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Abstract

Optical coherence tomography (OCT) is a non-invasive imaging technique that can produce images of the
eye at the microscopic level. OCT image segmentation to localise retinal layer boundaries is a fundamental
procedure for diagnosing and monitoring the progression of retinal and optical nerve disorders. In this paper,
we introduce a novel and accurate geodesic distance method (GDM) for OCT segmentation of both healthy
and pathological images in either two- or three-dimensional spaces. The method uses a weighted geodesic
distance by an exponential function, taking into account both horizontal and vertical intensity variations. The
weighted geodesic distance is efficiently calculated from an Eikonal equation via the fast sweeping method.
The segmentation is then realised by solving an ordinary differential equation with the geodesic distance.
The results of the GDM are compared with manually segmented retinal layer boundaries/surfaces. Extensive
experiments demonstrate that the proposed GDM is robust to complex retinal structures with large curvatures
and irregularities and it outperforms the parametric active contour algorithm as well as the graph theoretic
based approaches for delineating the retinal layers in both healthy and pathological images.

Key words: optical coherence tomography segmentation; geodesic distance; Eikonal equation; partial differential
equation; ordinary differential equation; fast sweeping

1 Introduction

Optical coherence tomography (OCT) is a powerful imaging modality used to image biological tissues to obtain
structural and molecular information [1]. By using the low coherence interferometry, OCT can provide high-
resolution cross-sectional images from backscattering profiles of biological samples. Over the past two decades,
OCT has become a well-established imaging modality and widely used by ophthalmologists for diagnosis of retinal
and optical nerve diseases. One of the OCT imaging biomarkers for retinal and optical nerve disease diagnosis is
the thickness of the retinal layers. Automated OCT image segmentation is therefore necessary to delineate the
retinal boundaries.

Since the intensity patterns in OCT images are the result of light absorption and scattering in retinal tissues,
OCT images usually contain a significant amount of speckle noise and inhomogeneity, which reduces the image
quality and poses challenges to automated segmentation to identify retinal layer boundaries and other specific
retinal features. Retinal layer discontinuities due to shadows cast by the retinal blood vessels, irregular retinal
structures caused by pathologies, motion artefacts and sub-optimal imaging conditions also complicate the OCT
images and cause inaccuracy or failure of automated segmentation algorithms.

Over the past two decades a number of automatic and semi-automatic OCT segmentation approaches have
been proposed. These approaches can be roughly categorised into three families: A-scan based methods, B-
scan based methods and volume based methods, as illustrated in Figure 1. A-scan based methods [2–8] detect
intensity peak or valley points on the boundaries in each A-scan profile and then form a smooth and continuous
boundary by connecting the detected points using model fitting techniques. These methods can be inefficiency
and lack of accuracy. Common approaches for segmenting two-dimensional (2D) B-scans include active contour
methods [9–14], shortest-path based graph search [15, 16] and statistical shape models [17–19] (i.e. active shape
and appearance models [20, 21]). B-scans methods outperform A-scan methods in general. However, they are
prone to the intrinsic speckle noise in OCT images and more likely to fail in detection of pathological retinal
structures. Three-dimensional (3D) scan of the retina is now widely used in commercial OCT devices. Existing
volume based segmentation methods mainly use 3D graph based methods [22–30] and pattern recognition [31–35].
Benefiting from contextual information represented in the analysis graph, graph based methods provide optimal
solutions and ideal for volumetric data processing. However, the computation can be very complex and slow.
Pattern recognition methods normally require training data manually segmented by experts in order to learn a
feasible model for classification. These approaches also suffer in accuracy and efficiency. Segmentation of retinal
layers in OCT images thereby remains a challenging problem.
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Figure 1: A en-face fundus image (left) with lines overlaid representing the locations of each B-scan within a
volumetric OCT data. The red line corresponds to the B-scan in the image (right top). One vertical A-scan of
the B-scan is shown in the plot (right bottom). The fovea region is characterised by a depression in the centre
of the retina surface.

In this paper, we propose an algorithm for retinal layer segmentation based on a novel geodesic distance
weighted by an exponential function. As opposed to using a single horizontal gradient as in other works [15,29,30],
the exponential function employed in our method integrates both horizontal and vertical gradient information
and can thus account for variations in the both directions. The function plays the role of enhancing the foveal
depression regions and highlighting weak and low contrast boundaries. As a result, the proposed geodesic distance
method (GDM) is able to segment complex retinal structures with large curvatures and other irregularities caused
by pathologies. We compute the weighted geodesic distance via an Eikonal equation using the fast sweeping
method [36–38]. A retinal layer boundary can then be detected based on the calculated geodesic distance by
solving an ordinary differential equation via a time-dependent gradient descent equation. A local search region
is identified based on the detected boundary to delineate all the nine retinal layer boundaries and overcome the
local minima problem of the GDM. We evaluate the proposed GDM through extensive numerical experiments
and compare it with state-of-the-art OCT segmentation approaches on both healthy and pathological images.

In the following sections, we shall first review the state-of-the-art methods that are to be compared with
the proposed GDM, such as parallel double snakes [14], Chiu’s graph search [15], Dufour’s method [27], and
OCTRIMA3D [29, 30]. This will be followed by the details of the proposed GDM, ground-truth validation,
numerical experimental results, and comparison of the GDM with the state-of-the-art methods.

2 Literature Review

In this section, we will provide an overview of the state-of-the-art methods (i.e. parallel double snakes [14], Chiu’s
method [15], OCTRIMA3D [29, 30], Dufour’s method [27]) that will be compared with our proposed GDM in
Section 3. For a complete review on the subject, we refer the reader to [39]. Among the four methods reviewed,
the first two can only segment B-scans, while the latter two are able to extract retinal surfaces from volumetric
OCT data. We note that the term ‘surface’ refers to a set of voxels that fall on the interface between two adjacent
retinal layer structures. The retinal layer boundaries to be delineated are shown in Figure 2.

Parallel double snakes (PDS): Rossant et al. [14] detected the pathological (retinitis pigmentosa) cellular
boundaries in B-scan images by minimising an energy functional that includes two parallel active parametric
contours. Their proposed PDS model consists of a centreline C(s) = (x(s), y(s)) parametrised by s and two
parallel curves C1(s) = C(s) + b(s)n(s) and C2(s) = C(s) − b(s)n(s) with b(s) being a spatially varying half-
thickness and n(s) = (nx(s), ny(s)) the normal vector to the the centreline C(s). Specifically, their PDS model
is defined as

E(C,C1, C2, b) = EImage(C1) + EImage(C2) + EInt(C) +R (C1, C2, b) (2.1)

where the image energy EImage(C1) = −
∫ 1

0
|∇I(C1)|2ds (∇ is the image gradient operator) attracts the para-

metric curve C1 towards one of retinal borders of the input B-scan I, whilst EImage(C2) handles curve C2 which

is parallel to C1. The internal energy EInt(C) = α
2

∫ 1

0
|Cs (s)|2ds+ β

2

∫ 1

0
|Css (s)|2ds imposes both first and second

order smooth regularities on the central curve C, with α and β respectively controlling the tension and rigidity

of this curve. R (C1, C2, b) = ϕ
2

∫ 1

0
|b′ (C)|2ds is a parallelism constraint imposed on C1 and C2. Nine retinal

borders have been delineated by the method, i.e., ILM, RNFLo, IPL-INL, INL-OPL, OPL-ONL, ONL-IS, IS-OS,
OS-RPE and RPE-CH.

