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§
 Current address: Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey 

Pines Road, La Jolla, California 92037 USA 

Abstract 

Human milk oligosaccharides (HMOs) afford many health benefits to breast-fed infants, such as 

protection against infection and regulation of the immune system, through the formation of non-

covalent interactions with protein receptors. However, the molecular details of these interactions 

are poorly understood. Here, we describe the application of catch-and-release electrospray 

ionization mass spectrometry (CaR-ESI-MS) for screening natural libraries of HMOs against 

lectins. The HMOs in the libraries were first identified based on molecular weights (MWs), ion 

mobility separation arrival times (IMS-ATs) and collision-induced dissociation (CID) 

fingerprints of their deprotonated anions. The libraries were then screened against lectins and the 

ligands identified from the MWs, IMS-ATs and CID fingerprints of HMOs released from the 

lectin in the gas phase. To demonstrate the assay, four fractions, extracted from pooled human 

milk and containing ≥35 different HMOs, were screened against a C-terminal fragment of human 

galectin-3 (hGal-3C), for which the HMOs specificities have been previously investigated, and a 

fragment of the blood group antigen-binding adhesin (BabA) from Helicobacter pylori, for 

which the HMO specificities have not been previously established. The structures of twenty-one 

ligands, corresponding to both neutral and acidic HMOs, of hGal-3C were identified; all twenty-

one were previously shown to be ligands for this lectin. The presence of HMO ligands at six 

other MWs was also ascertained. Application of the assay to BabA revealed nineteen specific 

HMO structures that are recognized by the protein and HMO ligands at two other MWs. Notably, 

it was found that BabA exhibits broad specificity for HMOs, and recognizes both neutral HMOs, 

including non-fucosylated ones, and acidic HMOs. The results of competitive binding 
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experiments indicate that HMOs can interact with BabA at previously unknown binding sites. 

The affinities of eight purified HMOs for BabA were measured by ESI-MS and found to be in 

the 10
3
 M

-1 
to 10

4
 M

-1
 range.  

Introduction  

Human milk, in addition to being an essential source of nutrition, provides infants with many 

important health benefits.
1,2

 Human milk contains a variety of active components, including 

proteins, glycoproteins and fat globules.
3
 Every liter of human milk also contains approximately 

5 g to 25 g of unconjugated oligosaccharides, known as human milk oligosaccharides (HMOs).
4
  

Studies have shown that HMOs afford health benefits to breast-fed infants through several 

mechanisms.
5-7

 They are known to have immune-stimulating effects and can influence the 

composition of microbiota in the gut and promote the growth of beneficial microorganisms.
8-10

 

HMOs can also protect newborns against infectious diseases by interfering with the binding of 

pathogenic bacteria and their toxins and viruses to intestinal epithelial cells.
11

  

Central to the varied biological roles played by HMOs are the specific non-covalent 

interactions they form with endogenous and exogenous protein receptors. While their importance 

is well appreciated, the molecular details of these interactions are poorly understood. The large 

number of HMO structures found in human milk, including the presence of many structural 

isomers, and their wide ranging concentrations (~0.01 g L
-1

 to ~2 g L
-1

) represent significant 

challenges to the comprehensive analysis of HMO interactions with proteins.
4,12

 Of the more 

than two hundred known HMOs, fewer than fifty are commercially available.
13-17

 Given the 

limited availability of purified HMOs, the use of mixtures of HMO, extracted directly from milk, 

is an attractive alternative for protein-HMO interaction studies. However, there are few screening 

technologies that are readily applied to natural libraries. One approach, pioneered by Cummings 

and co-workers, involves the use of shotgun glycan microarrays, which employ fractions of 
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HMOs, purified from human milk, that are chemically modified and immobilized on a solid 

surface.
18-20

 The use of HMO glycan microarrays allows for the rapid profiling of HMO binding 

properties of lectins and the discovery of new protein-HMO interactions that might be relevant to 

human health. However, the derivatization of HMOs at the reducing end glucose is a drawback 

to this approach since the terminal lactose moiety is often implicated in the binding of HMOs to 

lectins.
 21

 

Electrospray ionization mass spectrometry (ESI-MS) is an attractive alternative to glycan 

microarrays for screening carbohydrate libraries against lectins in vitro and is particularly well 

suited for the study of HMO interactions since there is no requirement for labeling or 

immobilization of the oligosaccharides, which may influence their binding properties.
21 

Direct 

detection and quantification of free and ligand-bound proteins ions by ESI-MS enables the 

binding stoichiometry and affinity of protein-carbohydrate interactions to be established.
22-26 

