

University of Nottingham

Nottingham Geospatial Institute

Navigating without a Navigator

A Review of Positioning and Navigation Technologies for UAVs

Professor Terry Moore

Professor of Satellite Navigation Nottingham Geospatial Institute University of Nottingham

UAV Platforms

Courtesy of The Ohio State University

Comparison of UAV Platforms

Three types: Fixed-Wing, Rotary-Wing, Multi-Rotor and also Transformational Hybrids

Courtesv of THE OHIO STATE UNIVERSITY Partial Credit: Clive Fraser

Positioning and Navigation for UAVs

Positioning

Universitu of

Nottingham

Navigation = positioning + guidance Positioning of other payloads and sensors Geo-referencing Real-time or post-processed

Navigation

En-route to / from 'survey' location Guidance, autopilot, control Geo-fencing, controlled airspace, etc. Emergency recovery Real-time

Requirements

Remotely piloted (RPAS), BVLOS operations, autonomous? Different levels of accuracy and integrity are required (RNP?) But, often combined into a single integrated payload

Absolute Positioning

Universitu of

Nottingham

Low or modest temporal resolution Single-frequency, code-based GNSS (common), DGPS Multi-Constellation, Multi-Frequency GNSS RTK & PPP Pressure sensor (height, airspeed) Visual-based, cameras, video Radar, Altimeter, Lidar Feature Matching, Terrain Referenced Navigation, SLAM Cooperative positioning, Swarming

Relative Positioning

High temporal resolution Altitude Heading Reference System (AHRS): accelerometer, gyro, magnetometer Roll, pitch, yaw angles, and velocities/positions estimated Vehicle Dynamics Modelling

Typical UAV GNSS Receivers

Single-Frequency GPS (autopilot systems)	u-blox LEA-6H	
No raw data		
No timing		
Horizontal position accuracy (without aiding)	2.5 m	
Time accuracy	30 ns	
Power requirements	121 mW	

Dual-Frequency GPS	NovAtel OEM615		
Event input in	Yes		
PPS out	Yes		
Single Point L1 RMS	1.5 m		
Single Point L1/L2 RMS	1.2 m		
Time accuracy	20 ns		
Power requirements	1 W		

RTK

Universitu of

Requires base station and radio-link setup Network RTK requires access to mobile signal (GSM, 3G,4G). This may be difficult in remote or offshore area

PPP

No base station required

Requires an initialisation time of about 20 minutes to provide dm to cm accuracy. In addition link to external data source required

GBAS

Availability localised to areas in the vicinity of airports GBAS can be set up and installed around assets of interest, but at significant cost

SBAS

Requires line of site to SBAS (e.g. EGNOS) satellite Low elevation at high latitudes - signal disruptions Internet-based access, EDAS

3 gyros and 3 accelerometers Orientation from integrating gyro output Displacement from: Rotate measurements (using gyros)

Removing gravity and ...

Double integrating accelerations

MEMS-based are getting better

Cheaper (higher volumes - Wii, smartphones) Better manufacturing Better calibration

Key issue is bounding of error growth

GNSS / IMU Integration

Typical UAV IMU Sensors

IMU	Honeywell H-764G	Epson M-G362PDC1	MicroStrain 3DM-GX3-35	Autopilot sensors	Analog Devices ADIS16364
Gyro bias	0.0035°/h	3 °/ h	18 °/ h	> 15 °/ h	25 °/ h
Gyro random walk	0.0035°/h ^{1/2}	N/A	0.1 °/ h ^{1/2}	N/A	2 °/ h ^{1/2}
Accelerometer bias	25 µg	40 mg	< 100 mg	> 60 mg	8 mg
Accelerometer noise	8.3 µg (100Hz bw)	40 mg / Hz ^{1/2}	100 mg / Hz ^{1/2}	> 250 mg / Hz ^{1/2}	270 mg / Hz ^{1/2}
Power requirements	40 W	30 mA via USB	200 mA via USB	> 4 mA (IMU only)	49 mA

Courtesv of The Ohio State University

University of Nottingham Notingham Geospatial Institute

FÉDÉRALE DE LAUSANNE

Courtesy of

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Mapping can be described by the first question, "what does the world look like?"

Localization is to answer the second question, "where am I?"

SLAM is defined as the process of building a model leading to a new map, or repetitively improving an existing map, whilst at the same time localising the moving platform within that map

Lidar and / or visual sensing

Autonomous UAV operation

Outdoor and indoor applications

Cooperative UAV Localisation

Courtesy of

University of

Courtesy of

Light UAV (<20kg)

- Operating below 450 ft.
- Survey or inspection of assets
- Repeatable flight path.

Safe envelope for navigation should be defined by:

Proximity to known hazards, plus uncertainty in the location
Ability to stay on trajectory
Positioning accuracy and integrity
c.f. 'RNP' (Required Navigation Performance) in aviation

Multi-Phase Operational Approach

University of

Nottingham Nottingham Geospatial Institute

Positioning and Navigation for UAVs

Summary

Positioning and navigation sensors often combined Use of low-power, weight and cost equipment – low performance No definitions of RNP

Split flights into distinct phases En-route phase Operations Phase

Separate positioning sensors between tasks UAV navigation and control Sensor positioning

Contact Details

Professor Terry Moore Director of the NGI Nottingham Geospatial Building The University of Nottingham Triumph Road Nottingham NG7 2TU

Telephone: Fax: Email: WWW: +44 (0) 115 951 3886 +44 (0) 115 951 3881 terry.moore@nottingham.ac.uk www.nottingham.ac.uk/ngi

Identify feature

Match feature with database

Obtain feature position from database

UAV Position = Feature Position – Relative Position

Courtesy of Paul D Groves

Feature Matching – Relative Positioning

