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 2 

Abstract 29 

Current methods to quantify in vivo RNA dynamics are limited. Here, we developed a 30 

novel stable isotope (D2O)-methodology to quantify RNA synthesis (i.e. ribosomal 31 

biogenesis) in cells, animal models, and humans. Firstly, proliferating C2C12 cells were 32 

incubated in D2O-enriched media and myotubes (±) 50ng.ml
-1

 IGF-1. Secondly, rat 33 

quadriceps [untrained n=9; 7-wks interval-“like” training n=13] were collected after ~3-34 

wks D2O (70-Atom%) administration, with body-water enrichment (BWE) monitored 35 

via blood sampling. Finally, 10 (23±1y) men consumed 150ml D2O followed by 36 

50ml/wk and undertook 6-wks resistance-exercise (RE; 6×8 repetitions, 75%-1RM 37 

3/wk) with BWE monitored by saliva sampling and muscle biopsies (for determination 38 

of RNA synthesis) 0-3-6-wks. Ribose mole percent excess (r-MPE) from purine 39 

nucleotides was analyzed via GC-MS/MS. Proliferating C2C12 cells r-MPE exhibited a 40 

rise-to-plateau while IGF-1 increased myotube RNA from 76±3ng/ul to 123±3ng/ul and 41 

r-MPE by 0.39±0.1% (both P<0.01). After 3-wks, rat quadriceps r-MPE had increased 42 

to 0.25±0.01% (P<0.01) and was greater with running-exercise (0.36±0.02%; P<0.01)). 43 

Human muscle r-MPE increased to 0.06±0.01% and 0.13±0.02% at 3/6-wks 44 

respectively equating to synthesis rates of ~0.8%/d, increasing with RE to 1.7±0.3%/d 45 

(P<0.01) and 1.2±0.1%/d (P<0.05) at 3/6-wks, respectively. Therefore, we have 46 

developed and physiologically validated a novel technique to explore ribosomal 47 

biogenesis in a multi-modal fashion. 48 

 49 

 50 

 51 

 52 
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Introduction 53 

Cellular protein content is under constant renewal to maintain cellular homeostasis. 54 

Typically, the balance between protein synthesis and breakdown remains relatively 55 

stable, yet under conditions of growth, atrophy or cellular proliferation, rapid and 56 

significant changes in protein content and cell size occur (5). With protein synthesis 57 

rates determined by the number (translational capacity) and activity (translational 58 

efficiency) of ribosomes (27, 39), the ribosome provides a primary point of control in 59 

cellular homeostasis; yet our understanding of dynamic ribosome metabolism is poorly 60 

understood. Ribosomal biogenesis is the product of the coordinated synthesis of 61 

multiple ribosomal RNA’s (rRNA) and proteins. In being an energy consuming process, 62 

ribosomal biogenesis is tightly regulated by multiple signaling pathways responsive to 63 

nutrition, hormones and mechanical activity (22). However, basal rates of ribosomal 64 

biogenesis and ribosome half-life across tissues are for the most part largely 65 

undescribed. With the demands to modulate and maintain protein content varying 66 

considerably across cell types, such as rapidly dividing single cells, to the coordinated 67 

maintenance repair of multicellular organs, regulation of ribosome pools is likely to be 68 

tightly linked with protein metabolism (10). Furthermore, when the coordinated control 69 

of ribosome biogenesis becomes unregulated it can be the source of many conditions 70 

such as cancer (30). 71 

 72 

Skeletal muscle is one of the body’s most plastic tissues, undergoing substantial and 73 

rapid hypertrophy or atrophy under conditions of functional overload, disuse or 74 

malnutrition (2, 9, 17). Understanding these processes is of great importance as 75 

preservation of muscle mass and function throughout life is crucial in preventing 76 
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disability and maintaining quality of life- particularly in advanced ageing (16, 31). In 77 

being a post-mitotic tissue, muscle mass is controlled by the balance between muscle 78 

protein synthesis (MPS) and muscle protein breakdown (MPB). Many acute changes in 79 

MPS (< 5h) are accompanied by the activation or suppression of proteins in the 80 

mTORc1 pathway (1), modulating translational efficiency rather than translational 81 

capacity (6). However, prolonged exposure to muscle loading modifies RNA content – 82 

increasing with hypertrophy (3, 12, 34) and decreasing with atrophy (15). As such, 83 

ribosomal biogenesis is thought to be central to muscle mass regulation. 84 

 85 

With rRNA comprising 80% of total RNA, changes in RNA concentration are thought 86 

to be indicative of changes in the balance of ribosome synthesis and breakdown. 87 

However in addition to relying on long-term interventions, efficient extraction and 88 

normalization to muscle weight introducing variability, measures of concentration do 89 

not inform on dynamic RNA metabolism, plus changes in RNA synthesis naturally 90 

precede those of content. Past measures of RNA synthesis have typically relied on the 91 

incorporation of modified nucleotides such as [3H]-uridine or 5-bromouridine. However 92 

the use of these techniques is limited and generally cannot be used in whole animals due 93 

to their mutagenic nature. Alternatively, stable isotope tracers offer a safe method for 94 

use in humans and measures of RNA synthesis using these have been made (8, 14). Yet 95 

their applicability in human research has been limited due to numerous caveats, 96 

including variable and complex salvage pathways, infusions and time limits (<24h) 97 

resulting in a lack of methods to determine RNA synthesis rates, particularly in tissues 98 

with slow renewal rates (like skeletal muscle). Heavy water (D2O) provides alternate 99 

routes in the measurement of substrate metabolism and can overcome some limitations 100 
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associated with other stable isotope methods. In being easily administered and with the 101 

precursor pool being maintained over weeks to months, we and others have made long-102 

term cumulative measures of muscle protein synthesis (32, 40), with many other 103 

substrates measured in a range of different tissues including DNA (23, 29). Deuterium 104 

is incorporated via nucleotide de novo synthesis, overcoming previous limitations of 105 

nucleotide analogues and thus similarly creates a viable route in the measurement of 106 