Moreover, because it is possible to monitor multiple binding equilibria simultaneously, ESI-MS 

is also amenable to screening carbohydrate libraries.
27

 In cases where the protein-carbohydrate 

complexes can’t be detected or reliably quantified, library screening can be performed using a 

catch-and-release (CaR)-ESI-MS format, whereby ligands are identified following their release, 

as ions, from protein-ligand complexes upon collisional activation in the gas phase.
27

 The assay 

is rapid, sensitive and label- and immobilization-free and, although not quantitative, can be used 

to identify the highest affinity ligands and to guide follow-up quantitative binding 

measurements.
27

 

The CaR-ESI-MS assay has been previously used to screen a variety of defined 

oligosaccharide libraries, including free HMOs, and shown to successfully identify the highest 

affinity ligands in libraries containing in excess of two hundred different components.
28-34  

Here, 
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we describe the application of the assay for screening mixtures of HMOs, extracted from pooled 

human milk, against lectins to identify specific ligands. To our knowledge, this represents the 

first demonstration of CaR-ESI-MS for screening natural libraries for protein interactions. The 

main advantage of using natural HMO libraries, compared to the libraries of purified HMOs, is 

the larger number and diversity of structures that are present, in particular the inclusion of larger 

oligosaccharides, which are not commercially available. A disadvantage is that it may not be 

possible to unambiguously assign the structures of all the extracted HMOs. However, even in 

cases where the exact structure is not known, the monosaccharide composition of the HMO 

ligand(s) can be readily established.  

In the present study, the feasibility of using the CaR-ESI-MS assay to screen natural 

libraries of HMOs was demonstrated using a C-terminal fragment of human galectin-3 (hGal-3C), 

which contains the carbohydrate recognition domain, as a model HMO-binding lectin. The 

affinities of thirty-two free (unmodified) HMOs for hGal-3C were recently measured and these 

binding data served to validate the majority of the interactions identified by CaR-ESI-MS for the 

HMO libraries.
21

 The assay was then used to screen the HMO libraries against a truncated form 

of the blood group antigen-binding adhesin (BabA) from Helicobacter pylori to evaluate its 

HMO specificities. This adhesin, one of approximately thirty outer membrane proteins, plays an 

important role in the association of H. pylori to the gastric mucosa.
35,36

 BabA is known to 

recognize the fucosylated Lewis b histo-blood group antigen, Le
b
 and H1 terminal fucose 

residues on blood group O (H antigen), A and B antigens, salivary nonmucin glycoprotein gp-

340, salivary mucin MUC5B and proline-rich glycoprotein.
35,36

 Fucosylated glycans have been 

shown to inhibit H. pylori adhesion to human gastric tissue,
37 

however, the HMO specificities of 

the adhesins have not been previously determined. Quantitative ESI-MS binding measurements, 
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performed on a subset of HMOs identified as ligands for BabA by the CaR-ESI-MS assay, 

served to validate the screening results. Competitive binding measurements were also carried out 

to establish whether BabA possesses previously unknown HMO binding sites.  

Experimental Section 

Proteins 

The recombinant fragment of the C-terminus (residues 107–250) of human galectin-3 (hGal-3C, 

MW 16,330 Da) was a gift from Prof. C. Cairo (University of Alberta) and the recombinant 

truncated form (residues 21–547) of the blood group antigen-binding adhesin (BabA) from 

Helicobacter pylori strain J99 (BabA547, MW 58,211 Da) was produced and purified as 

described elsewhere.
38 

Lysozyme (MW 14,310 Da), which served as the reference protein (Pref), 

was purchased from Sigma-Aldrich Canada (Oakville, Canada). Each protein was dialyzed 

against 200 mM aqueous ammonium acetate (pH 6.8), concentrated using 10 kDa MW cut-off 

Amicon Ultra-4 centrifugal filters (Millipore Corp, Bedford, MA), and stored at -20 °C until 

used.  

