical data. Two independent studies (Ueshima and Asami

2003; Davison et al. 2005) have used mitochondrial DNA se-

quences to investigate the phylogenetic relationships between the

five sinistral Euhadra species and the other dextral species. Both

phylogenies supported a single origin of the sinistral species from

a dextral ancestor, but also found evidence supporting recent evo-

lution of dextral E. aomoriensis from sinistral E. quaesita. Specif-

ically, three lineages of the dextral species were polyphyletically

distributed within E. quaesita, leading to the suggestion that this

is due repeated single-gene speciation of the dextral from the

sinistral (Ueshima and Asami 2003). We therefore set out to test

the evidence for single-gene speciation in Euhadra, by combin-

ing a fine-scale RAD-seq phylogeographic study with behavioral

observations of snail mating.

Methods
SAMPLING

There are 22 taxonomically defined species/subspecies of Eu-

hadra (Bradybaenidae) distributed throughout Japan and the

neighboring Korean island of Jeju (Davison et al. 2005). For

this study, three of the five sinistral species, E. decorata, E. mu-

rayamai, and E. quaesita, the dextral species E. senckenber-

giana, and the nominal dextral species E. “aomoriensis” were

sampled.
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Figure 1. Map showing topography of northern and central Honshu, Japan. Insets: two newly identified contact zones between sinistral

(red) E. quaesita and dextral (blue) E. aomoriensis, showing sample size and site ID.

Sinistral E. quaesita were collected from across the Tohoku

(northern Honshu) region of Japan. E. aomoriensis has a dis-

tribution that is largely allopatric with E. quaesita, being more

frequently found in sympatry with sinistral E. decorata, espe-

cially in the northern part of Tohoku. Like E. quaesita, E. ao-

moriensis was also sampled opportunistically across Tohoku, but

with a concentrated effort on two dextral/sinistral contact zones

that we identified, one in Iwate prefecture (NE Tohoku) and an-

other in Yamagata (SW Tohoku), approximately 250 km apart

(Fig. 1). Further samples were obtained of sinistral E. muraya-

mai, a species that is endemic to a small limestone outcrop and

is also polyphyletic within E. quaesita, based on mtDNA (Davi-

son et al. 2005). Finally, E. senkenbergiana and E. decorata were

included because they are sometimes sympatric with dextral E. ao-

moriensis and sinistral E. quaesita. Thus, the collection contained

samples of sympatric and parapatric E. quaesita/E. aomoriensis,

and for comparison, sympatric E. quaesita/E. senckenbergiana,

and E. aomoriensis/E. decorata.

BEHAVIORAL OBSERVATIONS

It is commonly assumed that dextral and sinistral low-spired

snails are either unable to mate, or can only mate very rarely

(Asami et al. 1998; Davison and Mordan 2007). There are

no known reports of mating, and we are not aware of any

systematic studies. We used a network of malacological con-

tacts, and a knowledge of Japanese language sources to investi-

gate evidence of possible matings between dextral and sinistral

Euhadra.

DE NOVO GENERATION OF RAD-SEQ SNP MARKERS

RAD-seq was used to generate SNP markers for 16 individu-

als representing four species. The samples included two sinistral

E. quaesita populations (n = 6) that are largely parapatric with

two dextral E. aomoriensis populations (n = 6) in East Iwate and

South Yamagata, where geographic and mtDNA data suggest in-

terchiral contact may have been recent or ongoing (see Results).

For comparison, one population of dextral E. senkenbergiana

(n = 3) and one individual of sinistral E. decorata were used.

From the final filtered set of SNPs (see Supplementary Meth-

ods for further details) a number of datasets were generated, al-

lowing for varying degrees of missing data. After quality filter-

ing, 13,167 biallelic loci were found in eight or more individuals,

which reduced to 7871 loci once singleton SNPs were removed.

There were still a substantial number of missing genotypes in

this dataset, so to refine the loci used further, only one null was

allowed in each of the four main population samples of interest

(sinistral and dextral snails from Iwate and Yamagata), leaving

4598 loci. This reduced dataset was used for all subsequent anal-

yses. Although not shown, other datasets produced similar outputs

in terms of subsequent analyses.

