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Abstract
Motivated by recent progress in the experimentalmanipulation of cold atoms in optical lattices, we
study three different protocols for non-adiabatic quantum state preparation and state transport in
chains of Rydberg atoms. The protocols we discuss are based on the blockademechanismbetween
atomswhich, when excited to a Rydberg state, interact through a van derWaals potential, and rely on
single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic
GHZ state, a class ofmatrix product states including a so-called Rydberg crystal and for the state
transport of a single-qubit quantum state between two ends of a chain of atoms.We identify system
parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the
Rydberg states while yielding high fidelity output states.We discuss the effect of positional disorder on
the resulting states and comment on limitations due to other sources of noise such as radiative decay of
the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of
quantum information processing platforms based onRydberg atoms.

1. Introduction

Cold atoms held in optical traps constitute an invaluable tool in the quest for quantum information processing
(QIP) and simulation ofmany-body physics in the quantum regime [1, 2]. Rydberg gases, i.e. atoms excited to
high principal quantumnumber states, are of particular interest as the strong interaction between atoms in the
Rydberg states can be exploited for variousQIP tasks [3–5]. Experimental progress inmanipulating these
Rydberg atoms now allows simulating quantum IsingHamiltonians [6], the adiabatic preparation of the ground
states thereof [7], efficient entanglement creation [8] or the implementation of quantumgates [9, 10]. Some of
these advances rely on the use of optical tweezer arrays, which permit the creation of various lattice geometries
[11] andwere recently used to deterministically obtain an optical lattice with close-to-unit filling [12, 13].
Importantly, techniques allowing for addressing a single atom in such arrays have been developed [14–17]
opening new possibilities for non-adiabatic quantum state engineering, whichmight help to overcome
limitations imposed by the required timescales for adiabatic procedures, where detrimental relaxation effects
may become important [18]. First steps in this directionwere taken e.g. in [19]which considered optimal control
techniques for creation of ferromagneticGHZ, crystalline or Fock superposition quantumstates inRydberg atoms.

Building on the capabilities of optical tweezer arrays with Rydberg atoms and single site addressing forQIP,
we consider GHZ andmatrix product state (MPS) engineering and quantum state transport in a one-
dimensional geometry. This particular choice ismotivated by the fact that all three examples play a fundamental
role inQIP and constitute an ideal benchmark in order to assess the performance of the experimental platform
we consider—an array of Rydberg atoms—for our theoretical and numerical analysis. Specifically, theGHZ
state serves as a reference in quantum estimation theory yielding theHeisenberg scaling [20]. Various proposals
exist in the literature for the creation ofGHZ states [3, 21, 22] some ofwhich have been realized experimentally,
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for example using ultracold ions [23]. Similarly,MPSs play a central role in classical simulations of quantum
Hamiltonians in one dimension [24–26] and are naturally realized as ground states of some finite-range
interaction spin chains [27–29]which are related to the problemof classical hardcore dimers [30]. For that
reasonwe refer to the class ofMPSs considered in this article as dimer-MPS. Importantly, the dimer-MPS
feature the so-called Rydberg crystal as a special case [7, 31–33]. Finally, faithful transport of a quantum state
between different nodes of a quantumnetwork is an essential requirement forQIP schemes such as quantum
computation [34]. Variousmethods to achieve quantum state transport between spatially separated qubits have
been proposed [45–47]. These include schemes based on atoms connected through an optical link [35] or
Rydberg atoms, where the transport is achieved through interactions between the Rydberg atoms and atomic
ensembles which communicate through a photon exchange [36].

In this paper, theQIP is based on the so-called ‘Rydberg blockade’mechanismwhich relies on the strong
repulsive interaction between atoms excited to a Rydberg state [3].Wefirst introduce the protocols for GHZ
state and dimer-MPS generation and quantum state transport in the idealized limit of perfect blockade in
section 2. In this regime the blockademechanism can be effectively described by a three-bodyHamiltonian
which constitutes the basic building block of the studied protocols. Next, we investigate the influence ofmore
realistic conditions, such as the non-perfect blockade due to thefinite value of the interaction energy and the tails
of the interaction or the positional disorder of the atoms held in optical tweezers [37] in section 3. There, we relax
the requirement of strict blockade and consider instead an evolution guided by amore realistic system
Hamiltonian including a van derWaals interatomic potential. This allows us to verify the predictions of the
effective description of section 2. To this endwe evaluate the fidelity of the produced states with respect to the
target as a function of various parameters, such as the Rabi frequency of the laser pulses, interaction strength,
length and parity of the chain or the strength of the disorder.We summarize and discuss the results in section 4.

2. Setup, state preparation and state transport protocols

Weconsider a one-dimensional chain (open boundaries) along the x3-direction ofN optical traps, each
occupiedwith a single atom. Adiagramof the setup for the case of two atoms is shown infigure 1(a). The optical
traps are separated by equal spacings r0 so that the position of the kth atom reads krr 0, 0,k 0= ( ). Each atom is
described as an effective two level system, where the electronic ground state 0ñ∣ is coupled to the highly excited
Rydberg state 1ñ∣ via a laser pulsewith Rabi frequencyΩ as depicted infigure 1(b). For later convenience, we
account for the presence of a second hyperfine ground state 1ñ∣ ˜ coupled to the Rydberg state via a second laser

with different polarization andRabi frequency W̃, seefigure 1(c).
Considering that the atoms inRydberg states interact through the van derWaals potential, theHamiltonian

of the system is given by (in the rotatingwave approximation)

H h H, , 1
k

N

k k k
1

intå= W D +
=

ˆ ˆ ( ) ˆ ( )

where

h n a, 2k k k k y
k

k ksW D = W + Dˆ ( ) ˆ ˆ ( )( )

Figure 1. (a) Setup for N 2= atoms. The optical traps are arranged along the x3 direction and are separated by r0. The position of the
atoms is spreadwith uncertainty is around their equilibrium values [37]. (b) Level scheme for an effective two level system,where the
state 0ñ∣ is coupled to the Rydberg state 1ñ∣ by a laser withRabi frequencyΩ. (c)Energy levels of an effective three-level system as it is
assumed in theGHZprotocol, where W̃ couples the Rydberg state 1ñ∣ to another hyperfine state 1ñ∣ ˜ .
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Here, i 1 0 0 1y
k

k k k ks = ñá - ñáˆ (∣ ∣ ∣ ∣)( ) , n 1 1k k k= ñáˆ ∣ ∣, the parameter kD is the relative detuning of the laser from

the resonant transition between the states 0kñ∣ and 1kñ∣ andV C r0 6 0
6= is the interaction strength proportional

to the van derWaals coefficientC6. Note that in (1)we have allowed for site-dependent Rabi frequencies and
detunings ,k kW D .