RNA synthesis.  Here, we developed sensitive GC-MS/MS universally applicable 107 

methods for the measurement of RNA synthesis including in slower turning over tissues 108 

requiring only minimal D2O consumption; we validate these methods in cell cultures, 109 

pre-clinical models and humans and in a cell type of contemporary interest i.e. skeletal 110 

muscle. 111 

 112 

Materials and Methods 113 

 114 

Cell culture 115 

Murine C2C12 myoblasts passage nos. 5-7; ECACC, Salisbury, UK were seeded and 116 

maintained in Dulbecco’s modified Eagle’s medium as previously described (7) 117 

containing 10% fetal bovine serum, amphoteracin B (1%), penstreptomycin (1%) and 118 

4mM L-glutamine (Sigma-Aldrich, UK). Sterile 70% deuterium and U-
13

C-Glucose 119 

were added to DMEM at required enrichments and distributed amongst wells for 120 

labeling consistency. In proliferating cells, media was changed every 48h and cells 121 

scraped at required time points. At 90% confluency, cells were differentiated by 122 

reducing serum concentrations to 2% with RNA synthesis stimulated 6 days after 123 

differentiation with IGF1 50 ng.ml
-1

.  124 
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 125 

Animals  126 

Mixed population of females and males n=22 of high responder to training (HRT) rats 127 

for aerobic training were used for the study. Rats originated from the generations 17 and 128 

18 of selection for their training response, and were 9.2 ± 3.0 months old at the start of 129 

the experiment (21). All experimental procedures described in this study protocol were 130 

approved by the Animal Care and Use Committee of the Southern Finland, license 131 

number ESAVI-2010-07989/Ym-23, STH 534A (21.9.2010) and complements 132 

ESAVI/1968/04.10.03/2011, PH308A (30.3.2011) & ESAVI/722/04.10.07/2013, 133 

PH275A (1.3.2013). All experiments were conducted in accordance with the Guidelines 134 

of the European Community Council directive 86/609/EEC. Rats were kept in air-135 

conditioned rooms single-housed, at an ambient temperature of 21 ±2 °C and the 136 

relative humidity at 50 ± 10 %. Artificial lighting provided light cycles of 12 h light/12 137 

h total darkness. Commercially available pelleted rodent diet (R36, Labfor/Lantmännen, 138 

Malmö, Sweden) and the tap water (from the municipal water system of Jyväskylä) was 139 

available ad libitum for rats throughout the study. The energy content of the feed was 140 

1260 kJ/100 g (300.93 kcal/100g). The feed contained raw protein 18.5%, raw fat 4.0%, 141 

NFE (nitrogen free extracts) 55.7%, fiber 3.5%, ash 6.3%, and water <12%. Rats 142 

received a gavage of 7.2 ml/kg of 70% D2O for the remaining 3 wks of the 7 wk 143 

training period, with drinking water enriched to 2% to maintain body water enrichment. 144 

Body water enrichment was determined from blood samples collected at necropsy and 145 

used to represent the average enrichment throughout; although variability may occur 146 

over time, enriched drinking water minimizes these effects. Interval Training consisted 147 

of Warm-up for 5 min, at 50-60% of maximum speed (individually speed for each rat) + 148 
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running for 15 min: 3 min at 85 - 90%, 2 min pauses at 50%, repeated for 3 times; 149 

inclination 15
o
 uphill. Training was done 3 times per week, with one-day rest between 150 

(if possible). 48 hrs after the last training bout animals were anaesthetized with carbon 151 

dioxide and killed by cardiac puncture and thereafter immediately necropsied. Left 152 

quadriceps were rapidly exposed, removed and immediately frozen by complete 153 

immersion in liquid nitrogen. 154 

 155 

Subject characteristics and ethics  156 

Ten healthy younger (23±1y, BMI: 24±1) men were recruited as previously described 157 

(3). All subjects provided their written, informed consent to participate after all 158 

procedures and risks (in relation to muscle biopsies, blood sampling etc.) were 159 

explained. Following inclusion to the study, subjects were studied over a 6-week period. 160 

After baseline bilateral biopsies, subjects provided a saliva and blood sample then 161 

consumed 150 ml D2O (70 atom%; Sigma-Aldrich, Poole, UK) to label the body water 162 

pool to ~0.2% APE which was maintained with weekly top-up boluses (50 ml.wk
-1

). 163 

Thereafter subjects performed progressive unilateral RET 3/wk at 75% 1RM, with 164 

additional bilateral biopsies taken at 3 and 6 wks to monitor RNA incorporation. Blood 165 

was collected at 0, 3 and 6 weeks to follow deuterium incorporation into peripheral 166 

blood mononuclear cells, isolated using Histopaque (Sigma). For the temporal 167 

monitoring of body water enrichment, each participant provided a saliva sample on RET 168 

visits >30 min after their last meal or drink, with extra samples taken ~3 h after weekly 169 

50 ml boluses to ensure that body water enrichment was accurately represented. 170 

Samples were collected in sterile plastic tubes and immediately cold centrifuged at 171 

16,000g to remove any debris that might be present; they were then aliquoted into 2ml 172 
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glass vials and frozen at -20°C until analysis. This study was approved by The 173 

University of Nottingham Ethics Committee and complied with studies conducted in 174 

accordance with the declaration of Helsinki and registered as clinical trials 175 

(clinicaltrials.gov registration no. NCT02152839).  176 

 177 

Media and body water enrichment  178 

The deuterium enrichment was measured in media collected from cell culture plates and 179 

plasma from rats by incubating 100µl of each sample with 2µl of 10 M NaOH and 1µl 180 

of acetone for 24 h at room temperature. Following incubation the acetone was 181 

extracted into 200µl of n-heptane, and 0.5µl of the heptane phase was injected into the 182 

GC-MS/MS for analysis. A standard curve of known D2O enrichment was run along 183 

side the samples for calculation of enrichment. Human body water enrichment was 184 

extracted by heating 100 µl saliva in an inverted 2 ml autosampler vial for 4 h at 100°C. 185 

Vials were then placed upright on ice to condense extracted body water and transferred 186 

to a clean autosampler vial ready for injection. A total of 0.1µl body water was injected 187 

into a high-temperature conversion elemental analyzer (Thermo Finnigan; Thermo 188 

Scientific, Hemel Hemp- stead, United Kingdom) connected to an isotope ratio mass 189 

spectrometer (Delta V Advantage; Thermo Scientific) 190 

 191 

Protein-bound alanine muscle fraction enrichment and calculation of FSR 192 

Myofibrillar protein was isolated from human VL muscle biopsies and rat quadriceps by 193 

homogenizing 30–50 mg muscle in ice-cold homogenization buffer, rotated for 10min, 194 

and the supernatant collected after centrifugation at 13,000 g for 5 min at 4°C. The 195 

myofibrillar pellet was solubilized in 0.3 M NaOH and separated from the insoluble 196 



