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Abstract. We develop a regularization for Petersson inner products of arbitrary weakly holomor-
phic modular forms, generalizing several known regularizations. As one application, we extend work
of Duke, Imamoglu, and Toth on regularized inner products of weakly holomorphic modular forms
of weights 0 and 3/2. These regularized inner products can be evaluated in terms of the coefficients
of holomorphic parts of harmonic Maass forms of dual weights. Moreover, we study the errors of
modularity of the holomorphic parts of such a harmonic Maass forms and show that they induce
cocyles in the first parabolic cohomology group introduced by Bruggeman, Choie, and the second
author. This provides explicit representatives of the cohomology classes constructed abstractly and
in a very general setting in their work.

1. Introduction and statement of results

Some of the most fundamental techniques towards arithmetic and geometric applications of cusp
forms are based on the Hilbert space structure induced by the Petersson inner product. Recall that
for holomorphic cusp forms f, g of weight k ∈ R for SL2(Z), this is defined as

(1.1) 〈f, g〉 :=

ˆ
SL2(Z)\H

f(τ)g(τ)vk
dudv

v2
,

where throughout τ = u+iv. The integral converges absolutely if fg is a cusp form. There are ways
to regularize the integral in many cases beyond cusp forms, as for example, observed by Petersson
[23]. Extensions and variants of his idea have been used by Harvey and Moore [19], Borcherds [3],
and Bruinier [10] to regularize theta lifts of weakly holomorphic modular forms and harmonic Maass
forms.

More recently, Duke, Imamoḡlu and Tóth [16] used regularized inner products to obtain interest-
ing arithmetic information about elements of the space M !

0 of weakly holomorphic modular forms
of weight 0 for the full modular group. To state their beautiful formula, for m ∈ N, let fm be the
unique modular function for SL2(Z) with a Fourier expansion of the form (q := e2πiτ )

(1.2) fm(τ) = q−m +
∑
n≥0

cm(n)qn

and cm(0) = 24
∑

d|m d. The forms {fm}m∈N together with the constant function 1 form a basis of

M !
0. Moreover, let

K(m,n; c) :=
∑

d (mod c)∗

e
2πi
c (md+nd),

where the sum only runs over those d (mod c) that are coprime to c and d denotes the multiplicative
inverse of d (mod c). In Theorem 1 of [16] it was shown that 〈fm, fn〉 can be regularized for m 6= n
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such that the regularized value equals

(1.3) 〈fm, fn〉 = −8π2√mn
∑
c≥1

K(m,n; c)

c
F

(
4π
√
mn

c

)
.

Here, F (x) := πY1(x) + 2
xJ0(x) with Js the Bessel function of the first kind and Ys the Bessel

function of the second kind.
In this paper we answer an open problem from [16], namely to regularize 〈fm, fn〉 in the case

if m = n and to find a closed formula for this quantity. To achieve this goal, we find a general
regularization which works for all half-integral weight weakly holomorphic modular forms. To
explain this, recall that for every weakly holomorphic modular form f ∈M !

k, there exists a harmonic
Maass form F of weight 2− k with ξ2−k(F ) = f , where ξ2−k is the differential operator introduced
by Bruinier and Funke [13]

(1.4) ξ2−k(f)(τ) := 2iv2−k ∂

∂τ
f (τ).

The Fourier expansion of a harmonic Maass form can be decomposed into a holomorphic and a
non-holomorphic part. We write cf (n) for the n-th Fourier coefficient of f and c+

F (n) for the n-th
Fourier coefficient of the holomorphic part of F . The following theorem summarizes our first main
result in the case of the full modular group. It is a generalization of Proposition 3.5 in [13] to the
space of weakly holomorphic modular forms. Note that we work with vector-valued modular forms
of integral and half-integral weight in the main body of the paper (see Theorems 3.2 and 4.1 for the
general results).

Theorem 1.1. For k ∈ 2Z, the Petersson inner product extends to a hermitian sesquilinear form
on M !

k. If f, g ∈M !
k and G is a harmonic Maass form of weight 2− k such that ξ2−k(G) = g, then

we have

〈f, g〉 =
∑
n∈Z

cf (n)c+
G(−n).

Remark. The extension of the Petersson inner product is often degenerate and also not positive
in general. Thus, strictly speaking, it is not an inner product. Nevertheless, as is common in the
literature (see e.g. [16]), we refer to it as a regularized inner product. It follows from Theorem 1.1
that the subspace of weakly holomorphic forms f ∈M !

k with 〈f, g〉 = 0 for all g ∈M !
k is given by all

ξ2−k(F ), where F is a harmonic Maass form of weight 2− k with vanishing holomorphic part F+.

A first application of Theorem 1.1 is

Theorem 1.2. Equation (1.3) also holds for m = n.

A second application of our regularization concerns the case of weight 3/2 modular forms discussed
in [15]. For every d ∈ N there exists a unique form gd ∈ M !

3/2, the space of weakly holomorphic

weight 3/2 modular forms satisfying Kohnen’s plus space condition, with Fourier expansion

gd(τ) = q−d +
∑
n≥0

n≡0,3 (mod 4)

Bd(n)qn.

It was shown by Zagier [25] that the coefficients Bd(n) are integers given by (twisted) traces of sin-
gular moduli. Duke, Imamoḡlu, and Tóth proved in Theorem 2 of [15] that for positive fundamental
discriminants d 6= d′, the regularized inner product 〈gd, gd′〉 can be expressed in terms of certain
cycle integrals of the j-invariant. As a consequence of our regularization, we are able to include the
case d = d′, which was not covered in [15]. In particular, we obtain the following result.
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Theorem 1.3. We have

〈g1, g1〉 = − 3

2π
Re

(ˆ i+1

i
J(τ)ψ(τ) dτ

)
,

where ψ(τ) := Γ′(τ)/Γ(τ) denotes the Digamma function and J := f1 − 24.

Remarks.

(i) The proof uses our extension of the regularization, the relation to Fourier coefficients of
harmonic Maass forms as explained below, and Theorem 1.2 of [11].

(ii) In Section 6, we recall the definition of L-functions for weakly holomorphic modular forms.
Theorem 1.3 can also be stated as the identity 〈g1, g1〉 = 3

4πL
∗
f1

(0), which is quite striking.

(iii) A generalization of Theorem 1.3 to all d ∈ N can be obtained by an extension of Theorem 1.2
in [11] to twisted cycle integrals (which can be treated in a similar way as in [1]).

We next further understand the role of the holomorphic part F+ of a harmonic Maass form F of
weight 2− k by providing a cohomological interpretation for its error of modularity

FS := F+|2−k(S − I).

Here, k ∈ −1
2N0, S :=

(
0 −1
1 0

)
, I := ( 1 0

0 1 ), and |2−k is the usual action of SL2(Z) which we extend
linearly to C[SL2(Z)] (see also Section 2). Note that for these considerations we concentrate on
weakly holomorphic forms of non-positive weight. Such forms have been studied less than their
positive weight counterparts.

The error of modularity induces a cocycle in the cohomology group H1
par(SL2(Z), D) studied

in [7]. This cohomology group characterizes the space Ak(SL2(Z)) of all holomorphic functions
on H, without any growth conditions, that are invariant under the |k-action of SL2(Z). This
characterization (cf. Theorem E of [7]) is encoded in an isomorphism

Ek : Ak(SL2(Z)) −→ H1
par(SL2(Z), D)

and it fits into a program begun by Bruggeman, Lewis, and Zagier [8, 9] concerned with Eichler-
Shimura-type theorems for very broad classes of automorphic objects. Furthermore, we show that
the cohomology class induced by the error of modularity is a much more central object than one
might think at first; in fact, it coincides with Ek(ξ2−k(F )). In the special case of integral weight,
the result is

Theorem 1.4. For k ∈ −N let f ∈M !
k and let F be a weight 2−k harmonic Maass form such that

ξ2−k(F ) = f . The cohomology class of Ek(f) in H1
par(SL2(Z), D) equals the cohomology class of the

cocycle induced by the error of modularity FS.

Theorem 1.3 also shows that FS provides explicit representatives of the cohomology classes con-
structed abstractly and in a very general setting in [7]. How to find examples of such explicit
representatives was an interesting open question once the general results of [7] were established.

Finally, we prove that the non-singular part Gk(τ) (defined by (6.2)) of the cocycle induced by
FS encodes further arithmetic information.

Theorem 1.5. For k ∈ −2N, the n-th “Taylor coefficient” of Gk(τ), i.e., G(n)
k (0)/n! is (up to an

explicit factor) equal to

(1.5) L∗f (n+ 1) + explicit linear combination of cf (0), . . . , cf (m0)

where L∗f (s) is the L-function of f ∈ M !
k (defined in Section 6) and m0 ∈ Z is minimal such that

cf (m) 6= 0.

Remarks.
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(i) It is of interest to compare this result with those of [5]. In both cases we characterize values of
L-functions as “Taylor coefficients” of functions with cohomological interpretations. Also, in
both papers the cocycles are errors of modularity of the holomorphic (resp. harmonic) part of
explicit harmonic (resp. sesquiharmonic) forms. However, in [5], the L-values are associated
to cusp forms, whereas here they are L-values of weakly holomorphic modular forms. Another
difference is that the relevant coefficient module in [5] is characterized by the action of the
ξ-operator, whereas the coefficient module here is defined by geometric means. Specifically,
it is characterized by functions which are defined on a special type of domain. In this sense,
the constructions here can be seen as a generalization of [5].

(ii) Finally, we note that Theorem 6.2 is reminiscent of the main result of [12]. In [12], a harmonic
Maass form is shown to be a “generating function” of (in their case) central values and
derivatives of quadratic twists of weight 2 modular L-functions.