In the regimewhereV k,k0 W " , the driving kµW , which induces spin flips in the z
kŝ( ) basis, cannot

overcome the energy cost of having two neighboring Rydberg excitations. This is commonly referred to as the
‘Rydberg blockade’mechanism. In this limit, it becomes convenient to adiabatically eliminate blockaded
processes: applying a unitary transformationU t V n nexp i k

N
k k0 1

1
1= - å =

-
+ˆ [ ˆ ˆ ]on (1), neglecting terms oscillating

at the frequenciesV0 and interactions beyond the nearest neighbors and considering resonant excitation
k0,kD = " , one can derive an effective three-bodyHamiltonianmaking the blockademechanismmanifest

[27]:

H h . 3
k

N

k
1

3 body
å=
=

ˆ ˆ ( )

Here, h P Pk k k y
k

k
3 body

1 1s= W - +
ˆ ˆ ˆ ˆ( ) and P n1k k= -ˆ ( ˆ ) are the projectors on ground-state atoms. The associated

unitary evolution corresponding to the application of a laser pulse of duration tk and area A tk k k= W on the kth
atomon the l lñ - ¢ñ∣ ∣ transition reads

U A t h P P P Pexp i e 4k
ll

k k k k k k k
t3 body

1 1 1 1
i k k y

k
= - = - + s¢

- + - +
- Wˆ ( ) ( ˆ ) ˆ ˆ ˆ ˆ ( )ˆ ( )

and represents the basic building block of the protocols studied in this paper4. The indices ll 01, 11¢ Î { ˜}on the
left-hand side of (4) label the basis inwhich the operators are expressed. For example,Uk

01ˆ means that the
operators P n1k k= -ˆ ˆ and y

kŝ( ) on the right-hand side of (4) act upon the 0 , 1ñ ñ{∣ ∣ }basis.We note that for
Ak p= , the unitary (4) corresponds to the Toffoli gate (whose definitionwe recall in appendix A)with k the
target and k k1, 1- + the control atoms. Inwhat followswe shall refer to the preparation procedure as non-
adiabaticmeaning that the state of the system evolves in a step-wisemanner after every application of a gate of
the form (4) (or any other local gate) and in general is not an eigenstate of theHamiltonian of the system,
equation (1). This has to be contrastedwith adiabatic protocols, where thefinal state is the ground state of a
Hamiltonianwhose parameters are adiabatically deformed, starting from an initial ground state that is easy to
prepare.

Before we proceedwith the introduction of the state preparation and state transport protocols, a comment is
in order. The reason for considering the auxiliary hyperfine state 1ñ∣ ˜ is to avoid undesirable effects such as
spontaneous emission from atoms in the Rydberg levels or atomic loss and dephasing due tomechanical forces
acting on the atoms (van derWaals repulsion [38, 39] and collisions with the background gas). This can be
achieved in the three-level schemewhen the atomic population is transferred from the Rydberg level 1ñ∣ , after it
has been used to implement a particular gate, as fast as possible to the stable hyperfine state 1ñ∣ ˜ . However, in
order to reduce the complexity of the experiments (whichmay be important forfirst proof-of-principle
demonstrations) and to further reduce the number of applied gates, wewill consider the two-level configuration
aswell, where only the ground andRydberg levels 0 , 1ñ ñ∣ ∣ are involved.More specifically, we describe the use of
both the three and two-level schemes on the example of theGHZ state preparation protocol in section 2.1 and
discuss the differences between the two schemes in section 3.1.1. For the reasonsmentioned above, we limit the
discussion of the dimer-MPS preparation and state transport protocols to the two-level scheme only.

2.1. GHZ state preparation
Weconsider the non-adiabatic preparation of antiferromagnetic GHZ states of the form

GHZ
1

2
0 1 0 1 1 0 1 0 . 5N N1 2 3 1 2 3ñ = ¼ ñ + ¼ ñ∣ ( ∣ ˜ ˜ ∣ ˜ ˜ ) ( )

They are robust with respect to global noise, such asmagnetic or electric field fluctuations on length-scales larger
than the length of the chain, as the two components of the state are energetically degenerate: using encoding in
the basis 0 , 1ñ ñ∣ ∣ ˜ , this is only strictly truewhenN is even as one has the same number of excitations (atoms in the
state 1ñ∣ ˜ ) in both components of theGHZ state (the two terms on the rhs of (5)).

Initially all atoms are prepared in the ground state 0 0 0 0inY ñ = ¼ ñ∣ ∣ . First we apply a 2p -pulseU1
01

2

p( )ˆ
on thefirst atom to generate a superposition state

4
In principlemore general unitaries can be obtained by considering h n,k k k k

x
x

k
k
y

y
k

k ks sW D = W + W + Dˆ ( ) ˆ ˆ ˆ( ) ( ) .
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U
2

1

2
0 0 0 0 1 0 0 0 . 61 1

01
in

p
Y ñ = Y ñ = ¼ ñ + ¼ ñ⎜ ⎟⎛

⎝
⎞
⎠∣ ˆ ∣ (∣ ∣ ) ( )

This is followed by the application of aπ-pulseU2
01

pˆ ( ) on the second atom

U
1

2
0 1 0 0 1 0 0 0 . 72 2

01
1pY ñ = Y ñ = ¼ ñ + ¼ ñ∣ ˆ ( )∣ (∣ ∣ ) ( )

Note that, due to the blockademechanism, the second term on the rhs of (6) is not affected by the second pulse.
We next go back to the first atom and apply aπ-pulse on the 1 1ñ - ñ∣ ˜ ∣ transition in order to transfer any
population in its Rydberg level to the hyperfine state 1ñ∣ ˜ so that

U
1

2
0 1 0 0 1 0 0 0 . 83 1

11
2pY ñ = Y ñ = ¼ ñ - ¼ ñ∣ ˆ ( )∣ (∣ ∣ ˜ ) ( )

˜

This is followed by the application ofU3
01

pˆ ( ) on the third atomandU2
11
pˆ ( )

˜
on the second atomand so forth until

the end of the chain is reached after N2 1- gates (unitaries) have been applied. The procedure is summarized in
table 1.We note that a similar proposal for the preparation of a ferromagnetic GHZ state was put forward
recently in [22].

With theGHZ state preparation protocol just described, the Rydberg state 1ñ∣ appears neither in the initial
nor in thefinal state, equation (5). It is simply exploited to implement the constrained spin flippingwhich allows
to reconstruct theGHZpattern in the two components of the state. A simplified two-level version of this
protocol, where only levels 0ñ∣ and 1ñ∣ are used, is obtained simply by neglecting the transfer from the Rydberg to
the hyperfine state, i.e. omitting the step (iv) in table 1.

2.2.Dimer-MPSpreparation

It seems natural to explore the effective three-body interaction hk
3bodyˆ used in theGHZ state preparation for

creation of various other quantum states. Specifically, we note that the perfect blockade and the associated
Hamiltonian (3) allow in principle for the creation of all possible configurationswhich are compatible with the
dimer-MPS protocol.More precisely, in the blockade regime, simultaneous excitations of adjacent atoms are
strongly suppressed, which confines the dynamics to subspaces where the number of neighboring excitations
remains constant. In particular, the subspacewework in displays all Rydberg excitations separated by at least one
site. In this sectionwe describe how to produce a specific example of such a quantum state which is defined as

z
Z

z P P
1

0 0 . 9
z

k

N
k k k1 1 1 sñ = + ¼ ñ

= -
+

+∣ ( ˆ ˆ ˆ )∣ ( )

Here, z is a real number parametrizing the state, P n1 0 0k k k k= - = ñáˆ ( ˆ ) ∣ ∣ is the projector on the atomic ground
state introduced after equation (3) andZz is an overall normalization constant ensuring z z 1á ñ =∣ . The state (9) is
a superposition of all possible configurationswithout adjacent Rydberg excitations, where each configuration is
weighted by z nwith n the total number of (isolated) excitations in it. An illustration of zñ∣ is provided in

Table 1.Pulse sequence for the preparation of aGHZ state (left column), the dimer-MPS state (middle column) and the state transport (right
column) in a chain ofNRydberg atoms. In the case of theGHZ state, the Rydberg atoms are described as an effective three-level system.
However, theGHZprotocol can also be adapted to a two-level description of the atoms by neglecting step (iv). For the dimer-MPS aswell as
the state transport protocol, each atom is approximated as a two-level system. inY ñ∣ is the initial state for the particular protocol.