 9 

collagen by centrifugation, and the myofibrillar protein was precipitated using 1 M 197 

perchloric acid (PCA). Protein-bound amino acids were released using acid hydrolysis 198 

by incubating in 0.1 M HCl in Dowex H+ resin slurry overnight before being eluted 199 

from the resin with 2 M NH4OH and evaporated to dryness; amino acids were then 200 

derivatised as their N-methoxycarbonyl methyl esters. Dried samples were suspended in 201 

60 µl distilled water and 32 µl methanol, and following vortex, 10 µl pyridine and 8 µl 202 

methylchloroformate were added. Samples were vortexed for 30 s and left to react at 203 

room temperature for 5 min. The newly formed N- methoxycarbonylmethyl ester amino 204 

acids were then extracted into 100 µl chloroform. A molecular sieve was added to each 205 

sample for ~20 s before being transferred to a clean glass gas chromatography insert, 206 

removing any remaining water by size exclusion absorption. Human protein-bound 207 

alanine enrichment was determined by gas chromatography: pyrolysis:isotope ratio 208 

mass spectrometry (Delta V Advantage Thermo Finnigan, Thermo Scientific, Hemel 209 

Hempstead, UK), with rat protein-bound alanine enrichment determined by gas 210 

chromatography tandem mass spectrometry (TSQ 8000 Thermo Finnigan, Thermo 211 

Scientific, Hemel Hempstead, UK) alongside a standard curve of known DL-Alanine-212 

2,3,3,3-d4 enrichment to validate measurement accuracy of the machine. Myofibrillar 213 

MPS was calculated from the incorporation of deuterium-labeled alanine into protein, 214 

using the enrichment of body water [corrected for the mean number of deuterium 215 

moieties incorporated per alanine (3.7) and the dilution from the total number of 216 

hydrogens in the derivative (i.e., 11)] as the surrogate precursor labeling between 217 

subsequent biopsies. The equation used was  218 

 𝐹𝑆𝑅 = −𝐿𝑛 (
1 −  [

(𝐴𝑃𝐸𝑎𝑙𝑎)
(𝐴𝑃𝐸𝑝)

]

𝑡
) 
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where APEala equals deuterium enrichment of protein-bound alanine, APEp indicates 219 

mean precursor enrichment over the time period, and t is the time between biopsies. 220 

 221 

RNA extraction, digestion and derivatisation 222 

To extract RNA, ~20-30mg of muscle was homogenized in extraction buffer (5µl/mg) 223 

containing 0.1 M Tris-HCL pH 8, 0.01 M EDTA pH 8 and 1M NaCL. Proteinase K was 224 

added to a final concentration of 50 µg/µl and placed at 55
o
C for ~2 hrs with occasional 225 

mixing until complete digestion had occurred. For cell culture, each well was scraped in 226 

200 µl of extraction buffer and PBMC’s homogenized in 200 µl of extraction buffer. To 227 

the extractions an equal volume of phenol:chloroform:isoamyl alcohol  (25:24:1) was 228 

added, inverted several times to mix and the upper aqueous layer removed to a clean 229 

eppendorf after centrifugation at 13000 rpm for 10 min. To remove additional protein 230 

an equal volume of chloroform:isoamyl alcohol (24:1) was added to the aqueous layer 231 

and repeated as above. To precipitate RNA, an equal volume of isopropanol was added 232 

to the aqueous layer, inverted several times and centrifuged at 13000 rpm for 20 min. 233 

The pellet was washed 3 times in 70% ethanol; air-dried, re suspended in 22 µl of 234 

molecular biology and digested with 5 µl of 375 mM sodium acetate (pH 4.8), 750 µM 235 

ZnSO4 containing 0.5 units of nuclease S1 and 0.25 units potato acid phosphatase and 236 

placed at 37
o
C overnight. Hydrolysates were then reacted with 10 µl of O-237 

benyzylhyrdoxylamine (2% w/v) and 7.5 µl of acetic acid at 100
o
C for 30 min. Samples 238 

were allowed to cool at room temperature before the addition of 10µl of 1-239 

methyimidazole and 100 µl of acetic anhydride. The reactions are transferred to a 240 

boiling tubed and quenched by the addition of 2 ml ddH2O. The newly formed 241 

derivatives were extracted by the addition of 750 µl dichloromethane (DCM) vortex 242 
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mixed and phases allowed to separate. By pre wetting the tip with DCM, the lower layer 243 

is removed to a clean boiling tube and the procedure repeated.  DCM extracts were then 244 

dried and re suspended in 40 µl of ethyl acetate for GC-MS/MS analysis. 245 

 246 

GC-MS/MS instrument conditions and fractional synthesis rate calculation 247 

To measure RNA enrichment 2 µl of sample was injected into a trace 1310 gas 248 

chromatograph connected to TSQ 8000 triple quadrupole GC-MS/MS (Thermo 249 

Finnigan, Thermo Scientific, Hemel Hempstead, UK). Samples were injected on 250 

splitless mode with inlet temperature at 280
o
C. GC ramp conditions were 120

o
C for 1 251 

min, ramp to 280
 o
C at 10

 o
C /min and hold for 3 min. Selected reaction monitoring 252 

(SRM) was performed for the mass to charge ratios m/z of 273.1-111.1 and 274.1-112.1 253 

representing the M and M
+1

 ions with a collision induced dissociation energy of 6. 254 

Enrichment was calculated as (M
+1

/ (M + M
+1

) with the mole percent excess (MPE) 255 

expressed as difference from unlabeled D2O free samples. Fractional synthesis rates 256 

were calculated as FSR(%.d
-1

) = (r-MPE)/[(p-MPE) x t] x 100 where r-MPE is the 257 

excess enrichment of bound ribose, p-MPE is the mean precursor enrichment over the 258 

time period and t is the time between samples. In cell culture and rat studies, p-MPE 259 

was calculated as the water enrichment multiplied by the amplification factor of 2.098 260 

determined in cells. In human studies, p-MPE was taken as the ribose PBMC 261 

enrichment measured over the labeling period. Samples were run in triplicate alongside 262 

standard curves of known ribose standards, with the average of both peaks were used in 263 

the results. Additionally, unlabeled samples were injected in different quantities to 264 

determine abundance effects.  265 

 266 
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Statistical Analysis  267 