Human milk oligosaccharides  

The structures of the pure HMOs are listed Table S1, Supporting Information. HMO1 (MW 

488.17 Da), HMO2 (MW 488.17 Da), HMO12 (MW 853.31 Da), HMO13 (MW 853.31 Da), 

HMO17 (MW 998.34 Da), HMO20 (MW 999.36 Da), HMO21 (MW 1072.38 Da), HMO23 

(MW 1144.40 Da), HMO24 (MW 1144.40 Da), HMO27 (MW 1364.50 Da) and HMO28 (MW 

1438.51 Da), HMO29 (MW 545.48 Da), HMO30 (MW 691.25 Da) and HMO31 (MW 1056.39 

Da) were purchased from Elicityl SA (Crolles, France); HMO3 (MW 633.21 Da), HMO4 (MW 

633.21 Da), HMO5 (MW 634.23 Da), HMO6 (MW 707.25 Da), HMO7 (MW 707.25 Da), 

HMO8 (MW 779.27 Da), HMO9 (MW 853.31 Da), HMO10 (MW 853.31 Da), HMO11 (MW 
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853.31 Da), HMO14 (MW 998.34 Da), HMO15 (MW 998.34 Da), HMO16 (MW 998.34 Da), 

HMO18 (MW 999.36 Da) and HMO26 (MW 1364.50 Da)  were purchased from IsoSep 

(Tullinge, Sweden); HMO19 (MW 999.36 Da)  and HMO22 (MW 1072.38 Da) from Dextra 

(Reading, UK); HMO25 (MW 1289.44 Da) was purchased from CarboSynth (Compton, UK). 

Stock solutions of each HMO were prepared by dissolving a known mass of the oligosaccharide 

in ultrafiltered water (Milli-Q, Millipore, Billerica, MA) to give a final concentration of 1 mM. 

All of the stock solutions were stored at -20 °C until used.  

HMO fractions  

Fourteen HMO fractions (designated as Fraction 1 – Fraction 14) were produced from pooled 

HMOs (pHMOs) originally isolated from human milk pooled from over 50 different donors with 

term infants. First, after centrifugation of the pooled human milk, the lipid layer was removed 

and proteins were precipitated from the aqueous phase by addition of ice-cold ethanol and 

subsequent centrifugation. Ethanol was removed from the HMO-containing supernatant by roto-

evaporation. Lactose and salts were removed by gel filtration chromatography over a BioRad P2 

column (100 cm316 mm, Bio-Rad, Hercules, California, USA) using a semi-automated fast 

protein liquid chromatography (FPLC) system. Second, pHMOs were separated by charge using 

anion exchange chromatography on an anion exchange column QAE Sephadex A-25 (Sigma-

Aldrich, St. Louis, USA). Lyophilised pooled HMO were dissolved in 2 mM Tris and applied to 

equilibrated columns. Neutral HMOs were eluted with 2 mM Tris. Acidic HMOs were eluated 

with 2 mM Tris containing 200 mM NaCl. Afterwards, Tris and NaCl were removed from the 

neutral and acidic HMO fractions by gel filtration chromatography over a Bio-Gel P-2 gel 

filtration chromatography column (100 cm x 16 mm). Third, neutral and acidic HMO fractions 
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were further separated by size using Bio-Gel P-2 gel filtration chromatography (160 cm x 16 mm) 

with 10 mL subfraction resolution. All fractions were lyophilized for future use.  

To prepare stock solutions, Fraction 1-Fraction 14 (Fraction 1 (1.08 mg), Fraction 2 

(0.95 mg), Fraction 3 (1.77 mg), Fraction 4 (1.05 mg), Fraction 5 (0.95 mg), Fraction 6 (1.33g), 

Fraction 7 (1.00 mg), Fraction 8 (0.55 mg), Fraction 9 (0.69 mg), Fraction 10 (1.20 mg), 

Fraction 11 (0.51 mg), Fraction 12 (0.29 mg), Fraction 13 (2.11 mg) and Fraction 14 (0.85 mg)) 

were dissolved separately in 40 mL Milli-Q water. Following a 100-fold dilution with Milli-Q 

water, each of the stock solutions was stored at -20 °C until used. Given that, based on ESI-MS 

analysis, some of the fractions had similar compositions, vide infra, these were pooled to give 

four new fractions, designated as: Fr1 (Fraction 1), Fr2 (Fractions 2-5), Fr3 (Fractions 6-10), 

Fr4 (Fractions 11-14). 

Mass spectrometry    

All CaR-ESI-MS measurements were carried out in negative ion mode using a Synapt G2 ESI 

quadrupole-ion mobility separation-time-of-flight (Q-IMS-TOF) mass spectrometer (Waters, 

Manchester, UK), equipped with a nanoflow ESI (nanoESI) source. NanoESI tips were produced 

in-house from borosilicate capillaries (1.0 mm o.d., 0.78 mm i.d.) pulled to ~5 µm outer-

diameter using a P-1000 micropipette puller (Sutter Instruments, Novato, CA). To perform 

nanoESI, a platinum wire was inserted into the nanoESI tip and a voltage of -1.0 kV was applied. 