RAD-SEQ PHYLOGENOMIC ANALYSES

We conducted four separate phylogenomic analyses, based on

the RAD-seq dataset. First, the concatenated SNPs were used to

build a maximum likelihood phylogeny, using the same methods

as for the mitochondrial data. However, phylogenies are not use-

ful in understanding conflicting signals in the underlying data, as
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might be produced by varying degrees of linkage between mark-

ers, recombination, and introgression. Therefore, we also con-

structed a network, using the neighbor-net method in SplitsTree

4 (Huson and Bryant 2006), based on a matrix of uncorrected

p-distances, and using the equal-angle split transformation and

ignoring ambiguous states. Also, the relationship between the

individuals was investigated using principal components analysis

(PCA), conducted using ADEGENET (Jombart 2008), and ADE4

(Dray and Dufour 2007) in R 3.2.3.

To test for signals of admixture between population samples,

and correspondingly, whether any inferred tree is truly bifurcat-

ing, we used Treemix (Pickrell and Pritchard 2012). This software

uses allele frequencies within groups to relate a sample of popula-

tions to their common ancestor, including as output a maximum-

likelihood (ML) tree of estimated migration events, including the

direction. Five populations used were Yamagata sinistral, Yama-

gata dextral, Iwate sinistral, Iwate dextral, and E. senckenbergiana

outgroup. FST between sites was also estimated, using Genepop

and the same populations (Rousset 2008). To complement these

analyses, population structure and admixture was estimated us-

ing individual genotypes with STRUCTURE v2.3.4 (Falush et al.

2003; Evanno et al. 2005).

TESTING OF SCENARIOS VIA APPROXIMATE

BAYESIAN COMPUTATION METHOD

We used an approximate Bayesian computation (ABC) approach,

implemented in the software DIYABC v 2.1.0 (Cornuet et al.

2014) to compare hypotheses. In brief, simulated datasets were

produced for five scenarios, by sampling parameter values in de-

fined prior distributions. Three scenarios were similar in that the

populations showed a bifurcating topology, only differing in di-

vergence order. Two other models included ancestral admixture,

because the shared chirality between dextral E. aomoriensis from

Yamagata and Iwate might be because of shared ancestry. The

analysis was restricted to the four population samples of E. quae-

sita and E. aomoriensis, primarily because the large genetic dis-

tance between E. senckenbergiana and the other samples meant

that it was difficult to find a suitable range of parameter values.

See Supplementary Methods for further detail.

MITOCHONDRIAL PHYLOGENETIC AND POPULATION

ANALYSES

The number of individuals in the phylogenomic analysis was

necessarily limited by resources.1 To sample more individuals

and over a greater geographic area, �800 bp fragments of 16S

rRNA were amplified and sequenced using standard conditions

and buffers (see Supplementary Methods). For maximum likeli-

hood phylogenies, an appropriate model of evolution was selected

using jModelTest and the Akaike Information Criterion (Darriba

et al. 2012), followed by tree construction and visualization using T
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Figure 2. Reciprocal mating between sinistral E. quaesita and

dextral E. peliomphala. Mating between these distantly related

species may not produce viable offspring, but illustrates the gen-

eral point that dextrals and sinistrals are able to mate, if only

rarely. Photo: Kentaro Nakao and Seiichi Takase, reproduced with

permission.

PhyML (Guindon and Gascuel 2003) and TreeExplorer, includ-

ing bootstrap support, with the tree rooted on E. senkenbergiana

(Ueshima and Asami 2003; Davison et al. 2005).

Results
CONTACT ZONES BETWEEN SINISTRAL AND

DEXTRAL SNAILS

In both East Iwate and in South Yamagata prefecture we found

one site (E104 and E281, respectively) that contained both chi-

ral morphs of the two species (Fig. 1). Sympatric sites were also

recorded between sinistral E. quaesita and dextral E. sencken-

bergiana in Chubu (e.g., Noto peninsula, site E261, Anamizu),

between sinistral E. quaesita and dextral E. senckenbergiana in

Chubu (D24, Mt. Myojo), and between dextral E. aomoriensis and

sinistral E. decorata in Tohoku (E106, Kabayama; E227, Nohira;

E299, Wakasennin; D31, Tamayama).

