
Functional Hybrid Modelling towards mathematical physics
Work in progress report

Dmitrii Legatiuk

DFG Research Training Group 1462, Bauhaus-Universität

Weimar, Germany

Weimar

dmitrii.legatiuk@uni-weimar.de

Henrik Nilsson

Functional Programming Laboratory, School of Computer

Science, University of Nottingham, UK

Henrik.Nilsson@nottingham.ac.uk

ABSTRACT
Modelling languages have become an indispensable to practising

engineers. They offer modelling at a high level of abstraction backed

by features such as automatic simulation and even derivation of

production code. However, partly because of the offered automa-

tion, modelling languages are limited to specific application areas:

to our knowledge, no modelling language supports mathematical

physics modelling in its full generality. Yet, when developing large,

coupled, multiphysics models, there is a clear need for such an over-

arching language to ensure the coherence of the model as a whole,

even if submodels ultimately are realised in modelling languages

targeting specific domains or are pre-existing. In prior work, it was

demonstrated how treating models as abstract objects in category

theory offers one way to ensure coherence of key aspects for com-

posite models. Type theory offers complementary approaches. This

paper presents a first step towards a language supporting abstract

modelling in mathematical physics with the aim of ensuring coher-

ence of coupled multiphysics models early in the design process. To

that end, following the approach of Functional Hybrid Modelling

(FHM), we discuss how a language supporting quite general mod-

elling equations can be realised as an embedding in Haskell. The

appeal of the proposed approach is that only very few core con-

cepts are needed, which greatly simplifies the semantics. The appeal

of an embedded realisation as such is that much of the language

infrastructure comes for free.

CCS CONCEPTS
•Theory of computation→Type theory; •Computingmethod-
ologies → Modeling methodologies; Representation of mathe-
matical functions; Simulation languages; Continuous models;

KEYWORDS
Modelling, Haskell, Functional Hybrid Modelling, abstraction

ACM Reference Format:
Dmitrii Legatiuk and Henrik Nilsson. 2017. Functional Hybrid Modelling

towards mathematical physics. In Proceedings of 8th International Workshop
on Equation-Based Object-Oriented Modeling Languages and Tools, Munich,
Germany, December 2017 (EOOLT 2017), 4 pages.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

EOOLT 2017, December 2017, Munich, Germany
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The solution of any engineering problem starts with a modelling

process. Conceptually, there are two phases: we can call them the

abstract and the concrete modelling phase. The abstract phase is

concerned with capturing all relevant aspects of the problem as

mathematical equations. The concrete phase is concerned with

turning these equations into artefacts, such as programs, that can

then be used to study chosen aspects of the problem, often (but not

exclusively) through simulation. The abstract model should be as

general as possible, subject to decisions about what aspects are of

interest to model, so as to not unduly constrain the concretisation

phase. Indeed, modern problems of engineering are typically cou-

pled problems in that a number of concrete models need to be used

together. For example, it is common that no one method suffices for

simulating all parts and aspects of a system. Or there may be exist-

ing models system parts or aspects that have to be used. A choice

among different kinds of models is typically involved. Creation

of a realistic model thus requires careful thinking about the mod-

elling process, making the modelling process itself a fundamental

part of engineering practice that currently is not always addressed

properly.

In recent years, dedicated modelling languages have become

popular among practising engineers as a more expedient alter-

native to main-stream programming languages. Some modelling

languages are specific to particular application domains. They can

thus offer modelling at a high level of abstraction, allowing, for

example, simulation code to be derived automatically. Their scope

is, however, highly limited. Other modelling languages, such as

Simulink [1], aim to be domain-agnostic. But they are geared to-

wards the concrete phase in that they are rather prescriptive about

the simulation process. Yet other languages, such as Modelica [2],

support the abstract modelling phase more directly and take care

of the subsequent concrete phase more or less automatically. But

the price for this is again limited applicability in that only specific

kinds of equations are supported for the abstract modelling, such

as Differential-Algebraic Equations in the case of Modelica. That

means that many problems in the wider setting of mathematical

physics, such as boundary value problems of elasticity theory, fluid

mechanics, electrodynamics etc., cannot be modelled adequately as

partial differential equations are necessary in these cases.