A Cone voltage of 25 V was used and the source block temperature was maintained at 50 ºC. For 

the CaR-ESI-MS measurements, a Trap voltage of 5 V, and Transfer voltage between 10 V and 

80 V, was used. Argon was used in the Trap and Transfer ion guides at pressures of 2.22 x 10
-2

 

mbar and 3.36 x 10
-2

 mbar, respectively. The helium chamber preceding the traveling wave IMS 

(TWIMS) device was maintained at 7.72 mbar. The IMS parameters, which were optimized for 
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each HMO MW, were: 2 mL min
-1 

Trap gas flow rate; 150 to 180 mL min
-1 

helium cell gas flow 

rate; 50 mL min
-1 

to 90 mL min
-1 

ion mobility gas flow rate; 50 V Trap
 
voltage;

 
400 m s

-1 
to 1000 

m s
-1 

IMS wave velocity;
 
15 V to 40 V IMS

 
wave height. All IMS measurements were carried out 

using nitrogen as the mobility gas, at a pressure of 3.41 mbar. Data acquisition and processing 

were carried out using MassLynx (v4.1). The quantitative affinity measurements were carried out 

in positive ion mode using a Synapt G2S quadrupole-ion mobility separation-time-of-flight (Q-

IMS-TOF) mass spectrometer (Waters UK Ltd., Manchester, UK). Details of the instrumental 

conditions used and data analysis are given as Supporting Information.  

Glycan array screening for binding of BabA  

Binding of BabA to a mammalian glycan array was assessed by the Consortium for Functional 

Glycomics (CFG, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 

USA) using their in-house glycan binding assay protocols and reagents. Binding of BabA to the 

printed surface of the CFG version 5.2 array, containing 609 synthetic and mammalian glycans, 

was performed in a 20 mM Tris-Cl (pH 7.4), 300 mM NaCl and 0.05% Tween-20 buffer. Bound 

BabA was detected with a fluorescein isothiocyanate labelled anti-c-Myc antibody. 

Results and discussion  

A two-step approach was used to identify HMO ligands, present in the fractions, for the two 

lectins (Figure 1). First, each fraction was analyzed by ESI-IMS-MS/MS in order to identify, to 

the extent possible, the HMOs present. This was accomplished by comparing the MWs, IMS-

ATs and CID fingerprints of ions detected from the fractions and the MWs of the most abundant 

oligosaccharidess found in human milk
13-15

 and IMS-ATs and CID fingerprints recently reported 

for a library of thirty-one purified HMOs.
34

 In cases where appropriate HMO standards were not 

available, possible HMO structures were suggested based on the CID fragmentation data and the 
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structures known to be present in human milk. To our knowledge, the present work represents 

the first demonstration of using IMS-ATs and CID fingerprinting to identify HMOs in mixtures 

extracted from human milk. Following the characterization of the fractions, they were screened 

against the lectin using CaR-ESI-MS and ligands identified from a comparison of the MWs, IMS 

ATs and CID fingerprints of the released and free HMOs.  

a. ESI-MS analysis of HMO fractions Fr1 – Fr4 

Shown in Figures 2 and S1-S5 (Supporting Information) are representative ESI mass spectra and 

IMS arrival time distributions (ATDs), acquired in negative ion mode, for aqueous solutions of 

each of the four fractions. Singly and doubly deprotonated ions corresponding to twelve HMO 

MWs (633.21 Da, 837.25 Da, 853.31 Da, 999.36 Da, 1056.39 Da, 1072.38 Da, 1202.30 Da, 

1218.44 Da, 1364.50 Da, 1510.32 Da, 1583.46 Da and 1729.64 Da) were identified in Fr1, six 

MWs (691.25 Da, 707.25 Da, 837.25 Da, 853.31 Da, 999.36 Da and 1218.44 Da) in Fr2, two in 

Fr3 (488.17 Da and 707.25 Da), as well as lactose, and seven in Fr4 (633.21 Da, 836.20 Da, 

998.34 Da, 1289.44 Da, 1509.54 Da, 1655.59 Da and 1800.63 Da). It should be noted that some 

of the HMO MWs were detected in multiple fractions. The monosaccharide compositions of the 

twenty-one different HMO MWs, which contain between three and ten monosaccharide units, 

were identified (Table 1). Fourteen of the MWs correspond to neutral HMOs (twelve of these are 

fucosylated), with the remaining seven corresponding to acidic HMOs (three are fucosylated).  