GHZ Dimer-MPS Transport

inY ñ∣ 0 0 0 0¼ ñ∣ 0 0 0 0¼ ñ∣ 0 0 0y ¼ ñ∣
(i) ApplyU1

01

2

p( )ˆ Set counter to k=1 Set counter to k=1

(ii) Set counter to k=1 Apply pulse of areaAk on Applyπ-pulse

atom k (see equations (17)) on atom k 1+
(iii) ApplyUk 1

01 p+
ˆ ( ) k k 1 + Applyπ-pulse

if k=N do nothing go back to (ii) on atom k

till k=N then stop

(iv) ApplyUk
11 pˆ ( )

˜
k k 1 +

go back to (ii)
till k=N then stop

(v) Move to next atom Apply iN
y
N1s- ˆ ( ) forN even,

k k 1 + see end of section 2.3

repeat (iii)–(v)
till k=N

# of applied pulses N2 1- N N2 2-
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figure 2(a). Specifically, for z=0, zñ∣ is the product state 0 0 0 0¼ ñ∣ , without any entanglement. For z= 1, all
possible components are equally weighted, whereas for z 1 the oneswith higher number of excitations
dominate. Note that for oddN and z  ¥, the corresponding dimer-MPS state is a single antiferromagnetic
configurationwhere all odd sites, including the first and the last, have an excited atom. Such an alternating
configuration constitutes an example of a so-called Rydberg crystal. However, this state is completely separable
and holds no entanglement at all. For the scope of this work, it is therefore convenient to focus on the
complementary case: for evenN, themajor contributionwill instead be given by the N 2 1+ configurations
with N 2 excitations.

It has been shown in [28] that the state (9) admits amatrix product representation

z
N

l X X X r i i i
1

, 10
i i

i i i N
, , 0,1

1 2

N

N

1

1 2åñ = ¼ ¼ ñ
¼ =

 ∣ [ ˆ ˆ ˆ ]∣ ( )

with X n z0  s= - + -ˆ ( ˆ) ˆ , X1 s= +ˆ ˆ two 2×2matrices, and ladder operators i 2x ys s s= ˆ ( ˆ ˆ ) . The vectors

l z, 1=


( ) and r 0, 1=
 ( ) are included to impose the correct boundary conditions.

Furthermore, the same construction leading to (9) can be generalized to the case of a blockade extending
overR sites (i.e. an excitation prevents itsfirstRneighbors frombeing excited) [29]. The analog of the state (9)
then reads

z
Z

z P P
1

0 0 , 11
z

k

N
k k k1 ,left ,right sñ = + ¼ ñ

=
+∣ ( ˆ ˆ ˆ )∣ ( )

where P Pk j
R

k j,left 1=  = -ˆ ˆ , P Pk j
R

k j,right 1=  = +ˆ ˆ andZz is the corresponding normalization constant. This state

again admits aMPS representation (10) inwhich X0
ˆ and X1

ˆ are R R1 1+ ´ +( ) ( )matrices and l

and r



R 1+( )-vectors [29]. As afinal remark before describing the state preparation protocol, wewould like to
mention that the states (9) and (11) are directly related to the ground states of theHamiltonian (1), see
appendix C.2 for details.

In the following, wewish to show that a state of the form (9) (i.e.R= 1) can be generated via an appropriate
sequence of pulses (see appendix C.1.2 for amore general procedure which applies to genericR). As afirst step,
we consider how a local pulse of area A tk k k= W acts on a ground state atom located in site k. If the kth atom is
blockaded, i.e., if there is an excitation to its left and/or right, then

U A 0 0 , 12k k k k
01

ñ = ñˆ ( )∣ ∣ ( )

whereas if it is not

U A A A0 cos 0 sin 1 . 13k k k k k k k
01

ñ = ñ + ñˆ ∣ ( ) ∣ ∣ ( )

The excited component in kwill then blockade the following site, so that

U A U A A A A A

A

0 0 cos cos 0 0 cos sin 0 1

sin 1 0 . 14
k k k k k k k k k k k k k k

k k k

1
01

1
01

1 1 1 1 1

1

ñ = ñ + ñ
+ ñ

+ + + + + + +

+

ˆ ( ) ˆ ( )∣ ∣ ∣
∣ ( )

Applying an ordered sequence of local pulses from thefirst to the last atomU Uk N k
1 01

=  =
ˆ ˆ on the global atomic

ground state 0 0N1 ¼ ñ∣ will generically yield components on all elements of the basis inwhich no neighboring
pairs of excitations appear. From equation (13) it is not difficult to see that the component over the initial state
will be C Acosk N k0

1º  = . An excitation in, say, site jwill instead comewith a Asin j and amissing factor

Figure 2. (a)Representation of the dimer-MPS for a chain ofN=6 atoms. This state is a superposition of all possible configurations
without neighboring Rydberg excitations. The parameter z is weighting the number of excitations in the particular component of the
superposition state. (b)Circuit for the transport of a single qubit state yñ∣ from thefirst to theNth qubit in the chain. All qubits expect
the first one, are prepared in the ground state. TheCNOTgate aswell as the Toffoli gate correspond to aπ-pulse with Rabi frequencyΩ

applied to the particular atom. In the post processing, the G
Nˆ -gate is applied to the state on theNth qubit, in order to obtain the

correct state yñ∣ .

5

New J. Phys. 19 (2017) 123015 MOstmann et al



Acos j 1+ . Using this simple rule, we canwork out that the ratio between the component of a generic basis element
C n

( ) with n (non-neighboring) excitations in n j j, n1= ¼
 { }andC0 will be given by

C

C

A

A A

sin

cos cos
. 15

n
n j

j j0
1

1
=

m=
+

m

m m

 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

( )

In order to correctly reproduce state zñ∣ , this ratiomust be set to be equal to z n. The onlyway for this to hold for
every possible number n of excitations is to have

A

A A
z j

sin

cos cos
. 16

j

j j 1

= "
+

( )

This defines a recursion relation forAj in terms of Aj 1+ . The natural boundary condition to provide a seed to the
recursion is

A jcos 1 0, 17N j = " >+( ) ( )

which corresponds to requiring that, should the excitation protocol stop before reaching the actual end of the
chain, all atomswhich have not been addressed should still be in their ground state. Equations (16) and (17) can
be analytically solved to yield

A
z z

z z
cos 2

1 1 4 1 1 4

1 1 4 1 1 4
. 18k

N k N k

N k N k

2 2 2 2

2 3 2 3
=

+ + - - +

+ + - - +

+ - + -

+ - + -

( ) ( )
( ) ( )

( )

Togetherwith the relation A zsign sin signk =( ) ( ), the above expressions provide a uniqueway to extract the
pulse areasAk. Using the values so obtained in the protocol described in table 1will yield state zñ∣ .