Descriptive statistics were produced for all data sets to check for normal distribution 268 

(accepted if P>0.05) using a Kolmogorov-Smirnov test. All data are presented as means 269 

± SEM. Differences between the effects of interval training and control on RNA 270 

synthesis in rates were analyzed by t-test. All other data sets were analyzed by repeated 271 

measures one-way or two-way ANOVA with a Bonferroni correction using GraphPad 272 

Prism (La Jolla, CA) Software Version 5. Correlations were assessed using Pearsons 273 

product moment correlation coefficient. The α level of significance was set at P<0.05. 274 

  275 
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Results 276 

 277 

GC-MS/MS chromatography and SRM transitions  278 

Addition of O-benyzylhyrdoxylamine and 4 acetyl groups to ribose produces a 279 

derivative with a molecular weight of 423.1 (Fig 1A). Upon gas chromatography the 280 

derivative produces two peaks representing the cis-trans isomers formed due to the 281 

anomeric carbon of ribose (Fig 1B). Full scan MS analysis of the derivative produces a 282 

most abundant fragment with best chromatography of 273.1, with second 283 

fragmentation producing a most abundant fragment of 111.1. Analysis of this transition 284 

is highly selective and produces GC-MS/MS spectra with very low background, 285 

detecting standard enrichments as little as 0.02 APE (Fig 1C). Further this SRM 286 

encompasses all backbone carbons of ribose confirmed by +5 enrichment from U-
13

C-287 

Glucose incorporation (Fig 1D). 288 

 289 

Deuterium incorporation into RNA bound ribose  290 

The MPE of ribose (Fig 2A) extracted from purine nucleotides of RNA from C2C12 291 

cells increased linearly with increasing concentrations of media D2O enrichment being 292 

0%, 1.6±0.08%, 4.1±0.1%, 9.5±0.15%, 18.8±0.18% at media concentrations of 0% 293 

0.67%, 1.9%, 4.6% and 8.9% respectively. Linear regression revealed that on average 294 

2.1 
2
H are incorporated into purine ribose during synthesis of new RNA. PBMC’S from 295 

human subjects showed an increase in MPE to 0.37±0.04% and 0.42±0.04% (both 296 

P<0.01), revealing the average accessible hydrogen’s to be 2.6±0.2 (Fig 2B).  297 

 298 

Validation of deuterium incorporation in RNA in vitro 299 
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C2C12 cell number increased from 0.083±0.001 million per well to 1.2 ±0.03 million 300 

after 117 h of proliferation (Fig 3A), whilst RNA MPE followed a rise to plateau 301 

relationship from 0.28±0.03% after 15 h and progressed to 0.52±0.02% by 117 h (Fig 302 

3B). In response to IGF1 treatment, RNA content increased by 27.5 h from 76.1±3 303 

ng.ul
-1

 to 123.4±3 ng.ul
-1 

(Fig 3C). Similarly, RNA MPE significantly increased in 304 

control to 0.15 ±0.01% at 27.5 h, with the increase in IGF1 treatment being significantly 305 

greater (Fig 3D). 306 

 307 

RNA Synthesis in rat muscle in vivo 308 

After 3 weeks of continuous D2O administration, RNA MPE significantly increased to 309 

0.25±0.01% in control and was significantly greater with interval training to 310 

0.36±0.01% P<0.001 (Fig 4A). The calculated RNA FSR was 0.97±0.05 %.d
-1

 with a 311 

significant increase in response to interval training to 1.3±0.05 %.d
-1 

P<0.001 (Fig 4B). 312 

Rat quadriceps MPS showed a correlation with quadriceps RNA synthesis % of r
2
=0.17 313 

and P=0.05 314 

 315 

RNA synthesis in human muscle  316 

The MPE from RNA bound ribose increased in rest legs to 0.064 ±0.01% and 0.137 317 

±0.02% at 3 and 6 weeks respectively (P<0.001). In RET legs, the MPE increased to 318 

0.125 ±0.02% and 0.211 ±0.01% at 3 and 6 week respectively (P<0.001), being greater 319 

than rest at both time points (P<0.005). Corrected for PBMC RNA enrichment an FSR 320 

of 0.86 ±0.1%.d
-1

 and 0.78 ±0.1%.d
-1

 was determined in rest legs at 3 and 6 weeks 321 

respectively. In RET legs the RNA FSR was significantly greater than rest being 1.69 322 
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±0.2 %.d
-1 

(P<0.01) and 1.24 ±0.1%.d
-1

 (P<0.05) at 3 and 6 weeks respectively. Human 323 

VL MPS was highly correlated with VL RNA synthesis P=0.009 and an r
2
=0.32. 324 

 325 

  326 
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Discussion 327 

 328 

We have developed and validated D2O-based methods for the measurement of in vitro 329 

and in vivo RNA synthesis that can be used safely and effectively in humans and with 330 

the potential for application to any tissue- this is a step forward from current practices in 331 

providing methods for long term measures of RNA synthesis in humans, particularly 332 

those of slow turnover pools such as skeletal muscle. RNA content is closely linked to 333 

cellular metabolism, with ribosomal biogenesis being required for cellular proliferation 334 

(10) and growth (34). Currently, changes in RNA content are primarily determined by 335 

crude measures of RNA concentrations, with limited methods in place to determine 336 

dynamic rates of RNA synthesis in vivo. Our approach will provide insight into the 337 

workings of dynamic ribosomal biogenesis in vitro, in animal models and in humans – 338 

across cell types. 339 

 340 

Method development and validation of in vitro RNA synthesis in skeletal muscle 341 

cells 342 

Nucleotide synthesis involves complex precursor pools with variable nucleotide salvage 343 

(23) making the incorporation of stable isotope labeled compounds difficult to interpret 344 

(13). The advantage of using D2O is that deuterium becomes incorporated into the 345 

backbone hydrogen of ribose during nucleotide synthesis, with deoxyribose from purine 346 

deoxyribonucleosides primarily synthesized via de novo synthesis; as such, providing a 347 

reliable input of isotope (23, 29). As deoxyribonucleotides are reduced from 348 

ribonucleotides, this further creates a viable method for measures of RNA synthesis and 349 
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for the first time we have shown a constant incorporation of deuterium across a range of 350 

media concentrations into purine ribose. 351 

 352 

Total RNA encompasses rRNA, tRNA and mRNA that will have variable turnover rates 353 