In some cases it is possible to work around such limitations

within existing languages, but the consequence is invariably that the

model becomes “contaminated” by concrete aspects, i.e. operational

detail, making it less general. There is thus a need for language

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EOOLT 2017, December 2017, Munich, Germany Dmitrii Legatiuk, Henrik Nilsson

support for the abstract modelling phase in its full generality that

currently is largely unmet. Of course, we cannot hope for the same

level of automation in such a setting. But, by capturing appropriate

static properties, through a type system for systems modelling,

we can check for consistency ensuring that the modelling process

has been carried out appropriately. This would catch many system

modelling errors early, at the abstract level. Thus, our primary goal

is to support the modelling process on the abstract level to ensure

that the construction of a multiphysics model does not contradict to

basic physical laws and assumptions before preparing a simulation

code.

Originating from Functional Reactive Programming [3], Func-

tional Hybrid Modelling (FHM) [4, 5] is a first step in the devel-

opment of a Haskell-based modelling language with a robust type

system allowing us to detect modelling errors more effectively com-

pared to the type systems in the traditional modelling languages. In

essence, FHM enriches Haskell with a notion of first-class equations

for modelling of physical systems. Haskell provides the required

abstraction mechanisms and means for constructing systems by

composing equation system fragments. While, in terms of language

design and modelling aims, FHM is similar to Modelica and thus suf-

fers the same limitations, the design of FHM can serve as a blueprint

for a language for modelling systems in the abstract, demonstrat-

ing the usefulness of Haskell for this kind of modelling language

research and design.

The extension of the FHM towards mathematical physics re-

quires at first a deeper understanding of the modelling process.

Particularly, an analysis of possible sources of modelling errors

must be performed carefully with the idea to develop tools to detect

the modelling errors at the abstract level. For that purpose, it is

necessary at first to formalise the modelling process, otherwise a

developed methodology for modelling error detection would be

an application-specific. An attempt to work with the models in

engineering on a more abstract level has been proposed in [6],

where graph theory has been utilised. In this approach, models

are considered as vertices of a graph and couplings between the

models as edges. However, the focus of these works was not re-

lated to the evaluation of the modelling process, rather than to

the evaluation of models in the concrete modelling phase based

on uncertainty and sensitivity analyses. As an alternative, a mod-

elling framework based on category theory has been proposed in

[7]. In this framework, mathematical models are treated as abstract

objects in categories, and a coupling of models is described by

functorial mappings between these categories. By help of such an

abstract modelling approach the strategy to check a consistency of

the modelling process has been presented. The consistency in this

case is a tool for checking if the modelling process has been done

appropriately, i.e. a tool to detect modelling errors. Such an abstract

modelling framework provides a necessary understanding of the

modelling process in general. The categorical approach presented

in [7] is a starting point for the extension of the FHM to more

sophisticated mathematical models, serving as the semantics that

would underpin such a language.

In this short work in progress report we present first ideas for

the extension of the FHM to problems of mathematical physics.

Especially, the aim of the paper is to show how equations of math-

ematical physics can be transferred to the FHM-like syntax, which

is a basis for the further extension of the FHM. We further discuss

first steps in the development of a type system covering models

of mathematical physics with a particular focus on underling ad-

vantages offered by the use of FHM together with ideas for further

Haskell implementation. The type system should serve the purpose

of identification of modelling errors and provide a sufficient expres-

sive power to describe a coupling of different models for building

a coupled multiphysics model. This is an overall goal, however in

this short paper we present a simple academic example illustrating

issues which have to be addressed while extending the FHM.

2 MATHEMATICAL MODELLING AND TYPES
A huge variety of models appears in practice in mathematical

physics. For example, they may be described using ordinary and par-

tial differential equations, integral equations, stochastic equations

etc. Models for coupled multiphysics problems may involve many

different kinds of equations. However, for starting the discussion

on how to realise an FHM-like language supporting such equations,

we start with a simple one-dimensional model described using a

single partial differential equation. Such a simple model suffices for

presenting the general ideas and discussing central issues.