MATING BETWEEN DEXTRAL AND SINISTRAL SNAILS

We found five records of mating between dextral and sinistral

Euhadra (Table 1; Fig. 2). These observations included matings

between sympatric sinistral E. quaesita and dextral E. sencken-

bergiana.

PHYLOGENOMICS

Phylogenies (Fig. 3A–B) based on whole genome RAD-seq data

(see Table S1 for read depths) clearly showed that dextral E. ao-

moriensis and sinistral E. quaesita group together and are dis-

tinct from sinistral E. decorata and dextral E. senkenbergiana.

Within the E. quaesita/E. aomoriensis groups, dextrals and sinis-

trals grouped together by geographic region, Yamagata or Iwate,

rather than by chirality, with strong bootstrap support. Within re-

gions, individuals clustered with other individuals from the same

sampling location, with the exception of dextral individual E102-

4, which clustered with sinistral individuals from the nearby site,

E101. This general result was confirmed using a principal com-

ponents analysis (Fig. 3C). In the latter, when the analysis was

restricted to just E. quaesita and E. aomoriensis samples, the first

three axes explained 48.4% of the variation, respectively sepa-

rating individuals by region (Iwate or Yamagata, 23.0%), then

dextral and sinistrals within Yamagata (13.8%) and dextral and

sinistrals within Iwate (11.6%). As above, the position of dextral

individual E102-4 was different to the other two individuals from

the same site.

Using population allele frequencies, a TreeMix phylogeny

(Fig. 3D) showed the same overall topology, except also contain-

ing two putative migration events, from sinistral E. quaesita in

Iwate into sinistral E. quaesita in Yamagata (14%) and from the

dextral or sinistral ancestor of the Yamagata snails into sinistral

Iwate E. quaesita (8%). Using individual genotypes, STRUC-

TURE identified evidence for more recent gene flow. When the

analysis was confined to dextral E. aomoriensis and sinistral

E. quaesita from Iwate, the “optimal” K was 2, but with the

dextral E102-4 clustering with the other sinistrals. When dextral

E. aomoriensis and sinistral E. quaesita from Yamagata were an-

alyzed together, the optimal number of clusters was three, but

with sinistrals and dextrals showing mixed ancestry. Estimates of

FST (Table S2) showed that divergence within regions is low to

moderate (e.g., FST �0.2 between sinistral and dextral sites in

Yamagata), higher between different regions (e.g., Yamagata –

Iwate, FST �0.4) and very high when comparing with E. senck-

enbergiana (FST �0.6).

TESTING OF SCENARIOS

Approximate Bayesian computation (Cornuet et al. 2014) was

used to compare five different models of cladogenesis, two includ-

ing admixture (Fig. 4). A scenario involving admixture (0–10%)

from dextral Yamagata snails into Iwate snails was the optimal

model (model #4 in Table 2; see also Fig. 4), significantly bet-

ter using logistic regression. To further evaluate confidence in

the models, test datasets were simulated. The true scenario had
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Figure 3. Phylogenomic analysis of 4598 RAD-seq derived biallelic loci. (A) Maximum likelihood phylogeny using the GTR model, with

bootstrap support. (B) Neighbor-net broadly shows the same relationship between individuals. (C) Principal components analysis, carried

out on only E. quaesita and E. aomoriensis, separates individuals by region (Iwate or Yamagata), then by sites within regions. (D) Treemix

analysis of allele frequencies within populations indicates evidence of ancestral migration between populations.

the highest posterior probability for 0.72/0.73 (direct/logistic) test

datasets, giving a posterior error rate of 0.27/0.28 (Table 2). Simi-

larly, test datasets were simulated and a prior based error analysis

conducted to understand the probability with which true models

might be rejected. The proportion of wrongly identified scenar-

ios was 0.33/0.25 (direct/logistic). Finally, scenario specific prior

error rate was estimated, by drawing test datasets from the param-

eter prior distribution under a given scenario. By drawing pods

against model #4, and comparing to the next best model (#1),

the type I error was 0.10/0.09; by drawing pods against model

#1, and comparing to model #4, the type II error for model #1

was 0.29/013. In both cases, similar values were obtained when

comparing against other models.