The paper is organized as follows. In the next section we recall the definitions of and basic
facts about the main objects which we study in the paper: vector-valued modular forms, harmonic
Maass forms and also the special functions we require. In Section 3, we define the extension of the
regularization of the Petersson inner product, and in Section 4 we prove some of its fundamental
properties. In particular, we prove Theorem 4.1 and deduce several applications, including Theorems
1.2 and 1.3. In Section 5, we give a cohomological interpretation of the error of modularity of the
holomorphic part of a harmonic Maass form. Finally, in Section 6, we give an extended version
of the definition of L-functions of weakly holomorphic modular forms given in [6, 18] and prove
Theorem 1.5 about special values of such L-functions.
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2. Preliminaries

Unless stated otherwise, we have k ∈ 1
2Z throughout. Also, we use the principal branch (denoted

by Log) of the complex logarithm with the convention that, for x > 0,

Log(−x) = log(x) + πi,

where log : R+ → R is the natural logarithm. This convention extends to all (complex and real)
powers, so that e.g. √

−1 = (−1)
1
2 = e

1
2

Log(−1) = e
πi
2 = i.

2.1. Vector-valued modular forms and harmonic Maass forms. We write Γ̃ := Mp2(Z) for
the metaplectic extension of SL2(Z), realized as the group of pairs (M,ϕ(τ)), where M =

(
a b
c d

)
∈

SL2(Z) and ϕ is a holomorphic function on the complex upper half-plane H with ϕ(τ)2 = cτ+d (see
e. g. [3, 10]). It is well known that Mp2(Z) is generated by T := (( 1 1

0 1 ) , 1) and S :=
((

0 −1
1 0

)
,
√
τ
)
.

We have the relations S2 = (ST )3 = Z, where Z :=
((−1 0

0 −1

)
, i
)

is the standard generator of the

center of Mp2(Z). Let ρ : Γ̃ → Aut(V ) be a unitary, finite dimensional representation factoring

through a quotient by a finite index subgroup of Γ̃ on a complex vector space V with hermitian inner
product (v1, v2)V which we denote by v1 ·v2 := (v1, v2)V for v1, v2 ∈ V . We write V for the complex
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conjugate of V and let ρ be the complex conjugate of ρ, which acts on V via ρ(A) v = ρ(A)v. Note
that we obtain a C-bilinear pairing V × V → C via (v1, v2) 7→ (v1, v2)V , which we simply denote by
v1 · v2. We let Nρ be the smallest positive integer, such that ρ(T )Nρ acts trivially on V .

For (M,ϕ) ∈ Γ̃, we define the Petersson slash operator on functions f : H→ V by

(f |k,ρ (M,ϕ)) (τ) := ϕ(τ)−2kρ((M,ϕ))−1f(Mτ).

As usual, we extend the action linearly to C[Mp2(Z)], e.g. f |k,ρ (A+B) = f |k,ρ A+ f |k,ρ B.

Definition 2.1. A twice continuously differentiable function F : H→ V is called a harmonic Maass
form of weight k for ρ if it satisfies:

(i) F |k,ρ M = F for all M ∈ Γ̃;

(ii) there exists a C > 0 such that F (τ) = O(eCv) as v →∞ (uniformly in u);
(iii) ∆k(F ) = 0, with ∆k the hyperbolic Laplace operator

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

Remark.
Here and throughout, we use the notation a(x) = O(φ(x)) for functions a : R→ V and φ : R→ R,
if a(x) · w = O(φ(x)) for every fixed w ∈ V .

We denote the space of harmonic Maass forms of weight k for ρ by Hk,ρ. An element F ∈ Hk,ρ
has a Fourier expansion,

(2.1) F (τ) =
∑
n∈Q

cF (n, v)qn,

with cF (n, v) ∈ V . The right hand side of (2.1) decomposes into a holomorphic and a non-
holomorphic part. To accomplish this, for x ∈ R, set

Wk(x) := (−2x)1−kRe(Ek(−2x))

with Ek the generalized exponential integral defined in Section 2.2. Note that our definition of Wk

slightly differs from the one made in [13], but this is only relevant for n > 0, which is not the main
focus of their paper. In Section 2.2 we determine the exact difference and also clarify the relation
to the choice made in [16] in the specific case of weight 2. Now the decomposition F = F+ + F−

for k 6= 1 is given by

F+(τ) =
∑
n∈Q

n�−∞

c+
F (n)qn,(2.2)

F−(τ) = c−F (0)v1−k +
∑

n∈Q\{0}
n�∞

c−F (n)Wk(2πnv)qn.(2.3)

For k = 1, F− has to be replaced by

(2.4) F−(τ) = c−F (0) log(v) +
∑

n∈Q\{0}
n�∞

c−F (n)Wk(2πnv)qn.

The function F+ is called the holomorphic part and F− the non-holomorphic part of the harmonic
Maass form F . We call the Fourier polynomial

PF (q) = P+
F (q) =

∑
n<0

c+
F (n)qn
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the (holomorphic) principal part of F .
If F− is identically zero, then F is weakly holomorphic. The subspace of weakly holomorphic

modular forms is denoted by M !
k,ρ and we write Mk,ρ and Sk,ρ for the spaces of holomorphic

modular forms and cusp forms, respectively. If F ∈M !
k,ρ, we simply write cF (n) for c+

F (n).

Recall the antilinear differential operator ξk : Hk,ρ →M !
2−k,ρ, defined in (1.4). Here M !

2−k,ρ is the
space of weakly holomorphic modular forms of weight 2− k with respect to the complex conjugate
ρ of ρ. The kernel of ξk equals M !

k,ρ and by Corollary 3.8 of [13], the sequence

0 //M !
k,ρ

//Hk,ρ
ξk //M !

2−k,ρ
//0(2.5)

is exact (note that in [13], ρ is the Weil representation but the proof easily generalizes).

Lemma 2.2. (Lemma 3.1 of [13]) For k 6= 1, the Fourier expansion of ξk(F ) ∈ M !
2−k,ρ for any

F ∈ Hk,ρ is given by1

(2.6) c−F (0)(1− k)−
∑

n∈Q\{0}

sgn(n)k−1c−F (−n)(4π|n|)1−kqn.

For k = 1, the first term is replaced by −c−F (0).

From (2.6) we deduce two identities that we frequently use. Namely, for f ∈ M !
k and F ∈ H2−k

with ξ2−k(F ) = f , we have, for n 6= 0,

(2.7) c−F (n)(−4πn)k−1 = −cf (−n) and c−F (0)(k − 1) = cf (0).

The following well known growth estimates for the Fourier coefficients of harmonic Maass forms
can be proven as in Lemma 3.4. of [13].

Lemma 2.3. If F ∈ Hk,ρ, then there exists a constant C > 0, such that

c±F (n) = O
(
eC
√
|n|
)

as n→ ±∞.

Moreover, if ξk(F ) is cuspidal, then we have the stronger estimate

c−F (n) = O
(
|n|

k
2

)
as n→ −∞.

We next recall an important family of representations given by the Weil representation associated
with a finite quadratic module. Let (A,Q) be a finite quadratic module (also called a finite quadratic
form or discriminant form), that is, a pair consisting of a finite abelian group A together with a
Q/Z-valued non-degenerate quadratic form Q on A. We denote the bilinear form corresponding to
Q by (x, y) := Q(x+y)−Q(x)−Q(y). Recall that Q is called degenerate if there exists x ∈ A\{0},
with (x, y) = 0 for all y ∈ A. Otherwise, Q is non-degenerate. If the quadratic form is clear from
the context, then we simply write A for the pair (A,Q). If L is an even lattice, then the quadratic
form Q on L induces a Q/Z-valued quadratic form on the discriminant group L′/L of L. Here L′ is
the dual lattice of L, given by

L′ :=
{
x ∈ L⊗Z Q | (x, λ) ∈ Z for all λ ∈ L

}
.

The pair (L′/L,Q) defines a finite quadratic module, the discriminant module of L. According to
Theorem 1.3.2 of [21], any finite quadratic module can be obtained as the discriminant module of

1Note that there is a minor typo in [13].
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an even lattice. If (b+, b−) denotes the real signature of L, then the difference b+− b− is determined
by its discriminant module A := L′/L modulo 8 by Milgram’s formula (Appendix 4 of [20])

1√
|A|

∑
a∈A

e(Q(a)) = e

(
b+ − b−

8

)
,

where we set e(x) := e2πix. We call sig(A) := b+− b− ∈ Z/8Z the signature of A. We also let N be
the level of A defined by

N := min{n ∈ N | nQ(x) ∈ Z for all x ∈ A}.

The Weil representation ρA associated with A is a unitary representation of Mp2(Z) on the group
algebra C[A]. If we denote the standard basis of C[A] by (ea)a∈A, then ρA can be defined by the
action of the generators S, T ∈ Mp2(Z) as follows (see also [3, 10, 24]):

ρA(T )ea := e(Q(γ))ea,(2.8)

ρA(S)ea :=
e
(
− sig(A)

8

)
√
|A|

∑
b∈A

e(−(a, b))eb.(2.9)

We write a · w to denote the standard hermitian inner product on C[A] given by ea · eb = δa,b for
a, b ∈ A.

We next give some examples that relate vector-valued and scalar-valued harmonic Maass forms
in important cases.

Example 1. If (A,Q) is the trivial module A = {0}, then the representation ρA is the trivial
representation and modular forms (and harmonic Maass forms) of weight k for ρA coincide with
scalar-valued modular forms (resp. harmonic Maass forms) for SL2(Z). We write Sk ⊂Mk ⊂M !

k ⊂
Hk to denote the corresponding spaces of scalar-valued forms.

Under the assumptions made, the components of a vector-valued modular form are modular forms
for a finite index subgroup of Mp2(Z). Thus, we can obtain such scalar-valued modular forms from
a vector-valued form in various ways.

Example 2. For any F ∈ Hk,ρA , the function

(2.10) F (τ) :=
∑
a∈A

Fa(Nτ)

is a scalar-valued harmonic Maass form of level N , weight k, and certain character χA. The map
F 7→ F is often neither injective nor surjective. However, it respects all analytic conditions, i.e., it
preserves subspaces of cusp forms, modular forms, and weakly holomorphic modular forms.