2.1 Example Model
Let us consider the following partial differential equation describing

transverse vibrations of a solid beam in the framework of Rayleigh

beam theory:

ρF
∂2u

∂t2
+ EIy

∂4u

∂x4
− ρIy

∂4u

∂x2∂t2
= q(x , t). (1)

Here, ρ is the material density, F is the area of cross section, E is the

Young modulus, Iy is the moment of inertia, q(x , t) is an applied

external load and u (x , t) is the displacement of points of the beam.

Equation (1) is particularly interesting from a modelling lan-

guage point of view, since multi-domain modelling languages, such

as Simulink and Modelica, tend to lack support for partial differ-

ential equations. Sometimes this can be addressed by converting a

partial differential equation into a system of ordinary differential

equations by discretising spatial or temporal variables. However,

for equations involving mixed derivatives, as in our example, this

approach, in general, is not applicable, and even where applicable,

such transformations are cumbersome and obscure the model. To

support mathematical physics modelling in general, intrinsic sup-

port for key equation types appearing in engineering practice are

needed, and then in particular partial differential equations.

Note that for a complete formulation of an engineering problem,

boundary and initial conditions must be added to (1). For our pur-

poses here, however, it is enough to consider the model given only

by equation (1).

2.2 Preliminaries
Solutions of problems of mathematical physics typically have a clear

physical interpretation. It is thus attractive to start our construction

by taking the physical background of a model into account. For ex-

ample, for the Rayleigh model we might introduce the polymorphic

type of displacements as S α = (Time, Coordinate)→ α , where
S α is the type of a displacement whose instantaneous value is of

Functional Hybrid Modelling towards mathematical physics EOOLT 2017, December 2017, Munich, Germany

type α . This approach has the obvious advantage that the physical

background of a problem is directly reflected in the types. However,

it also implies that each problem of mathematical physics requires,

in general, a unique type set of types, which is significantly limits

reuse.

Instead, we propose to work directly with functions and oper-

ators used in mathematical models to describe a given physical

phenomenon, forgetting the physical background for now. The idea

is to introduce a set of independently typed primitives that may be

combined into models of arbitrary complexity. For example, inspec-

tion of the Rayleigh model reveals that it is constructed from basic

operations such as partial differentiation, multiplication, and addi-

tion. The connection to the physical reality can be re-established

by a type system that keeps track of physical dimensions. See for

example [8], [9], or languages like F#.

Note that complexity here is understood as a model complex-

ity in the sense of [7], not related to the notion of computational

complexity. In our case, complexity is understood, roughly, as a

measure of how many different physical phenomena are involved

in a problem. See [7] for the details.

2.3 Functional Embedding
The original work on FHM [4] introduced the idea of embedding

differential equations in a functional language through first class

notions of functions and relations on signals: signal functions and
signal relations. The term “signal” was a natural choice as FHM

is designed for initial value problems represented by DAEs. The

situation in mathematical physics is more general as models may

depend on several variables, or in the case of a static problem, be

time-independent. So perhaps a different term should be chosen

for the unknowns in this new setting. However, we will stick with

signal for the unknowns for now, on the understanding that signals

may be temporal, spatial, spatio-temporal, or even constant. Thus, a
signal is (in general) a function of several variables used and (part

of) a solution to the equations defining the model. We note that

keeping track of different kinds of signals offer another opportunity
to enforce model consistency, but we leave that as future work.

Let

{
ξi
}n
i=0 be a finite-dimensional set of variables with the con-

vention that ξ0 corresponds to the time variable, ξi , i = 1, . . . ,n
correspond to the spatial variables used in a model, and n denotes

the total number of dimensions. The model (1) can now be written

as follows:

ρF
∂2u

∂ξ 2
0

+ EIy
∂4u

∂ξ 4
1

− ρIy
∂4u

∂ξ 2
1
∂ξ 2

0

= q(x , t). (2)

Following [4], we introduce the polymorphic type of signals

Sα = (T0,T1, . . . ,Tn) → α ,

where Ti , i = 0, 1, . . . ,n are the types of variables

{
ξi
}n
i=0 and α is

the type of values “carried” by the signal; i.e., its value at a specific

point in time and space. The concrete type α depends on the model

under consideration: if we work with scalar-valued quantities, then

α is a base type; if we have vector-valued quantities, α is a product

type. For example, a two-dimensional heat conduction problem

would lead to a temperature field of the form θ : R+ × R
2 → R

providing values of a temperature at each point of two-dimensional

body, while solution of plane elasticity problems leads to a vector-

valued displacement field of the form u : R+ × R2 → R2 providing
components of horizontal and vertical displacements of every point

of a rigid body.

