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Abstract

Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we
study three different protocols for non-adiabatic quantum state preparation and state transport in
chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between
atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on
single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic
GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state
transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system
parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the
Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on
the resulting states and comment on limitations due to other sources of noise such as radiative decay of
the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of
quantum information processing platforms based on Rydberg atoms.

1. Introduction

Cold atoms held in optical traps constitute an invaluable tool in the quest for quantum information processing
(QIP) and simulation of many-body physics in the quantum regime [1, 2]. Rydberg gases, i.e. atoms excited to
high principal quantum number states, are of particular interest as the strong interaction between atoms in the
Rydberg states can be exploited for various QIP tasks [3—5]. Experimental progress in manipulating these
Rydberg atoms now allows simulating quantum Ising Hamiltonians [6], the adiabatic preparation of the ground
states thereof [ 7], efficient entanglement creation [8] or the implementation of quantum gates [9, 10]. Some of
these advances rely on the use of optical tweezer arrays, which permit the creation of various lattice geometries
[11] and were recently used to deterministically obtain an optical lattice with close-to-unit filling [12, 13].
Importantly, techniques allowing for addressing a single atom in such arrays have been developed [14-17]
opening new possibilities for non-adiabatic quantum state engineering, which might help to overcome
limitations imposed by the required timescales for adiabatic procedures, where detrimental relaxation effects
may become important [ 18]. First steps in this direction were taken e.g. in [19] which considered optimal control
techniques for creation of ferromagnetic GHZ, crystalline or Fock superposition quantum states in Rydberg atoms.
Building on the capabilities of optical tweezer arrays with Rydberg atoms and single site addressing for QIP,
we consider GHZ and matrix product state (MPS) engineering and quantum state transport in a one-
dimensional geometry. This particular choice is motivated by the fact that all three examples play a fundamental
role in QIP and constitute an ideal benchmark in order to assess the performance of the experimental platform
we consider—an array of Rydberg atoms—for our theoretical and numerical analysis. Specifically, the GHZ
state serves as a reference in quantum estimation theory yielding the Heisenberg scaling [20]. Various proposals
exist in the literature for the creation of GHZ states [3, 21, 22] some of which have been realized experimentally,
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Figure 1. (a) Setup for N = 2 atoms. The optical traps are arranged along the x; direction and are separated by . The position of the
atoms is spread with uncertainty o; around their equilibrium values [37]. (b) Level scheme for an effective two level system, where the
state |0) is coupled to the Rydberg state |1) by a laser with Rabi frequency 2. (c) Energy levels of an effective three-level system as it is
assumed in the GHZ protocol, where ) couples the Rydberg state |1) to another hyperfine state |T).

for example using ultracold ions [23]. Similarly, MPSs play a central role in classical simulations of quantum
Hamiltonians in one dimension [24-26] and are naturally realized as ground states of some finite-range
interaction spin chains [27-29] which are related to the problem of classical hardcore dimers [30]. For that
reason we refer to the class of MPSs considered in this article as dimer-MPS. Importantly, the dimer-MPS
feature the so-called Rydberg crystal as a special case [7, 31-33]. Finally, faithful transport of a quantum state
between different nodes of a quantum network is an essential requirement for QIP schemes such as quantum
computation [34]. Various methods to achieve quantum state transport between spatially separated qubits have
been proposed [45-47]. These include schemes based on atoms connected through an optical link [35] or
Rydberg atoms, where the transport is achieved through interactions between the Rydberg atoms and atomic
ensembles which communicate through a photon exchange [36].

In this paper, the QIP is based on the so-called ‘Rydberg blockade’ mechanism which relies on the strong
repulsive interaction between atoms excited to a Rydberg state [3]. We first introduce the protocols for GHZ
state and dimer-MPS generation and quantum state transport in the idealized limit of perfect blockade in
section 2. In this regime the blockade mechanism can be effectively described by a three-body Hamiltonian
which constitutes the basic building block of the studied protocols. Next, we investigate the influence of more
realistic conditions, such as the non-perfect blockade due to the finite value of the interaction energy and the tails
of the interaction or the positional disorder of the atoms held in optical tweezers [37] in section 3. There, we relax
the requirement of strict blockade and consider instead an evolution guided by a more realistic system
Hamiltonian including a van der Waals interatomic potential. This allows us to verify the predictions of the
effective description of section 2. To this end we evaluate the fidelity of the produced states with respect to the
target as a function of various parameters, such as the Rabi frequency of the laser pulses, interaction strength,
length and parity of the chain or the strength of the disorder. We summarize and discuss the results in section 4.

2. Setup, state preparation and state transport protocols

We consider a one-dimensional chain (open boundaries) along the x;-direction of N optical traps, each
occupied with a single atom. A diagram of the setup for the case of two atoms is shown in figure 1(a). The optical
traps are separated by equal spacings r( so that the position of the kth atom reads r;, = (0, 0, kry). Each atom is
described as an effective two level system, where the electronic ground state |0) is coupled to the highly excited
Rydberg state |1) via a laser pulse with Rabi frequency 2 as depicted in figure 1(b). For later convenience, we
account for the presence of a second hyperfine ground state | 1) coupled to the Rydberg state via a second laser
with different polarization and Rabi frequency €0, see figure 1(c).

Considering that the atoms in Rydberg states interact through the van der Waals potential, the Hamiltonian
of the system is given by (in the rotating wave approximation)

N
H= Z hk(Qk: Ak) + Hint) (1)
k=1
where
(s D) = U 5P + Ay (2a)
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(2b)

Here, &}(,k) = 1(|1) (Ox] — 10x) (Ik]), Ak = |1x) (1k|, the parameter Ay is the relative detuning of the laser from
the resonant transition between the states [0;) and | 1) and V;, = Cg /¢ is the interaction strength proportional
to the van der Waals coefficient Cg. Note that in (1) we have allowed for site-dependent Rabi frequencies and
detunings %, Ax.