(33). The quickest of these will be tRNA and mRNA that will contribute to early 354 

increases in detectable enrichment. However in making up <20% of total cellular RNA, 355 

these pools become quickly saturated and deuterium incorporation follows a rise to 356 

plateau in proliferating cells reflecting the required expansion of rRNA for cell division 357 

(Fig 3B) (8, 10). Further, as initial validation using established stimulators of in vitro 358 

myotube hypertrophy and ribosomal biogenesis (i.e. IGF-1)(7), we were able to detect 359 

simultaneous increases in both RNA content and deuterium incorporation into RNA. 360 

Therefore, deuterium incorporation into RNA was reflective of newly synthesized 361 

RNA. 362 

 363 

To use precursor product calculations, a measure of the precursor, or a proxy thereof, is 364 

required (38). Alternatively, when using D2O, an amplification factor can be used to 365 

represent the amount of accessible hydrogen in the precursor that can incorporate 366 

deuterium and be multiplied by the body water enrichment (4). Nucleotide precursor 367 

pools are difficult to measure, with continuous input of unlabeled substrates such that 368 

the maximal theoretical plateau is never achieved (24). To investigate the number of 369 

accessible hydrogen in ribose in vitro, murine C2C12 skeletal muscle cells were 370 

repeatedly passaged in a range of D2O media enrichments, revealing a constant 371 

incorporation of ~2.1 deuterium’s out of a total 6. Previously, values of ~3.1 have been 372 
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reported for deoxyribose out of a total 7 (26, 29), expectedly higher due to the 373 

additional hydrogen that exchanges with ribonucleotide reductase.  374 

 375 

Validation of in vivo RNA synthesis in an animal model 376 

Compared to many tissues, skeletal muscle has a relatively slow habitual protein 377 

renewal rates, with little to no active DNA synthesis (11); in contrast actual RNA 378 

synthesis rates are practically unknown and will vary considerably across tissues. As 379 

D2O can be simply administered by oral consumption and easily maintained, D2O can 380 

be used to capture a vast range of synthesis rates. Recently, D2O has been used to 381 

measure ribosome renewal in mouse liver, although in using GC-MS this requires high 382 

levels of enrichment (5% APE) and fast rates of turnover (~10%) that can be 383 

burdensome and limit applications(25). Applying our validated in vitro methods to 384 

rodents, to our knowledge, we made the first long term measures of RNA synthesis in 385 

skeletal muscle. In doing so, we demonstrated there is active renewal of RNA pools of 386 

~1%.d
-1

. Furthermore, using an exercise stimulus to activate ribosomal biogenesis (39) 387 

we validated the existence of a significant increase in deuterium incorporation into 388 

RNA, demonstrating increased RNA synthesis. Intriguingly, RNA synthesis rates were 389 

correlated with MPS, which we speculate is due to a co-ordinate regulation in response 390 

to exercise. 391 

 392 

RNA Synthesis in Human Muscle and the Effect of Resistance Exercise  393 

Presumably most tissues will have a constant level of rRNA synthesis to maintain 394 

functional ribosomes for cellular protein synthesis. That said, since ribosome biogenesis 395 

consumes considerable energy and will therefore likely be maintained at minimal 396 



 19 

requirements. Using the methods described here, to our knowledge we report the first 397 

measures of RNA synthesis in human muscle, showing a constant synthesis rate of ~0.8 398 

%.d
-1

 during “habitual activity”. Further, to asses precursor enrichment, we measured 399 

the plateau enrichment of a population of cells 100% replenished (PBMCS) over the 400 

labeling period (29). This accounts for individual variability in the number of accessible 401 

hydrogens and further we showed on average 2.6 deuterium’s were incorporated, 402 

similar to our in vitro measures. 403 

 404 

Skeletal muscle RNA content is highly responsive to functional overload (28, 37) and 405 

here we have shown that in response to RET, RNA synthesis was significantly 406 

increased after 3 and 6 weeks of exercise training in humans. Once again, RNA 407 

synthesis was correlated with MPS which further validates that in muscle, ribosome and 408 

protein metabolism are likely to be inextricably related (likely via mTORc1 (18)). 409 

Similarly, although there is little other data for us to compare our results to, whole body 410 

rRNA turnover determined by breakdown products in urine have been estimated ~2.5% 411 

(36). Further this showed a strong relationship between whole body protein degradation 412 

rates of r
2
=0.7 supporting that these are closely linked process in muscle homeostasis. 413 

 414 

Further Application of Methods for RNA synthesis 415 

Previously, measures of RNA synthesis have been made in humans using 6,6
2
H2-416 

Glucose, however this requires large amounts of tracer to be consumed (1g/Kg) and is 417 

generally limited to fast turnover cells (8). Further, achieving high levels of enrichment 418 

to perform GC-MS analysis in humans is costly, requiring high levels of D2O 419 

consumption that is burdensome on the individual and may potentially cause adverse 420 
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effects such as nausea and vertigo (19). Further, rates of RNA synthesis will vary 421 

considerably across tissues, making the detection of slow turnover pools such as muscle 422 

using GC-MS techniques difficult. Here, by combining sensitive GC-MS/MS 423 

techniques (detection limits of ≥0.02% MPE) and the ability to administer D2O from 424 

days to weeks, this method creates opportunities to measure RNA synthesis over a 425 

range of rates and tissues. Such measures can be employed through simple D2O 426 

administration and access to tissue samples or blood- with some prior expectation of 427 

synthesis helpful. For instance, human body water enrichment can be simply maintained 428 

~ 0.15-0.2% APE using an initial bolus of 150 ml D2O, followed by weekly doses of 50 429 

ml (3). In this situation, sampling from a tissue after 5 days with an RNA turnover rate 430 

of ~10 %.d
-1

 would result in an easily detectable product enrichment using GC-MS/MS 431 

of ~ 0.075-0.1%, whereas an RNA turnover rate of ~1 %.d
-1

 would result in an 432 

undetectable enrichment of ~ 0.0075%-0.01%. This is not to say these measure can’t be 433 

made by other means. Raising body water enrichment will increase end point 434 

enrichment and body water enrichments as high as 2% would make GC-MS techniques 435 

an option. However D2O consumption of such high levels is costly and burdensome on 436 

subjects. As such the methods used here can be readily applied to many situations.  437 