Signals exist only implicitly (or there would be no need to solve a

problem), defined by stated relations among them. Thus, following

[4], we introduce the type

SRα

for a relation on a signal of type S α . To describe given models as

relations on signals, we need to specify refined types for the basic

operations such as differentiation, integration, etc.

Consider the Rayleigh model as formulated in (2). The partial

derivatives used in the model need to be typed. One possibility is

to introduce an explicit typing for partial derivatives w.r.t. each

individual variable. This is not very convenient even in the case of

a small number of variables. Instead, we leverage that signals are

indexed on

{
ξi
}n
i=0. Partial differentiation w.r.t. individuals variables

can be then be written as a general operator

Dn
i :=

∂n

∂ξni
, (3)

where i is the index of a the variable w.r.t. which to differentiate

and n is the order of the derivative. The operator has to satisfy the

standard laws:

Dn
i D

m
i = Dm

i Dn
i = Dn+m

i , Dn
i D

m
j = Dm

j Dn
i , D0

i = I , (4)

with I denoting the identity operator. These rules have to be re-

flected in the type system.

The type of the operator Dn
i is

D :: (Nat, Nat) → SR (α ,α)

where the variable index and the derivative order are restricted to

the type Nat of natural numbers (N = {0, 1, 2, . . .}) as we are not
considering fractional differential equations at present. Note that

the result of applying a D operator on a signal is a new signal. The

D operators can thus be seen as binary relations on two signals, as

reflected by their type.

The next step is to introduce notation for defining relations on

signals. Following [4], we adopt notation inspired by λ-abstraction,
giving the following notation for a signal relation:

sigrel pattern where equations

The pattern introduces signal variables that are bound to the value

of the corresponding signal at each point in time and space. Thus,

for a given signal variable p of a given type t , i.e. p :: t , we have

sigrel p where . . . :: SR t

Together with the differentiation operator, the notation for defin-

ing relations is enough to denote simple partial differential equa-

tions. However, for a generalisation of the class of possible applica-

tions we need to introduce further general operators, such as the

Laplace operator, divergence, gradient and curl. For the case of the

Laplace operator we can directly use its factorisation by several

operators of type (3), and therefore, it is, in fact, already inside the

proposed framework. For the remaining three operators it is neces-

sary to include additional type restrictions, since divergence and

curl require vector-valued functions as arguments, while gradient

EOOLT 2017, December 2017, Munich, Germany Dmitrii Legatiuk, Henrik Nilsson

works with scalar-valued arguments. Thus, some modelling errors

can be filtered out already by simple type-checking of arguments

of these operators.

Finally, to describe models we need to introduce two kinds of

equations:

e1 = e2, sr � e3,

where ei , i = 1, 2, 3 are expressions that are allowed to introduce

new variables and sr is an expression denoting signal relation. As

usual, we require equations to be well-typed. Particularly, if ei :: ti ,
i = 1, 2, 3, then the only possibility is that t1 = t2 and sr :: SR t3.

The first kind of equation requires the values of the two expres-

sions to be equal at all points in space and time. For the Rayleigh

model (2) it means precisely that the expression on the r.h.s. of the

equation must have the type resulting from application of several

basic operations on the l.h.s. of the equation. Otherwise the model

would be inconsistent.

The second kind of equation allows us to work with arbitrary

relations on signals. In this case, the symbol � can be understood

as a relation application resulting in a constraint that must hold at

all points in space and time. Moreover, the first kind of equation

is just a special case of the second kind, as equality is a subset of

general relations between two signals.

The differentiation operator D can now be written as follows

D (i) (n) � (f ,д), i = 0, 1, . . . ,N ,

with N denoting the total number of variables, and where we as-

sume that signals f (ξi) and д(ξi) are related by the differential

equation

f (ξi) =
∂nд(ξi)

∂ξni
.

In concrete syntax, we can adapt a notation for the operator D
which is closer to the classical mathematical notations

D(i) (n) д = f .

The meaning of this equation is exactly the same as in the first

version.