In the regime where Vj >> 4, V k, the driving oc€%, which induces spin flips in the 5 basis, cannot
overcome the energy cost of having two neighboring Rydberg excitations. This is commonly referred to as the
‘Rydberg blockade’ mechanism. In this limit, it becomes convenient to adiabatically eliminate blockaded
processes: applying a unitary transformation U = exp[—i t Vo3 N Mg 1] on (1), neglecting terms oscillating
at the frequencies V, and interactions beyond the nearest neighbors and considering resonant excitation
Ay =0, Vk,onecan derive an effective three-body Hamiltonian making the blockade mechanism manifest
[27]:

N
N ~ 3 body
H=> h . 3)
k=1
~3 bod R R . . .
Here, iy, T = O Pk,ﬁ}(,k) Py, yand P, = (1 — #i) are the projectors on ground-state atoms. The associated

unitary evolution corresponding to the application of a laser pulse of duration t; and area Ay = () on the kth
atomonthe |I) — |I') transition reads

N . ~3bod N oA PO . R
Uy (Ap) = exp(—ity by ° Y) =1— Pt Prsr + Pro 1Py &’ 4)

and represents the basic building block of the protocols studied in this paper”. The indices /I’ € {01, 11} onthe
left-hand side of (4) label the basis in which the operators are expressed. For example, Uko " means that the
operators Pi=1— firand &}(,k) on the right-hand side of (4) act upon the {|0), |1)} basis. We note that for

Ay = 7, the unitary (4) corresponds to the Toffoli gate (wWhose definition we recall in appendix A) with k the
targetand k — 1, k 4 1the control atoms. In what follows we shall refer to the preparation procedure as non-
adiabatic meaning that the state of the system evolves in a step-wise manner after every application of a gate of
the form (4) (or any other local gate) and in general is not an eigenstate of the Hamiltonian of the system,
equation (1). This has to be contrasted with adiabatic protocols, where the final state is the ground state of a
Hamiltonian whose parameters are adiabatically deformed, starting from an initial ground state that is easy to
prepare.

Before we proceed with the introduction of the state preparation and state transport protocols, a comment is
in order. The reason for considering the auxiliary hyperfine state | 1) is to avoid undesirable effects such as
spontaneous emission from atoms in the Rydberg levels or atomic loss and dephasing due to mechanical forces
acting on the atoms (van der Waals repulsion [38, 39] and collisions with the background gas). This can be
achieved in the three-level scheme when the atomic population is transferred from the Rydberglevel |1), after it
has been used to implement a particular gate, as fast as possible to the stable hyperfine state | 1). However, in
order to reduce the complexity of the experiments (which may be important for first proof-of-principle
demonstrations) and to further reduce the number of applied gates, we will consider the two-level configuration
as well, where only the ground and Rydberg levels |0}, |1) are involved. More specifically, we describe the use of
both the three and two-level schemes on the example of the GHZ state preparation protocol in section 2.1 and
discuss the differences between the two schemes in section 3.1.1. For the reasons mentioned above, we limit the
discussion of the dimer-MPS preparation and state transport protocols to the two-level scheme only.

2.1. GHZ state preparation
We consider the non-adiabatic preparation of antiferromagnetic GHZ states of the form
1

|GHZ) = ﬁ( [0, 05 ... Iy) + 5,05 15 ... On)). (5)

They are robust with respect to global noise, such as magnetic or electric field fluctuations on length-scales larger
than the length of the chain, as the two components of the state are energetically degenerate: using encoding in
the basis |0), |1), this is only strictly true when N is even as one has the same number of excitations (atoms in the
state | 1)) in both components of the GHZ state (the two terms on the rhs of (5)).

Initially all atoms are prepared in the ground state [¥;,) = [000 ... 0). Firstwe applya 7/2-pulse 0101 (g)
on the first atom to generate a superposition state

4 In principle more general unitaries can be obtained by considering ﬁk(ﬂk, Ap) = ff)ﬁk) + ?r;k) + Ay 7.
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Table 1. Pulse sequence for the preparation of a GHZ state (left column), the dimer-MPS state (middle column) and the state transport (right
column) in a chain of N Rydberg atoms. In the case of the GHZ state, the Rydberg atoms are described as an effective three-level system.
However, the GHZ protocol can also be adapted to a two-level description of the atoms by neglecting step (iv). For the dimer-MPS as well as
the state transport protocol, each atom is approximated as a two-level system. |¥;,,) is the initial state for the particular protocol.

GHZ Dimer-MPS Transport

[, [000...0) 1000 ... 0) [400 ... 0)
(1) Apply 0101 (g) Setcountertok = 1 Setcountertok = 1
(ii) Setcountertok = 1 Apply pulse of area Ay on Apply 7-pulse

atom k (see equations (17)) onatom k + 1
(i) Apply ﬁ,(oi () k=k+1 Apply m-pulse

if k= N do nothing go back to (ii) onatom k
. till k = N then stop
(iv) Apply Ukl 1(7r) k=k+1
go back to (ii)
till k = N then stop
) Move to next atom Apply iN~15{N ) for Neven,
k=k+1 see end of section 2.3
repeat (iil)—(v)
tillk=N
# of applied pulses 2N -1 N 2N — 2
W) = q°1(3)|\11m> — L 000 .. 0) + 100 ... O)). ©)
2 V2
.. . . ~ 01

This is followed by the application of a -pulse U, (7) on the second atom

1) = 02 () [0y = %qo 1o ...

Note that, due to the blockade mechanism, the second term on the rhs of (6) is not affected by the second pulse.
We next go back to the first atom and apply a 7-pulse on the |1) — |1) transition in order to transfer any
population in its Rydberg level to the hyperfine state | T) so that

U5) = O () |y) = %qo 10 ...
This is followed by the application of 0301 (7) on the third atom and Uzl l(7r) on the second atom and so forth until
the end of the chain is reached after 2N — 1 gates (unitaries) have been applied. The procedure is summarized in
table 1. We note that a similar proposal for the preparation of a ferromagnetic GHZ state was put forward
recentlyin [22].

With the GHZ state preparation protocol just described, the Rydberg state |1) appears neither in the initial
nor in the final state, equation (5). It is simply exploited to implement the constrained spin flipping which allows
to reconstruct the GHZ pattern in the two components of the state. A simplified two-level version of this
protocol, where onlylevels |0) and |1) are used, is obtained simply by neglecting the transfer from the Rydberg to
the hyperfine state, i.e. omitting the step (iv) in table 1.