Chiu’s method: Chiu et al. [15] modelled the boundary detection problem in OCT retinal B-scan as
determining the shortest-path that connects two endpoints in a graph G = (V,E), where V is a set of nodes and
E is a set of undirected weights assigned to each pair of two nodes in the graph. Node V corresponds to each

2



Figure 2: An example cross-sectional B-Scan OCT image centred at the macula, showing nine target intra-
retinal layer boundaries detected by the proposed method. The names of these boundaries labelled as notations
B1,B2...B9 are summarised in Table 1. Knowledge of these layer boundaries allows us to calculate the retinal
layer thickness, which is imperative for detecting and monitoring ocular diseases.

Table 1: Notations for nine retinal boundaries/surfaces, their corresponding names and abbreviations

Notation Name of retinal boundary/surface Abbreviation

B1 internal limiting membrane ILM
B2 outer boundary of the retinal nerve fibre layer RNFLo
B3 inner plexiform layer-inner nuclear layer IPL-INL
B4 inner nuclear layer-outer plexiform layer INL-OPL
B5 outer plexiform layer-outer nuclear layer OPL-ONL
B6 outer nuclear layer-inner segments of photoreceptors ONL-IS
B7 inner segments of photoreceptors-outer segments of photoreceptors IS-OS
B8 outer segments of of photoreceptors-retinal pigment epithelium OS-RPE
B9 retinal pigment epithelium-choroid RPE-CH

pixel in the B-scan image, whilst weight E is calculated from the intensity gradient of the image in its vertical
direction. Each node is connected with its eight nearest neighbours and all other node pairs are disconnected,
resulting in a sparse adjacency matrix of graph weights of vertical intensity variation. For example, an M ×N
sized image has an MN ×MN sized adjacency matrix with 8MN non-zero filled entries. Mathematically, the
weights between two nodes used in their method are calculated based on the pure vertical gradient value, defined
as

w (a, b) =

{
2− (ga + gb) + wmin if |a− b| ≤

√
2

0 otherwise
(2.2)

where g is the vertical gradient of a B-scan image; a and b denote receptively two separate nodes in V and
wmin is a small positive value added to stabilise the system. The most prominent boundary is then detected as
the minimum weighed path from the first to the last vertex in V using Dijkstra’s Algorithm. A similar region
refinement technique to Section 3.4 was used to detect seven retinal boundaries, i.e., ILM, RNFLo, IPL-INL,
INL-OPL, OPL-ONL, IS-OS and RPE-CH.

Dufour’s method: Dufour et al. [27] proposed a modification of optimal graph search approach [40] to
segment retinal surfaces in OCT volume data. By using soft constraints and adding prior knowledge learned
from a model, they improve the accuracy and robustness of the original framework. Specifically, their Markov
random field based model is given by

E (S) =

n∑
i=1

(Eboundary (Si) + Esmooth (Si)) +

n−1∑
i=1

n∑
j=i+1

Einter (Si, Sj)

where S is a set of surfaces S1 to Sn. The external boundary energy Eboundary (Si) is computed from the input
3D image data. The surface smoothness energy Esmooth (Si) guarantees the connectivity of a surface in 3D
and regularises the surface. The interaction energy Einter (Si, Sj) integrates soft constraints that can regularise
the distances between two simultaneously segmented surfaces. This model is then built from training datasets
consisting of fovea-centered OCT slice stacks. Their algorithm is capable to segment six retinal surfaces (n = 6 in
above formulation) in both healthy and macular edema subjects, i.e., ILM, RNFLo, IPL-INL, OPL-ONL, IS-OS
and RPE-CH.

OCTRIMA3D: Tian et al. [29, 30] proposed a real-time automatic segmentation of OCT volume data.
The segmentation was done frame-by-frame in each 2D B-Scan by considering the spatial dependency between
each two adjacent frames. Their work is based on Chiu’s graph search framework [15] for B-Scan OCT images.
However, in addition to Chiu’s work they introduce the inter-frame flattening to reduce the curvature in the
fovea region and thus the accuracy of their algorithm has been improved. Moreover, they apply inter-frame or
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intra-frame information to limit the search region in current or adjacent frame so that the computational speed
of their algorithm can be increased. Furthermore, the biasing and masking techniques are developed so as to
better attain retinal boundaries within the same search region. A totally eight retinal surfaces, i.e., ILM, RNFLo,
IPL-INL, INL-OPL, OPL-ONL, IS-OS, OS-RPE and RPE-CH, can be delineated by the method. To sum up,
Table 2 reports the retinal boundaries/surfaces segmented by the four methods as well as our GDM proposed in
the next section.

Table 2: Target boundaries/surfaces of the five methods compared in this paper (check mark means the bound-
ary/surface can be segmented, while cross mark means the boundary/surface cannot be segmented).
Method ILM (B1) RNFLo (B2) IPL-INL (B3) INL-OPL (B4) OPL-ONL (B5) ONL-IS (B6) IS-OS (B7) OS-RPE (B8) RPE-CH (B9)

PDS [14] X X X X X X X X X
Chiu’s method [15] X X X X X × X × X
Dufour’s method [27] X X X × X × X × X
OCTRIMA3D [29,30] X X X X X × X X X
GDM X X X X X X X X X

3 The Proposed Geodesic Distance Method (GDM)

In this section, we propose a novel framework using the geodesic distance to detect from OCT images nine retinal
layer boundaries defined in Figure 2 and Table 1. As the proposed methodology applies equally to both 2D and
3D segmentation, we will illustrate the approach for 2D segmentation here, as the steps would be the same for
3D segmentation. Numerical implementation of the approach is given in Appendix.

3.1 Geodesic distance

We use geodesic distance to identify the pixels on the boundaries of retinal layers in OCT images. The geodesic
distance d is the smallest integral of a weight function W over all possible paths from two endpoints (i.e. s1
and s2). The weight function determines how the path goes from s1 to s2. Small weight at one point indicates
that the path has high possibility of passing that point. Specifically, the weighted geodesic distance between two
pixels/endpoints s1 and s2 is given as

D (s1, s2) = min
C

∫ 1

0

W−1 (C (s)) ds (3.1)

where C (s) is the set of all the paths that link s1 to s2, and the path length is normalised and the start and
end locations are C(0) = s1 and C(1) = s2, respectively. The infinitesimal contour length ds is weighted by a
non-negative function W (C (s)). This minimisation problem can be interpreted as finding a geodesic curve (i.e.
a path with the smallest weighted length) in a Riemannian space. In geometrical optics, it has proven that the
solution of (3.1) satisfies the Eikonal equation (3.3).

The retinal layers of OCT images are normally near horizontal. The gradient in the vertical direction thus
can be considered as a good candidate for computing weight W in (3.1). For instance, each of the two prominent
boundaries, e.g. ILM (B1) and IS-OS (B7) in Figure 3 (a) and (e), is at the border of a dark layer above a bright
layer. As a result, pixels in the region around the two boundaries will have high gradient values, as shown in
Figure 3 (b) and (f). As the retinal layers at each side of the boundary are either transiting from dark to bright
or bright to dark, the non-negative weight function W in this paper is defined based on intensity variation as
follows

W (x) =

{
1− exp (−λ (1− n (∇xI))n (|∇yI|)) dark-to-bright
exp (−λ (1− n (∇xI))n (|∇yI|)) bright-to-dark

(3.2)

where I is an input OCT image; n (·) is a linear stretch operator used to normalise values to between 0 and 1;
exp is the exponential function and λ is a user-define parameter, together they enhance the foveal depression
regions and highlight the weak retinal boundaries [41]; and ∇x and ∇y are the first-order gradient operator
along x (vertical) and y (horizontal) direction, respectively. The two gradient operators are discretised using a
central finite difference scheme under the Neumann boundary condition. (3.2) also includes the positive horizontal
gradient information n (|∇yI|), without which only vertical direction is accounted for and it is thus only applicable
to flat retinal boundaries. Consequently, our proposed method is robust against curved features (e.g. the central
region of the fovea) as well as other irregularities (e.g. bumps or large variations of boundary locations) caused
by pathologies. In other words, the proposed method with the weight W defined in (3.2) can deal with both
normal and pathological images, as illustrated in Figure 3 as well as in the experimental section.
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Figure 3: Illustrating the effectiveness of the weight W defined in (3.2). (a) and (e): normal B-scan OCT data
and pathological B-scan from an eye with dry age-related macular degeneration (drye-AMD); (b) and (f): vertical
dark-to-bright gradient maps of (a) and (e), respectively; (c) and (g): dark-to-bright gradient maps calculated
using equation (3.2) with λ = 1. Note the gradient values of pixels have been enhanced in the region with strong
curvature and big bumps; (d) and (h): boundary detection results via the method described in Section 3.3 using
different gradient maps. Yellow lines are computed using (b) and (f), whilst red lines using (c) and (g).