2.3.Quantum state transport
In this sectionwe discuss a protocol for the coherent transport of a single qubit state between the two ends of the
chain, last columnof table 1.We consider a state 0 11y a bñ = ñ + ñ∣ ∣ ∣ to be initialized at thefirst qubit so that the
total initial state reads

0 1 0 0 0 . 19Nin 1 2 3a bY ñ = ñ + ñ ¼ ñ∣ ( ∣ ∣ ) ⨂ ∣ ( )

The circuit representation of the state transport protocol is shown infigure 2(b). The protocol relies on a
sequence of three-body Toffoli gates (see equation (3) and appendix A), which, when applied at the two ends of
the chain, becomes effectively a CNOT gate due to the absence of one of the sites. In our implementation, the
Toffoli and theCNOT gatesflip the target qubit if the controlled qubits are in the ground state 0ñ∣ .

Thefirst step is the application of aπ-pulse on the second qubit

U 0 1 0 0 1 0 0 0 . 201 2
01

inp a bY ñ = Y ñ = ¼ ñ + ¼ ñ∣ ˆ ( )∣ ∣ ∣ ( )

As a second step, aπ pulse is applied on thefirst atom

U 0 1 0 0 0 0 0 0 , 212 1
01

1p a bY ñ = Y ñ = ¼ ñ + ¼ ñ∣ ˆ ( )∣ ∣ ∣ ( )

which is then followed by the application of aπ-pulse on the third qubit

U 0 1 0 0 0 0 1 0 223 3
01

2p a bY ñ = Y ñ = ¼ ñ + ¼ ñ∣ ˆ ( )∣ ∣ ∣ ( )

and so on, see the steps (ii)–(iv) in table 1, which are repeated till the end of the chain is reached. At this stage, the
initial state 1y ñ∣ has been successfully transferred so that the state of theNth qubit reads

N

N

i even

odd.
23N

N
y

1
1

1

y
s y

y
ñ =

ñ

ñ

+

⎪

⎧⎨
⎩∣

ˆ ∣
∣

( )

The presented state transport protocol requires N2 2-( ) laser pulses and is deterministic as the only required
information is the length of the spin chainwith no need for a classical communication between the two ends of
the chain [40].

3. Imperfections

The above presented protocols for quantum state transport andGHZ and dimer-MPS preparation rely on two
important assumptions, namely that the blockademechanismbetween two adjacent atoms excited to a Rydberg
state is perfect and that the atoms are equally spaced in the chain.Herewe analyze in detail the limitations of the
protocols when these assumptions are relaxed, namelywhen the blockade becomes non-perfect due to the finite
interaction strength between nearest neighbors andwhen accounting for interactions beyond nearest neighbors,
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and due to the disorder in atomic positions coming from thefinite temperature of the atoms and non-vanishing
width of the optical traps. In the context of Rydberg gases, the disorder was shown to have a strong impact on the
dynamics of spin excitations under the so-called ‘anti-blockade’ conditions [37].We comment on other sources
of imperfections, such as the influence of relaxation processes, at the end of this section.

3.1. Non-perfect Rydberg blockade
The non-perfect blockade is accounted for by considering the full Hamiltonian (2) featuring van derWaals
interaction between all the atoms excited to a Rydberg state. In this case, when a pulse of area A tk k k= W is
applied to the kth atom, the idealized unitary gate (4) becomes

W A t t h Hexp i , 0 . 24k k k k k k k k
01

int= W = - W D = +ˆ ( ) ( ( ˆ ( ) ˆ ))) ( )

Inwhat follows, considering the fullHamiltonian (2) amounts simply to replacing the unitary gatesU Wˆ ˆ in
table 1, which are operators acting on the full Hilbert space of dimension 2N . The non-perfect blockade results
in configurationswith adjacent Rydberg excitations. This limits the fidelity of the produced states defined as

F , 25target final targetrº áY Y ñ∣ ∣ ( )

where finalr is the state at the output of the particular protocol described in table 1 and targetY ñ∣ is the desired
target state.We note that final final finalr = Y ñáY∣ ∣ is pure by construction for theGHZ and dimer-MPS protocol as
it is defined on all atoms of the chain; on the other hand, it is generallymixed for the transport protocol as we
trace over all but the last qubit. Inwhat followswe consider the Rabi frequencyΩ to be identical for all atoms.We
also neglect the effect of the decay of the Rydberg states, whichwe justify in section 3.3.

3.1.1. GHZ state preparation
We start our analysis by examining the influence of the non-perfect Rydberg blockade on theGHZ state

preparation described in thefirst columnof table 1with the replacementU W
01 01ˆ ˆ andwhere

GHZNtargetY ñ = ñ∣ ∣ (we recall that hereN is even). The effect of the finite interaction strength can be seen in
figure 3, wherewe plot the fidelity (25) versus the ratio of the nearest-neighbor interactions strength and the Rabi
frequencyV0 W. Figure 3(a) shows a situationwhen using the two-level scheme. Figure 3(b) then shows the
fidelity in the three-level scheme, where the atoms are transferred from the Rydberg state 1ñ∣ to the hyperfine
state 1ñ∣ ˜ .

It is apparent from figure 3 that in the limitV 00 W  , i.e. in the absence of the blockade, the fidelity goes to
zero in all cases (exceptN= 2 in the three-level scenario, where it is straightforward to show that F 1 4 ). In
the opposite limit of the infinite blockadeV0 W  ¥, the vanishing of the fidelity in the two-level scenario can
be easily understood as the blockade length extends over thewhole chain allowing thus only for a single Rydberg
excitation to be present. In contrast, in the three-level scenario there is nevermore than one atom in the Rydberg
level at any given time, which results in unit fidelity in that limit.

For intermediate values ofV0 W, one can observe oscillations of the fidelity F. The origin of those oscillations
can be understood on the example of two atoms (see themagenta line infigure 3). Here thefinal state is obtained
after application of one pulse at each atom and reads

Figure 3. Fidelity of theGHZ state preparation protocol for a two-level description of the atoms (a), as well as the three-level scheme
(b) as a function of V0 W. In the three-level implementation of the protocol, atoms are excited to the Rydberg state to effectuate the
blockademechanism and are subsequently transferred to a stable hyperfine state, see text for details. F is given for chains of length
N=2, 4, 6, 8, respectively.

7

New J. Phys. 19 (2017) 123015 MOstmann et al



W W
2

00
1

2
0 1 1 0 1 1 , 26final 2

01
1
01p

p
g dY ñ = ñ = ñ + ñ + ñ⎜ ⎟⎛

⎝
⎞
⎠∣ ˆ ( ) ˆ ∣ (∣ ∣ ∣ ) ( )

where

V
ae cos

8

i sin
, 27i

0 8V0
8g p

t
t

=
W

+
pt

- Wp
W ⎜ ⎟

⎛

⎝
⎜⎜

⎛
⎝

⎞
⎠

⎞

⎠
⎟⎟

( )
( )

b1 , 272d g= -∣ ∣ ∣ ∣ ( )

V c16 . 270
2 2t = + W ( )

The term 1 1d ñ∣ in (26) occurs due to thefiniteness of the interaction strengthV0, and reduces the fidelity of the
produced state (25), which reads

F
1

4
1 . 28N 2

2g= += ∣ ∣ ( )

While there are quantitative differences in the fidelity curves depending on the number of the atoms, we have
verified that, for the atomnumbers considered, the position of themaxima of the oscillations change only very
slightly and thus the expressions (27)provide accurate estimates (which become exact forN= 2) for the values
ofV0 Wwhichmaximize thefidelity.