We next give a concrete example of this correspondence.

Example 3. Let M ∈ N and A := Z/2MZ with quadratic form Q(x) := x2

4M . Then, for F ∈ Hk,ρA ,
the function F defined in (2.10) is a harmonic Maass form for Γ0(4M) in Kohnen’s plus-space, i.e.,
cF (n) = 0 unless n is a square modulo 4M . For M = 1 or M = p prime and k = 2k′ + 1/2 with
k′ ∈ Z, this map gives an isomorphism between the space Hk,ρA and the space of scalar-valued
harmonic Maass forms satisfying the plus-space condition. For k = 2k′ − 1/2, the same statement
holds for ρ. In this case cF (n) = 0 unless −n is a square modulo 4p (and the space Mk,ρ is isomorphic
to the space of Jacobi forms of weight 2k′ and index M). See e.g. Example 2.4 of [3] and §5 of [17].
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2.2. Some special functions. An important role in the construction of the regularized inner
product is played by generalized exponential integrals and related functions. In this section, we
recall their definitions and carefully consider the choices of their branches.

Recall the definition of the incomplete Gamma function

Γ(r, z) :=

ˆ ∞
z

e−ttr
dt

t
,

initially given for Re(r) > 0 and z ∈ C. For r ∈ C and z ∈ C with Re(z) > 0, we define the
generalized exponential integral Er (see [22], 8.19.3) by

Er(z) :=

ˆ ∞
1

e−ztt−r dt.

This function is related to the incomplete Gamma function via (8.19.1) of [22]:

(2.11) Γ(r, z) = zrE1−r(z),

which can be used to continue Er(z) analytically. In particular, for r ∈ 1
2Z or r ∈ N, this can be

done using the relation (see [22], 8.19.12)

(2.12) rEr+1(z) + zEr(z) = e−z.

Indeed, for m ∈ Z and c ∈ R+, we obtain with ν := sgn(m) and µ := (1 + ν)/2

(2.13) Em+c(z) =
e−zzµ−1

Γ (c+m)

|m|−1∑
`=0

(−z)ν`Γ (c+m− ν`− µ) +
Γ (c) (−z)m

Γ (c+m)
Ec(z).

Here, the right-hand side should be interpreted as its analytic continuation, so that for negative
m+ c the poles of the Gamma function cancel or give zeroes. Thus, for c = 1 or c = 1/2, continuing
Em+c is equivalent to analytically continuing E1 and E1/2. We may do this for E1 by the identity
(see [22], 6.2.4):

(2.14) E1(z) = Ein(z)− Log(z)− γ,

where γ is the Euler-Mascheroni constant and Ein is the entire function given by

Ein(z) :=

ˆ z

0

(
1− e−t

) dt
t

=

∞∑
n=1

(−1)n+1

n!n
zn.

To continue E1/2, we use identity 7.11.3 of [22]

(2.15) E 1
2
(z) :=

√
π√
z

erfc
(√
z
)

:=
2√
z

ˆ ∞
√
z
e−t

2
dt =

√
π√
z
− 2√

z

ˆ √z
0

e−t
2
dt.

More generally, by selecting another branch of the logarithm in (2.14) (resp. of
√
z in (2.15)), we

may obtain a different analytic continuation of Er for r ∈ N (resp. r ∈ 1
2Z). If the branch cut

is given by the ray {xeiϕ|x ∈ R+
0 }, then we denote the corresponding continuation by Er,ϕ. We

throughout use the abbreviation Er if ϕ ∈ πZ \ 2πZ, in which case the corresponding branch is the
principal branch. We also require (see [22], 8.19.6), that for σ := Re(s) > 1

(2.16) Es(0) =
1

s− 1
.

With the above notation, we can relate the functions Wk in (2.3) to the special functions used in
Section 3 of [13].
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Lemma 2.4. For x > 0, we have

(2.17) Wk(x) = (−1)1−k
(

(2x)1−kEk(−2x) +
πi

Γ(k)

)
= Γ(1− k,−2x) +

(−1)1−kπi

Γ(k)
.

Remark. Bruinier and Funke [13] used the function (−2x)1−kEk(−2x) instead of Wk. Lemma 2.4
shows that these two choices differ by an additive constant for x > 0. For x < 0, they agree since
Ek(−2x) is real in that case.

Proof. With the choices made above, (2.14) implies that Im(E1(−x)) = −π. Similarly, by (2.15),
we obtain

(2.18) Im
(
E 1

2
(−x)

)
= −

√
π

x
.

Using (2.13), this easily generalizes for m ∈ Z and c ∈ {1/2, 1} to

(2.19) Im(Em+c(−x)) = −πx
m+c−1

Γ(c+m)
.

Finally, (2.19) implies that Im(E−m(−x)) = 0 for all m ∈ N0. Substituting these identities into the
formula of Wk, we deduce the lemma. �

Remark. We also note that

(2.20) Re
(
E 1

2
(−x)

)
= −2

ˆ 1

0
ext

2
dt.

It is convenient to also use the W -notation for some complex arguments setting, for z ∈ C \R−0 ,

(2.21) Wk(z) := Γ(1− k,−2z) +
(−1)1−kπi

Γ(k)
.

Furthermore, in order to relate our results to [16], we compare Wk(v) to the function e2πnvMn(v)
used in [16] for k = 2. Recall the definition

(2.22) M(v) :=
d

ds

[
M1,s− 1

2
(v)−W1,s− 1

2
(v)
]
s=1

,

where Ma,b and Wa,b are the standard Whittaker functions given, for Re(b±a+1/2) > 0 and v > 0,
by

Ma,b(v) = vb+
1
2 e

v
2

Γ(1 + 2b)

Γ
(
b+ a+ 1

2

)
Γ(b− a+ 1

2)

ˆ 1

0
tb+a−

1
2 (1− t)b−a−

1
2 e−vtdt,(2.23)

Wa,b(v) = vb+
1
2 e

v
2

1

Γ
(
b+ a+ 1

2

) ˆ ∞
1

tb+a−
1
2 (t− 1)b−a−

1
2 e−vtdt.(2.24)

Then, for n ∈ N, set

(2.25) Mn(v) =
1

4πv
M(4πnv)− (1− γ)ne−2πnv.

Proposition 2.5. For n ∈ N, we have

e2πnvMn(v) = − 1

4πv
E2(−4πnv)− πin = nW2(2πnv).
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Proof. For the first term of (2.25), we use the definition (2.22) of M(v). Following the proof of
Proposition 1 of [16], we employ (2.23) to write, for Z ∈ {M,W},

Z1,s− 1
2
(v) = gZ(s)hZ(s), where

gM (s) := vse
v
2

Γ(2s)

Γ(s+ 1)Γ(s)
, gW (s) :=

vse
v
2

Γ(s)
,

hM (s) := (s− 1)

ˆ 1

0
ts(1− t)s−2e−vtdt, hW (s) := (s− 1)

ˆ ∞
1

ts(t− 1)s−2e−vtdt.

Then we have

(2.26)
d

ds

[
Z1,s− 1

2
(v)
]
s=1

= g′Z(1)hZ(1) + gZ(1)h′Z(1).

We evaluate

gM (1) = gW (1) = ve
v
2 , g′M (1) = ve

v
2 (1 + log(v)) , g′W (1) = ve

v
2 (γ + log(v)) .

To compute hM and h′M , we use integration by parts to obtain for σ � 0

hM (s) =

ˆ 1

0
(1− t)s−1 d

dt

(
tse−vt

)
dt.

From this we obtain, via analytic continuation, hM (1) = e−v. Similarly, we determine that

hW (s) = −
ˆ ∞

1
(t− 1)s−1 d

dt

(
tse−vt

)
dt,

and therefore hW (1) = e−v. Thus the contribution to (2.22) from these terms is ve−
v
2 (1− γ) , which

cancels the second term from (2.25) after making the required change of variables.
We next turn to the terms involving the derivatives h′M and h′W . We have

h′M (s) =

ˆ 1

0
log(1− t)(1− t)s−1 d

dt

(
tse−vt

)
dt+

ˆ 1

0
(1− t)s−1 d

dt

(
log(t)tse−vt

)
dt.

This yields

h′M (1) =

ˆ 1

0
log(1− t) d

dt

(
te−vt

)
dt.

Similarly,

h′W (s) = −
ˆ ∞

1
log(t− 1)(t− 1)s−1 d

dt

(
tse−vt

)
dt−

ˆ ∞
1

(t− 1)s−1 d

dt

(
log(t)tse−vt

)
dt,

which implies that

h′W (1) = −
ˆ ∞

1
log(t− 1)

d

dt

(
te−vt

)
dt.

This shows that the contribution from the derivatives of h′M and h′W to (2.22) is given by

ve
v
2

(ˆ 1

0
log(1− t) d

dt

(
te−vt

)
dt+

ˆ ∞
1

log(t− 1)
d

dt

(
te−vt

)
dt

)
.

Combining the above yields

(2.27) Mn(v) = ne2πnv

ˆ 1

0
log (1− t) d

dt

(
te−4πnvt

)
dt+ ne2πnv

ˆ ∞
1

log(t− 1)
d

dt

(
te−4πnvt

)
dt.
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We rewrite each integral by viewing it as limit of integrals we may identify. First,

(2.28)

ˆ 1

0
log (1− t) d

dt

(
te−4πnvt

)
dt = lim

a→1−

ˆ a

0
log (1− t) d

dt

(
te−4πnvt

)
dt.

Integration by parts yields for the integral on the right-hand side

(2.29) log(1− a)e−4πnv(ae−4πnv(a−1) − 1) +
e−4πnva − 1

4πnv
+ e−4πnv

ˆ 1−a

1

1− e4πnvt

t
dt.