0)+ 100 ... 0)). (7)

0) — 100 ... 0)). &)

2.2. Dimer-MPS preparation

It seems natural to explore the effective three-body interaction ﬁ,f *°Y \ised in the GHZ state preparation for
creation of various other quantum states. Specifically, we note that the perfect blockade and the associated
Hamiltonian (3) allow in principle for the creation of all possible configurations which are compatible with the
dimer-MPS protocol. More precisely, in the blockade regime, simultaneous excitations of adjacent atoms are
strongly suppressed, which confines the dynamics to subspaces where the number of neighboring excitations
remains constant. In particular, the subspace we work in displays all Rydberg excitations separated by at least one
site. In this section we describe how to produce a specific example of such a quantum state which is defined as

l2) (1 + z P16 Peplo ... 0). ©)

1 N
o \/Z Hk:l
Here, zis areal number parametrizing the state, =1 — ) = |0x) (Ox|is the projector on the atomic ground
state introduced after equation (3) and Z, is an overall normalization constant ensuring (z|z) = 1. The state (9) is
asuperposition of all possible configurations without adjacent Rydberg excitations, where each configuration is
weighted by z" with n the total number of (isolated) excitations in it. An illustration of |z) is provided in

4
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Figure 2. (a) Representation of the dimer-MPS for a chain of N = 6 atoms. This state is a superposition of all possible configurations
without neighboring Rydberg excitations. The parameter z is weighting the number of excitations in the particular component of the
superposition state. (b) Circuit for the transport of a single qubit state 1)) from the first to the Nth qubit in the chain. All qubits expect
the first one, are prepared in the ground state. The CNOT gate as well as the Toffoli gate correspond to a m-pulse with Rabi frequency 2
applied to the particular atom. In the post processing, the G‘N—gate is applied to the state on the Nth qubit, in order to obtain the
correct state [1)).

figure 2(a). Specifically, for z = 0, |z} is the product state [0 0 0 ... 0), withoutany entanglement. Forz=1, all
possible components are equally weighted, whereas for z >> 1 the ones with higher number of excitations
dominate. Note that for odd Nand z — 00, the corresponding dimer-MPS state is a single antiferromagnetic
configuration where all odd sites, including the first and the last, have an excited atom. Such an alternating
configuration constitutes an example of a so-called Rydberg crystal. However, this state is completely separable
and holds no entanglement at all. For the scope of this work, it is therefore convenient to focus on the
complementary case: for even N, the major contribution will instead be given by the N /2 + 1 configurations
with N /2 excitations.

It has been shown in [28] that the state (9) admits a matrix product representation

|z>=§ SRRy Ry Tl i), (10)

iy ey in=0,1

withXo=U—-A) +z6,X = 0y two 2 x 2matrices, and ladder operators 6. = (65 =& i5,) /2. The vectors
I = (z, )and 7 = (0, 1) are included to impose the correct boundary conditions.

Furthermore, the same construction leading to (9) can be generalized to the case of a blockade extending
over Rsites (i.e. an excitation prevents its first R neighbors from being excited) [29]. The analog of the state (9)
then reads

(A + z Priere 6 Prrighd |0 ... 0), (11)

1 N
Oz

where P\kyleft = Hle b i» ﬁk,right = Hle ﬁkﬂ» and Z, is the corresponding normalization constant. This state

again admits a MPS representation (10) in which Xoand X are (R 4+ 1) x (R + 1) matrices and [and 7
(R + 1)-vectors[29]. As a final remark before describing the state preparation protocol, we would like to
mention that the states (9) and (11) are directly related to the ground states of the Hamiltonian (1), see
appendix C.2 for details.

In the following, we wish to show that a state of the form (9) (i.e. R = 1) can be generated via an appropriate
sequence of pulses (see appendix C.1.2 for a more general procedure which applies to generic R). As a first step,
we consider how alocal pulse of area Ay = (Xt acts on a ground state atom located in site k. If the kth atom is
blockaded, i.e., if there is an excitation to its left and /or right, then

01
Uy (A0 10k) = 10g), (12)
whereas if it is not
A 01 .
Uy 10k} (Ax) = cos Ag|0k) + sin Ag|1). (13)

The excited component in k will then blockade the following site, so that

~ 01 ~ 01 .
Uk+1(Ak+1) Uk (Ak)|0k0k+l> = COSAk COSAk+1|0k Ok+1> + COSAk SlIlAk_HIOk lk+1>
+ sin Ag|1g Ogy1)- (14)

Applying an ordered sequence of local pulses from the first to the lastatom U = [T;_ Uko "on the global atomic
ground state |0; ... Oy) will generically yield components on all elements of the basis in which no neighboring
pairs of excitations appear. From equation (13) it is not difficult to see that the component over the initial state
willbe Cy = []}_y cosAg. An excitation in, say, site j will instead come with a sin A; and a missing factor

5
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cos A . Using this simple rule, we can work out that the ratio between the component of a generic basis element
C™ with n (non-neighboring) excitationsin 7i = {j, ...j,} and C, will be given by

ci " sinAj”
Huzl [— . (15)

Co cosAjﬂ cos Ajﬂﬂ

In order to correctly reproduce state |z), this ratio must be set to be equal to z". The only way for this to hold for
every possible number 1 of excitations is to have
sinA; )

— =2z V] (16)

COSA;jCosAji1
This defines a recursion relation for A;in terms of A;, ;. The natural boundary condition to provide a seed to the
recursion is

cos(An4j) =1 Vj>0, 17
which corresponds to requiring that, should the excitation protocol stop before reaching the actual end of the
chain, all atoms which have not been addressed should still be in their ground state. Equations (16) and (17) can
be analytically solved to yield

cos Ay — S+ V14 4z2)NH2k (1 — 1 4 4z2)N+2-k .
(14 V1 + 422Nk — (1 — 1 + 422Nk

Together with the relation sign(sind;) = sign(z), the above expressions provide a unique way to extract the
pulse areas Ay. Using the values so obtained in the protocol described in table 1 will yield state |z).

(18)

2.3. Quantum state transport

In this section we discuss a protocol for the coherent transport of a single qubit state between the two ends of the
chain, last column of table 1. We consider a state [¢/;) = «|0) + §|1) to be initialized at the first qubit so that the
total initial state reads

[Win) = (a]0) + BI1)) & 10205 ... Oy). (19)

The circuit representation of the state transport protocol is shown in figure 2(b). The protocol relies on a
sequence of three-body Toffoli gates (see equation (3) and appendix A), which, when applied at the two ends of
the chain, becomes effectively a CNOT gate due to the absence of one of the sites. In our implementation, the
Toffoli and the CNOT gates flip the target qubit if the controlled qubits are in the ground state |0).