3.2 Selection of endpoints s1 and s2

For fully automated segmentation, it is essential to find a way to initialise the two endpoints s1 and s2 automati-
cally. Since the retinal boundaries in the OCT images used in this paper run across the entire width of the image,
we add an additional column on each side to the gradient map computed from (3.2). As the the minimal weighted
path is sought after, a weight Wmax larger than any of the non-negative weights calculated from (3.2) is therefore
assigned to each of the newly added vertical columns (note that we use W−1 for the geodesic distance 3.1, the
minimal weighted path thereby prefers large weights). This forces the path traversal in the same direction as the
newly added vertical columns with maximal weights, and also allows the start and end points to be arbitrarily
assigned in the two columns. Once the retinal layer boundary is detected, the two additional columns can be
removed. Figure 4 shows two examples of endpoint initialisation.

ଵݏ

ଶݏ

ଵݏ

ଶݏ

Figure 4: Two segmentation examples using different automatic endpoints initialisations on a drak-to-bright
gradient map. s1 and s2 are start and end points, respectively.

3.3 Eikonal equation and minimal weighted path

The solution of (3.1) can be obtained by solving the Eikonal equation after the endpoints are determined.
Specifically, over a continuous domain, the distance map D(x) to the seed start point s1 is the unique solution
of the following Eikonal equation in the viscosity sense

|∇D (x)| = W−1 (x) , ∀x /∈ s1 (3.3)

with D (s1) = 0. The equation is a first order partial differential equation and its solution can be found via the
classical fast marching algorithm [42,43] using an upwind finite difference approximation with the computational
complexity O(MNlog(MN)) (MN is the total number of grid points). Recently, the fast sweeping algorithm
[36, 37] has been proposed. This technique is based on a pre-defined sweep strategy, replacing the heap priority
queue to find the next point to process, and thereby has the linear complexity of O(MN). In this paper, we
apply fast sweep for (3.3) and its detailed 3D implementation has been given in Appendix. Figure 5 shows two
distance maps calculated using the dark-to-bright weight defined in (3.2) and two different start points as shown
in the examples in Figure 4.
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Once the geodesic distance map to the start point s1 has been computed, the minimal weighted path (geodesic
curve) between point s1 and s2 can be extracted from the following ordinary differential equation through the
time-dependent gradient descent

γ′ (t) = −ηt∇D (γ (t)) , γ (0) = s2 (3.4)

where ηt > 0 controls the parametrisation speed of the resulting curve. To obtain unit speed parametrisation,
we use ηt = |∇D (γ (t))|−1ε . Since distance map D is nonsmooth at point s1, a small positive constant ε is added
to avoid dividing by zero. Note the point s1 is guaranteed to be found from this ordinary differential equation
because the distance field is monotonically increasing from s1 to s2, which can be observed in Figure 5. This
technique can achieve sub-pixel accuracy for the geodesic path even if the grid is discrete.

ଵݏ

ଶݏ

ଵݏ

ଶݏ

Figure 5: Two distance maps calculated using the dark-to-bright weight W−1 and two different start points in
the two exmaples in Figure 4, respectively. The distance values are expanded to [0, 800] for better visualisation.

The geodesic curve is then numerically computed using a discretised gradient descent, which defines a discrete
curve γk using

γk+1 = γk − τG
(
γk
)

(3.5)

where γk is a discrete approximation of γ(t) at time t = kτ , and the time step size τ > 0 should be small enough.

G (x) is the normalised gradient ∇D (γ (t))
/
|∇D (γ (t))|−1ε parametrised by the arc length. Once γk+1 reaches

s1, one of the retinal boundaries can be found. The following Algorithm 1 concludes the proposed geodesic
distance algorithm for extracting one retinal boarder in OCT images.

Algorithm 1: the proposed GDM for one retinal boundary detection

1: Input OCT data I (i.e. B-scan or volume)
2: calculate dark-to-bright or bright-to-dark weight W using (3.2)
3: pad two new columns to the weight and assign large values to them
4: select two endpoints s1 and s2 on the two newly padded columns
5: calculate distance map D in (3.3) using fast sweeping algorithm
6: find one retinal layer boundary γ using the gradient descent flow (3.5)
7: remove the additional columns in the edge detection result

3.4 Detection of nine retinal layer boundaries

We have introduced how the proposed geodesic distance algorithm (3.1) can find the minimal weighted path
across the whole width of the OCT image for one retinal layer boundary. In this section, we shall describe the
implementation details of the proposed approach to delineate nine retinal layer boundaries as shown in Figure 2
and Table 1. Since the proposed model (3.1) is not convex, its solution can easily get stuck in local optima. For
example, Figure 3 (c) and (g) have high gradient values in the region around both the ILM and IS-OS boundaries.
However, in Figure 3 (d) the algorithm detected the ILM boundary while in Figure 3 (h) it detected the IS-OS.
In order to eliminate such uncertainty, we dynamically define the search region based on the detected boundaries.
The following section describes the proposed method in detail.

3.4.1 Detection of the IS-OS boundary

The intensity variation between two layers divided by the IS-OS (B7) border are normally the most prominent
in OCT B-scans. However, due to the fact that OCT images are always corrupted by speckle noise as a result
of light absorption and scattering in the retinal tissue, it is not always the case. For example, the intensity
variation around the IML (B1) border sometimes can be more obvious than that around the IS-OS, as shown
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in the gradient image Figure 3 (c). To make sure the segmentation of the IS-OS boundary we first enhance the
IS-OS via a simple local adaptive thresholding approach1, which is given as follows

p =

{
0 ls (I, ws)− I > C
1 otherwise

(3.6)

where I is the input OCT image, and ls (p, ws) means that I is convolved with a suitable operator, i.e. the mean
or median filter. ws is the window size of the filter and C a user-defined threshold value. In the paper, we use
the mean filter with the window size ws = 100 and set C = 0.01. The enhanced image can be then obtained by
multiplying the original image I with p. The first two images in Figure 6 illustrates that the contrast of the IS-OS
boarder has been enhanced and the most obvious intensity variation now takes place around the IS-OS boundary.
The IS-OS boundary then is detected on the dark-to-bright gradient image. Consequently, the delineated line is
guaranteed to pass the IS-OS in both cases, as shown in the last two images in Figure 6.

Figure 6: Detecting the IS-OS boarders in the normal and pathological subjects after image enhancement via a
local adaptive thresholding method (3.6).