Upon taking the limit as a→ 1−, this gives

(2.30)

ˆ 1

0
log (1− t) d

dt

(
te−4πnvt

)
dt =

e−4πnv − 1

4πnv
− e−4πnvEin(−4πnv).

In the same way,

(2.31)

ˆ ∞
a

log (t− 1)
d

dt

(
te−4πnvt

)
dt = − log(a− 1)ae−4πnva − e−4πnva

4πnv
− e−4πnv

ˆ ∞
a−1

e−4πnvt

t
dt.

The last integral may be decomposed as

−
ˆ 1

a−1

1− e−4πnvt

t
dt− log(a− 1) + E1(4πnv).

Thus (2.31) equals

− log(a− 1)e−4πnv(ae−4πnv(a−1) − 1)− e−4πnva

4πnv
+ e−4πnv

ˆ 1

a−1

1− e−4πnvt

t
dt− e−4πnvE1(4πnv),

which, upon taking a→ 1+, gives by (2.14)

(2.32)

ˆ ∞
1

log (t− 1)
d

dt

(
te−4πnvt

)
dt = −e

−4πnv

4πnv
+ e−4πnv

(
log(4πnv) + γ

)
.

Thus, adding (2.30) and (2.32), we obtain by (2.14) the contribution to (2.27) as claimed. �

We require another special function, defined in equation (2.4) of [16] for v > 0 and n ∈ −N:

(2.33) Wn(v) := (−4πnv)−1W−1, 1
2
(−4πnv) = e−2πnvW2(2πnv),

where the second equality follows by 13.18.5 of [22] and Lemma 2.4.
Finally, a straightforward calculation relates E1/2 to the β-functions.

Lemma 2.6. We have, for x > 0, that

β 1
2
(x) :=

ˆ ∞
1

e−xtt
1
2 dt = E 1

2
(x),

βc1
2

(−2x) :=

ˆ 1

0
e2xtt−

1
2 dt = −(−2x)

1
2 W 1

2
(x).

3. Regularized Petersson inner products

There are various ways to define regularized inner products. For instance, if f, g ∈ M !
k satisfy

cf (n)cg(n) = 0 for n ≤ 0, then the inner product used in [16] is given by

〈f, g〉 := lim
t→∞

ˆ
Ft
f(τ)g(τ)vk

dudv

v2
,

where Ft := {τ ∈ F | v ≤ t} is the fundamental domain truncated at height t with F the standard
fundamental domain for SL2(Z) on H. However, this definition does not include all cases, such as
〈f, f〉.
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In this paper, we define a generalization of the regularization that was used in [14]. Our generaliza-
tion covers all weakly holomorphic forms. It builds upon the previously known methods but also
deals with the cases where these fail.

In the following, we let k ∈ 1
2Z, f, g ∈ M !

k,ρ, and s, w ∈ C. We set ζ := Re(w) and σ := Re(s)
and define

(3.1) I(f, g;w, s) :=

ˆ
F
f(τ) · g(τ)vk−se−wv

dudv

v2
,

which certainly converges absolutely if ζ � 0. The aim of this section is to show that, for every
ϕ ∈ (π/2, 3π/2) \ {π}, the integral I(f, g;w, s) has an analytic continuation Iϕ(f, g;w, s) to Uϕ×C,
where Uϕ ⊂ C is a certain open set described below. It seems then natural to define the regularized
Petersson inner product as the value of Iϕ(f, g;w, s) at w = s = 0. However, we want the inner
product to be hermitian, so that 〈f, f〉 is real. The problem now is that I(f, f ; 0, 0) is not real in
general because of the presence of the generalized exponential integrals in (3.2) below. To overcome
this, we take the real part of this expression as a definition, which turns out to be natural. For
instance, it is independent of the choice of the analytic continuation. Another difficulty is that
Iϕ(f, g;w, s) is not analytic in (0, 0) if f · g has a constant term. In this case we show that there is
a natural way to define Iϕ(f, g; 0, s) and this function can be continued to a meromorphic function
in s ∈ C. We then denote by CT

s=0
(Iϕ(f, g; 0, s)) the constant term in the Laurent expansion of

Iϕ(f, g; 0, s) at s = 0.

Definition 3.1. For ϕ ∈ (π/2, 3π/2) \ {π}, define

〈f, g〉ϕ := CT
s=0

(Iϕ(f, g; 0, s))− i
∑
n>0

cf (−n) · cg(−n)Im(E2−k,ϕ(−4πn)).

The main result of this section is the following.

Theorem 3.2. For each f, g ∈M !
k,ρ the value 〈f, g〉 := 〈f, g〉ϕ is independent of the choice of ϕ. It

satisfies 〈f, g〉 = 〈g, f〉 and, in particular, 〈f, f〉 ∈ R.

To prove Theorem 3.2, ϕ ∈ R, we define

Rf,g(ϕ) :=
{

4πn+ eiϕx
∣∣∣x ∈ R+

0 , n > 0 such that cf (−n) · cg(−n) 6= 0
}
.

Proposition 3.3. For f, g ∈ M !
k,ρ and σ � 0, the integral I(f, g;w, s) defines a holomorphic

function in a half-plane ζ � 0. It can be analytically continued to a holomorphic function in
any domain of the form {w ∈ C | ζ > −ε} \ Rf,g(ϕ), where ε > 0 depends on f, g and ϕ ∈
(π/2, 3π/2) \ {π}. This continuation is given by

(3.2) Iϕ(f, g;w, s) = lim
t→∞

(ˆ
Ft
f(τ) · g(τ)vk−se−wv

dudv

v2

−
∑
n≥0

cf (−n) · cg(−n)

ˆ t

1
vk−2−se(4πn−w)v dv

+
∑
n≥0

cf (−n) · cg(−n)E2−k+s,ϕ(w − 4πn).

Proof. The integral (3.1) converges absolutely for σ, ζ � 0, and thus defines a holomorphic function.
In the region of convergence we have

(3.3) I(f, g;w, s) = lim
t→∞

(ˆ
F1

f(τ) · g(τ)vk−se−wv
dudv

v2
+

ˆ t

v=1

ˆ 1

u=0
f(τ) · g(τ)vk−se−wv

dudv

v2

)
.
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We insert the Fourier expansions of f and g and carry out the integration on u to obtain

ˆ 1

u=0

ˆ t

v=1
f(τ) · g(τ)vk−se−wv

dudv

v2

=
∑
n>0

cf (n) · cg(n)

ˆ t

1
e−(w+4πn)vvk−2−sdv +

∑
n≥0

cf (−n) · cg(−n)

ˆ t

1
e(4πn−w)vvk−2−sdv.

Using Lemma 2.3 and the asymptotic behavior of the incomplete Gamma function, we deduce that
the limit of the second summand as t→∞ converges absolutely and uniformly in w for ζ > −ε for
some ε > 0. Since, in addition, the integral over F1 in (3.3) defines an entire function in w, this
implies that

(3.4) lim
t→∞

ˆ
Ft
f(τ) · g(τ)vk−se−wv

dudv

v2
−
∑
n≥0

cf (−n) · cg(−n)

ˆ t

1
vk−2−se(4πn−w)v dv


=

ˆ
F1

f(τ) · g(τ)vk−se−wv
dudv

v2
+
∑
n>0

cf (n) · cg(n)

ˆ ∞
1

e−(4πn+w)vvk−2−sdv

defines a holomorphic function for ζ > −ε.
On the other hand, for σ, ζ � 0

lim
t→∞

∑
n≥0

cf (−n) · cg(−n)

ˆ t

1
e(4πn−w)vvk−2−sdv

 =
∑
n≥0

cf (−n) · cg(−n)E2−k+s(w − 4πn).

This is a finite sum and, for ϕ ∈ (π/2, 3π/2) \ {π}, can be analytically continued to C\Rf,g(ϕ) to

give the function
∑

n≥0 cf (−n) · cg(−n)E2−k+s,ϕ(w − 4πn), implying the claim. �

Remark. For σ � 0, the only term in (3.2) which is not analytic at w = 0 is

cf (0) · cg(0)E2−k+s,ϕ(w).

It has, however, a well-defined value at w = 0 as given in (2.16) which we use to define Iϕ(f, g; 0, s).
The function s 7→ Iϕ(f, g; 0, s) then has a meromorphic continuation to C since the first line in (3.2)
(for w = 0) is entire and the function s 7→ E2−k+s(−4πn) is entire for n 6= 0. For n = 0 it has a
simple pole at s = k − 1.

Remark. Proposition 3.3 together with (2.16) shows that, for k 6= 1, we have

〈f, g〉ϕ = lim
t→∞

ˆ
Ft
f(τ) · g(τ)vk

dudv

v2
−
∑
n≥0

cf (−n) · cg(−n)

ˆ t

1
vk−2e4πnv dv


+ cf (0) · cg(0)

1

1− k
+
∑
n>0

cf (−n) · cg(−n)Re(E2−k,ϕ(−4πn)).(3.5)

For k = 1 the term involving cf (0) · cg(0) is not present since CTs=0 s
−1 = 0.

Proof of Theorem 3.2. The claim that 〈f, g〉 is well-defined follows by Proposition 3.3. The inde-
pendence comes from the fact that the different branches of the generalized exponential integral
differ by a real multiple of 2πi at the point −4πn. For k ∈ Z, this follows from (2.13) and (2.14)
and for k ∈ 1/2 + Z it is a consequence of (2.13) and (2.20). �
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4. Relation to Fourier coefficients of harmonic Maass forms and applications

4.1. Relation to Fourier coefficients of harmonic Maass forms. For F ∈ Hk,ρ and G ∈
H2−k,ρ, we define a bilinear pairing

(4.1) {F,G} :=
∑
n∈Q

c+
F (n) · c+

G(−n),

which is always a finite sum. The following theorem generalizes Proposition 3.5 of [13].