The first step is the application of a m-pulse on the second qubit

) = 0y (1) [ W) = 010 ... 0) + B|100 ... 0). (20)
Asasecond step, a7 pulse is applied on the first atom

1) = 0 (M) = al010 ... 0) + 3000 ... 0), 1)
which is then followed by the application of a m-pulse on the third qubit

[T5) = 0y (m)[T) = ]010 ... 0) + 001 ... 0) 22)

and so on, see the steps (ii)—(iv) in table 1, which are repeated till the end of the chain is reached. At this stage, the
initial state |1);) has been successfully transferred so that the state of the Nth qubit reads

iN*15, ) N even

lYN) = {|7/11> N odd. (23)

The presented state transport protocol requires (2N — 2) laser pulses and is deterministic as the only required
information is the length of the spin chain with no need for a classical communication between the two ends of
the chain [40].

3. Imperfections

The above presented protocols for quantum state transport and GHZ and dimer-MPS preparation rely on two
important assumptions, namely that the blockade mechanism between two adjacent atoms excited to a Rydberg
state is perfect and that the atoms are equally spaced in the chain. Here we analyze in detail the limitations of the
protocols when these assumptions are relaxed, namely when the blockade becomes non-perfect due to the finite
interaction strength between nearest neighbors and when accounting for interactions beyond nearest neighbors,

6
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Figure 3. Fidelity of the GHZ state preparation protocol for a two-level description of the atoms (a), as well as the three-level scheme
(b) as a function of V; /2. In the three-level implementation of the protocol, atoms are excited to the Rydberg state to effectuate the
blockade mechanism and are subsequently transferred to a stable hyperfine state, see text for details. Fis given for chains of length
N = 2,4,6,8, respectively.

and due to the disorder in atomic positions coming from the finite temperature of the atoms and non-vanishing
width of the optical traps. In the context of Rydberg gases, the disorder was shown to have a strong impact on the
dynamics of spin excitations under the so-called ‘anti-blockade’ conditions [37]. We comment on other sources
of imperfections, such as the influence of relaxation processes, at the end of this section.

3.1. Non-perfect Rydberg blockade

The non-perfect blockade is accounted for by considering the full Hamiltonian (2) featuring van der Waals
interaction between all the atoms excited to a Rydberg state. In this case, when a pulse of area Ay = O t; is
applied to the kth atom, the idealized unitary gate (4) becomes

Wi (Ax = Qi) = exp(—i t (A (%, Ax = 0) + Hin)). (24)

In what follows, considering the full Hamiltonian (2) amounts simply to replacing the unitary gates U — W in
table 1, which are operators acting on the full Hilbert space of dimension 2V. The non-perfect blockade results
in configurations with adjacent Rydberg excitations. This limits the fidelity of the produced states defined as

F= <\Ijtarget| pﬁnall\ytarget>) (25)

where pg, . is the state at the output of the particular protocol described in table 1 and [W,rg) is the desired
target state. We note that pg..; = [Usna1) (Phinall is pure by construction for the GHZ and dimer-MPS protocol as
itis defined on all atoms of the chain; on the other hand, it is generally mixed for the transport protocol as we
trace over all but the last qubit. In what follows we consider the Rabi frequency {2 to be identical for all atoms. We
also neglect the effect of the decay of the Rydberg states, which we justify in section 3.3.

3.1.1. GHZ state preparation

We start our analysis by examining the influence of the non-perfect Rydberg blockade on the GHZ state
preparation described in the first column of table 1 with the replacement 0" — W" and where

[Wearget) = |GHZy) (we recall that here N'is even). The effect of the finite interaction strength can be seen in
figure 3, where we plot the fidelity (25) versus the ratio of the nearest-neighbor interactions strength and the Rabi
frequency V; /€. Figure 3(a) shows a situation when using the two-level scheme. Figure 3(b) then shows the
fidelity in the three-level scheme, where the atoms are transferred from the Rydberg state |1) to the hyperfine
state |1).

Itis apparent from figure 3 that in the limit V; /2 — 0, i.e. in the absence of the blockade, the fidelity goes to
zero in all cases (except N = 2 in the three-level scenario, where it is straightforward to show that F — 1/4).In
the opposite limit of the infinite blockade V; /2 — 00, the vanishing of the fidelity in the two-level scenario can
be easily understood as the blockade length extends over the whole chain allowing thus only for a single Rydberg
excitation to be present. In contrast, in the three-level scenario there is never more than one atom in the Rydberg
level at any given time, which results in unit fidelity in that limit.

For intermediate values of V; /€2, one can observe oscillations of the fidelity F. The origin of those oscillations
can be understood on the example of two atoms (see the magenta line in figure 3). Here the final state is obtained
after application of one pulse at each atom and reads
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Figure 4. Fidelity of the dimer-MPS preparation protocol for N = 2up to N = 7 atoms as a function of V; /Q and forz = 0.1,0.5, 1,
10 (a)—(d). See text for details.

A 01 ~o1f 1
Wena) = W. W, 1 —11]00) = —(|0 1) + ~|10) + 8|11)), 26
W) = 5" (3] 100) = =00 1) + 911 0) + 8111 26)

where
o r i%sin(%)

=em|cos|mT— | + —=|, 27a
0l ‘ (WSQ) . (27a)
6] = y1 = Ihl*, (27b)

7= V¢ + 16Q2%. 27¢)

Theterm 6 |1 1)in (26) occurs due to the finiteness of the interaction strength V;, and reduces the fidelity of the
produced state (25), which reads

1
Fy=> = 1 1+~ (28)

While there are quantitative differences in the fidelity curves depending on the number of the atoms, we have
verified that, for the atom numbers considered, the position of the maxima of the oscillations change only very
slightly and thus the expressions (27) provide accurate estimates (which become exact for N = 2) for the values
of V /Q which maximize the fidelity.

3.1.2. Dimer-MPS preparation

In analogy to the GHZ case, we investigate the effect of the non-perfect Rydberg blockade on the fidelity of the
state obtained by applying the protocol described in the second column of table 1, where [Vg,.) = |2),

equation (10), and using again the replacement o — W Figure 4 shows the influence of the non-perfect
Rydberg blockade on the dimer-MPS state preparation protocol on the example of z = 0.1,0.5, 1, 10, for N = 2
to N = 7atomsin a chain, respectively. For z = 0.1 (figure 4(a)), the fidelity is approximately unity over the
whole parameter range. This is a consequence of the fact that for z < 1, the dominant term in the state (10) is
the vacuum (all atoms in the ground state |0)) which is not affected by the blockade mechanism.