3.4.2 Detection of the RPE-CH, OS-RPE and ONL-IS boundaries

Once the IS-OS (B7) is segmented, it can be used as a reference to limit the search region for segmenting the
RPE-CH (B9), OS-RPE (B8) and ONL-IS (B6) boundaries. RPE-CH and OS-RPE are below the IS-OS and they
are delineated in the following way: the RPE-CH can be extracted by applying the geodesic distance algorithm
with the bright-to-dark gradient weights (3.2) obtained from the region pixels below the detected IS-OS (i.e. the
bright-to-dark gradient weights are set to zeros above the IS-OS); the OS-RPE is then delineated on the bright-
to-dark gradient map in the region between the detected IS-OS and RPE-CH (i.e. the bright-to-dark gradient
weights are set to zeros outside of the region between the IS-OS and RPE-CH). The dark-to-bright ONL-IS is
above the IS-OS. The search region can be constructed between the IS-OS boundary and a parallel line above
it with a diameter of 15 pixels. The dark-to-bright gradient weights outside of the region are then set to zeros.
Hence, the only boundary in the search region of the dark-to-bright gradient image is the ONL-IS which can be
extracted.

3.4.3 Detection of the ILM and INL-OPL boundaries

Both the ILM (B1) and INL-OPL (B4) are at the border of a darker layer above a bright layer. The intensity
variation around the IML boundary is much more prominent and thus the IML is segmented first. The detected
ONL-IS (B6) edge is taken as a reference and the dark-to-bright gradient weights below the ONL-IS is set to
zeros. The ILM can then be obtained via the proposed method. The INL-OPL can then be easily detected on
the dark-to-bright gradient map by simply limiting the search region between the ILM and ONL-IS (i.e. the
dark-to-bright gradient values are set to zeros outside of the region between the ILM and ONL-IS).

3.4.4 Detection of the OPL-ONL, IPL-INL and RNFLo boundaries

The OPL-ONL (B5), IPL-INL (B3) and RNFLo (B2) demonstrate a bright layer above a darker layer and thus
can be detected on the bight-to-dark gradient map defined in (3.2). The segmented INL-OPL (B4) and ONL-IS
(B6) are taken as two reference boundaries, and the OPL-ONL edge can be found by limiting the search region
between the INL-OPL and ONL-IS. The search region for the IPL-INL can be then constructed between the
INL-OPL boundary and a parallel line above it with a diameter of 20 pixels. The IPL-INL can be located on a
bright-to-dark gradient map which is set to zeros outside of the search region constructed. Finally, the RNFLo
(B2) can be found in the search region between the two reference boundaries IPL-INL and IML (B1). However,
because the IPL-INL and IML boundaries are very close to each other in the central region of the fovea, the
search region for the RNFLo are sometimes missing around the fovea region. This leads to segmentation errors
of the RNFLo, as shown in Figure 7 (a). These errors however can be avoided by simply removing the spurious
points detected on the RNFLo in the region above the IML, as shown in Figure 7 (b). The proposed methods
for segmenting nine retinal layer boundaries can be summarised in the flow chart as shown in Figure 8.

1http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh.htm
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Figure 7: The segmentation results of the nine retinal layer boundaries on both normal and dye-AMD pathological
B-scans, as shown in (a) and (c). The detection of the RNFLo boundary however shows errors due to the absence
of a search region for this boundary in (a). (b) shows that these errors have been corrected.

Input OCT Data

Local adaptive 
thresholding (2.6)

Detect IS-OS (B7) 
border using 
Algorithm 1

Detect RPE-CH (B9) 
border blew IS-OS 

(B7)

Detect ONL-IS (B6) 
border in the search 
region constructed 

above IS-OS (B7)

Detect OS-RPE (B8) 
border between IS-OS 
(B7) and RPE-CH (B9) 

Detect ILM (B1) 
border above ONL-

IS (B6)

Detect INL-OPL (B4) 
border between ILM 
(B1) and ONL-IS (B6)

Detect OPL-ONL (B5) 
border between 
INL-OPL (B4) and 

ONL-IS (B6)

Detect IPL-INL (B3) 
border in the search 
region constructed 
above INL-OPL (B4)

Detect RNFLo (B2) 
border between ILM 
(B1) and IPL-INL (B3) 

Output 9 retinal 
borders

Figure 8: The overview of the proposed framework for dynamically delineating nine retinal layer boundaries
defined in Figure 2 and Table 1. Section 3.4 describes this flow chart in detail.

4 Experiment Setup

To evaluate the performance of the proposed GDM qualitatively and quantitatively, numerical experiments are
conducted to compare it with the state-of-the-art approaches reviewed in Section 2 on both healthy and patho-
logical OCT retinal images. As the GDM is able to segment both 2D and 3D OCT images, we perform numerical
experiments on both B-scan and volumetric OCT data. An anisotropic total variation [44] is used to reduce noise
prior to determining the layers boundaries/surfaces for all segmentation methods. In the following, we introduce
the detailed procedure of OCT data acquisition, the evaluation metrics used to quantify the segmentation results,
the final numerical results, and the computational complexity of different methods.

4.1 Clinical Data

30 Spectralis SDOCT (ENVISU C class 2300, Bioptigen, axial resolution = 3.3m, scan depth = 3.4mm, 32, 000
A-scans per second) B-scans from 15 healthy adults (mean age = 39.8 years, SD = 8.6 years; 7 male, 8 female)
were used for the research. All the data was collected after informed consent was obtained and the study adhered
to the tenets of the Declaration of Helsinki and Ethics Committee approval was granted.

2D B-scan data: The normal vivo B-scan OCT data was imaged from the left and right eye of 15 healthy
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adults using a spectral domain OCT device with a chin rest to stabilise the head. The B-scan located at the
foveal centre was identified from the lowest point in the foveal pit where the cone outer segments were elongated
(indicating cone specialisation). To reduce the speckle noise and enhance the image contrast, every B-scan was
the average of aligned images scanned at the same position. In addition to the 30 OCT images from the healthy
subjects, another 20 B-scans from subjects with pathologies are also used to compare the proposed GDM with
other approaches in pathological cases. These B-scans are from an eye with dry age-related macular degeneration
(drye-AMD), which is available from Dufour’s software package’s website2. The accuracy of segmentation results
obtained by the three automated 2D methods (i.e. PDS, Chiu’s method and GDM) over these healthy and
pathological B-scans is evaluated using the ground truth datasets, which were manually delineated with extreme
carefulness by one observer.

3D Volume data: 10 Spectralis SD-OCT (Heidelberg Engineering GmbH, Heidelberg, Germany) volume
data sets from 10 healthy adult subjects are used in this study. Each volume contains 10 B-scans, and the OCT
A-scans outside the 6mm × 6mm (lateral × azimuth) area and centred at the fovea were cropped to remove
low signal regions. All volumetric data can be downloaded from [29], where also contains the results of the
OCTRMA3D, and the manual labellings from two graders. In this study we choose the manual labelling of
grader 1 as the 3D ground truth.

4.2 Evaluation Metrics

Performance metrics are defined to demonstrate the effectiveness of the proposed method and compare it with
the existing methods. Three commonly used measures of success for OCT boundary detection are signed error
(SE), absolute error (AE) and Hausdorff distance (HD). Among them, SE indicates the bias and variability of
the detection results. AE is the absolute difference between the automatic detection results and ground truth,
while HD measures the distance between the farthest point of a set to the nearest point of the other and vice
versa. Specifically, these metrics are denoted as

SE
(
Bi, B̃i

)
= 1

n

n∑
j=1

(
Bij − B̃ij

)
AE

(
Bi, B̃i

)
= 1

n

n∑
j=1

(∣∣∣Bij − B̃ij∣∣∣)
HD

(
Bi, B̃i

)
= max

(
max
x∈Bi

{
min
y∈B̃i

‖x− y‖
}
,max
x∈B̃i

{
min
y∈Bi

‖x− y‖
})

where Bi and B̃i are respectively the detected boundaries and ground truth boundaries (i.e. manual labellings).
n is the number of pixels/volexs that fall on the retinal boundary/surface. Statistically, when the SE value is
close to zero, the difference between Bi and B̃i is small. In this case, the detection result is less bias. The
measurements of AE and HD (varies from 0 to ∞ theoretically) signify the difference between two boundaries,
e.g., 0 indicates that both retinal structures share exactly the same boundaries, and larger AE and HD values
mean larger distances between the measured boundaries. We also monitor the overall SE (OSE), AE (OAE) and
HD (OHD) during all the experiments. They are defined as

OSE =
1

s

s∑
i=1

SE
(
Bi, B̃i

)
OAE =

1

s

s∑
i=1

AE
(
Bi, B̃i

)
OHD =

1

s

s∑
i=1

HD
(
Bi, B̃i

)
where s is the total number of retina boundaries one method can delineate.