Finally, we illustrate the proposed language by using it for the

example of the Rayleigh model:

Rayleiдh :: SR (R,R)
Rayleiдh = sigrel (u,q) where

q = ρ · F · D (0) (2)u + E · Iy · D (1) (4)u
−ρ · Iy · (D (1) (2) ◦ D (0) (2))u

where D (i) (n) ◦ D (j) (m) denotes the composition of two operators

D obeying rules (4), the material constants ρ, F ,E, Iy are under-

stood as signals which are constant at all points in space and time

and the equality relation represent the principle meaning of any

mathematical physics model given by an equation.

For illustrative purposes, let us also show this example expressed

directly using signal relations and application, which is the the

underlying representation:

Rayleiдh :: SR (R,R)
Rayleiдh = sigrel (u,q) where

q = ρ · F · d2dt2u + E · Iy · d4dx4u
−ρ · Iy · d4dx2dt2u

D (0) (2) � (u, d2dt2u)
D (1) (4) � (u, d4dx4u)
D (1) (2) ◦ D (0) (2) � (u, d4dx2dt2u)

3 CONCLUSIONS AND FUTUREWORK
Real problems of mathematical physics require an extension of

capabilities of the modern modelling languages. Particularly, the

growing complexity of engineering problems requires a separation

between an abstract modelling phase, where principal relations

between different parts of models are considered, and a concrete

modelling phase, where implementation issue are addressed. The

aim of such a separation is to catch modelling errors as early as

possible, particularly in the abstract phase before starting to to

think about code derivation and choice of numerical techniques.

In this short work in progress report, taking advantage of the

high-level of abstraction provided by FHM, we presented initial

ideas for the extension of FHM towards problems of mathemati-

cal physics. Particularly, we have shown how general equations

of mathematical physics can be expressed in an FHM-like syntax.

Additionally, we outlined some aspects of a type system capturing

important properties of partial differential equations, identified ad-

ditional opportunities for consistency checking, and illustrated with

a simple example of a model represented by a partial differential

equation.

Future work includes further development of the type system for

a formalised modelling process in mathematical physics along with

Haskell implementation of the proposed constructions. Particularly,

a deeper analysis of existing models in mathematical physics, par-

ticularly, analysis of a coupling of different models in multiphysics

problems, from the point of view of type theory is necessary.

ACKNOWLEDGMENTS
This research is partially supported by the German Research Foun-

dation (DFG) via the Research Training Group “Evaluation of Cou-

pled Numerical Partial Models in Structural Engineering (GRK

1462)”. The support offered by DFG is gratefully acknowledged.

REFERENCES
[1] SIMULINK – User’s guide, MathWorks, Inc., 1992.

[2] Modelica – a unified object-oriented language for systems modelling; Language
specification version 3.3, Modelica Association, 2012.

[3] H. Nilsson, A. Curtney, J. Peterson, Functional reactive programming, continued,
Proceedings of the 2002 ACM SIGPLAN Haskell Workshop, pp. 51-64, 2002.

[4] H. Nilsson, J. Peterson, and P. Hudak, Functional hybrid modeling. Volume 2562

of Lecture Notes in Computer Science, Springer-Verlag, 2003.

[5] J. Capper, Semantic methods for Functional Hybrid Modelling, PhD thesis, 2014.

[6] H. Keitel, G. Karaki, T. Lahmer, S. Nikulla, V. Zabel, Evaluation of coupled par-
tial models in structural engineering using graph theory and sensitivity analysis,
Engineering Structures, 33, pp. 3726-3736, 2011.

[7] K. Gürlebeck, D. Hofmann, D. Legatiuk, Categorical approach to modelling and
to coupling of models, Mathematical Methods in the Applied Sciences, Volume 40,

Issue 3, pp. 523-534, 2017.

[8] J.J. Roche, The mathematics of measurements: a critical history, Springer Science &
Business Media, 1998.

[9] A. Kennedy, Dimension types, Proceedings of the 5th European Symposium on

Programming, 1994.

	Abstract
	1 Introduction
	2 Mathematical modelling and types
	2.1 Example Model
	2.2 Preliminaries
	2.3 Functional Embedding

	3 Conclusions and future work
	Acknowledgments
	References