When increasing z, terms containing more and more atoms in the Rydberg state | 1) are becoming relevant
with the limiting situation z >> 1, where the dimer-MPS is dominated by terms containing N /2 [(N + 1) /2]
excitations for N even [odd]. Similarly to the GHZ case, the drop of fidelity for small (large) V; /€2 is due to non-
perfect blockade (blockade extending beyond nearest neighbor).

We indicate by vertical lines in figures 4(b)—(d) the valuesof 2 = Wy = Vpand Q = Vann
corresponding to the interaction energies of nearest and next-to-nearest excitations respectively. The optimal
fidelity can be expected to be found within the region delimited by these two boundaries. In fact, for 2 > Wy
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10 10
Vy/Q Vy/Q

Figure 5. (a) Fidelity of a coherent transport process for N = 4, 5, 6 as a function of V; /€2. The transferred state is
[41) = 1/+/2 (|0) + [1)). (b) Comparison of the fidelity of the transport process for different initial states |1/;) for N = 4. The
parameter v (3 = +'1 — a?) of the state [¢h;) = «|0) + (|1) is varied.

the blockade is relaxed and pairs of neighboring excitations are frequently produced. Conversely, for
0 <« Vinn the next-to-nearest neighbor interaction (partially) blockades atoms two lattice sites away from an
excitation, again spoiling the state preparation procedures described above.

3.1.3. Quantum state transport
Using the notation from section 2.3, the target state is the state of the first atom to be transferred, [Wyrger) = [41),
while the final (single-qubit) state pg., = Tr..n(|¢)r) (¢]) is obtained by tracing out all but the Nth atom and

|1);) is the target state obtained using the transport protocol with o — W Figure 5(a) shows the fidelity of
the transport process for an initial state [1}) = 1/+/2 (|0) + |1))atthe firstatom,for N = 4, 5, 6. The
decrease in the fidelity and the oscillations in the small and large V; /€2 limit have the same origin as in the case of
dimer-MPS and GHZ state preparation, namely a vanishing blockade for V; /2 — 0 and imperfect blockade
due to the finiteness of V respectively.

Next, in order to demonstrate the influence of the initial state on the resulting fidelity, in figure 5(b) we plot
the fidelity versus V, /Q for [11) = a |0) + 3 |1), 8 = /1 — |af?,for a = —0.7, 0, 0.7. It can be seen that in
the parameter regime of interest (V5 /€2 2 5), the fidelity is independent of o with the maxima coinciding for the
« considered. As in the GHZ case, the nature of the observed oscillations can be exemplified on the elementary
example of two atoms for which we get

W (MW, (M) = a([0 1) + /|1 1)) + B(500) + 61 1) + 6”]0 1)),

where ~, 8 are given by (27) and

Y =11, (29a)
iV . . .
2e*Tz°Q<—1VO + iV, cos (%) + 7sin (%))
72 ’

8" = J1— |8 — |6'F. (29¢)

In the case of a perfect Rydberg blockade, only the terms |0 1) and $5]0 0) would occur after the application of
the two laser pulses.

§ =

(29b)

3.2. Non-perfect blockade and position disorder
In lattice systems the atomic positions are typically considered to be fixed. In realistic experiments however,
there is a finite uncertainty in their positions due to their finite temperature and finite extent of the optical traps
realizing the lattice sites. This can have dramatic consequences e.g. on the excitation transport in the chains of
Rydberg atoms [37]. Based on our previous work [37] we here recall the notions needed for the study of the effect
of disorder on the protocol’s performance.

The position disorder stems from the fluctuations of the atomic positions r;, = rgco) + 6rj and consequently
of the interaction energies (2b). Here, dry are drawn from a three-dimensional Gaussian distribution

I G o R o kro)z]

—¢
@2m)* 3010503 [ 2012 20% 20§

Ppos @) = (30)

with widths 0, i = 1, 2, 3 in the three spatial directions, see figure 1(a), where 0; = kg T/ (mw?) is given by
the temperature T and the mass m of the atoms and the trap frequencies w; (see [37] for details).

9



10P Publishing

NewJ. Phys. 19 (2017) 123015 M Ostmann et al

Vy/Q

Figure 6. Fidelity of the GHZ state preparation protocol including the effect of non-perfect blockade and disorder for N = 4 (a)and
N = 6 (b) atoms as a function of V; /2 with no (solid red), isotropic (dotted blue) and anisotropic (dashed green) disorder.
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0.8 el :
= 0.6 | no dis |
04 Fiso - z=1 |
0.(2) "aniso— — N=4 a | i N=7 b |
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Figure 7. Fidelity of the dimer-MPS preparation protocol as a function of V; /€2 including the effect of a non-perfect Rydberg blockade
and disorder for N = 4 (a), (c), N = 7 (b), (d) atoms and z = 1 (a), (b) and z = 10(c), (d). The solid red, dotted blue and dashed green
lines correspond to no, isotropic and anisotropic disorder respectively. Here, F is obtained for 100 realizations of the disorder.

Taking for our comparison parameters from recent experiments [37], in the following we set the trap
separation to r, = 4.1 pm and consider two scenarios for the disorder, one with isotropic disorder
(6; = 120 nm, i = 1, 2, 3)and one with anisotropic disorder (¢; = 1 pmand 0,3 = 120 nm). The results
presented below are obtained by averaging over 1000 realizations of the disorder unless stated otherwise.

In figures 6—8 we show the fidelity for the GHZ, dimer-MPS and state transport protocols respectively (we
take the initial state [¢,) = 1/~/2(]0) + |1)) in the transport protocol). In all plots we compare lines
corresponding to a non-perfect blockade and three different choices of disorder: absent (red), isotropic (dotted
blue) and anisotropic (dashed green).