 438 

Conclusion  439 

In summary we have developed and validated the use of D2O in measurement of RNA 440 

synthesis both in vitro and in vivo. With many RNA synthesis rates unknown, these new 441 

methods will have a significant impact in being able to measure a wide range of RNA 442 

turnover rates in varied tissues. Further, ribosomal biogenesis has been the interest of 443 

recent publications in muscle adaptive mechanisms (12, 20, 34, 35)  and will likely play 444 
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a significant role elucidating muscle metabolism at rest and in response to 445 

hypertrophic/atrophic conditions. 446 

  447 
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Figure Legends 488 

Figure 1. A) Structure and mass of the ribose BHTA derivative. B) Typical GC-MS/MS 489 

chromatogram of the ribose derivative on a DB-17 column for the SRM transitions of 490 

(273.1-111.1). Blue line represents the M and red the M+1 C) Standard curve of 1-
13

C-491 

Ribose 0.02, 0.05, 0.1, 0.5 D) measurement of the +5 isotopomer of RNA bound ribose 492 

from C2C12 myotubes incubated in U-
13

C glucose enriched media 493 

 494 

Figure 2. A) MPE of RNA from maximally labeled C2C12’s vs. D2O media MPE and 495 

B) the amplification of deuterium into PBMC’S from human subjects. *** Significantly 496 

different from baseline P<0.001 497 

 498 

Figure 3. Time course of A) cell number B) MPE of RNA in proliferating C2C12’s. 499 

Time course in the concentration of C) RNA and D) MPE of RNA in non-treated 500 

condition (Control) and in responses to IGF1. Dotted line represents plateau 501 

enrichment.* Significantly different from baseline P<0.05, *** P<0.001, **** 502 

P<0.0001. § significantly different from control at that time point P<0.01  503 

 504 

Figure 4. A) MPE of RNA bound ribose from control and exercised rat quadriceps B) 505 

FSR of RNA from control and exercised rat quadriceps C) correlation between 506 

quadriceps MPS%.d
-1

 and RNA FSR%.d
-1

. Dotted line represents plateau enrichment 507 

*** Significantly different than control P<0.001 508 

 509 

Figure 5. A) Time course of body water enrichment measured through saliva samples 510 

over the 6 weeks of labeling B) MPE of RNA bound ribose from human VL in rest and 511 
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RET legs. Dotted line represents the average plateau PBMC enrichment C) FSR of 512 

RNA bound ribose from human VL in rest and RET legs D) correlation between VL 513 

MPS%.d
-1

 and RNA FSR %.d
-1

.  *** Significantly different from baseline P<0.001 § 514 

Significantly different from control at that time point P<0.05 515 

  516 



 26 

 References  517 

1.  Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith 518 
K, Rennie MJ. Muscle full effect after oral protein: time-dependent concordance 519 
and discordance between human muscle protein synthesis and mTORC1 520 
signaling. Am J Clin Nutr 92: 1080–8, 2010. 521 

2.  De Boer MD, Selby A, Atherton P, Smith K, Seynnes OR, Maganaris CN, 522 
Maffulli N, Movin T, Narici M V, Rennie MJ. The temporal responses of protein 523 
synthesis, gene expression and cell signalling in human quadriceps muscle and 524 
patellar tendon to disuse. J Physiol 585: 241–51, 2007. 525 

3.  Brook MS, Wilkinson DJ, Mitchell WK, Lund JN, Szewczyk NJ, Greenhaff 526 
PL, Smith K, Atherton PJ. Skeletal muscle hypertrophy adaptations 527 
predominate in the early stages of resistance exercise training, matching 528 
deuterium oxide-derived measures of muscle protein synthesis and mechanistic 529 
target of rapamycin complex 1 signaling. FASEB J 29: 4485–4496, 2015. 530 

4.  Busch R, Kim Y, Neese RA, Schade-Serin V, Collins M, Awada M, Gardner 531 
JL, Beysen C, Marino ME, Misell LM, Hellerstein MK. Measurement of protein 532 
turnover rates by heavy water labeling of nonessential amino acids. Biochim 533 
Biophys Acta 1760: 730–44, 2006. 534 

5.  Cheek DB. Human Growth. Body Composition, Cell Growth, Energy, and 535 
Intelligence. Arch Dis Child 45: 603–603, 1970. 536 

6.  Chesley A, MacDougall JD, Tarnopolsky MA, Atkinson SA, Smith K. 537 
Changes in human muscle protein synthesis after resistance exercise. J Appl 538 
Physiol 73: 1383–8, 1992. 539 

7.  Crossland H, Kazi AA, Lang CH, Timmons JA, Pierre P, Wilkinson DJ, 540 
Smith K, Szewczyk NJ, Atherton PJ. Focal adhesion kinase is required for 541 
IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-542 
associated pathway. Am J Physiol Endocrinol Metab 305: E183–93, 2013. 543 

8.  Defoiche J, Zhang Y, Lagneaux L, Pettengell R, Hegedus A, Willems L, 544 
Macallan DC. Measurement of ribosomal RNA turnover in vivo by use of 545 
deuterium-labeled glucose. Clin Chem 55: 1824–33, 2009. 546 

9.  DeFreitas JM, Beck TW, Stock MS, Dillon M a, Kasishke PR. An examination 547 
of the time course of training-induced skeletal muscle hypertrophy. Eur J Appl 548 
Physiol 111: 2785–90, 2011. 549 

10.  Derenzini M, Montanaro L, Chilla A, Tosti E, Vici M, Barbieri S, Govoni M, 550 
Mazzini G, Treré D. Key role of the achievement of an appropriate ribosomal 551 
RNA complement for G1-S phase transition in H4-II-E-C3 rat hepatoma cells. J 552 
Cell Physiol 202: 483–491, 2005. 553 

11.  Drake JC, Bruns DR, Peelor FF, Biela LM, Miller R a., Miller BF, Hamilton 554 
KL. Long-lived Snell dwarf mice display increased proteostatic mechanisms that 555 



 27 

are not dependent on decreased mTORC1 activity. Aging Cell 14: 474–482, 556 
2015. 557 

12.  Figueiredo VC, Caldow MK, Massie V, Markworth JF, Cameron-Smith D, 558 
Blazevich AJ. Ribosome biogenesis adaptation in resistance training-induced 559 
human skeletal muscle hypertrophy. Am. J. Physiol. - Endocrinol. Metab. (2015). 560 
doi: 10.1152/ajpendo.00050.2015. 561 