3.1.2. Dimer-MPS preparation
In analogy to theGHZ case, we investigate the effect of the non-perfect Rydberg blockade on thefidelity of the
state obtained by applying the protocol described in the second columnof table 1, where zfinalY ñ = ñ∣ ∣ ,

equation (10), and using again the replacementU W
01 01ˆ ˆ . Figure 4 shows the influence of the non-perfect

Rydberg blockade on the dimer-MPS state preparation protocol on the example of z=0.1, 0.5, 1, 10, forN=2
toN=7 atoms in a chain, respectively. For z 0.1= (figure 4(a)), thefidelity is approximately unity over the
whole parameter range. This is a consequence of the fact that for z 1 , the dominant term in the state (10) is
the vacuum (all atoms in the ground state 0ñ∣ )which is not affected by the blockademechanism.

When increasing z, terms containingmore andmore atoms in the Rydberg state 1ñ∣ are becoming relevant
with the limiting situation z 1 , where the dimer-MPS is dominated by terms containing N 2 N 1 2+[( ) ]
excitations forN even [odd]. Similarly to theGHZ case, the drop offidelity for small (large)V0 W is due to non-
perfect blockade (blockade extending beyond nearest neighbor).

We indicate by vertical lines infigures 4(b)–(d) the values of V VNN 0W = = and VNNNW =
corresponding to the interaction energies of nearest and next-to-nearest excitations respectively. The optimal
fidelity can be expected to be foundwithin the region delimited by these two boundaries. In fact, for VNNW 

Figure 4. Fidelity of the dimer-MPS preparation protocol forN=2 up toN=7 atoms as a function of V0 W and for z=0.1, 0.5, 1,
10 (a)–(d). See text for details.
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the blockade is relaxed and pairs of neighboring excitations are frequently produced. Conversely, for
VNNNW  the next-to-nearest neighbor interaction (partially) blockades atoms two lattice sites away from an

excitation, again spoiling the state preparation procedures described above.

3.1.3. Quantum state transport
Using the notation from section 2.3, the target state is the state of the first atom to be transferred, target 1yY ñ = ñ∣ ∣ ,
while thefinal (single-qubit) state Tr N t tfinalr y y= ñá¹ (∣ ∣) is obtained by tracing out all but theNth atom and

ty ñ∣ is the target state obtained using the transport protocol withU W
01 01ˆ ˆ . Figure 5(a) shows thefidelity of

the transport process for an initial state 1 2 0 11y ñ = ñ + ñ∣ (∣ ∣ ) at the first atom, for N 4, 5, 6= . The
decrease in thefidelity and the oscillations in the small and largeV0 W limit have the same origin as in the case of
dimer-MPS andGHZ state preparation, namely a vanishing blockade forV 00 W  and imperfect blockade
due to thefiniteness ofV0 respectively.

Next, in order to demonstrate the influence of the initial state on the resulting fidelity, infigure 5(b)weplot
thefidelity versusV0 W for 0 11y a bñ = ñ + ñ∣ ∣ ∣ , 1 2b a= - ∣ ∣ , for 0.7, 0, 0.7a = - . It can be seen that in
the parameter regime of interest (V 50 W ), thefidelity is independent ofαwith themaxima coinciding for the
α considered. As in theGHZ case, the nature of the observed oscillations can be exemplified on the elementary
example of two atoms forwhichwe get

W W 0 1 1 1 0 0 1 1 0 1 ,1
01

2
01

1p p a g g b d d dY ñ = ñ + ¢ ñ + ñ + ¢ ñ +  ñˆ ( ) ˆ ( )∣ ( ∣ ∣ ) ( ∣ ∣ ∣ )

where ,g d are given by (27) and

a1 , 292g g¢ = -∣ ∣ ∣ ∣ ( )

V V
b

2e i i cos sin
, 29

0 0 4 4

2

Vi 0
4

d
t

t
¢ =

W - + +pt pt-
W W

p
W ( )( ) ( )

( )

c1 . 292 2d d d = - - ¢∣ ∣ ∣ ∣ ( )

In the case of a perfect Rydberg blockade, only the terms 0 1ag ñ∣ and 0 0bd ñ∣ would occur after the application of
the two laser pulses.

3.2. Non-perfect blockade and position disorder
In lattice systems the atomic positions are typically considered to befixed. In realistic experiments however,
there is afinite uncertainty in their positions due to their finite temperature and finite extent of the optical traps
realizing the lattice sites. This can have dramatic consequences e.g. on the excitation transport in the chains of
Rydberg atoms [37]. Based on our previouswork [37]we here recall the notions needed for the study of the effect
of disorder on the protocol’s performance.

The position disorder stems from the fluctuations of the atomic positions r r rk k k
0 d= +( ) and consequently

of the interaction energies (2b). Here, rkd are drawn from a three-dimensional Gaussian distribution

p
r r r kr

r
1

2
exp

2 2 2
30k

k k k

pos 2 3
1 2 3

1
2

1
2

2
2

2
2

3 0
2

3
2p s s s

d
s

d
s

d
s

= - - -
-⎡

⎣⎢
⎤
⎦⎥( )

( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )

withwidths is , i 1, 2, 3= in the three spatial directions, see figure 1(a), where is =  k T mB i
2w( ) is given by

the temperatureT and themassm of the atoms and the trap frequencies iw (see [37] for details).

Figure 5. (a) Fidelity of a coherent transport process for N 4, 5, 6= as a function of V0 W. The transferred state is
1 2 0 11y ñ = ñ + ñ∣ (∣ ∣ ). (b)Comparison of the fidelity of the transport process for different initial states 1y ñ∣ forN=4. The

parameterα ( 1 2b a= - ) of the state 0 11y a bñ = ñ + ñ∣ ∣ ∣ is varied.
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Taking for our comparison parameters from recent experiments [37], in the followingwe set the trap
separation to r 4.1 m0 m= and consider two scenarios for the disorder, onewith isotropic disorder
( 120 nmis = , i 1, 2, 3= ) and onewith anisotropic disorder ( 1 m1s m= and 1202,3s = nm). The results
presented below are obtained by averaging over 1000 realizations of the disorder unless stated otherwise.

Infigures 6–8we show thefidelity for theGHZ, dimer-MPS and state transport protocols respectively (we
take the initial state 1 2 0 11y ñ = ñ + ñ∣ (∣ ∣ ) in the transport protocol). In all plots we compare lines
corresponding to a non-perfect blockade and three different choices of disorder: absent (red), isotropic (dotted
blue) and anisotropic (dashed green).