MITOCHONDRIAL PHYLOGENIES

In the Iwate contact zone, it was found that most sinistral and

dextral E. quaesita and E. amoriensis snails were of the same

haplogroup, QUA2a, including three haplotypes were shared be-

tween sinistral and dextral coiling snails; in the Yamagata contact

zone, the same two species were mostly of haplogroup QUA1

(Fig. S1). In comparison, in sites containing E. quaesita/E. senck-

enbergiana or E. aomoriensis/E. decorata, different species

EVOLUTION LETTERS DECEMBER 2017 2 8 7
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Figure 4. The five scenarios tested in the ABC analysis, three with bifurcating topologies (A, B, C), which only differ in the relative

timing of events, and two with admixture between dextral populations (D, E).

Table 2. Scenarios for the repeated evolution of dextral populations of snails within a sinistral species, either independently (1–3), or

involving admixture.

Direct Logistic regression

Posterior 95% Posterior 95%
Scenarios probability confidence probability confidence

Independent origin of dextral/sinistrals in Yamagata versus Iwate
1. Yamagata snails diverged first 0.27 [0–0.6] 0.03 [0.03]
2. Iwate snails diverged first 0.12 [0–0.41] 0 [0]
3. Diverged at same time 0.26 [0–0.65] 0 [0]

Shared ancestry between dextrals (admixture)
4. Admixture (<10%) from dextral Yamagata snails into Iwate snails 0.37 [0–0.79] 0.97 [0.96–0.97]
5. Admixture (<10%) from dextral Iwate snails into Yamagata snails 0 [0] 0 [0]

The best model is highlighted in bold.

contained divergent mitochondrial haplogroups (Figs. S1 and S2;

Table S3).

Discussion
Previously, we used a theoretical model to show that occasional

chiral reversals may take place and enable gene flow between

mirror image snail-shell morphs. This is because the maternal in-

heritance of snail chirality means that there is sometimes a discord

between phenotype and genotype, leading to gene flow between

different types (Davison et al. 2005). By collecting together re-

ports and observations from Japanese naturalists, we found direct

evidence that dextral and sinistral Euhadra are sometimes able

to mate. Moreover, the genomic data indirectly suggests recent

or ongoing gene flow between sinistral E. quaesita and dextral

E. aomoriensis. Thus, overall, the theoretical model (Davison

et al. 2005), behavioral observations, genomic data, and biogeo-

graphic context do not support a model of single-gene speciation.

More than a single gene is required before chiral variation can be

considered to have created a new species, at least in Euhadra.

A fundamental new insight from this work is that analy-

ses of genome-wide SNP markers show that dextral and sinistral

Euhadra in Iwate, Japan are distinct from dextral Euhadra in

Yamagata. Moreover, genomic and mtDNA divergence was low

in both locations where dextral and sinistral morphs were found

together (Figs. 3, S1; Table S3), especially in comparison to other

snails that show greater differentiation over shorter geographic

distances (Davison and Clarke 2000). Some dextral and sinistral
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snails shared identical mtDNA haplotypes, and individual snails

showed traces of mixed ancestry (Fig. 3A–C; also STRUCTURE

analyses). There are only two explanations for this pattern–-either

there is ongoing gene flow between dextral E. aomoriensis and

sinistral E. quaesita in two separate locations, or else there was

gene flow, but this has recently ceased.

A second important insight from this work is that face-to-face

mating between low-spired snails sometimes take place, albeit at

an unknown frequency. Previously, the assumption has been that

the genitals are on the “wrong” side of the head in mating between

sinistral and dextral snails, and so intromission is not possible.

However, the data here suggest that the problem is mainly be-

havioral. As in Amphidromus, the only snail genus that routinely

has interchiral mating (Schilthuizen et al. 2007; Schilthuizen and

Looijestijn 2009), it is likely that the long, thin, flexible genital

organs are able to twist to match the partners chirality. Moreover,

in high-spired snails, it is already known that interchiral mating

(by “shell-mounting”) is less of an issue–-and AFLP markers have

recently been used to show that gene flow is extensive between

the two types, as expected (Koch et al. 2017).