4.3 Parameter Selection

There are five parameters in the PDS model: three smooth parameters α, β, ϕ and two time step sizes γC and
γb used within the gradient descent equations to minimise the functional (2.1) with respect to C and b. In this
study we use α = 10, β = 0, ϕ = 700, γC = 10 and γb ≥ 2 suggested in [14]. In addition, as the PDS is a
nonconvex model and its segmentation results depend on initialisation. We initialise the parallel curves very
closely to the true retinal boundaries for fair comparison with other methods. A maximal number of iterations
number 500 is used to ensure convergence of the PDS model. The graph theoretic based methods, i.e., Chiu’s
method, OCTRIMA3D and Dufour’s method, require no parameter input. Finally, our GDM has two build-in
parameters: λ in (3.2) and τ in (3.5). We set λ = 10 and τ = 0.8 to detect the retinal layers in the OCT images.

2http://pascaldufour.net/Research/software data.html
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4.4 Numerical Results

We first visually compare the segmentation results of the proposed GDM method, the PDS (2.1) and Chiu’s
graph search method on both the healthy and pathological B-scans, which are shown in Figure 9 (a)-(d). The
PDS results as shown in (e)-(h) have some errors on some of the boundaries detected. For instance, the B1 and
B2 cannot converge to the true retinal boundaries around the central fovea region, as shown in (f) and (h). This
is because the PDS is the classical snake-driven model which has difficulty handling boundary concavity problem.
Moreover, due to the fact that the B7 has a much stronger image gradient than the B6 and B8, some parts of
these two boundaries have been mistakenly attracted to the B7. As Chiu’s graph search method only considers
the intensity changes in the pure vertical direction (2.2), it also fails segment the fovea region layers with strong
curvature, as shown in (i)-(l). Moreover, the algorithm cannot handle irregular bumps caused by pathologies
very well, which can be observed from the bottom B9 line delineated in (k) and (l). In general, Chiu’s method
works very nicely when the retinal structures are flat or smooth without big changes on boundary locations. The
results by the proposed GDM method, as shown in (m)-(p), performs better than the PDS and Chiu’s methods
when compared with the ground truth in the last row. As analysed in Section 3, the gradient weights defined
in (3.2) account for both vertical and horizontal variations, making it very suitable for both flat and nonflat
retinal structures. Hence, the GDM is a better clinical tool for detecting retinal boundaries from both normal or
pathological subjects.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 9: Comparison of different segmentation methods on healthy and pathological 2D OCT B-scans. 1st row:
healthy (i.e. first two) and pathological (i.e. last two) B-scans; 2nd row: results by the PDS model (2.1); 3rd
row: results by Chiu’s method; 4th row: results by the proposed GDM; 5th row: ground truth.
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The accuracy of the segmentation results by different methods against ground truth over 30 healthy and 20
pathological B-scans is indicated in Table 3 and Table 4, respectively. In order to make the comparison clearer,
we plot the data in the two tables in Figure 10 and Figure 11, respectively.

In Table 3 and Figure 10, the SE shows that the PDS leads to very large segmentation bias with the largest
error being 6.01µm, whilst the bias of the GDM is less than 1.22µm for all the retinal layer boundaries. Moreover,
the mean SE plot of the GDM is close to zero, which means the GDM are less biased than the other two methods.
Large errors of the PDS normally take place at the B1, B2, B6 and B8, which is consistent with visual inspection
on the healthy scans in Figure 9. Furthermore, the mean AE quantities and plots show that the GDM performs
the best for all the boundaries. Particularly at the B1 and B2 where the curved fovea region is located, the HD
values of the GDM (3.702±1.62µm, 7.340±2.16µm) are significantly lower than those of the PDS (36.56±15.9µm,
29.00±11.6µm) and Chiu’s method (22.12±9.23µm, 21.25±5.98µm). However, the accuracy of different methods
are comparable at flat or smooth retinal boundaries such as B4, B7 and B9. Finally, as the manual segmentation
traces the small bumps of the true boundaries but the segmentation results by the PDS are however very smooth,
the overall accuracy of the method is the lowest among all the approaches compared.

Table 3: Mean and standard deviation of SE (µm), AE (µm) and HD (µm) calculated using the results of different
methods (the PDS, Chiu’ method and GDM) and the ground truth manual segmentation, over 30 healthy OCT
B-scans.

SE (µm) AE (µm) HD (µm)
Boundary PDS Chiu et al. GDM PDS Chiu et al. GDM PDS Chiu et al. GDM

ILM (B1) -3.92±1.90 -1.22±0.68 0.273±0.33 4.615±2.03 2.605±1.12 0.924±0.26 36.56±15.9 22.12±9.23 3.702±1.62
RNFLo (B2) -2.57±1.38 -1.67±1.34 -0.53±0.37 3.864±1.49 2.676±0.82 1.262±0.34 29.00±11.6 21.25±5.98 7.340±2.16
IPL-INL (B3) -0.55±0.83 -1.04±1.21 -0.38±0.61 1.876±0.60 2.020±0.79 1.314±0.32 8.619±3.77 10.53±5.25 7.258±1.92
INL-OPL (B4) 0.012±0.58 -0.90±0.61 -0.71±0.71 1.708±0.39 1.699±0.40 1.807±0.51 6.772±2.53 7.036±2.84 7.505±2.96
OPL-ONL (B5) -0.23±1.29 -1.51±1.30 -1.12±1.17 2.127±1.00 2.133±1.05 1.949±0.94 10.22±3.70 9.044±3.48 7.463±3.24
ONL-IS (B6) 6.010±0.83 — -0.73±0.49 6.055±0.86 — 1.376±0.36 9.969±1.58 — 4.630±1.05
IS-OS (B7) -0.09±0.61 0.194±0.49 0.291±0.63 0.823±0.29 0.720±0.25 0.771±0.36 3.676±1.63 3.240±1.60 2.611±0.74
OS-RPE (B8) 5.202±2.25 — -0.78±0.47 5.570±1.76 — 1.125±0.36 8.913±2.28 — 3.601±0.96
RPE-CH (B9) -0.31±0.79 -0.84±0.58 -0.74±0.69 1.291±0.25 1.228±0.47 1.213±0.45 4.237±1.47 4.027±1.31 3.831±1.08
Overall 0.394±0.39 -1.00±0.54 -0.49±0.23 3.103±0.74 1.869±0.59 1.305±0.32 13.11±4.25 11.04±3.75 5.327±1.11
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Figure 10: Plots of mean and standard derivation obtained by different methods in Table 3 for healthy B-scans.
The 1st and 2nd rows respectively denote the mean and standard derivation of the SE (µm), AE (µm) and HD
(µm) for segmentation of boundary B1 to B9 using the PDS, Chiu’s mehtod and GDM. The overall value is the
average result over all boundaries.