The common feature to all plots is that, for the parameters considered, in the largeV0 W limit, the blockade
mechanismdominates and is onlyweakly affected by the disorder: here, all three lines showonly small
differences and sit well on top of each other. Conversely, in the limit ofV O 10 W ~ ( ), which is of interest for fast
application of the protocols such that it still yields high-fidelity outputs (the larger theΩ, the shorter the time
needed to apply a pulse of a given area), the disorder has amuch stronger impact and in general decreases the
fidelity significantly. In that regime, the decrease offidelity ismore pronouncedwith increasing disorder
(situation in allfigures 6–8) and alsowith increasing atomnumber (compare figures 6(a) and (b), figures 7(a), (c)
and (b), (d) and all the panels infigure 8). The decrease offidelity with the atomnumber stems from the fact that
all our procedures address the atoms sequentially, and therefore each pulse, under imperfect conditions, will
make the state divergemore from the target state. In the case of the dimer-MPS protocol, we note that the fidelity

Figure 6. Fidelity of theGHZ state preparation protocol including the effect of non-perfect blockade and disorder forN=4 (a) and
N=6 (b) atoms as a function of V0 Wwith no (solid red), isotropic (dotted blue) and anisotropic (dashed green) disorder.

Figure 7. Fidelity of the dimer-MPS preparation protocol as a function of V0 W including the effect of a non-perfect Rydberg blockade
and disorder forN=4 (a), (c),N=7 (b), (d) atoms and z=1 (a), (b) and z=10 (c), (d). The solid red, dotted blue and dashed green
lines correspond to no, isotropic and anisotropic disorder respectively. Here, F is obtained for 100 realizations of the disorder.
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decreases alsowith increasing zwhich can be easily understood as higher z correspond to larger number of
excitations in the state, which in turn ismore sensitive to the disorder.

Themainmessage to be extracted from these results is that all the considered protocols are becomingmore
sensitive to the positional disorder when approaching the fast operation regime V O 10 W ~ ( ) from the large

V0 W side, where they are essentially insensitive to the amount of the disorder considered.
In order to further quantify the sensitivity to the disorder and the corresponding decrease infidelity, we

study thefidelity as a function of the length of the chain for theGHZ, dimer-MPS state preparation and state
transport protocols, which is shown infigures 9–11 respectively. Herewe consider a systemwith non-perfect
Rydberg blockadewithout disorder (red crosses), with isotropic (blue squares), and anisotropic (green
diamonds) disorder. Aswe are interested in the fast application of the protocols, we have fixed the ratioV0 W to
7.2 and 15.5 infigures 9(a), (b) and toV0 W to 6.9 and 15.5 infigures 11(a), (b) corresponding to the leftmost
(second leftmost) peak in thefidelity, see figures 3 and 5 (the optimal values ofV0 W used can be extracted
numerically or using (27) and (29) respectively). The solid lines correspond to an exponential function
f N a b Nexp 2= - -( ) ( ( )) fitted to the respective data points. Sincewe consider chains of length N 2 we
set the exponent of the function f (N) to b N 2- -( ) rather than bN- .With such choice of thefitting function,
the parameter a in table 2 states themaximal fidelity of the protocol achievable in the simpliest possible system

Figure 8. Fidelity of the state transport protocol as a function of V0 W for the initial state 1 2 0 11y ñ = ñ + ñ∣ (∣ ∣ ) and forN=4
(a),N=5 (b),N=6 (c), andN=7 (d). The solid red, dotted blue and dashed green lines correspond to no, isotropic and anisotropic
disorder respectively.

Figure 9. Fidelity of theGHZprotocol as a function of the number of atoms in the chainN for V0 W= 7.2 (a) and V0 W= 15.5 (b).
The red crosses, blue squares and green diamonds correspond to no, isotropic and anisotropic disorder respectively. The solid lines
represent an exponential functionfitted to the data points, see text for details. Data obtained by averaging over 100 realizations of the
disorder.
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N=2 for different types of disorder. Table 2 shows that the protocols do not reach afidelity of onewhen
disorder is considered. Figures 9 and 11 further quantify the above discussed observation that the resulting
performance is a tradeoff between how fast the protocol can be applied and the resulting fidelity. Interestingly, in
the absence of disorder and forV0 W corresponding to the optimalfidelity regions, the finalfidelity of the
protocols is essentially insensitive to the exact atomnumber, i.e. is not affected by the tails of the interaction
potential, see alsofigures 3, 5.

Concerning the dimer-MPS state preparation protocol, in order to emphasize the effect of the long-range
nature of the interactions on the resulting fidelity, we consider a dimer-MPS state with z=10, corresponding to
the largest valuewe have considered here for this parameter. Our choice ofV0 W—corresponding to the two
leftmost peaks of the fidelity—for theGHZpreparation and state transport protocols wasmotivated by the fact
that in the absence of disorder these values ofV0 W provide a satisfactory tradeoff between the achievable fidelity
and the speed of operation independently of the atomnumber. On the other hand, for the dimer-MPS protocol
it is clear from figure 4 (z= 10) that a value ofV0 W corresponding to the leftmost peak of theN=2 curve yields
a rather rapid drop in the fidelity for higherN even in the absence of the disorder. For this reasonwe consider
only the values ofV0 W corresponding to the second leftmost peak of the fidelity infigure 4.Herewe note that
the corresponding value ofV0 W slightly varies for odd and evenNunlike for theGHZ state preparation and
transport protocols. Specifically, wefind thatV 15.60 W » andV 17.10 W » for odd and evenNwhichwe use
infigure 10.

3.3. Limitations due to spontaneous decay
In sections 3.1, 3.2 we have considered two sources of imperfections introducing errors in the state preparation
and state transport protocols, namely the effect of the finiteness of the interaction potential resulting in non-

Figure 10. Fidelity of the dimer-MPS protocol as a function of the number of atoms in the chainN for V0 W= 17.1 for even (e) and
V0 W= 15.6 for odd (o)number of atoms in the chain and z=10. The red crosses, blue squares and green diamonds correspond to
no, isotropic and anisotropic disorder respectively. The solid lines represent an exponential function fitted to the data points, see text
for details. Data obtained by averaging over 100 realizations of the disorder.

Figure 11. Fidelity of the state transport protocol as a function of the number of atoms in the chainN for V0 W= 6.9 (a) and
V0 W= 15.5 (b). The red crosses, blue squares and green diamonds correspond to no, isotropic and anisotropic disorder respectively.
The solid lines represent an exponential function fitted to the data points, see text for details. Data obtained by averaging over 1000
realizations of the disorder.
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perfect blockade and the effect of positional disorder of the atoms.We have neglected other noise sources such as
spontaneous decay of the atoms from theRydberg state or loss and dephasingmechanisms due to the interaction
of the lattice atomswith the background gas. The reason for this is that we are interested in the short-time
dynamics, where these effects become essentially negligible. To give a specific example of a constraint such
considerations impose on the evolution of the system, we consider here the example of spontaneous decay.