The deprotonated ions (singly or doubly charged) associated with each HMO MW were 

then subjected to IMS analysis and CID fingerprinting and the results compared to those 

measured for HMO1-HMO31.
34

As an example, the IMS and CID data acquired for the HMOs 

in Fr2 are shown in Figure 2; the corresponding results obtained for Fr1, Fr3 and Fr4 are shown 

in Figures S2-S5 (Supporting Information). Inspection of Figure 2 reveals that the IMS-ATDs 
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measured for deprotonated ions corresponding to HMO MWs of 691.25 Da (m/z 690.25), 837.25 

Da (m/z 836.25) and 853.31 Da (m/z 852.31) exhibit single features, with ATs of 6.17 ms 

(Figure 2b), 12.32 ms (Figure 2d) and 12.43 ms (Figure 2e), respectively. For the MWs 707.25 

Da (m/z 707.25), 999.36 Da (m/z 998.36) and 1218.44 Da (m/z 608.22) the IMS-ATDs consisted 

of two and three features, respectively, with ATs of 10.34 Da and 11.66 Da (for 707.25 Da (m/z 

707.25)) and 15.18 ms, 15.29 ms and 16.28 ms (for 999.36 Da (m/z 998.36)), 6.16 ms and 6.71 

ms (for 1218.44 Da (m/z 608.22))   (Figures 2c, 2f and 2a, respectively). The IMS-ATD 

measured for the 853.31 Da HMO (m/z 852.31) has a broad distribution (FWHM 1.2 ms) centred 

at 12.43 ms, consistent with the presence of multiple isomers (Figure 2e).
34

 

Four of the measured MWs (691.25 Da, 707.25 Da, 999.36 Da and 853.31 Da) present in 

Fr2 coincide with those of HMOs in the thirty-one component library (HMO1-HMO31). 

Comparison of the IMS-ATDs reveals that the ion corresponding to MW 691.25 Da (m/z 690.25), 

which has an AT of 6.17 ms, matches that of HMO30 (Figure 2b). The two features (with ATs 

of 10.34 ms and 11.66 ms) observed for the ions corresponding to MW 707.25 Da (m/z 706.25) 

match the IMS-ATs measured for HMO6 and HMO7 (Figure 2c). The three partially resolved 

features (with ATs of 15.18 ms, 15.29 ms and 16.28 ms) measured for the ions with MW 999.36 

Da (m/z 998.36) match those of HMO18, HMO19 and HMO20, respectively (Figure 2f). 

Additionally, the CID mass spectrum acquired for deprotonated ions of MW 853.31 Da (m/z 

853.31) revealed the presence of unique HMO fragments arising from five different HMOs, C2 

(m/z 325.12) from HMO9, 
0,4

A2/Z3β (m/z 288.10) from HMO10, C2/Z3β (m/z 364.11) from 

HMO11, C2/Z3 (m/z 202.07) from HMO12 and 
0,2

A2–H2O (m/z 263.10) from HMO13 (Figure 

2g).  
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Following the same approach, the other three fractions were analyzed and the HMOs 

identified are listed in Table 1. Together, the four fractions are found to contain at least thirty-

five different HMOs, corresponding to twenty-one different MWs. The structures of twenty-five 

HMOs (corresponding to eleven different MWs) were established from the measured IMS-ATs 

and CID fingerprints and comparison with those of purified HMOs. Eighteen of these are neutral 

HMOs (of which fourteen are fucosylated) and seven are acidic HMOs. For the other MWs, only 

monosaccharide compositions could be determined. However, it was possible to suggest HMO 

structures based on previously identified HMOs having the same monosaccharide 

compositions.
13,14 

 In certain cases, it was possible to reduce the number of structures based on an 

analysis of the fragment ions produced by CID (Figures S6-S15, Supporting Information). For 

example, CID of deprotonated HMOs with MW 836.25 Da (Hex2HexNAcSia) produced 

fragment ions at m/z 306.14, m/z 470.14 and m/z 493.15 (Figure S6, Supporting Information), 

which are indicative of α2→6 linked sialic acid, α-Neu5Ac-(2→6)-β-Gal and α-Neu5Ac-(2→6)-

β-GlcNAc, respectively.
39 

These data, taken together with the previously identified HMOs with 

Hex2HexNAcSia composition, suggest the presence of both β- GlcNAc-(1→3)-[α-Neu5Ac-

(2→6)]-β-Gal-(1→4)-β-Glc and α-Neu5Ac-(2→6)-β-GlcNAc-(1→3/6)-β-Gal-(1→4)-β-Glc.  