13.  Grimble GK, Malik SB, Boza JJ. Methods for measuring tissue RNA turnover. 562 
Curr Opin Clin Nutr Metab Care 3: 399–408, 2000. 563 

14.  Grimble GK, Millward DJ. The measurement of ribosomal ribonucleic acid 564 
synthesis in rat liver and skeletal muscle in vivo [proceedings]. Biochem Soc 565 
Trans 5: 913–6, 1977. 566 

15.  Haddad F, Baldwin KM, Tesch PA. Pretranslational markers of contractile 567 
protein expression in human skeletal muscle: effect of limb unloading plus 568 
resistance exercise. J Appl Physiol 98: 46–52, 2005. 569 

16.  Hirani V, Blyth F, Naganathan V, Le Couteur DG, Seibel MJ, Waite LM, 570 
Handelsman DJ, Cumming RG. Sarcopenia Is Associated With Incident 571 
Disability, Institutionalization, and Mortality in Community-Dwelling Older Men: 572 
The Concord Health and Ageing in Men Project. J Am Med Dir Assoc 16: 607–573 
613, 2015. 574 

17.  Houston DK, Nicklas BJ, Ding J, Harris TB, Tylavsky F a, Newman AB, Lee 575 
JS, Sahyoun NR, Visser M, Kritchevsky SB. Dietary protein intake is 576 
associated with lean mass change in older, community-dwelling adults: the 577 
Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 87: 578 
150–5, 2008. 579 

18.  Iadevaia V, Liu R, Proud CG. MTORC1 signaling controls multiple steps in 580 
ribosome biogenesis. Semin Cell Dev Biol 36: 113–120, 2014. 581 

19.  Jones PJ, Leatherdale ST. Stable isotopes in clinical research: safety 582 
reaffirmed. Clin Sci (Lond) 80: 277–80, 1991. 583 

20.  Kirby TJ, Lee JD, England JH, Chaillou T, Esser K a, McCarthy JJ. Blunted 584 
hypertrophic response in aged skeletal muscle is associated with decreased 585 
ribosome biogenesis. J. Appl. Physiol. (2015). doi: 586 
10.1152/japplphysiol.00296.2015. 587 

21.  Koch LG, Pollott GE, Britton SL. Selectively bred rat model system for low and 588 
high response to exercise training. Physiol Genomics 45: 606–14, 2013. 589 

22.  Kusnadi EP, Hannan KM, Hicks RJ, Hannan RD, Pearson RB, Kang J. 590 
Regulation of rDNA transcription in response to growth factors, nutrients and 591 
energy. Gene 556: 27–34, 2015. 592 

23.  Macallan DC, Fullerton C a, Neese R a, Haddock K, Park SS, Hellerstein 593 
MK. Measurement of cell proliferation by labeling of DNA with stable isotope-594 



 28 

labeled glucose: studies in vitro, in animals, and in humans. Proc Natl Acad Sci 595 
U S A 95: 708–13, 1998. 596 

24.  Martini WZ, Chinkes DL, Wolfe RR. Quantification of DNA synthesis from 597 
different pathways in cultured human fibroblasts and myocytes. Metabolism 53: 598 
128–133, 2004. 599 

25.  Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, Knecht J, Hexem E, 600 
Peelor FF, Miller BF, Hamilton KL, Transtrum MK, Bikman BT, Price JC. 601 
Mechanisms of In Vivo Ribosome Maintenance Change in Response to Nutrient 602 
Signals. Mol Cell Proteomics 16: 243–254, 2017. 603 

26.  Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D, Murphy 604 
EJ, Koduru P, Ferrarini M, Zupo S, Cutrona G, Damle RN, Wasil T, Rai KR, 605 
Hellerstein MK, Chiorazzi N. In vivo measurements document the dynamic 606 
cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115: 755–607 
764, 2005. 608 

27.  Millward DJ, Garlick PJ, James WPT, Nnanyelugo DO, Ryatt JS. 609 
Relationship between protein synthesis and RNA content in skeletal muscle. 610 
Nature 241: 204–205, 1973. 611 

28.  Nakada S, Ogasawara R, Kawada S, Maekawa T, Ishii N. Correlation between 612 
Ribosome Biogenesis and the Magnitude of Hypertrophy in Overloaded Skeletal 613 
Muscle. PLoS One 11: e0147284, 2016. 614 

29.  Neese R a, Misell LM, Turner S, Chu a, Kim J, Cesar D, Hoh R, Antelo F, 615 
Strawford a, McCune JM, Christiansen M, Hellerstein MK. Measurement in 616 
vivo of proliferation rates of slow turnover cells by 2H2O labeling of the 617 
deoxyribose moiety of DNA. Proc Natl Acad Sci U S A 99: 15345–50, 2002. 618 

30.  Orsolic I, Jurada D, Pullen N, Oren M, Eliopoulos AG, Volarevic S. The 619 
relationship between the nucleolus and cancer: Current evidence and emerging 620 
paradigms. Semin Cancer Biol 37-38: 36–50, 2016. 621 

31.  Rizzoli R, Reginster J-Y, Arnal J-F, Bautmans I, Beaudart C, Bischoff-622 
Ferrari H, Biver E, Boonen S, Brandi M-L, Chines A, Cooper C, Epstein S, 623 
Fielding R a, Goodpaster B, Kanis J a, Kaufman J-M, Laslop A, Malafarina 624 
V, Mañas LR, Mitlak BH, Oreffo RO, Petermans J, Reid K, Rolland Y, Sayer 625 
AA, Tsouderos Y, Visser M, Bruyère O. Quality of life in sarcopenia and frailty. 626 
Calcif Tissue Int 93: 101–20, 2013. 627 

32.  Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF. Long-628 
term synthesis rates of skeletal muscle DNA and protein are higher during 629 
aerobic training in older humans than in sedentary young subjects but are not 630 
altered by protein supplementation. FASEB J 25: 3240–9, 2011. 631 

33.  Ross J. mRNA stability in mammalian cells. Microbiol Rev 59: 423–50, 1995. 632 

34.  Stec MJ, Kelly N a, Many GM, Windham ST, Tuggle SC, Bamman MM. 633 
Ribosome biogenesis may augment resistance training-induced myofiber 634 