Motivated by [37], we set the total duration of the experiment to 2 sexpt m= , whichwas used in [37] in order
to avoid effects due to the spontaneous photon emission, atom loss andmechanical effects induced by the forces
between atoms. Aswe are considering non-adiabatic state-preparation protocols, wewant tofind a parameter
regimewhere the protocol can be performed as fast as possible with a highfidelity. Thus, we choose
V 6.90 *W =( ) , corresponding to the position of the leftmostmaximumfidelity peak in each protocol
(figures 3–5). Finally, we fixV 2 8.40 p= ´ MHz [37].We can now estimate, with the help of the table 1 and the
relations (17), themaximal number of atoms Nmax so that the total duration of each protocol is smaller than expt .
The result can be summarized as

N z zGHZ 9; MPS 1 13, MPS 10 7; transport 6 . 31max =  =  =  ( ( ) ( ) ) ( )

One can see, that in this specific 2 sexpt m= example, the protocols are limited to rather small number of atoms
of the order of 10. In the case of the two-level scheme, where the final state contains Rydberg excitations, the
coherence time of the system is dominated by the lifetime lt of a single Rydberg atomdivided by the number of
atoms Nlt . At the same time, Rydberg atoms providemultiple possibilities with relaxation timescales ranging
over several orders ofmagnitude, typically fromμs toms regime [3, 41] depending on theRydberg state. It
would thus be interesting to identify the transitionswith sufficiently large interaction strengthV0 and long
relaxation times. That allows significantly higher Nmax, which can be in principle achieved by analyzing higher
principal quantumnumber n states (we recall that the interaction strength and relaxation timescales obey
approximately the scaling relationsV n n,0

11 3tµ µ [42], while n=56was used in [37] in the repulsive
interaction regime). However, when the three level scheme is used, where the excited Rydberg states are
transferred to an atomic hyperfine ground state 1ñ∣ ˜ , the coherence time can be seen to last up to several tens of
seconds as outlined in [43].

Table 2.The coefficients of the function f N a b Nexp 2= - -( ) ( ( )) fitted to the data points infigures 9–11 for the
GHZ, dimer-MPS state preparation and state transport protocols respectively. The abbreviations correspond to ‘no
dis’=no disorder, ‘iso’= isotropic disorder, ‘aniso’= anisotropic disorder parameterized according to the values
reported in themain text.

GHZ state

V0

W
= 6.9

V0

W
= 15.5

a b a b

Nodis 0.961015 6 10 6 ´ - (1739 ± 1) × 10−6 0.990331 7 10 6 ´ - (1911 ± 1) × 10−6

Iso 0.93±0.02 0.035±0.004 0.970±0.003 0.0234±0.0006
Aniso 0.80±0.01 0.110±0.004 0.94±0.01 0.039±0.003

Dimer-MPS state

V

N odd

0

W( ) = 15.6 and V

N even

0

W( ) = 17.1

a b

Nodis 1.00 0.02- 0.0139±0.004
Iso 0.983±0.004 0.0170±0.0009
Aniso 0.947±0.009 0.037±0.002

State transport

V0

W
= 6.9

V0

W
= 15.5

a b a b

Nodis 0.999988 4 10 6 ´ - (7.6 ± 0.8) × 10−7 0.999989 4 10 6 ´ - (6.8 ± 0.8) × 10−7

Iso 0.94±0.05 0.051±0.003 0.97±0.01 0.036±0.002
Aniso 0.73±0.04 0.09±0.01 0.93±0.02 0.055±0.003
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4. Conclusions

Wehave described three different protocols forQIP based on non-adiabaticmanipulation of atoms. The
protocols exploit the Rydberg blockademechanism and require single site addressability, which is now an
available experimental tool. Specifically, we have shownhow to generate antiferromagnetic GHZ states, a class of
MPSs—the dimer-MPS—which include theRydberg crystals, and quantum state transport in chains of Rydberg
atoms.We have evaluated the effect of the full interaction potential on the quality of the protocols identifying a
parameter regime yielding optimal performance in terms of fast operation resulting in output states with high
fidelity. Next, we have evaluated the experimentally relevant effect of positional disorder stemming from the
finite temperature of the atoms andwidth of the optical traps respectively, and quantified its influence on the
fidelity. Finally, we have discussed the constraints imposed on the presented protocols by other sources of
imperfections, namely the relaxation of the Rydberg states.
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AppendixA. Toffoli gate

The basic building block of the protocols studied in this work is the three-bodyHamiltonian (3) and the
associated unitary gate (4). The latter provides a tool to implement various three-body gates, where the specific
properties of the gate are determined by the parameters of theHamiltonian, namely the detuning kD , Rabi
frequency kW and the duration of the pulse tk on kth atom. In the specific case, where 0kD = for all atoms and
the area of the pulse applied at the kth atom tk k pW = , the unitary (4) corresponds to the Toffoli gate.

Here, in table A1, we list for completeness the properties of the Toffoli gate used in the quantum state
transport protocol. Thefirst and last qubits are the control oneswhile the second qubit is the target. Provided
that both control qubits are in state 0ñ∣ the Toffoli gate acts like aπ-pulse on the target qubit.

Appendix B.On the derivation of the effectiveHamiltonian

To the lowest order in the perturbation, the effectiveHamiltonian is obtained by applying the unitary
transformationU t V n nexp i k

N
k k 1= å +ˆ ( ˆ ˆ ) on (1). Using the rotatingwave approximation, this leads to

Table A1.Truth table of the Toffoli gate. The first and the third qubits are the
control qubits, while the second qubit is the target.When the control qubits
are both in the ground state 0ñ∣ , the Toffoli gate corresponds to an application
of aπ-pulse on the target qubit.

Input Output

000 010

001 001

010 000

011 011

100 100

101 101

110 110

111 111
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Next, the second term in (B1) is suppressed by a factor 64 and is neglected, which yields the effectiveHamiltonian
(3).

AppendixC.Dimer-MPS

C.1.Derivation of the recurrence formulae
Wediscuss here how to retrieve a recursion formula for the areasAk in the case where an excitation blocks its first
Rneighbors to the right and to the left. Formula (16)will correspond to the particular caseR=1.We start by
recalling that the target state is expressed as

z
Z

z P P
1

, C1
z

k

L
k k k1 ,left ,right sñ = +  ¼ñ

=
+∣ ( ˆ ˆ ˆ )∣ ( )

where P P Pk k k R,left 1= ¼- -ˆ ˆ ˆ and P P Pk k k R,right 1= ¼+ +ˆ ˆ ˆ . The action of a local pulse on the kth atomdepends
onwhether the latter is blockaded (i.e. there are excitations within a radiusR) or not. In the former case, we have

U A 0 0 . C2k k k k
01

ñ = ñˆ ( )∣ ∣ ( )

Conversely, if the atom is not blockaded,

U A A A0 cos 0 sin 1 . C3k k k k k k k
01

ñ = ñ + ñˆ ∣ ( ) ∣ ∣ ( )

Wenow think of applying an ordered sequence of these unitary operations addressing one atomat a time, from

thefirst to the lastU Uk N k
1 01

=  =
ˆ ˆ , to a ground-state configuration 0 0N1 ¼ ñ∣ . This will yield a state with

components on all configurations inwhich no pairs of excitations appear at a distance R . Note that, according
to (C3), the ground state configurationwill comewith a coefficient

C Acos . C4
k N k0
1º
=

( )

Every configurationwith an excitation in site jwill instead feature a factor Asin j. Furthermore, because of the
blockade, the operations acting on j k k R1, ,= + ¼ + will behave as displayed in (C2), i.e.theywill trivially
contribute 1 to the overall coefficient. In general, we can reconstruct the coefficient of a generic configuration via
the following simple rules:

(i) Choose a configuration and start reading it from the first atom to be addressed to the last one. Assign a
coefficient 1 to start with.