Theorem 4.1. Let f, g ∈M !
k,ρ and let G ∈ H2−k,ρ, such that ξ2−k(G) = g. Then we have

〈f, g〉 = {f,G}.

Remark. Existence of a G ∈ H2−k,ρ with ξ2−k(G) = g follows from the exactness of (2.5).

Proof. Using Definition 3.1 and (3.2), we can write

(4.2) 〈f, g〉 = lim
t→∞

ˆ
Ft
f(τ) · g(τ)vk

dudv

v2
−
∑
n≥0

cf (−n) · cg(−n)

ˆ t

1
vk−2e4πnv dv


+ CT

s=0

(
cf (0) · cg(0)Re(E2−k+s,ϕ(0)) +

∑
n>0

cf (−n) · cg(−n)Re(E2−k+s,ϕ(−4πn))

)
.

We apply Stokes’ theorem, as in the proof of Proposition 3.5 of [13], to the integral over Ft, which
gives (for k 6= 1)ˆ

Ft
f(τ) · g(τ)vk

dudv

v2
= {f,G}+ cf (0) · c−G(0)tk−1 +

∑
n6=0

cf (−n) · c−G(n)W2−k(2πnt).

Since lim
t→∞

W2−k(2πnt) = 0 for n < 0, we obtain

〈f, g〉 = {f,G}+ lim
t→∞

cf (0) ·
(
c−G(0)tk−1 − cg(0)

ˆ t

1
vk−2 dv

)
+
∑
n>0

cf (−n) · lim
t→∞

(
c−G(n)W2−k(2πnt)− cg(−n)

ˆ t

1
vk−2e4πnv dv

)
+ cf (0) · cg(0) CT

s=0
(E2−k+s(0)) +

∑
n>0

cf (−n) · cg(−n)Re(E2−k(−4πn)),

where we dropped ϕ since Re(E2−k(−4πn)) is independent of it. Next, we use that for any t and
n 6= 0, we have

−
ˆ t

1
vk−2e4πnvdv = tk−1E2−k,ϕ(−4πnt)− E2−k,ϕ(−4πn) = (−4πn)1−k(W2−k(2πnt)−W2−k(2πn)).

Then we substitute E2−k+s(0) = 1
1−k+s (see (2.16)), which is valid for σ > k − 1. Finally, we use

(2.7) again, implying the statement of the theorem in this case. For k = 1, the proof is completely

analogous using that cg(0)
´ t

1
dv
v = c−G(0) log(t) and CTs=0E1+s(0) = 0. �

The following corollary generalizes so-called Zagier duality between weakly holomorphic modular
forms of weight k and 2− k.

Corollary 4.2. We have for any f ∈M !
k,ρ and g ∈M !

2−k,ρ that {f, g} = 0.
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We next obtain information about the extent of non-degeneracy of our inner product. Before we
accomplish this in Corollary 4.5, we state two lemmas. The first one is a modularity criterion for
formal power series which is well-known (see, for instance, Theorem 3.1 of [4] or Proposition 4.3 of
[14]).

Lemma 4.3. Let f(q) =
∑

n∈Q+
0
cf (n)qn ∈ V JqNρK, such that (formally) f |k T = f |k Z = f .

Then f is the q-expansion of an element of Mk,ρ if and only if {f, g} = 0 for all g ∈M !
2−k,ρ.

Remarks.

(i) In Lemma 4.3, {f, g} is defined formally as in (4.1).
(ii) Using the exactness of (2.5) and a variant of Theorem 3.1 of [4], the existence of harmonic

Maass forms with prescribed principal parts can be shown as in Proposition 3.11 of [13].

Lemma 4.4. For every Fourier polynomial P (q) =
∑

n<0 cP (n)qn satisfying P |k T = P and
P |k Z = P , there exists a harmonic Maass form F ∈ Hk,ρ with ξk(F ) ∈ S2−k,ρ, such that P = PF .

Using these results, we obtain a precise description of the space on which the pairing is degenerate.

Corollary 4.5. Let f ∈ M !
k,ρ. We have that 〈f, g〉 = 0 for all g ∈ M !

k,ρ if and only if there

exists an F ∈ H2−k,ρ with ξ2−k(F ) = f and F+ = 0. (Equivalently, F+ ∈ M !
2−k,ρ for any F with

ξ2−k(F ) = f .)

Proof. It is clear that if such an F exists, then 〈f, g〉 = 0 by Theorem 4.1.
Now assume that 〈f, g〉 = 0 for all g ∈M !

k,ρ. This implies, in particular, that 〈f, g〉 = 0 for every

g ∈Mk,ρ. Thus, {F, g} = 0 for every F ∈ H2−k,ρ with ξ2−k(F ) = f and every g ∈Mk,ρ by Theorem
4.1. By Lemma 4.4, we can assume that aF (n) = 0 for every n < 0 by subtracting, if necessary, a

harmonic Maass form F̃ with the same principal part as F and with ξ2−k(F̃ ) ∈ Sk,ρ. By Corollary

3.9 of [13], we must have that F̃ is weakly holomorphic so that in fact ξ2−k(F̃ ) = 0. However,
{F+, g} = {F, g} = 0 for every g ∈ M !

k,ρ implies that F+ is the q-expansion of a holomorphic

modular form in M2−k,ρ by Lemma 4.3. Thus, F − F+ ∈ Hk,ρ with ξ2−k(F − F+) = ξ2−k(F ) = f
has a vanishing holomorphic part. �

Now consider the subspace T := T2−k,ρ ⊂ H2−k,ρ spanned by all F ∈ H2−k,ρ with F+ ∈M !
2−k,ρ.

The sesquilinear form 〈·, ·〉 induces a non-degenerate hermitian sesquilinear form on the quotient
space M !

2−k,ρ/ξ2−k(T ).

Remark. It can happen that ξ2−k(T ) = M !
k,ρ; for instance this is the case if ρ is the trivial repre-

sentation and k = 2.

4.2. Application: Weight 0. A consequence of Theorem 4.1 is a new proof of (1.3) and, further,
Theorem 1.2.

In Proposition 5 of [16], the Fourier expansions of a basis of H2 was determined. For the con-
venience of the reader, we state the result we need, using our notation. For m ∈ −N the basis
elements Fm of H2 are weakly holomorphic, whereas for m ∈ N, Fm has an expansion of the form

(4.3) Fm(τ) =:Mm(v)e2πimu − 6

πv
σ1(m)−

∑
n<0

|n|cm(|n|)Wn(v)e2πinu −
∑
n>0

Lm,nqn.

Proposition 2.5 and (2.33) immediately yield

Corollary 4.6. For m ∈ N, we have

Fm(τ) = −
∑
n>0

Lm,nqn −
6

πv
σ1(m) +mW2(2πmv)qm +

∑
n<0

ncm(−n)W2(2πnv)qn.
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For m ∈ N the basis elements Fm ∈ H2 and the basis elements fm ∈ M !
0, defined in (1.2) are

linked by (see Proposition 5 of [16])

ξ2(Fm) =
1

4π
fm.

By Proposition 4 of [16], we have

(4.4) Lm,n = 2π
√
mn

∑
c≥1

K(m,n; c)

c
F

(
4π
√
mn

c

)
.

Theorem 4.1 together with (4.4) then implies Theorem 1.2.

4.3. Application: Weight 3/2. Following [11] and [15], we define for every discriminant d ∈ N
and f ∈M !

0 the trace

(4.5) trd(f) :=
1

2π

∑
Q∈Γ\Qd

ˆ reg

ΓQ\CQ
f(τ)

dτ

Q(τ, 1)
,

where Qd denotes the set of integral binary quadratic forms of discriminant d, ΓQ ⊂ Γ = SL2(Z)
is the stabilizer of Q in Γ, and the cycle integral is regularized as in (1.10) of [11]. Note that a
different regularization for these cycle integrals has been studied in [2].

Let ρ = ρA be the Weil representation of Mp2(Z) as in Example 3 for N = 1, and let gd ∈M !
3/2,ρ

be the unique weakly holomorphic modular form having a Fourier expansion of the form

gd(τ) = q−
d
4 ed +

∑
µ∈Z/2Z

∑
n∈N0

n≡−µ2 (mod 4)

ad(n)q
n
4 eµ.

To compare our result with the one in [15] (and prove the statement of Theorem 1.3 in the intro-
duction), let f, g ∈ M !

k(4) be weight k weakly holomorphic forms for Γ0(4) whose Fourier coeffi-

cients vanish unless (−1)k−1/2n ≡ 0, 1 (mod 4). Moreover, let f , g ∈ M !
k,ρ be the corresponding

vector-valued modular forms under the isomorphism given in Example 3. The map f 7→ f gives
cf (n/4) = cf (n). In [15], the regularized inner product of f and g is defined as

lim
t→∞

ˆ
Ft(4)

f(τ)g(τ)vk
dudv

v2

whenever the limit exists. Suppose that cf (−n) · cg(−n) = 0 for all n ≥ 0. Then we have, for t ≥ 2,

(4.6) lim
t→∞

ˆ
Ft(4)

f(τ)g(τ)vk
dudv

v2
=

3

2
lim
t→∞

ˆ
Ft

f(τ) · g(τ)vk
dudv

v2
=

3

2
〈f , g〉,

where Ft(4) is a truncated fundamental domain for Γ0(4) as in [15] and the limit exists. That the
limit exists and equals our regularized inner product follows from (3.5).