The common feature to all plots is that, for the parameters considered, in the large V; /2 limit, the blockade
mechanism dominates and is only weakly affected by the disorder: here, all three lines show only small
differences and sit well on top of each other. Conversely, in the limit of V5 /2 ~ O(1), which is of interest for fast
application of the protocols such that it still yields high-fidelity outputs (the larger the 2, the shorter the time
needed to apply a pulse of a given area), the disorder has a much stronger impact and in general decreases the
fidelity significantly. In that regime, the decrease of fidelity is more pronounced with increasing disorder
(situation in all figures 6—8) and also with increasing atom number (compare figures 6(a) and (b), figures 7(a), (c)
and (b), (d) and all the panels in figure 8). The decrease of fidelity with the atom number stems from the fact that
all our procedures address the atoms sequentially, and therefore each pulse, under imperfect conditions, will
make the state diverge more from the target state. In the case of the dimer-MPS protocol, we note that the fidelity
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Figure 8. Fidelity of the state transport protocol as a function of V; /€ for the initial state [¢,) = 1/+/2 (|0) 4 [1))andfor N = 4

(@), N = 5(b), N = 6(c),and N = 7 (d). The solid red, dotted blue and dashed green lines correspond to no, isotropic and anisotropic
disorder respectively.

1 : .\ : : T T ; T T T T :
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Figure 9. Fidelity of the GHZ protocol as a function of the number of atoms in the chain Nfor V; /Q =7.2 (a)and V, /Q = 15.5 (b).
The red crosses, blue squares and green diamonds correspond to no, isotropic and anisotropic disorder respectively. The solid lines
represent an exponential function fitted to the data points, see text for details. Data obtained by averaging over 100 realizations of the
disorder.

decreases also with increasing z which can be easily understood as higher z correspond to larger number of
excitations in the state, which in turn is more sensitive to the disorder.

The main message to be extracted from these results is that all the considered protocols are becoming more
sensitive to the positional disorder when approaching the fast operation regime V; /2 ~ O(1) from the large
Vo /§2 side, where they are essentially insensitive to the amount of the disorder considered.

In order to further quantify the sensitivity to the disorder and the corresponding decrease in fidelity, we
study the fidelity as a function of the length of the chain for the GHZ, dimer-MPS state preparation and state
transport protocols, which is shown in figures 9—11 respectively. Here we consider a system with non-perfect
Rydbergblockade without disorder (red crosses), with isotropic (blue squares), and anisotropic (green
diamonds) disorder. As we are interested in the fast application of the protocols, we have fixed the ratio V; /2 to
7.2and 15.5 in figures 9(a), (b) and to V; /2 t0 6.9 and 15.5 in figures 11(a), (b) corresponding to the leftmost
(second leftmost) peak in the fidelity, see figures 3 and 5 (the optimal values of V; /€2 used can be extracted
numerically or using (27) and (29) respectively). The solid lines correspond to an exponential function
f(N) = aexp(—b(N — 2))fitted to the respective data points. Since we consider chains oflength N > 2 we
set the exponent of the function f(N) to —b(N — 2) rather than —bN . With such choice of the fitting function,
the parameter a in table 2 states the maximal fidelity of the protocol achievable in the simpliest possible system
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Figure 10. Fidelity of the dimer-MPS protocol as a function of the number of atoms in the chain N for V; /2 = 17.1 for even (e) and
Vo /€ = 15.6 for odd (o) number of atoms in the chain and z = 10. The red crosses, blue squares and green diamonds correspond to
no, isotropic and anisotropic disorder respectively. The solid lines represent an exponential function fitted to the data points, see text

N

for details. Data obtained by averaging over 100 realizations of the disorder.
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Figure 11. Fidelity of the state transport protocol as a function of the number of atoms in the chain Nfor V; /{2 = 6.9 (a) and
Vo /€ =15.5(b). The red crosses, blue squares and green diamonds correspond to no, isotropic and anisotropic disorder respectively.

The solid lines represent an exponential function fitted to the data points, see text for details. Data obtained by averaging over 1000
realizations of the disorder.

N = 2 for different types of disorder. Table 2 shows that the protocols do not reach a fidelity of one when
disorder is considered. Figures 9 and 11 further quantify the above discussed observation that the resulting
performance is a tradeoff between how fast the protocol can be applied and the resulting fidelity. Interestingly, in
the absence of disorder and for V; /) corresponding to the optimal fidelity regions, the final fidelity of the
protocols is essentially insensitive to the exact atom number, i.e. is not affected by the tails of the interaction
potential, see also figures 3, 5.

Concerning the dimer-MPS state preparation protocol, in order to emphasize the effect of the long-range
nature of the interactions on the resulting fidelity, we consider a dimer-MPS state with z = 10, corresponding to
the largest value we have considered here for this parameter. Our choice of V; /Q)—corresponding to the two
leftmost peaks of the fidelity—for the GHZ preparation and state transport protocols was motivated by the fact
thatin the absence of disorder these values of V, /) provide a satisfactory tradeoff between the achievable fidelity
and the speed of operation independently of the atom number. On the other hand, for the dimer-MPS protocol
itis clear from figure 4 (z = 10) that a value of ; /2 corresponding to the leftmost peak of the N = 2 curve yields
arather rapid drop in the fidelity for higher N even in the absence of the disorder. For this reason we consider
only the values of V; /) corresponding to the second leftmost peak of the fidelity in figure 4. Here we note that
the corresponding value of V; /€2 slightly varies for odd and even N unlike for the GHZ state preparation and

transport protocols. Specifically, we find that V, /Q ~ 15.6 and V; /2 &~ 17.1 for odd and even N which we use
in figure 10.

3.3. Limitations due to spontaneous decay
In sections 3.1, 3.2 we have considered two sources of imperfections introducing errors in the state preparation
and state transport protocols, namely the effect of the finiteness of the interaction potential resulting in non-
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Table 2. The coefficients of the function f (N) = a exp(—b (N — 2)) fitted to the data points in figures 9—11 for the
GHZ, dimer-MPS state preparation and state transport protocols respectively. The abbreviations correspond to ‘no
dis’ = no disorder, ‘iso’ = isotropic disorder, ‘aniso’ = anisotropic disorder parameterized according to the values
reported in the main text.