(ii) Until a 1ñ∣ is found, for every 0kñ∣ multiply the coefficient by Acos k.

(iii) When a 1kñ∣ is found,multiply by Asin k and skip to position k R 1+ + .

(iv) Apply (ii) again.

Hence, if we call Cj
1( ) the coefficient of the configurationwith a single excitation in site jwe have

C

C

A

A

sin

cos
. C5

j j

k j

j R
k

1

0 
=

=
+ ( )

( )

More in general, the coefficient C n
( ) of an allowed state with n excitations in positions n j j, n1= ¼

 { }will obey

C

C

A

A

sin

cos
. C6

n
n j

k j

j R
k0

1


=
m=

=
+

m

m

m



( )
( )

The correct formof state zñ∣ is then reproduced byfixing the areas in such away that

A

A
z z

sin

cos
. C7

j

k j

j R
k
= "

=
+ ( )

This defines a recursion forAj in terms of A A, ,j j R1 ¼+ + . In order tomake the solution of the recursion unique,
we need to also impose the boundary conditions

A j Rcos 1 1 . C8N j  = "+ ( )
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Note that the recursion relation can be also cast in the form

A z Atan cos . C9j
k j

j R

k
1

=
= +

+

( )

Since the tan function isπ-periodic, we have the freedom to choose the sign of the cosines, whichwe determine
to be all positive. Thismeans that the sign of the sines will instead coincide with the sign of the parameter z. This
uniquely identifies the areasAkmodulo 2p.

C.1.1. Nearest-neighbor case. Here, we solve the recursion relation (16) in the simplest caseR=1. By defining

x Acos C10k L k
2

1= + - ( )

and a z2= wefind

x
a x

1

1
C11k

k
1 =

+
+ ( )

with seed x 10 = .We now rewrite x p qk k k= , which yields

p

q

q

q a p
C12k

k

k

k k

1

1

=
+

+

+

( )

and assume that we can separate numerator and denominator as if theywere independent, leading to the system

p q , C13k k1 =+ ( )

q q a q . C14k k k1 1= ++ - ( )

In order to correctly reproduce the boundary condition for xk, we ask q q p 10 1 0= = =- . Since a 0 , we see
that if q 0k > and q 0k 1 >- , then q 0k 1 >+ as well. Given the initial conditions, it follows from induction that
q 0k > k" . Furthermore,

q q p , C15k k k1 1 =+ + ( )

as expected since by definition x p q q qk k k k k1= = - must be 1 .
The recursion equation for qk is linear and can be solved exactly: the associated polynomial is a2l l- - ,

whose roots are

a1 1 4

2
. C16l =

 +
 ( )

Therefore, the general solution is

q A B , C17k
k kl l= ++ - ( )

withA andBfixed via the boundary conditions q q 11 0= =- , which yield

A
a a

a a

a

B
a a

a a

a

1 2 1 4

2 1 4

1

1 4

1 1 4

2

1 2 1 4

2 1 4

1

1 4

1 1 4

2
.

2

2

=
+ + +

+
=

+
+ +

=
- - + +

+
= -

+
- +

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Thereby, wefind

q
a

a a1

1 4

1 1 4

2

1 1 4

2
C18k

k k2 2

=
+

+ +
-

- +
+ +⎡

⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( )

and, consequently,

x
p

q t

a a

a a
2

1 1 4 1 1 4

1 1 4 1 1 4
, C19

k
k

k

a k a k

a k a k

k k

k k

1 1 4

2

1 1 1 4

2

1

1 1 4

2

2 1 1 4

2

2

1 1

2 2

= =
-

-

=
+ + - - +
+ + - - +

+ + + - + +

+ + + - + +

+ +

+ +

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

which exactly corresponds to equation (18), since we have chosen the cosines to be positive.
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C.1.2. Generic R case. The general case is defined by

x
a x

1

1
. C20k

j k

k R
j

1 1
=

+
+

=
+ -

( )

The same trick as above x p qk k k= can be applied, yielding

p

q

q

q a p
. C21k

k

j k

k R
j

j k

k R
j j k

k R
j

1

1

1

1 1



 
=

+

+

+

=
+ -

=
+ -

=
+ -

( )

The same choice p qk k 1= - gives now

q q aq , C22k k k R1 = ++ - ( )

which is associated to the polynomial

a, C23R R1l l= ++ ( )

which is generally not analytically solvable. However, it has R 1+ (complex) roots jl and the general implicit
solution of the recursion is

q A . C24k
j

R

j j
k

1

1

å l=
=

+

( )

Imposing the boundary conditions yields a systemof equations for the coefficientsAjwith equations of the form

A
1, C25

j

R
j

j
n

1

1

å l
=

=

+

( )

for n R,...,0= - which can be alsowritten as

M A n1 , C26
j

R

nj j
1

1

å = "
=

+

( )

whereMnj is amatrix with entries Mnj j
nl= , i.e.it is a Vandermondematrix. By usingCramer’s rule for the

solution of linear systems of equations, we canwrite the coefficientAk as

A
M

M

det

det
, C27k

k

= ( )
( )

where M k( ) is constructed fromM by substituting 1 to all entries on the kth column.Note that M Mk =( ) if
1kl = , whichmeans that M k( ) is also a Vandermondematrix. Exploiting the known structure of the

determinants of Vandermondematrices we can thuswrite

A , C28k

i j R

i j R

1 1

1 1

1 1

1 1

j
k

i
k

j i

 

 




=

-

-

l l

l l

< +

< +

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( )

where j
k

jl l=( ) if j k¹ and 1 otherwise. By simplifying all common factors, this can also be rewritten as

A
1

. C29k k
R j k j

j k k j




l
l

l l
=

-

-
¹

¹

( )

( )
( )

C.2. Comment on the dimer-MPS as a ground state of the RydbergHamiltonian
In [27] it has been demonstrated that, in a specific regime of the parameters, theHamiltonian (1) can be
approximatelymapped to a Rokhsar–Kivelson form [30], which is associatedwith the stochasticmatrix
describing the evolution of a classical stochastic process [44]. TheseHamiltonians admit an exact solution for
their ground states. In particular, as shown in [27], Hamiltonian (1) admits such a representationwhen its
parameters satisfy kW = W, k" , and

V

V
2

3

2
, C30k

6
2

0

0
6

D º D =
W

- ( )

which identifies amanifold in the parameter space. Under these conditions, and assuming that interactions
among nearest neighbors are strong enough to enforce an almost perfect blockade, while becoming sufficiently
small beyond next-nearest neighbors to be safely neglected, the ground state of the system iswell approximated
by (9), where z V 20

6= - W( ).
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Next, asmentioned in themain text, the same construction can be extended to the case of the blockade effect
extending beyond nearest neighbors: assuming that an excitation prevents itsfirstRneighbors frombeing
excited, themany-body ground state can be again analytically expressed in the parametermanifold [29] as

V
V R2 1 , C31

R
R

2

D =
W

- +( ) ( )

whereV C r R 1R 6 0
6 6= +( ( ) ), and takes the generalized form (11).
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