To show the first equality, let G be a harmonic Maass form with ξ2−k(G) = g and similarly
G ∈ H2−k,ρ the corresponding vector-valued form (which satisfies ξ2−k(G) = g). We have

G(τ) =
∑

µ∈{0,1}

∑
n∈Z

(−1)
3
2−kn≡µ2 (mod 4)

cG

(
n,
v

4

)
q
n
4 eµ, g(τ) =

∑
µ∈{0,1}

∑
n∈Z

(−1)k−
1
2 n≡µ2 (mod 4)

cg(n)q
n
4 eµ

and similarly for f and f . Inserting Fourier expansions of f and G shows that Lemma 2 in [15] is
equivalent to (for t ≥ 2)ˆ

Ft(4)
f(τ)g(τ)vk

dudv

v2
=

ˆ 1

0
f(u+ 4it) ·G(u+ 4it) du+

1

2

ˆ 1

0
f(u+ it) ·G(u+ it) du



REGULARIZED INNER PRODUCTS AND ERRORS OF MODULARITY 17

and in the limit we obtain (4.6). To see this, note thatˆ 1

0
f(u+ it)G(u+ it) du =

∑
n∈Z

cf

(n
4

)
· cG

(
−n
4
,
t

4

)
=
∑
n∈Z

cf (n)cG

(
−n, t

4

)
and it is easily seen that this agrees with the contribution from the integral over f eGe + foGo as in
loc. cit. Similarly,ˆ 1

0
f(u+ 4it)G(u+ 4it) du =

∑
n∈Z

cf

(n
4

)
· cG

(
−n
4
, t

)
=
∑
n∈Z

cf (n)cG(−n, t)

and this agrees with the contribution from the integral over fg in [15]. Under our assumption that

cf (−n) · cg(−n) = 0, we see that the limit exists and is equal to∑
n∈Z

cf (n)c+
G(−n)

in both cases. Consequently, the regularized inner product of f and g agrees with the regularized
inner product of f and g defined in [15] (and the usual Petersson inner product of f and g whenever
it converges) up to a factor of 3/2. Therefore, we obtain a regularized inner product for scalar-valued
weakly holomorphic modular forms for Γ0(4) satisfying the plus-space condition that extends the
regularization in [15] by defining 〈f, g〉 := 3

2〈f , g〉.

Proof of Theorem 1.3. By (1.2), (1.6), and (1.8) of [11], used in conjunction with the isomorphism
in Example 3, the function

G1(τ) =
∑
d>0

trd(f1)q
d
4 ed +

i√
π
W 1

2

(πv
2

)
q

1
4 e1 +

∑
d<0

trd(f1)W 1
2

(
πdv

2

)
(π |d|)−

1
2 q

d
4 ed − 4

√
ve0

is a harmonic Maass form of weight 1/2 and representation ρ satisfying ξ1/2(G1) = g1. (This is
the vector-valued analog of the identity stated in the introduction of [11] and we used Lemma
2.6 to rewrite the Fourier expansion using our conventions.) Thus, by Theorem 4.1, we have
〈g1, g1〉 = tr1(f1). Finally, the explicit formula follows from Theorem 1.1 of [11]. �

Note that the expression in Theorem 1.3 can be interpreted as the value at s = 0 of an L-function
for the modular function f1. We refer the reader to [11] and Section 6.

5. A cohomological interpretation of the error of modularity

5.1. The error of modularity. We next turn to a cohomological interpretation of the error of
modularity of holomorphic parts of harmonic Maass forms. This is motivated by a question posed
in [16], namely the geometric meaning of the inner product in [16].

In this section, let k ∈ −1
2N0 and let ρ be a one-dimensional representation of Mp2(Z). If ρ

satisfies ρ(I,−1) = (−1)2k, then, for M =
(
a b
c d

)
∈ SL2(Z),

ν(M) := ρ(M,ϕ)ϕ(τ)2k(cτ + d)−k

is independent of the choice of ϕ and defines a unitary multiplier system on SL2(Z) for weight k,
as given in Section 1.2 of [7]. Therefore, the slash operator |k,ρ is equivalent to the slash operator
defined for f : H→ C and M =

(
a b
c d

)
∈ SL2(Z) by

(f |k,ν M)(τ) := ν(M)−1(cτ + d)−kf(Mτ),

i.e., if (M,ϕ) ∈ Mp2(Z), then f |k,ρ (M,ϕ) = f |k,ν M , independent of ϕ. By a slight abuse of

notation, we thus use |k,ρ to denote the action of SL2(Z) on functions. Note that M !
k,ρ = {0} unless
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ρ(I,−1) = (−1)2k since f(τ) = (−1)2kρ(I,−1)f(τ) for every f ∈ M !
k,ρ and so it is natural to make

this assumption throughout.
Let f ∈M !

k,ρ with Fourier expansion

f(τ) =
∑
n∈Q

n�−∞

cf (n)qn.

By (2.5), there exists an F ∈ H2−k,ρ such that ξ2−k(F ) = f . We first express F− as a non-

holomorphic Eichler integral. For this, we let f c(τ) := f(−τ) for f : H → C. Using the same
notation as in Section 2.2, we set

Gf (τ) := − 1

(2i)k−1

ˆ i∞

−τ

f co(z)

(z + τ)2−k dz −
1

(−4π)k−1

∑
n∈Q+

cf (−n)

nk−1
W2−k(2πnv)qn, where

fo(τ) := f(τ)−
∑
n∈Q+

cf (−n)q−n.

Lemma 5.1. If f ∈M !
k,ρ (k ∈ −1

2N0) and F ∈ H2−k,ρ such that ξ2−k(F ) = f , then we have

(5.1) F−(τ) = Gf (τ).

Proof. With 8.8.13 of [22], we deduce that

(5.2) ξ2−k(Gf ) = f,

in particular Gf is harmonic. To complete the proof, it thus suffices to show that Gf has an
expansion of the same type as that of (2.3). Indeed, we first see that

ˆ i∞

−τ

f co(z)

(z + τ)2−k dz =
cf (0)

(k − 1)(2iv)1−k + (−2πi)1−k
∑
n∈Q+

cf (n)n1−kW2−k (−2πnv) e−2πinτ ,

as claimed. The remaining term of Gf has the shape (2.3). �

The next lemma justifies calling Gf an Eichler integral. For w ∈ C with Re(w)� 0, set

Fτ (w) :=

ˆ i∞

−τ

eiwzf c (z)

(τ + z)2−k dz.

Lemma 5.2. The function Fτ (w), originally defined for Re(w) � 0, can be analytically extended
to C\(−∞, 2πM ], where M ∈ Q+ is maximal such that cf (−M) 6= 0. It can further be extended
continuously from above to (−∞, 2πM). For w ∈ C\(−∞, 2πM ] we have:

(5.3)

Fτ (w) =

ˆ i∞

−τ

eiwzf co (z)

(τ + z)2−k dz + e
πi
2

(k−1)
∑
n∈Q+

cf (−n)(w − 2πn)1−kW2−k(−v(w − 2πn))e−iτ(w−2πn)

− e
3πi
2

(k−1)πi

Γ(2− k)

∑
n∈Q+

cf (−n)(w − 2πn)1−ke−iτ(w−2πn),

and in particular

(5.4) Fτ (0) = −(2i)k−1Gf (τ)− e
3πi
2

(k−1)πi

Γ(2− k)

∑
n∈Q+

cf (−n)

(−2πn)k−1
qn.
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Proof. We first note that, for Re(w)� 0,

(5.5) Fτ (w) =

ˆ i∞

−τ

eiwzf co (z)

(τ + z)2−k dz +
∑
n∈Q+

cf (−n)

ˆ i∞

−τ

eiwz−2πinz

(τ + z)2−k dz.

We make the change of variables z = −τ + iz1
w−2πn , to obtain

(5.6)

ˆ i∞

−τ

eiz(w−2πn)

(τ + z)2−k dz = ik−1e−iτ(w−2πn)(w − 2πn)1−kΓ(k − 1, 2v(w − 2πn)).

With the choice of branch of the incomplete Gamma function in Section 2.2, this implies that the
value at w = 0 of the continuous extension of Fτ (w) to R− equals

ˆ i∞

−τ

f co(z)

(z + τ)2−k dz +
1

(2πi)k−1

∑
n∈Q+

cf (−n)

nk−1
Γ(k − 1,−4πnv)qn.

Using Lemma 2.4, we deduce (5.3). �

We are now ready to give a formula for the error of modularity of F+. This leads to a cohomo-
logical interpretation.

Proposition 5.3. With the notation of Lemma 5.1, we have, for τ ∈ H

FS(τ) : = F+(τ)|2−k,ρ (S − I)(5.7)

=
−1

(2i)k−1

ˆ i∞

i
f co(z)

(
(z + τ)k−2 −

(
z − 1

τ

)k−2

τk−2ν(S)

)
dz

− 1

(−4π)k−1

∑
n∈Q+

cf (−n)

nk−1

(
e2πinτW2−k (−πin(τ + i))− τk−2e−

2πin
τ ν(S)W2−k

(
−πin

(
i− 1

τ

)))
.

Proof. The functions in (5.1) are real-analytic. We slash the left-hand side of (5.1) by S−I. Writing
v = (τ − τ) 1

2i we can view the resulting function as a function in two independent variables, namely
τ and τ . The identity

(5.8) F+|2−k,ρ(S − I) = −F−|2−k,ρ(S − I).

and (2.21) imply that the left-hand side of the resulting equation is holomorphic and thus inde-
pendent of τ . Therefore the same holds for its right hand side. So, using that Si = i and setting
τ = −i, we obtain

FS(τ) =
−1

(2i)k−1

ˆ i∞

i
f co(z)

(
z − 1

τ

)k−2

τk−2ν(S)dz

− 1

(−4π)k−1

∑
n∈Q+

cf (−n)

nk−1
e−

2πin
τ W2−k

(
−πin

(
i− 1

τ

))
ν(S)τk−2

+
1

(2i)k−1

ˆ i∞

i
f co(z) (τ + z)k−2 dz +

1

(−4π)k−1

∑
n∈Q+

cf (−n)

nk−1
e2πinτW2−k (−πin (τ + i)) .

Using (5.8), this implies the result. To obtain the form of the last sum appearing in the statement
of the proposition, we employ (2.7).