In Table 4 and Figure 11, the mean and standard deviation plots show that the GDM is more accurate and
robust compared with the other two methods for pathological data. However, larger errors have been found at
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the last four boundaries B6, B7, B8 and B9 for all the segmentation methods. This is because the dry age-related
macular degeneration has led irregularities to these retinal boundaries, making these methods less accurate and
robust. The overall accuracy measured by the three quantities has decreased compared with the corresponding
measurements listed in Table 3. Chiu’s graph search method using Dijkstra’s algorithm can be deemed as a
discrete approximation of the proposed GDM. This makes its final results comparable to those of the GDM at
some flat retinal boundaries and better than those of the PDS. However, the fast sweeping algorithm used to
solve the Eikonal equation guarantees local resolution for the geodesic distance, which significantly reduces the
grid bias and achieves sub-pixel accuracy for the geodesic path of the GDM. In addition to the novel weight
function proposed in (3.2), the GDM also resolves the metrisation problem caused by discrete graph method and
thus can obtain more accurate results than Chiu’s method for delineating cellular layers from both normal or
pathological subjects.

Table 4: Mean and standard deviation of SE (µm), AE (µm) and HD (µm) calculated using the results of
different methods (the PDS, Chiu’s method and GDM) and the ground truth manual segmentation, over 20
pathological OCT B-scans.

SE (µm) AE (µm) HD (µm)
Boundary PDS Chiu et al. GDM PDS Chiu et al. GDM PDS Chiu et al. GDM

ILM (B1) -0.41±0.59 -0.34±0.25 -0.36±0.29 0.932±0.44 0.796±0.17 0.683±0.09 6.461±4.86 4.087±1.01 3.337±1.10
RNFLo (B2) -0.93±0.93 -0.38±0.33 -0.49±0.50 1.792±0.63 1.717±0.53 1.257±0.32 6.145±1.84 8.464±4.55 6.109±2.49
IPL-INL (B3) -0.23±0.62 -0.22±0.27 -0.32±0.32 1.228±0.21 1.149±0.20 0.926±0.16 7.640±1.31 5.857±0.98 5.151±1.82
INL-OPL (B4) 0.578±0.64 0.555±0.39 0.392±0.26 1.546±0.28 1.563±0.30 1.419±0.16 7.165±1.07 8.194±1.36 5.942±1.32
OPL-ONL (B5) -0.04±1.08 0.286±0.55 -0.07±0.64 2.371±0.76 2.255±0.60 2.019±0.65 11.28±1.95 9.858±2.76 9.281±2.25
ONL-IS (B6) 3.339±1.22 — -0.57±0.72 4.484±0.50 — 1.442±0.34 15.23±4.03 — 6.205±1.01
IS-OS (B7) -0.23±0.86 1.030±1.06 0.350±0.50 2.415±1.25 2.399±1.05 1.055±0.22 15.95±10.2 17.66±11.3 6.795±4.65
OS-RPE (B8) 2.371±4.17 — 0.028±0.41 5.927±2.34 — 1.821±0.47 22.63±12.9 — 9.673±1.30
RPE-CH (B9) 3.315±2.59 3.011±2.98 0.027±0.35 4.797±2.59 5.146±2.70 2.252±0.46 31.23±12.9 32.63±13.2 13.19±3.50
Overall 0.863±0.59 0.563±0.44 -0.11±0.22 2.832±0.83 2.146±0.70 1.430±0.20 13.75±4.72 12.39±4.06 7.300±0.67
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Figure 11: Plots of mean and standard derivation obtained by different methods in Table 4 for pathological
B-scans. The 1st and 2nd rows respectively denote the mean and standard derivation of the SE (µm), AE (µm)
and HD (µm) for segmentation of boundary B1 to B9 using the PDS, Chiu’s mehtod and GDM. The overall
value is the average result over all boundaries.

In the next section, the proposed GDM is used to segment the OCT volume dataset that includes samples
from ten healthy adult subjects, named as Volume 1 to 10 respectively. Dufour’s and OCTRIMA3D methods are
also used to segment the same dataset for comparison purposes. In Figure 12, we demonstrate four representative
segmentation results of GDM on Volume 1, 2, 7 and 9.
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Figure 12: 3D rendered images of human in vivo intra-retinal layer surfaces obtained through segmenting Spec-
tralis SD-OCT volumes with the proposed GDM method. Samples are named Volume 1, Volume 2, Volume 7
and Volume 9. The color used for each individual retinal surface is the same as in Figure 2.
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y

Figure 13: Two B-scans extracted from the Volume 4 sample. The left shows the en-face representation of the
OCT scan with two lines (green and red) overlaid representing the corresponding locations of two B-scans within
a volume present in the right.

Figure 14: The comparison between Dufour’s method (left), OCTRIMA3D (middle) and GDM (right) on the
two B-scans in Figure 13. The segmentation results by these methods are marked with red lines while the ground
truth using manual labelling with green lines.
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The segmentation results of the three approaches on an exemplary sample (Volume 4) are shown in two
distinctive B-scans in Figure 13 and 14, where one B-scan retinal structures are quite flat and the other contains
the nonflat fovea region. Dufour’s method has lower accuracy than the OCTIMA3D and GDM for both cases.
OCTRIMA3D extends Chiu’s method to 3D space and improves it by reducing the curvature in the fovea region
using the inter-frame flattening technique, so the method performs very well for both flat and nonflat retinal
structures. However, there still exist some obvious errors on the 5th boundary B5. OCTRIMA3D is able to
flatten the B1 and in the meanwhile it also increases the curvature of its adjacent boundaries such as B5, which
might be the reason leading to the errors. Compared with the other two, the GDM’s results show less green lines,
verifying that the results are closer to ground truth and thus it is the most accurate among the three compared.
In addition to the 2D visualisation, the 3D rendering of the results segmented by the three approaches is given in
Figure 15. The experiment furthermore shows that Dufour’s results deviate much from ground truth, while the
OCTRIMA3D is better than Dufour’s method and comparable to the GDM. The GDM results cover less grey
ground truth and are thereby the best.

(a) (b) (c) (d) (e) (f) (g)

Figure 15: The 3D comparison between Dufour’s method, OCTRIMA3D and GDM by segmenting the intra-
retinal layer surfaces from the Volumes 4 sample. Column (a)-(d) are respectively Dufour’s results, OCTRIMA3D
results, GDM results and ground truth. Column (e)-(g) are respectively the segmentation results of the three
compared methods, overlaid with ground truth. Row 1-6 are the results for the individual surface B1, B2, B3,
B5, B7 and total retina surfaces, respectively.

Table 5: The SE (µm), AE (µm) and HD (µm) calculated using the results of different methods (Dufour’s
method, OCTRMIA3D and GDM) and the ground truth manual segmentation, for the OPL-ONL (B5) surface
in each of the 10 OCT volumes.

SE (µm) AE (µm) HD (µm)
Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM

1 -1.194 0.4559 0.3782 2.3816 1.3490 1.0720 25.688 15.273 10.449
2 -2.170 -0.036 -0.128 4.5250 0.9089 0.7814 56.667 11.570 7.0938
3 -2.576 0.4182 0.5983 3.6129 1.3237 1.0989 25.203 16.719 9.5326
4 -2.296 1.0987 0.6774 3.8185 1.5175 1.0753 51.522 18.364 9.6151
5 -1.680 1.3288 0.5909 4.3327 1.5012 0.9005 56.223 11.889 8.8419
6 -2.623 1.0732 0.2974 4.0682 1.4838 0.9493 43.070 19.201 9.5281
7 -2.326 0.5294 0.4529 3.1506 0.9378 0.7433 31.782 8.6701 6.4803
8 -0.636 1.1355 0.6833 2.3955 1.4455 1.0069 25.481 17.930 11.685
9 -4.206 0.3077 0.0859 4.5813 1.0780 0.7678 43.223 8.9694 5.7191
10 -2.648 0.6701 0.2606 4.4903 1.0627 0.7877 41.017 11.666 10.961
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Table 6: The SE (µm), AE (µm) and HD (µm) calculated using the results of different methods (Dufour’s
method, OCTRMIA3D and GDM) and the ground truth manual segmentation, for the IS-OS (B7) surface in
each of the 10 OCT volumes