 29 

hypertrophy and is required for myotube growth in vitro. Am. J. Physiol. - 635 
Endocrinol. Metab. (2016). doi: 10.1152/ajpendo.00486.2015. 636 

35.  Stec MJ, Mayhew DL, Bamman MM. The effects of age and resistance loading 637 
on skeletal muscle ribosome biogenesis. J Appl Physiol 59: jap.00489.2015, 638 
2015. 639 

36.  Topp H, Fusch G, Schöch G, Fusch C. Noninvasive markers of oxidative DNA 640 
stress, RNA degradation and protein degradation are differentially correlated 641 
with resting metabolic rate and energy intake in children and adolescents. 642 
Pediatr Res 64: 246–250, 2008. 643 

37.  Von Walden F, Casagrande V, Ostlund Farrants a.-K, Nader G a. Mechanical 644 
loading induces the expression of a Pol I regulon at the onset of skeletal muscle 645 
hypertrophy. AJP Cell Physiol 302: C1523–C1530, 2012. 646 

38.  Watt PW, Lindsay Y, Scrimgeour CM, Chien P a, Gibson JN, Taylor DJ, 647 
Rennie MJ. Isolation of aminoacyl-tRNA and its labeling with stable-isotope 648 
tracers: Use in studies of human tissue protein synthesis. Proc Natl Acad Sci U 649 
S A 88: 5892–6, 1991. 650 

39.  West DWD, Baehr LM, Marcotte GR, Chason CM, Tolento L, Gomes A V., 651 
Bodine SC, Baar K. Acute resistance exercise activates rapamycin-sensitive 652 
and insensitive mechanisms that control translational activity and capacity in 653 
skeletal muscle. J Physiol 00: n/a–n/a, 2015. 654 

40.  Wilkinson DJ, Franchi M V, Brook MS, Narici M V, Williams JP, Mitchell 655 
WK, Szewczyk NJ, Greenhaff PL, Atherton PJ, Smith K. A validation of the 656 
application of D2O stable isotope tracer techniques for monitoring day-to-day 657 
changes in muscle protein subfraction synthesis in humans. Am J Physiol 658 
Endocrinol Metab 306: E571–9, 2014.  659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 
 667 
 668 



C:\Xcalibur\Data\DNA\DWR0 7/17/2016 9:46:09 PM

RT: 14.50 - 15.06 SM: 15G

14.5 14.6 14.7 14.8 14.9 15.0
Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re
lat

ive
 A

bu
nd

an
ce

NL:
1.00E7
TIC F: + c EI 
SRM ms2 
203.100@cid6.0
0 
[82.095-82.105] 
 MS DWR0
NL:
1.00E7
TIC F: + c EI 
SRM ms2 
204.100@cid6.0
0 
[83.095-83.105] 
 MS DWR0

RT: 15.35 - 16.10 SM: 15G

15.4 15.5 15.6 15.7 15.8 15.9 16.0 16.1
Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Re
lat

ive
 A

bu
nd

an
ce

NL:
3.50E8
TIC F: + c EI 
SRM ms2 
273.100@cid6.0
0 
[111.095-
111.105]  MS 
DWR0
NL:
3.50E8
TIC F: + c EI 
SRM ms2 
274.100@cid6.0
0 
[112.095-
112.105]  MS 
DWR0

A	 B	

C
H

HC

H
C

CH

CH
C
H2

O
N

H
C

CH
CH

O

CH

CH3

O
H2
C

OH3C

O

O O

O

CH3

O

H3C

(E)

Molecular  Weight 423.1

0.0 0.2 0.4 0.6

0.0

0.2

0.4

0.6

Expected Ribose MPE+1

M
ea

su
re

d 
R

ib
os

e 
 

A
PE

 M
+1

Y = 0.98 ±0.02
C D

0 10 20 30

0.0

0.1

0.2

0.3

0.4

Time (Hours)

R
ib

os
e 

 A
PE

 M
+5

Figure 1

Expected Ribose APE +1



0 10 20 30 40 50

0.0

0.2

0.4

0.6

0

1

2

3

4

5

Time (days)

PB
M

C
 R

N
A 

M
PE

2H
 A

m
plifcaition 

*** ***

PBMC MPE

0 2 4 6 8 10

0

5

10

15

20

Media MPE

C
2C

12
 R

N
A 

M
PE

Y = 2.098XA B
Figure 2



0 5 10 15 20 25 30

0.0

0.2

0.4

0.6

0.8

Time (Hours)

R
N

A 
M

PE

IGF1
Control

*

****
§

0 5 10 15 20 25 30

50

75

100

125

150

175

Time (Hours)

R
N

A 
ng

.u
l-1 ****

§

0 40 80 120

0.0

5.0×105

1.0×106

1.5×106

Time (Hours)

C
el

l N
um

be
r

***

***

***

0 40 80 120

0.0

0.2

0.4

0.6

Time (Hours)

R
N

A 
M

PE

***

*** *** ***

***

A B

C D

Figure 3



A B

Control Interval trained
0.0

0.1

0.2

0.3

0.4

0.5
1.3

1.4

Q
ua

dr
ic

ep
s 

R
N

A 
M

PE ***

Control Interval trained
0.0

0.5

1.0

1.5

Q
ua

dr
ic

ep
s 

R
N

A 
FS

R
 %

.d
-1 ***

0.5 1.0 1.5 2.0

1

2

3

4

5

Quadriceps RNA FSR %.d-1

Q
ua

dr
ic

ep
s 

M
PS

 %
.d

-1 P = 0.05
r2 = 0.17

C

Figure 4



3 Week 6 Week0

0.00

0.05

0.10

0.15

0.20

0.25

B
od

y 
W

at
er

 A
P

E

A

0 3 Week 6 Week

0.0

0.1

0.2

0.3

0.4

VL
 R

N
A 

M
PE

***,§

***
***

***,§

Rest 
RET

0-3 Week 0-6 Week
0.0

0.5

1.0

1.5

2.0

2.5

 V
L 

R
N

A 
FS

R
 %

.d
-1

Rest 
RET

§

§

0 1 2 3

0.5

1.0

1.5

2.0

2.5

3.0

3 Week VL RNA FSR %.d-1

3 
W

ee
k 

VL
  M

PS
 %

.d
-1

P =0.009
r2 =  0.32

A B

C

Figure 5

D


	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