GHZ state
Vo __ Vo _
5=69 a=155
a b a b
No dis 0.961015 &+ 6 x 1076 (1739 £ 1) x 107 0.990331 4+ 7 x 1076 (1911 +1) x 107°
Iso 0.93 + 0.02 0.035 4 0.004 0.970 4 0.003 0.0234 + 0.0006
Aniso 0.80 =+ 0.01 0.110 & 0.004 0.94 + 0.01 0.039 + 0.003

Dimer-MPS state

a b
No dis 1.00 — 0.02 0.0139 + 0.004
Iso 0.983 £ 0.004 0.0170 + 0.0009
Aniso 0.947 £ 0.009 0.037 £ 0.002
State transport
Yo _ Yo_
=69 Q=155
a b a b
No dis 0.999988 & 4 x 107° (7.6 £ 0.8) x 1077 0.999989 + 4 x 107° (6.8 +0.8) x 1077
Iso 0.94 £ 0.05 0.051 £ 0.003 0.97 £+ 0.01 0.036 £ 0.002
Aniso 0.73 £ 0.04 0.09 £ 0.01 0.93 &+ 0.02 0.055 £ 0.003

perfect blockade and the effect of positional disorder of the atoms. We have neglected other noise sources such as
spontaneous decay of the atoms from the Rydberg state or loss and dephasing mechanisms due to the interaction
of the lattice atoms with the background gas. The reason for this is that we are interested in the short-time
dynamics, where these effects become essentially negligible. To give a specific example of a constraint such
considerations impose on the evolution of the system, we consider here the example of spontaneous decay.
Motivated by [37], we set the total duration of the experiment to 7., = 2 s, which was used in [37] in order
to avoid effects due to the spontaneous photon emission, atom loss and mechanical effects induced by the forces
between atoms. As we are considering non-adiabatic state-preparation protocols, we want to find a parameter
regime where the protocol can be performed as fast as possible with a high fidelity. Thus, we choose
(Vo/D* = 6.9, corresponding to the position of the leftmost maximum fidelity peak in each protocol
(figures 3-5). Finally, we fix Vj = 27 x 8.4 MHz[37]. We can now estimate, with the help of the table 1 and the
relations (17), the maximal number of atoms Ny so that the total duration of each protocol is smaller than 7e,,.
The result can be summarized as

Nmax = (GHZ — 9; MPS(z = 1) — 13, MPS(z = 10) — 7; transport — 6). (31)

One can see, that in this specific 7., = 2 s example, the protocols are limited to rather small number of atoms
of the order of 10. In the case of the two-level scheme, where the final state contains Rydberg excitations, the
coherence time of the system is dominated by the lifetime 7; of a single Rydberg atom divided by the number of
atoms 7;/N . At the same time, Rydberg atoms provide multiple possibilities with relaxation timescales ranging
over several orders of magnitude, typically from ys to ms regime [3, 41] depending on the Rydberg state. It
would thus be interesting to identify the transitions with sufficiently large interaction strength Vyand long
relaxation times. That allows significantly higher Ni,.x, which can be in principle achieved by analyzing higher
principal quantum number # states (we recall that the interaction strength and relaxation timescales obey
approximately the scaling relations V; o< n'!, 7 oc 1’ [42], while n = 56 was used in [37] in the repulsive
interaction regime). However, when the three level scheme is used, where the excited Rydberg states are
transferred to an atomic hyperfine ground state | T), the coherence time can be seen to last up to several tens of
seconds as outlined in [43].
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4. Conclusions

We have described three different protocols for QIP based on non-adiabatic manipulation of atoms. The
protocols exploit the Rydberg blockade mechanism and require single site addressability, which is now an
available experimental tool. Specifically, we have shown how to generate antiferromagnetic GHZ states, a class of
MPSs—the dimer-MPS—which include the Rydberg crystals, and quantum state transport in chains of Rydberg
atoms. We have evaluated the effect of the full interaction potential on the quality of the protocols identifying a
parameter regime yielding optimal performance in terms of fast operation resulting in output states with high
fidelity. Next, we have evaluated the experimentally relevant effect of positional disorder stemming from the
finite temperature of the atoms and width of the optical traps respectively, and quantified its influence on the
fidelity. Finally, we have discussed the constraints imposed on the presented protocols by other sources of
imperfections, namely the relaxation of the Rydberg states.
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Appendix A. Toffoli gate

The basic building block of the protocols studied in this work is the three-body Hamiltonian (3) and the
associated unitary gate (4). The latter provides a tool to implement various three-body gates, where the specific
properties of the gate are determined by the parameters of the Hamiltonian, namely the detuning Ay, Rabi
frequency € and the duration of the pulse #; on kth atom. In the specific case, where A, = 0 for all atoms and
the area of the pulse applied at the kth atom €2 #; = 7, the unitary (4) corresponds to the Toffoli gate.

Here, in table A1, we list for completeness the properties of the Toffoli gate used in the quantum state
transport protocol. The first and last qubits are the control ones while the second qubit is the target. Provided
that both control qubits are in state |0) the Toffoli gate acts like a 7-pulse on the target qubit.

Table Al. Truth table of the Toffoli gate. The first and the third qubits are the
control qubits, while the second qubit is the target. When the control qubits
are both in the ground state |0), the Toffoli gate corresponds to an application
of a 7-pulse on the target qubit.

Input Output
000 010
001 001
010 000
011 011
100 100
101 101
110 110
111 111

Appendix B. On the derivation of the effective Hamiltonian

To the lowest order in the perturbation, the effective Hamiltonian is obtained by applying the unitary
transformation U = exp(it VY 11(\1 iy firy 1) on (1). Using the rotating wave approximation, this leads to
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Hp = Q ZU (1 — firm)(A — figgy) + — Z ik fikg o (B1)

Next, the second term in (B1) is suppressed by a factor 64 and is neglected, which yields the effective Hamiltonian

).

Appendix C. Dimer-MPS

C.1. Derivation of the recurrence formulae

We discuss here how to retrieve a recursion formula for the areas A, in the case where an excitation blocks its first
R neighbors to the right and to the left. Formula (16) will correspond to the particular case R = 1. We start by
recalling that the target state is expressed as

|z) = A+ z Prien 07 Prigno)| | .. 1), (C1

1 L
7z e
where ﬁk)]eft =D y...P_rand ﬁk,right = ﬁkH .. ﬁk+ r- The action of alocal pulse on the kth atom depends
on whether the latter is blockaded (i.e. there are excitations within a radius R) or not. In the former case, we have

e (A010%) = 10)- (&)
Conversely, if the atom is not blockaded,
010k) (Ax) = cos Agl0x) + sin Ag|Le). (C3)

We now think of applying an ordered sequence of these unitary operations addressing one atom at a time, from

N ~01 . L .

the first to thelast U = [[;,_y Uy ,toaground-state configuration |0 ... Oy). This will yield a state with
components on all configurations in which no pairs of excitations appear at a distance <R. Note that, according
to (C3), the ground state configuration will come with a coefficient

1
= Hk:N cos Ay. (C4)