b. Screening HMO fractions against hGal-3C 

Having established the HMO compositions of Fr1-Fr4, each fraction was screened against hGal-

3C. Shown in Figure 3a is a representative ESI mass spectrum acquired in negative ion mode for 

aqueous ammonium acetate solutions (40 mM, pH 6.8) of hGal-3C (15 µM), Pref (5 µM) and Fr2 

(0.05 µg µL
-1

). Signal corresponding to hGal-3C bound to HMOs with five different MWs 

(691.25 Da (m/z 690.29), 707.25 Da (m/z 706.24), 837.25 Da (m/z 836.20), 853.31 Da (m/z 

852.30) and 999.36 Da (m/z 998.37)) was detected. The absence of signal corresponding to 
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HMO-bound Pref ions indicates that non-specific HMO-hGal-3C binding during the ESI process 

was negligible.
26

 From the MWs of the detected hGal-3C-HMO complexes it was possible to 

identify only one of the HMO ligands (HMO30, MW 691.25 Da); each of the other detected 

MWs could, in principle, correspond to multiple HMOs.  

To identify the other HMO ligands, the (hGal-3C + HMO) complexes at the -7 charge 

state, the most abundant charge state detected, were isolated using the quadrupole mass filter (set 

to pass a range (~200 m/z) of ions), and subjected to collisional activation in the Trap region. 

The selected Trap voltage (40 V) allowed for the efficient release of the HMOs from hGal-3C 

without causing significant secondary fragmentation. Signal corresponding to deprotonated 

HMO ions (as well as chloride adducts) of the five different MWs were detected (Figure 3b). 

From comparison of the IMS-ATDs and CID fingerprints of the released HMO ions with 

available data for purified HMOs of the same MW, nine HMO ligands (HMO6, HMO7, HMO9, 

HMO10, HMO11, HMO12, HMO13, HMO18 and HMO30) were positively identified (Figure 

3c-3h), in addition to the HMO with MW 837.25 Da.  

Similar analysis of the CaR-ESI-MS data acquired for the other three fractions with hGal-

3C was performed (Figures S16-S18, Supporting information). Taken together, the CaR-ESI-MS 

data obtained for the four fractions revealed HMO ligands corresponding to seventeen different 

MWs (Table 2). The structures of twenty-one HMO ligands (corresponding to eleven different 

MWs) were established from IMS-ATs and CID fingerprints. For the remaining six MWs only 

monosaccharide composition (and their corresponding putative structures) could be determined 

(Table 2). Notably, all of the twenty-one HMO ligands for which the structures were 

conclusively identified (HMO1, HMO3, HMO6, HMO7, HMO9 - HMO17, HMO18, 
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HMO21, HMO22, HMO25 - HMO27, HMO30 and HMO31) were previously shown to bind 

to hGal-3C with measurable affinity.
21

   

c. Screening HMO fractions against BabA 

Having established that the CaR-ESI-MS assay can be applied to HMO fractions, the assay was 

used to screen Fr1 – Fr4 against a truncated form of BabA, corresponding to the extracellular 

region of the adhesin. Shown in Figure 4a is a representative ESI mass spectrum acquired in 

negative ion mode for an aqueous ammonium acetate solution (40 mM, pH 6.8) of BabA (5 µM) 

and Fr2 (0.05 µg µL
-1

). Signal corresponding to both free and HMO-bound BabA ions, at charge 

states -11 to -14, were detected. Unlike with hGal-3C, the individual (BabA + HMO) complex 

ions were not well resolved, making it impossible to determine the MWs of the bound HMOs. 

Collisional activation of the (BabA + HMO) complexes, at the -13 charge state, resulted in the 

appearance of ions corresponding to five different HMO MWs (Figure 4b). Based on the IMS-

ATs and CID fingerprints of the released ions, eleven different HMO ligands were positively 

identified - HMO6, HMO7, HMO9-HMO13, HMO18-HMO20 and HMO30 (Figures 4c-4h), 

plus the HMO with MW 837.25 Da. The other three fractions were screened in a similar fashion 

and the results are shown in Figures S19-S21 (Supporting Information).  