�
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5.2. Cohomology. In this section we show that the error of modularity FS has a cohomological
interpretation. The space it belongs to was introduced in Definition 1.13 of [7], which we now recall.
Note that we reverse the roles of the upper- and lower-half-plane in comparison to [7]. The two

formalisms are equivalent via the involution ι given by ι(f)(τ) := f (τ). For the remainder of this
section we fix k ∈ −1

2N0.

We first define the spaces of excised semi-analytic vectors. Let a ∈ P1(Q) := Q ∪ {i∞} be a
cusp of SL2(Z) (here cusps are not assumed to be necessarily SL2(Z)-inequivalent). Suppose that
M(i∞) = a for some M ∈ SL2(Z). For a, ε ∈ R+, set

Va(a, ε) := {Mτ ∈ H−; |u| ≤ a, v < −ε},
where H− is the lower half-plane. For E a finite set of cusps of SL2(Z) a set Ω ⊂ P1(C) is called
an E-excised neighborhood of H ∪ P1(R) if there exists a neighborhood U of H ∪ P1(R) and pairs of
positive reals (aa, εa) (a ∈ E) such that U\

⋃
a∈E Va(aa, εa) ⊂ Ω. An example is shown in Figure 1.

a1 a2

Ω
Ω

Ω
r r
6

Va1(aa1 , εa1)

Vi∞(ai∞, εi∞)

?

not in Ω

�� ��� �

Figure 1. An {i∞, a1, a2}-excised neighborhood.

We also recall the map prj2−k, used in Section 1.5 of [7] to move between the projective model
and the plane model. For any open subset U ⊂ P1(C) not containing −i, this map sends a function
f : U → C to prj2−k(f) : U → C defined by

prj2−k(f)(τ) := (i+ τ)2−kf(τ).

For an open subset U ⊂ P1(C), we let O(U) be the space of holomorphic functions U → C and
define the space of excised semi-analytic vectors associated with a finite set {a1, a2, . . . , an} of cusps
as

D2−k,ρ[a1, a2, . . . , an] := prj−1
2−k lim

−→
O(Ω),

where Ω runs over all {a1, a2, . . . , an}-excised neighborhoods.

Example 4 (Special case k ∈ −N0). An element of the space D2−k,ρ[a1, a2, . . . , an] is (represented
by) a function f with the following properties:

(i) It is defined on some neighborhood U of H ∪ P1(R) from which we have truncated some
“wedges” Va1 , . . . , Van .

(ii) It is holomorphic in U unless the neighborhood contains i∞ in which case we allow poles of
order at most 2− k at i∞.

The main coefficient module we use is defined as the inductive limit

D2−k,ρ := lim
−→

D2−k,ρ[a1, a2, . . . , an],
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where {a1, a2, . . . , an} ranges over all finite sets of cusps of SL2(Z).
To illustrate the definition, assume again that k ∈ −N0. Then an element of D2−k,ρ is (represented

by) a function f with the following properties:

(i) It is defined on some neighborhood U of H ∪ P1(R) from which we have truncated some
“wedge” Vaj for each cusp in some set of cusps {a1, . . . , an}.

(ii) It is holomorphic in U unless the neighborhood contains i∞. In the latter case we allow poles
of order at most 2− k at i∞.

In Proposition 1.14 of [7], it is proved that D2−k,ρ is a SL2(Z)-module via |2−k,ρ.
The following Proposition is crucial for the cohomological interpretation of the error of modularity.

Proposition 5.4. The function FS belongs to D2−k,ρ.

Proof. The holomorphicity of Fs on H follows by definition since F+ is holomorphic.
On the other hand, since fo(z) = c + O(e−αy), as y → ∞, for some c ∈ C and α > 0, the

integral on the right hand side of (5.7) defines a function which can be extended to a holomorphic
function everywhere except for the negative imaginary axis (corresponding to the possible poles of
the integrand). To examine the terms involving the W2−k-function we first note that, if u 6= 0,
then −πin(τ + i) and −πin(i − 1

τ ) do not lie on the real line. Thus the terms involving W2−k
extend holomorphically to C\ i[0,−∞). Using Proposition 5.3, we deduce that FS is a holomorphic
function on some neighborhood of H ∪ P1(R) not containing −i and with the sectors V0 and Vi∞
excised. Therefore, FS ∈ D2−k,ρ[0, i∞] and, thus, by definition, it is in D2−k,ρ. �

To state our next theorem we recall the definition of parabolic cohomology groups.

Definition 5.5. We let Z1
par(SL2(Z), D2−k,ρ) be the set of all maps φ : SL2(Z) → D2−k,ρ, sat-

isfying the conditions φ(M1M2) = φ(M1)|2−k,ρM2 + φ(M2) for all M1,M2 ∈ SL2(Z) and φ(T ) ∈
D2−k,ρ|2−k,ρ(T − I). We further set

B1(SL2(Z), D2−k,ρ) := {φ : SL2(Z)→ D2−k,ρ; φ(M) = a|2−k,ρ(M − I) with a ∈ D2−k,ρ},
H1

par (SL2(Z), D2−k,ρ) := Z1
par (SL2(Z), D2−k,ρ)

/
B1 (SL2(Z), D2−k,ρ) .

Note that since F+ is invariant under T , FS satisfies the period relations, i.e., it is annihilated
in terms of the action of |2−k,ρ by S + I and U2 + U + I where U := TS. Thus the map M 7→
F+|2−k,ρ(M − I) induces a parabolic 1-cocycle, hence, by Proposition 5.4, a cohomology class.

Theorem 5.6. The map σ : SL2(Z)→ D2−k,ρ defined via

σ(M) := (−2i)k+1πF+|2−k,ρ(M − I)

induces a cohomology class in H1
par(SL2(Z), D2−k,ρ).

We next show that the cohomology class of Theorem 5.6 coincides with the cohomology class
attached to f under one of the Eichler-Shimura isomorphisms given in [7]. In particular, this implies
that the cohomology class of Theorem 5.6 is not trivial.

Proposition 5.7 (Theorem E(i)(a) of [7]). Let k ∈ R \ N≥2, and let Ak,ρ denote the space of
holomorphic functions f on H satisfying f |k,ρM = f for all M ∈ SL2(Z). Furthermore, for τ0 ∈ H
fixed, let Ek be the map assigning to f ∈ Ak,ρ the map

M 7→
ˆ τ0

M−1τ0

f(z)

(z − τ)2−k dz = (−1)−k+1

ˆ −τ0
−M−1τ0

f c(z)

(z + τ)2−k dz, M ∈ SL2(Z).

Then Ek induces an isomorphism between Ak,ρ and H1
par(SL2(Z), D2−k,ρ).
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Remark. The image of Ek(f) in H1
par(SL2(Z), D2−k,ρ) is independent of τ0.

In order to prove that the cohomology class of σ in fact coincides with the cohomology class of
Ek(f c), we need the following explicit formula.

Proposition 5.8. Suppose that 2− k = m+ b with m ∈ N and b ∈ {1/2, 1}. Then, for each τ ∈ H
with u > 0, we have

(5.9) − (2i)k−1Gf (τ) +

ˆ −τ
i

f c(z)

(τ + z)2−k dz −
e

3πi
2

(k−1)πi

Γ(2− k)

∑
n∈Q+

cf (−n)

(−2πn)k−1
qn

=

ˆ i∞

i

f co(z)

(z + τ)2−k dz +
∑
n∈Q+

cf (−n)ik−1e2πinτ (1− iτ)k−1
(
e2πn(1−iτ) 1

Γ(2− k)

×
m−1∑
`=1

(
(2πn(1− iτ))` Γ(1− k − `) +

Γ(c) (2πn(1− iτ))m

Γ(2− k)
Eb(2πn(iτ − 1))

)
.

Proof. Lemma 5.2 yields that

−(2i)k−1Gf (τ)− e
3πi
2

(k−1)πi

Γ(2− k)

∑
n∈Q+

cf (−n)

(−2πn)k−1
qn

equals the value at w = 0 of the continuation of the function of w:ˆ i∞

−τ
f c (z)eiwz (τ + z)k−2 dz

=

ˆ i∞

i

f co (z)

(τ + z)2−k dz +
∑
n∈Q+

cf (−n)

ˆ i∞

i

eiwz−2πinz

(τ + z)2−k dz −
ˆ −τ
i

f c (z)

(τ + z)2−k dz.(5.10)

Equation 8.19.1 of [22] gives for Re(w)� 0,
ˆ i∞

i

eiwz−2πinz

(τ + z)2−k dz = ik−1e−iτ(w−2πn)(1− iτ)k−1E2−k((1− iτ)(w − 2πn)).(5.11)

If 2− k = m+ b with b = 1/2 or b = 1 and m ∈ N, then (2.13) implies that (5.11) equals

ik−1e−iτ(w−2πn)(1− iτ)k−1
(
e(1−iτ)(2πn−w) 1

Γ(2− k)

m−1∑
`=1

((1− iτ)(2πn− w))` Γ(1− k − `)

+
Γ(c) ((1− iτ)(2πn− w))m

Γ(2− k)
Eb((1− iτ)(w − 2πn))

)
.

As a function of τ this is holomorphic for w = 0 since Im(2πn(iτ − 1)) = 2πnu > 0. Substituting
this into (5.10) and taking the limit as w → 0+, we obtain the double sum in (5.9). The remaining
terms are obtained directly from (5.10). �

Finally, we are ready to state the main theorem of this section.

Theorem 5.9. We assume the notation of Proposition 5.7. Then the cohomology class of Ek(f c)
in H1

par(SL2(Z), D2−k,ρ) equals the cohomology class of the cocycle σ.

Proof. The statement of the theorem is equivalent to

(5.12) Ek(f c)− σ ∈ B1(SL2(Z), D2−k,ρ).
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To prove (5.12), we need to show that there exists a ∈ D2−k,ρ such that, for each M ∈ SL2(Z),

(5.13) Ek(f c)(M)− σ(M) = a|2−k,ρ(M − I).