Every configuration with an excitation in site j will instead feature a factor sin A;. Furthermore, because of the
blockade, the operations actingon j = k + 1, ..., k + R will behave as displayed in (C2), i.e. they will trivially
contribute 1 to the overall coefficient. In general, we can reconstruct the coefficient of a generic configuration via
the following simple rules:

(i) Choose a configuration and start reading it from the first atom to be addressed to the last one. Assign a
coefficient 1 to start with.
(i) Untila|1)is found, for every |0;) multiply the coefficient by cos Ay.
(iii) When a|l;) is found, multiply by sin Ay and skip to position k + R + 1.
(iv) Apply (ii) again.
Hence, if we call C ](1) the coefficient of the configuration with a single excitation in site j we have
C]Q) sinA;

(C5)
Co H] . COsS Ak

More in general, the coefficient C™ of an allowed state with 1 excitations in positions # = {j, ...j,} will obey

C(n) sinA;
- Hp 1 j,+R ]/ : (C6)
H k“: J, COs Ay
The correct form of state |z) is then reproduced by fixing the areas in such a way that
sinA; v c7
Hj R cosA o - ©
k=j k
This defines a recursion for A;in terms of Ajgrs oo Ajyp.In order to make the solution of the recursion unique,
we need to also impose the boundary conditions
cosAnij=1 V I <j<R (C8)
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Note that the recursion relation can be also cast in the form
j+R
tanA; = z H cos Ay. C9)
k=j+1

Since the tan function is 7-periodic, we have the freedom to choose the sign of the cosines, which we determine
to be all positive. This means that the sign of the sines will instead coincide with the sign of the parameter z. This
uniquely identifies the areas A, modulo 27.

C.1.1. Nearest-neighbor case. Here, we solve the recursion relation (16) in the simplest case R = 1. By defining
Xp = cos*Ap1_k (C10)

and a = z?>wefind
1
T (C11)
with seed xg = 1. We now rewrite x; = p, /q;, which yields

Pri1 _ i (C12)

k41 q; + a py

and assume that we can separate numerator and denominator as if they were independent, leading to the system

Pri1 = 9p (C13)
Q1= 9+ @ Gy (C14)

In order to correctly reproduce the boundary condition for x, we ask g, = g, = p, = 1.Since a > 0, we see
thatif g, > 0and q,_, > 0,then q; ,, > 0 aswell. Given the initial conditions, it follows from induction that
q, > 0 Vk.Furthermore,

Qi1 Z % = Prav> (C15)

as expected since by definition x; = p, /g, = q;_,/q; mustbe <1.
The recursion equation for g is linear and can be solved exactly: the associated polynomialis ¥ — \ — a,
whose roots are

1+ 1+ 4a

+ 5 (Cl16)
Therefore, the general solution is
4 = ANS + BAL, (C17)
with A and B fixed via the boundary conditions q_, = g, = 1, which yield
a_lt2a+VT+da 1 (14 T+4a)
2J1 + 4a V1 +4a 2
po—l-2a+Vitda 1 (1-JT+4a)
2J1 + 4a VI +4a 2 '
Thereby, we find
1 1+ T+4a \" (1-yT+aa )"
G = I e (C18)
V1 + 4a 2 2
and, consequently,
1+ T54a \FFD (1— [Tv4a \FF!
. & . 2 2
n (t1+»l+4a)k+2_(17«/1+4a)k+2
2 2
:2(1+\/l—|—4a)k“—(1—\/1—|—4a)k“ (C19)

(1 4+ T+ 4a)2 — (1 — J1 + 4a)k+?’

which exactly corresponds to equation (18), since we have chosen the cosines to be positive.
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C.1.2. GenericRcase. The general case is defined by

1
X1 = - . (C20)
1+ aHf:]i K X;
The same trick as above x; = p; /g, canbe applied, yielding
k+1-R
q T ypk+1-R k+1-R _°
k1 H],:k q; + aH].:k P
The same choice p, = q,_, gives now
Qkr1= 9 T 99;_p (C22)
which is associated to the polynomial
ARFL— AR 4 g (C23)

which is generally not analytically solvable. However, ithas R + 1(complex) roots A; and the general implicit
solution of the recursion is

R+1
6= 20 AN (C24)
=1
Imposing the boundary conditions yields a system of equations for the coefficients A; with equations of the form
R+1 Aj _
do—=1 (C25)
=1 A
for n = —R,...,0 which can be also written as
R+1
D MyAj=1 VY, (C26)

=1
where M,,;is a matrix with entries M,; = Xj, i.e. itisa Vandermonde matrix. By using Cramer’s rule for the
solution of linear systems of equations, we can write the coefficient A, as

M®
A = detMT (C27)
detM

where M® is constructed from M by substituting 1 to all entries on the kth column. Note that M® = M if
Ax = 1, which means that M® is also a Vandermonde matrix. Exploiting the known structure of the
determinants of Vandermonde matrices we can thus write

1 1
H1<i<j<R+1 (Agk) B Agk))

A = ; (C28)
1 1
H1<i<j<R+1 (7, h Ai)
where )\gk) = );if j = kand 1 otherwise. By simplifying all common factors, this can also be rewritten as
Hjik a- )‘j)
Hjik (A — A

Ap = AR (C29)

C.2. Comment on the dimer-MPS as a ground state of the Rydberg Hamiltonian

In [27]ithas been demonstrated that, in a specific regime of the parameters, the Hamiltonian (1) can be
approximately mapped to a Rokhsar—Kivelson form [30], which is associated with the stochastic matrix
describing the evolution of a classical stochastic process [44]. These Hamiltonians admit an exact solution for
their ground states. In particular, as shown in [27], Hamiltonian (1) admits such a representation when its
parameters satisfy () = 2, Vk,and

0 3y

AkEA:26—

; C30
w2 (C30)

which identifies a manifold in the parameter space. Under these conditions, and assuming that interactions
among nearest neighbors are strong enough to enforce an almost perfect blockade, while becoming sufficiently
small beyond next-nearest neighbors to be safely neglected, the ground state of the system is well approximated
by (9), where z = —V, /(2°Q).
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Next, as mentioned in the main text, the same construction can be extended to the case of the blockade effect
extending beyond nearest neighbors: assuming that an excitation prevents its first R neighbors from being
excited, the many-body ground state can be again analytically expressed in the parameter manifold [29] as

02
A=——-VRQ2R+ 1), (C31)
Vi

where Vg = Cg/(r$(R + 1)), and takes the generalized form (11).
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