In total, CaR-ESI-MS screening identified HMO ligands of BabA at nine different MWs 

(Table 3). The specific structures of nineteen of these (corresponding to seven different MWs) 

were identified (Table 3). Thirteen of the HMOs are neutral (HMO1, HMO2, HMO6, HMO7, 

HMO9, HMO10, HMO11, HMO12, HMO13, HMO18, HMO19, HMO20, HMO30), with 

two of these being non-fucosylated (HMO6 and HMO7). Notably, BabA is also found to 

recognize the acidic HMOs (HMO3, HMO4 and HMO14 - HMO17). The broad specificity of 

BabA for HMOs, both neutral and acidic, is, at least in part, consistent with the findings of 
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previous studies on glycan binding. BabA was shown previously to bind to the blood group O 

determinants on type 1 core chains, i.e., Lewis b antigen (α-L-Fuc-(1→2)-β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-GlcNAc-) and the crystal structure of BabA with HMO18, which contains this 

motif (α-L-Fuc-(1→2)-β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-GlcNAc-(1→3)-β-D-Gal(1→4)-β-

D-Glc) was reported.
40  

BabA also recognizes the H type 1 determinant (α-L-Fuc-(1→2)-β-D-Gal-

(1→3)-β-D-GlcNAc-), which is found in HMO9 (α-L-Fuc(1→2)-β-D-Gal(1→3)-β-D-

GlcNAc(1→3)-β-D-Gal(1→4)-β-D-Glc).
35,36,40,41 

Results obtained by screening BabA against a 

mammalian glycan array (Consortium for Functional Glycomics, array version 5.2, Figure S22, 

Supporting Information) also suggest that the acidic HMOs HMO3 and HMO4 and the non-

fucosylated HMOs HMO6 and HMO7 are BabA ligands.
 

The ability of BabA to bind to both fucosylated and non-fucosylated neutral, as well as 

acidic, HMOs is curious. The protein, which is mainly composed of α helices, is known to 

possess a shallow binding site at the tip of a region called the ‘crown’, consisting of four 

antiparallel β-strands located on the head region. Analysis of the reported crystal structure of 

BabA (H. pylori strain J99; 4ZH7.pdb) with HMO18 suggests that Fuc1 is critical for binding as 

it participates in a network of hydrogen bonds with C189, G191, N194 and T246. Gal5, 

GlcNAc3 and Fuc4 also participate in one or more intermolecular or water-mediated hydrogen 

bonds.
40

 Based on this analysis, it is difficult to rationalize the binding of the HMOs that lack the 

critical elements of the Lewis b hexasaccharide structure, in particular the non-fucosylated and 

acidic HMOs, at the known binding site. This raises the question of whether BabA possesses an 

additional glycan binding site (or sites) that recognize HMOs. To test this possibility, ESI-MS 

binding measurements were performed on solutions of BabA with HMO18 and either an acidic 

(HMO3) or non-fucosylated HMO (HMO6), in varying concentrations. Notably, the mass 
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spectra showed evidence of ternary complexes (BabA + HMO18 + HMO3) (Figure S23) and 

(BabA + HMO18 + HMO6) (Figure S24, Supporting Information). These results indicate that 

BabA possesses at least one additional glycan binding site, distinct from that occupied by 

HMO18, which can recognize HMOs. However, follow-up studies are required to establish the 

number and nature of the newly identified HMO binding site(s).  

The aforementioned binding data also suggest that the affinities of the HMO3 and 

HMO6 for BabA are lower than that of HMO18. To establish this more conclusively, ESI-MS 

affinity measurements were performed on solutions of BabA and individual HMOs (HMO1, 

HMO2, HMO3, HMO4, HMO6, HMO7 and HMO9, as well as HMO18). Representative ESI 

mass spectra are shown in Figures S25 and S26 (Supporting Information). From an analysis of 

the relative abundances of the free and HMO-bound BabA ions, the affinities of HMO9 and 

HMO18, which presumably bind predominantly at the previously identified binding site, were 

measured to be ~10
4 

M
-1

. This value agrees, within a factor of 3, with a value reported previously 

for  HMO18.
40

 The affinities of the other HMOs tested are somewhat lower, between 1x10
3 

M
-1

 

and 4x10
3 

M
-1

 (Table S2, Supporting Information).  