SE (µm) AE (µm) HD (µm)
Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM

1 -0.432 -0.148 -0.019 1.1013 0.5391 0.4437 16.559 4.7616 4.5805
2 0.7476 -0.276 -0.079 2.0329 0.5539 0.3971 20.309 5.2093 3.7743
3 -0.311 -0.291 -0.106 1.4347 0.5406 0.4629 18.432 2.9790 4.0176
4 0.3652 -0.116 0.3363 1.6954 0.5271 0.4601 27.853 5.3672 2.7882
5 0.6057 -0.098 0.0994 1.7567 0.4756 0.3500 26.556 3.7573 3.4150
6 0.9825 -0.592 -0.139 2.4970 0.7247 0.4066 23.487 5.9301 3.9297
7 -1.247 -0.536 0.0237 1.3895 0.7501 0.3716 10.016 3.1398 3.6980
8 -0.311 -0.069 0.1740 1.0438 0.4053 0.3466 15.044 4.2301 4.3940
9 -0.755 -0.111 0.1407 0.8068 0.5422 0.3939 3.5210 3.4263 3.3868
10 -0.099 -0.220 0.1028 1.2941 0.5609 0.4246 13.313 3.1210 3.5361

Table 7: The OSE (µm), OAE (µm) and OHD (µm) calculated using the results of different methods (Dufour’s
method, OCTRMIA3D and GDM) and the ground truth manual segmentation, for overall retina surfaces in each
of the 10 OCT volumes

OSE (µm) OAE (µm) OHD (µm)
Volume # Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM Dufour et al. OCTRIMA3D GDM

1 -1.271 0.3607 0.4338 1.8358 1.1204 0.9538 17.486 9.3358 7.9163
2 -1.161 0.0246 0.0640 2.5380 0.9652 0.7238 29.682 7.7987 6.1267
3 -1.513 -0.052 0.3456 2.1470 0.9343 0.7838 19.985 8.3491 6.9920
4 -1.431 0.4272 0.3560 2.5278 1.0374 0.8667 31.346 9.4042 7.3130
5 -1.020 0.6369 0.5021 2.4119 1.0794 0.8289 32.607 8.6822 7.1379
6 -1.434 0.4216 0.3969 2.6754 1.1371 0.8606 28.629 9.5267 7.2548
7 -2.010 0.0059 0.3283 2.2458 0.9682 0.7407 21.788 7.0644 6.8279
8 -1.031 0.5815 0.5785 1.7462 1.1063 0.9067 17.610 10.100 8.5112
9 -1.951 0.0542 0.2014 2.1368 0.8771 0.6922 21.344 5.7482 5.4794
10 -1.513 0.1022 0.2109 2.3315 0.8397 0.6596 24.841 6.3250 6.7132
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Figure 16: Boxplots for the SE (µm), AE (µm), HD (µm), OSE (µm), OAE (µm) and OHD (µm) obtained
by different methods in Table 5-7 for the 10 OCT volumes. 1st row: boxplots of Table 5; 2nd row: boxplots of
Table 6; 3rd row: boxplots of Table 7.

Table 5-7 contain quantitative information for comparing the accuracy of the three methods on the 10 OCT

15



volumes. Table 5 lists the quantities for the surface B5 around the fovea region, and Table 6 presents the
numerical results for the surface B7 that is flatter and smoother. In Table 5, the SE quantity indicates that
Dufour’s method produces larger segmentation bias than the OCTRIMA3D and GDM. The SE values by the
GDM are in the range of [-0.128µm 0.6833µm], showing less variability than those by the other two methods.
Moreover, the GDM leads to the smallest AE and HD quantities in all 10 cases, indicating that the GDM is
the best among all the methods. Compared with those in Table 5, the quantities in Table 6 show a significant
improvement of all the methods. For example, the range of the HD quantity by Dufour’s method has dropped
from [25.688µm 56.667µm] to [3.521µm 27.853µm]. In addition, the accuracy gap between the OCTRIMA3D
and GDM has been reduced. The HD values of Volume 3, 7 and 10 by the OCTRIMA has even become smaller
than the corresponding values by the GDM. These improvements are the fact that the retinal surface B5 is flat
and the voxel values remain fairly constant. From the OAE and OHD in Table 7 we can observe that the accuracy
of the GDM is the highest for the total retina surfaces among the existing approaches.

The corresponding boxplots of Table 5-7 are shown in Figure 16. It is clear that the proposed GDM method
performs consistently better, with higher accuracy and lower error rates for both flat and nonflat retina layers.
The boxplots show that there is little variation in performance across the modelled structures and that even
in the worst case scenario the proposed method yields lower error rate than the average performance of other
methods. Furthermore, in Figure 17 we present the 3D plots of the SE, AE and HD quantities computed by the
three methods on the 10 OCT volumes. The SE values by the GDM are closer to zero and the AE and HD values
by it remain smaller. The overall distribution of these discrete data points also indicates that the GDM results
are less oscillating. We can thus conclude from Figure 17 that the GDM is the best among all the methods
compared for extracting intra-reintal layer surfaces from 3D OCT volume data in terms of both accuracy and
robustness.
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Figure 17: 3D plots of the SE (µm), AE (µm) and HD (µm) obtained using 10 OCT volumes using Dufour’
method, OCTRMIA3D and GDM.
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4.5 Computational Complexity Analysis

The experimental results in Section 4.4 have shown that the performance of our algorithm is superior over others
in terms of accuracy. In this section the performance of the different approaches in terms of the computational
time is demonstrated. We implemented PDS, Chiu’s method and GDM using Matlab 2014b on a Windows 7
platform with an Intel Xeon CPU E5-1620 at 3.70GHz and 32GB memory. For a 633 × 496 sized B-scan, with
initialisation close to the true retinal boundaries, it takes 3.625s (500 iterations) for PDS to delineate two parallel
boundaries. Chiu’s method needs 1.962s to detect one boundary, while the GDM only takes 0.415s. Note that
the time complexity of Chiu’s graph search method is O(|E|log(|V |)), where |V | and |E| are the number of nodes
and edges. In the context of boundary detection, |V | = MN and |E| = 8MN . Hence the time complexity of
the method is O(MNlog(MN)). In contrast, our GDM solved using fast sweeping only has linear complexity
of O(MN), which is more efficient than Chiu’s method. Instead of directly doing segmentation in 3D, the
OCTRMIA3D explores spatial dependency between two adjacent B-scans and applies Chiu’s method to each 2D
frame independently. The OCTRMIA3D is thus able to track retinal boundaries in 3D volume efficiently. It has
been reported in [29] that the processing time of the OCTRMIA3D for the whole OCT volume of 496× 644× 51
voxels was 26.15s, which is faster than our GDM (40.25s is used to segment a 496 × 633 × 10 sized volume).
However, such procedure in the OCTRMIA3D complicates the whole 3D segmentation process and might make
the algorithm less general. Finally, Dufour’s graph method needs 14.68s to detect the six intra-retinal layers
surfaces on a 496 × 633 × 10 sized volume. Dufour’s method was implemented using a different programming
language (C) and delineated different number of retinal surfaces from those of GDM so comparison can not be
made between the two methods.

5 Conclusion

We have presented a new automated segmentation framework based on the geodesic distance for delineating
retinal layer boundaries in 2D/3D OCT images. The framework integrates horizontal and vertical gradient in-
formation and can thus account for changes in the both directions. Further, the exponential weight function
employed within the framework enhances the foveal depression regions and highlights the weak and low contrast
boundaries. As a result, the proposed method is able to segment complex retinal structures with large curva-
tures and other irregularities caused by pathologies. Extensive numerical results, validated with ground truth,
demonstrate the effectiveness of proposed framework for segmenting both normal and pathological OCT images.
The proposed method has achieved higher segmentation accuracy than existing methods, such as the parameter
active contour model and the graph theoretic based approaches. Ongoing research includes integrating the seg-
mentation framework into a system for detection and quantification of retinal fractures and other diseases of the
retina.