The formulas for Ek(f c)(M) and σ(M) imply that this is equivalent to

(5.14)

ˆ τ0

M−1τ0

f c(z)

(z − τ)2−k dz + 2k+1πe
πi
2

(1−k)F+|2−k,ρ(M − I) = a(τ)|2−k,ρ(M − I).

Using Lemma 5.1 of [7], we can rewrite (5.14) as

(5.15)(ˆ −τ
i

f c(z)

(τ + z)2−k dz

) ∣∣∣∣∣
2−k,ρ

(M − I) + 2k+1πe
πi
2

(1−k)h+(τ)|2−k,ρ(M − I) = a(τ)|2−k,ρ(g − 1)

for all τ in some excised neighborhood of H ∪ P1(R).
We next find an a ∈ D2−k,ρ satisfying (5.15). With the definitions of m and b as above, we let

G̃f (τ) :=

ˆ i∞

i

f co(z)

(z + τ)2−k dz + ik−1
∑
n∈Q+

cf (−n)e2πinτ (1− iτ)k−1
(
e2πn(1−iτ) 1

Γ(2− k)

×
m−1∑
`=1

(2πn(1− iτ))` Γ(1− k − `) +
Γ(c) (2πn(1− iτ))m

Γ(2− k)
Eb,0(2πn(iτ − 1))

)
+
e

3πi
2

(k−1)πi

Γ(2− k)

∑
n∈Q+

cf (−n)

(−2πn)k−1
qn.

Recall, from Section 2, that Eb,0 denotes the branch of Eb with the cut on the non-negative real
axis. We denote the logarithm branch used in the definition of Eb,0 by Log−. Then

(5.16) Eb(2πn(iτ − 1)) = Eb,0(2πn(iτ − 1)).

Since for τ ∈ H with u > 0 we have 2πn(iτ − 1) ∈ H, hence Log−(2πn(iτ − 1)) = Log(2πn(iτ − 1)).
Together with (2.14) and (2.15), this implies (5.16). Then, by Proposition 5.8, we obtain

−(2i)k−1Gf (τ) +

ˆ −τ
i

f c(z)

(τ + z)2−k dz = G̃f (τ).

Therefore,

(5.17) − (2i)k−1Gf (τ)|2−k,ρ(M − I) +

(ˆ −τ
i

f c(z)

(τ + z)2−k dz

) ∣∣∣∣∣
2−k,ρ

(M − I) = G̃f (τ)|2−k,ρ(M − I).

We next show that this identity extends to some excised neighborhood of H ∪ P1(R) and that

G̃f ∈ D2−k,ρ. More precisely, we prove that the two terms on the left-hand side of (5.17) and G̃f
can be analytically continued to an excised neighborhood of H ∪ P1(R).

First, in Theorem 5.4, it is shown that F+|2−k,ρ(M − I) is in D2−k,ρ, i.e., it is holomorphic on
such a domain. Next, according to Lemma 5.1. of [7] and Proposition 5.7,(ˆ −τ

i

f c(z)

(τ + z)2−k dz

) ∣∣∣∣∣
2−k,ρ

(M − I) = (−1)−k+1Ek(f c)(M)(τ)

is also in D2−k,ρ and thus holomorphic on a domain of the same kind. Finally, G̃f is also holomorphic
on such a domain since:
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· τ 7→ Eb,0(2πn(iτ − 1)) is holomorphic everywhere except for (−i)[1,∞) since the cut of Eb,0 is
[0,∞),

·
´ i∞
i f c(z)(z + τ)k−2dz is holomorphic everywhere except for a line joining −i to −i∞,

· all other terms in the formula of G̃f are holomorphic everywhere (except for −i).
Thus, we have proved that the three terms appearing in (5.17) are analytic in a neighborhood of

H∪P1(R) that does not contain −i and from which we have excised some sectors V0, Vi∞,M
−1Vi∞.

Hence, by uniqueness, (5.17) holds for all τ in such an excised neighborhood of H ∪ P1(R).

The holomorphicity of G̃f on an excised region just proved shows further that

−σ(M) + Ek(f c)(M) = a|2−k,ρ(M − I)

for some a ∈ D2−k,ρ for all M ∈ SL2(Z), i.e., the cohomology classes of σ and Ek(f c) coincide. �

A direct consequence of Theorem 5.9 is that the cocycle σ is not cohomologically trivial.

Corollary 5.10. The cohomology class of

σ : M 7→ (−2i)k+1πF+|2−k,ρ(M − I)

does not vanish in H1
par(SL2(Z), D2−k,ρ).

Proof. By Theorem 5.9, the cohomology class of σ equals that of Ek(f c). However, Theorem 5.7
asserts that the map induced by Ek is an isomorphism. Since f c is non-trivial, we deduce the
non-vanishing of our cohomology class. �

6. Connections to L-values

For simplicity, we consider only integral weight k in this section and also assume that ρ is
trivial. In [6, 18] L-functions for weakly holomorphic modular forms with vanishing constant Fourier
coefficient were investigated. We briefly recall them in the slightly more general context that includes
weight 0 and weakly holomorphic modular forms with non-vanishing constant term.

Definition 6.1. Let k ∈ Z and let g(τ) =
∑

m≥m0
cg(m)qm ∈M !

k. Then, for t0 > 0 fixed, we set

(6.1) L∗g(s) :=
∑
m≥m0
m6=0

cg(m)Γ(s, 2πmt0)

(2πm)s
+ ik

∑
m≥m0
m6=0

cg(m)Γ
(
k − s, 2πm

t0

)
(2πm)k−s

− cg(0)

(
ists−k0

k − s
+
ts0
s

)
.

Remarks.

(i) The growth estimates of Lemma 2.3 imply that the two series are convergent.
(ii) One can show that this definition is independent of t0.
(iii) For weight 0, the value L∗g(0) agrees with the definition made in (1.10) of [11] for the “central

value” of the L-function of a weakly holomorphic modular form of weight 0 with vanishing
constant term.

The main result of this section concerns

(6.2) Gk(τ) :=
−1

(2i)k−1

ˆ i∞

i
f̃(z)

(
(z + τ)k−2 − (zτ − 1)k−2

)
dz

+
e−πik

(4π)k−1

m0∑
j=1

cf (−j)
jk−1

e2πijτW2−k(−πij(τ + i)),

where f̃ := f co − cf (0). We note that the first term has a well defined value as τ goes to 0 from
within H. Therefore, by Proposition 5.3, the function Gk can be thought of as the part of FS which
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is defined at 0. We show that, for k ∈ −2N, the function Gk is essentially the generating function of

the L-values of f c. Specifically, although this function has no Taylor expansion at 0, G(n)
k (0) gives

numbers explicitly involving values of L-functions.

Theorem 6.2. For k ∈ −2N0 and n ∈ N0,

(6.3)
G(n)
k (0)

n!
=
−(k − n− 1)n

2k−1in+kn!

(
L∗fc(n+ 1) + cf (0)

(
in+1

k − n− 1
+

1

n+ 1

)
−

m0∑
j=1

cf (−j)Γ(n+ 1,−2πj)

(−2πj)n+1

)
+

22−2k+nπn−k+2in−1

Γ(2− k)

m0∑
j=1

cf (−j)
jk−n−1

,

where (a)n := Γ(a+ n)/Γ(a) denotes the Pochhammer symbol.

Remark. The sum with the incomplete Gamma functions is explicit and elementary since, for n ∈ N,
Γ(n+ 1, w) has a closed formula.

Proof. We compute

dn

dτn

(
(z + τ)k−2 − (zτ − 1)k−2

)
= (k − n− 1)n

(
(z + τ)k−2−n − zn (zτ − 1)k−2−n

)
.

Letting τ → 0, and substituting the Fourier expansion of f̃ , (since k is even) the contribution of

the first term to G(n)
k (0) is

(6.4)
−(k − n− 1)n

(2i)k−1

(ˆ i∞

i
f̃(z)zk−2−ndz −

ˆ i∞

i
f̃(z)(−z)ndz

)

=
−(k − n− 1)n

(2i)k−1

∑
`≥1

cf (`)

ˆ i∞

i
e2πi`zzk−2−ndz −

∑
`≥1

cf (`)

ˆ i∞

i
e2πi`z(−z)ndz

 .

Making the change of variable z = it/(2π`), this becomes

(6.5)
(k − n− 1)n
2k−1ik+n+2

ik∑
`≥1

cf (`)

(2π`)k−n−1
Γ(k − n− 1, 2π`) +

∑
`≥1

cf (`)

(2π`)n+1
Γ(n+ 1, 2π`)


=

(k − n− 1)n
2k−1ik+n+2

(
L∗fc(n+ 1) + cf (0)

(
in+1

k − n− 1
+

1

n+ 1

)

−
m0∑
j=1

cf (−j)Γ(n+ 1,−2πj)

(−2πj)n+1
− ik

m0∑
j=1

cf (−j)Γ(k − n− 1,−2πj)

(−2πj)k−n−1

)
.

To differentiate the second term in (6.2), we first see with 8.8.19 of [22] that

dn

dτn
(
e2πijτΓ (k − 1, 2πij(τ + i))

)
= (2πij)n(k − n− 1)ne

2πijτΓ(k − n− 1, 2πij(τ + i)).
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With this and (2.21), we get

(6.6)
dn

dτn

 1

(4π)k−1

m0∑
j=1

cf (−j)
jk−1

e2πijτW2−k(−πij(τ + i))


τ=0

=
(k − n− 1)n

2k−1in+2

m0∑
j=1

cf (−j)Γ(k − n− 1,−2πj)

(−2πj)k−n−1
+

4k−1π2−k

iΓ(2− k)

m0∑
j=1

(2πij)n
cf (−j)
jk−1

.

Upon addition to (6.5), the first term of the right-hand side cancels the last sum of (6.5). The
second term equals the last term of (6.3), completing the proof. �
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