Putting our findings together, we are able to reinterpret pre-

vious studies (Ueshima and Asami 2003; Davison et al. 2005).

The fact that both the mtDNA and nuclear trees presented here are

concordant for the polyphyletic pattern puts beyond doubt the hy-

pothesis that dextral E. aomoriensis and sinistral E. quaesita are

coderived, and should probably be treated as forms of the same

species, E. quaesita. Although it is possible—or even likely—

that the dextral chirality determining allele is ultimately derived

from another dextral species, E. aomoriensis must have mainly

shared ancestry with E. quaesita, because otherwise we would

have instead expected to observe a signal of admixture with dex-

tral E. senckenbergiana in the genomic RAD-seq data. The two

chiral types cannot be defined as separate species, given that they

are sometimes found in sympatry, they sometimes mate, the ge-

nomic evidence for gene flow between the two types, and the

underlying theory that reproductive isolation is unstable (Davi-

son et al. 2005). Altogether, these observations critically weaken

the argument for chirality directly leading to single-gene specia-

tion, at least without implicating other factors such as ecology or

predation.

A challenging question to consider how dextral E. aomorien-

sis evolved from sinistral E. quaesita, or indeed, whether sinis-

trals evolved from dextrals? Do the geographically separate re-

gions represent independent transition events from sinistral to

dextral, or did dextrality evolve once, then introgressing with a

local sinistral in secondary contact? Although further investiga-

tions are required and the precise details differ, both the Treemix

analysis and the ABC results are consistent with past admixture,

suggesting that a common origin is likely. Specifically, the ABC

analysis is suggestive of admixture from dextral Yamagata snails

into Iwate (Table 1), and thus, that the dextrals in both locations

may share the same dextral-determining allele. Alternatively, the

Treemix analysis (Fig. 3D) suggests admixture in the opposite

direction, as well as from an ancestor of unknown chirality.

This gene flow need not have been direct. As has been sug-

gested in parallel incipient speciation by local adaptation in other

species like intertidal Littorina snails (Butlin et al. 2008) and

sticklebacks (Colosimo et al. 2005), a feasible scenario is that

chirality-determining alleles exists at low frequencies, especially

the recessive version, but under certain selective and/or chance

biogeographic conditions (see below) reach fixation, establish-

ing a new chiral morph (Johnson 1982; Orr 1991; van Baten-

burg and Gittenberger 1996; Davison et al. 2005; Hoso et al.

2010; Yamamichi and Sasaki 2013). Unfortunately, it is unknown

which allele is dominant in Euhadra and this may vary, depend-

ing upon genomic context (Clarke and Murray 1969; Schilthuizen

and Davison 2005).

A similar interpretation may also be applied to a recent AFLP

study on Alopia door snails (Koch et al. 2017) and another mi-

tochondrial rRNA study between sinistral and dextral Satsuma

species (Hoso et al. 2010), a genus that is relatively closely related

to Euhadra, and which might even share the same chiral-varying

alleles. In the latter, the authors concluded that the presence of

multiple sinistral lineages cannot be explained by introgression

via hybridization, because Satsuma snails mate face-to-face. Our

data instead suggest that both gene flow via maternal inheritance

and direct face-to-face mating should be considered in interpret-

ing whether the patterns are really caused by a “speciation gene.”

Evidently, further work is needed to disentangle the geo-

graphic context of the chiral reversion event (s) that lead to the

evolution of new chiral types in snails. Such a challenge is funda-

mental to the field of speciation in general (Coyne and Orr 2004;

Smadja and Butlin 2011; Martin et al. 2013). More broadly, part

of the interest in snail chirality arises from attempts to understand

chiral invariance across the metazoans (Grande and Patel 2008;

Okumura et al. 2008; Davison et al. 2009; Utsuno et al. 2011;

Davison et al. 2016). Thus, while chiral variation in snails is per-

haps a small step toward speciation, this chiral variation may be

an invaluable genetic resource in helping reveal the earliest steps

of symmetry breaking across the Bilateria (Davison et al. 2016).
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