6 Appendix

We present the 3D fast sweeping algorithm to solve the Eikonal equation (3.3). Given a seed point s1, its distance
function d(x) satisfies the following Eikonal equation

|∇d(x)| = f(x), x /∈ s1 (6.1)

with d(s1) = 0 and f(x) = W−1(x) where W is defined in (3.2). (6.1) is a typical partial differential equation and
it can be solved efficiently by using the fast sweeping algorithm proposed by Zhao [36]. To do so, the Godunov
upwind difference scheme is used to discretise (6.1) as follows[

(dni,j,k − dnxmin)+
]2

+
[
(dni,j,k − dnymin)+

]2
+
[
(dni,j,k − dnzmin)+

]2
= f2i,j,k (6.2)

In equation (6.2), dnxmin = min(dni,j+1,k, d
n
i,j−1,k), dnymin = min(dni+1,j,k, d

n
i−1,j,k), dnzmin = min(dni,j,k+1, d

n
i,j,k−1)

and x+ =

{
x x > 0
0 x ≤ 0

. Boundary conditions need to be handled in the computational grid space. One-sided

upwind difference is used for each of the 6 boundary faces of the grid space. For example, at the left boundary
face, a one-sided difference along the x direction is computed as[

(dni,1,k − dni,2,k)+
]2

+
[
(dni,1,k − dnymin)+

]2
+
[
(dni,1,k − dnzmin)+

]2
= f2i,1,k

dnxmin, dnymin and dnzmin are then sorted in increasing order and the sorted version is recorded as a1, a2 and a3.
So, the unique solution to (6.2) is given as follows:

dn+1
i,j,k = min(dni,j,k, d̃i,j,k) (6.3)
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where d̃i,j,k is a piecewise function containing three parts

d̃i,j,k =


1
3

(
a1 + a2 + a3 +

√
3f2i,j,k − (a1 − a2)

2 − (a1 − a3)
2 − (a2 − a3)

2
)

1
2

(
a1 + a2 +

√
2f2i,j,k − (a1 − a2)

2
)

a1 + fi,j,k

The three parts correspond to the following intervals, respectively

f2i,j,k ≥ (a1 − a3)2 + (a2 − a3)2

(a1 − a2)2 ≤ f2i,j,k < (a1 − a3)2 + (a2 − a3)2

f2i,j,k < (a1 − a2)2

To solve (6.3), which is not in analytical form, the fast Gauss-Seidel iteration with alternating sweeping
orderings is used. For initialization, the value of the seed point s1 is set to zero, and this value is fixed in later
calculations. The rest of the points are set to large values, and these values will be update later. The whole 3D
grid is traversed in the following orders for the Gauss-Seidel iteration

(1) i = 1 : M, j = 1 : N, k = 1 : H; (2) i = M : 1, j = N : 1, k = H : 1

(3) i = M : 1, j = 1 : N, k = 1 : H; (4) i = 1 : M, j = N : 1, k = H : 1

(5) i = M : 1, j = N : 1, k = 1 : H; (6) i = 1 : M, j = 1 : N, k = H : 1

(7) i = 1 : M, j = N : 1, k = 1 : H; (8) i = M : 1, j = 1 : N, k = H : 1

References

[1] David Huang, Eric A Swanson, Charles P Lin, Joel S Schuman, William G Stinson, Warren Chang, Michael R
Hee, Thomas Flotte, Kenton Gregory, Carmen A Puliafito, and James G Fujimoto. Optical coherence
tomography. Science, 254(5035):1178–1181, 1991.

[2] Michael R Hee, Joseph A Izatt, Eric A Swanson, David Huang, Joel S Schuman, Charles P Lin, Car-
men A Puliafito, and James G Fujimoto. Optical coherence tomography of the human retina. Archives of
ophthalmology, 113(3):325–332, 1995.

[3] Dara Koozekanani, Kim Boyer, and Cynthia Roberts. Retinal thickness measurements from optical coherence
tomography using a markov boundary model. Medical Imaging, IEEE Transactions on, 20(9):900–916, 2001.

[4] Hiroshi Ishikawa, Scott Piette, Jeffrey M Liebmann, and Robert Ritch. Detecting the inner and outer
borders of the retinal nerve fiber layer using optical coherence tomography. Graefe’s archive for clinical and
experimental ophthalmology, 240(5):362–371, 2002.

[5] Hiroshi Ishikawa, Daniel M Stein, Gadi Wollstein, Siobahn Beaton, James G Fujimoto, and Joel S Schuman.
Macular segmentation with optical coherence tomography. Investigative ophthalmology & visual science,
46(6):2012–2017, 2005.

[6] Mahnaz Shahidi, Zhangwei Wang, and Ruth Zelkha. Quantitative thickness measurement of retinal layers
imaged by optical coherence tomography. American journal of ophthalmology, 139(6):1056–1061, 2005.

[7] Delia Cabrera Fernández, Harry M Salinas, and Carmen A Puliafito. Automated detection of retinal layer
structures on optical coherence tomography images. Optics Express, 13(25):10200–10216, 2005.

[8] MA Mayer, RP Tornow, R Bock, J Hornegger, and FE Kruse. Automatic nerve fiber layer segmenta-
tion and geometry correction on spectral domain oct images using fuzzy c-means clustering. Investigative
Ophthalmology & Visual Science, 49(13):1880–1880, 2008.

[9] Delia Cabrera Fernandez. Delineating fluid-filled region boundaries in optical coherence tomography images
of the retina. IEEE Trans. Med. Imaging, 24(8):929–945, 2005.

[10] Mircea Mujat, Raymond C Chan, Barry Cense, B Hyle Park, Chulmin Joo, Taner Akkin, Teresa C Chen, and
Johannes F de Boer. Retinal nerve fiber layer thickness map determined from optical coherence tomography
images. Optics Express, 13(23):9480–9491, 2005.

[11] Akshaya Mishra, Alexander Wong, Kostadinka Bizheva, and David A Clausi. Intra-retinal layer segmentation
in optical coherence tomography images. Optics express, 17(26):23719–23728, 2009.

18



[12] Azadeh Yazdanpanah, Ghassan Hamarneh, Benjamin Smith, and Marinko Sarunic. Intra-retinal layer seg-
mentation in optical coherence tomography using an active contour approach. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2009, pages 649–656. Springer, 2009.

[13] Itebeddine Ghorbel, Florence Rossant, Isabelle Bloch, Sarah Tick, and Michel Paques. Automated segmen-
tation of macular layers in oct images and quantitative evaluation of performances. Pattern Recognition,
44(8):1590–1603, 2011.

[14] Florence Rossant, Isabelle Bloch, Itebeddine Ghorbel, and Michel Paques. Parallel double snakes. application
to the segmentation of retinal layers in 2d-oct for pathological subjects. Pattern Recognition, 48(12):3857–
3870, 2015.

[15] Stephanie J Chiu, Xiao T Li, Peter Nicholas, Cynthia A Toth, Joseph A Izatt, and Sina Farsiu. Automatic
segmentation of seven retinal layers in sdoct images congruent with expert manual segmentation. Optics
express, 18(18):19413–19428, 2010.

[16] Qi Yang, Charles A Reisman, Zhenguo Wang, Yasufumi Fukuma, Masanori Hangai, Nagahisa Yoshimura,
Atsuo Tomidokoro, Makoto Araie, Ali S Raza, Donald C Hood, et al. Automated layer segmentation of
macular oct images using dual-scale gradient information. Optics express, 18(20):21293–21307, 2010.
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