Conclusions 

This work describes the first application of CaR-ESI-MS for screening natural libraries of HMOs, 

derived from pooled breast milk, against target proteins. A total of twenty-one different HMO 

MWs were identified in the four fractions used in the present study. The structures of twenty-five 

HMOs, corresponding to eleven different MWs, were identified based on their IMS-ATs and 

CID fingerprints. To our knowledge, this is the first report describing the use of IMS-ATs and 

CID fingerprinting for identifying HMOs in mixtures. For the other MWs, monosaccharide 

composition and, in some cases, possible structures were established. Implementation of the 

assay was demonstrated using hGal-3C, which served as a model HMO binding lectin. The assay 
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revealed HMO ligands corresponding to seventeen different MWs. From a comparison of IMS-

ATs and CID fingerprints measured for the released HMO ligands and for a library of thirty-one 

pure HMOs, the structures of twenty-one HMO ligands were identified. Each of these glycans 

was previously shown to bind to hGal-3C. The presence of HMO ligands at six other MWs was 

also ascertained; however, the exact structures of these ligands could not be conclusively 

established. Application of the assay to BabA revealed nineteen specific HMO structures that are 

recognized by the protein and HMO ligands at two other MWs. Notably, it is found that BabA 

exhibits broad specificity for HMOs, and can bind to both neutral HMOs, including non-

fucosylated ones, and acidic HMOs. The results of competitive binding experiments revealed 

that, at least, some HMOs can interact with BabA at a previously unknown binding site (or sites); 

however, the number and nature of the HMO binding site(s) were not established. Finally, the 

results of quantitative binding measurements performed on eight purified HMOs for BabA 

produced affinities that are in the 10
3
 M

-1 
to 10

4
 M

-1
 range. 
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Table 1. MW and monosaccharide composition (Hex ≡ Glc or Gal; HexNAc ≡ GlcNAc; Fuc ≡ 

fucose and Sia ≡ sialic acid) of HMOs identified from ESI-MS analysis of aqueous solutions of 

Fr1 – Fr4. The identity of specific HMO structures was based on a comparison of IMS-ATs and 

CID fingerprints of deprotonated ions produced from Fr1 – Fr4 and those of HMO1 – HMO31.
  

Fraction 
Theoretical 

MW 

Monosaccharide 

composition 
Confirmed/Putative HMO Structures 

Fr1 

633.21 Hex2Sia 

α-D-Neu5Ac-(2→3)-β-D-Gal-(1→4)-β-

D-Glc (HMO3) 

α-D-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-

D-Glc (HMO4) 

837.25 Hex2HexNAcFuc2 

α-L-Fuc-(1→3/4)-β-D-GlcNAc-

(1→3/6)-[α-L-Fuc-(1→2/3)]-β-D-Gal-

(1→4)-β-D-Glc
 a
 

853.31 Hex3HexNAcFuc 

α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO9) 

 β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO10) 

 β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO11) 

β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-Glc 

(HMO12) 

β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)[α-L-Fuc-(1→3)]-β-D-Glc 

(HMO13) 

999.36 Hex3HexNAcFuc2 

α-L-Fuc-(1→2)-β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc (HMO18) 

 β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-Glc (HMO19) 

 β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α- L-

Fuc-(1→3)]-β-D-Glc (HMO20) 

1056.39 Hex3HexNAc2Fuc 

α-D-GalNAc-(1→3)-[ α-L-Fuc-(1→2)]-

β-D-Gal-(1→3)-β-GlcNAc(1→3)-β-D-

Gal(1→4)-β-D-Glc (HMO31) 

1072.38 Hex4HexNAc2 β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-
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D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc (HMO21)  

β-D-Gal-(1→4)-β-D-GlcNAc-(1→6)-[β-

D-Gal-(1→4)-β-D-GlcNAc-(1→3)]-β-

D-Glc-(1→4)-Glc (HMO22) 

1202.30 Hex3HexNAc2Fuc2 

 β-D-GlcNAc-(1→3/4)-[L-Fuc-(1→2)]-

β-D-Gal-(1→3)-[L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3/6)-β-D-Gal-(1→4)-β-D-

Glc
 a

 

1218.44 Hex4HexNAc2Fuc 

β-D-Gal-(1→3/4)-β-D-GlcNAc-

(1→3/6)-β-D-Gal-(1→3/4)-[L-Fuc-

(1→3/4)]-β-D-GlcNAc-(1→3/6)-β-D-

Gal-(1→4)-β-D-Glc 
a
 

1364.50 Hex4HexNAc2Fuc2 

β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-[α-L-Fuc-(1→2)-β-D-

Gal-(1→3)-β-D-GlcNAc-(1→3)]-β-D-

Gal-(1→4)-β-D-Glc (HMO26)  

β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-GlcNAc-(1→3)]-β-D-

Gal-(1→4)-β-D-Glc (HMO27) 

1510.32 Hex4HexNAc2Fuc3 

 α-L-Fuc-(1→2)-β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-GlcNAc-(1→3)-[β-D-

Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc]-β-D-Gal-(1→4)-β-D-Glc
 a
 

1583.46 Hex5HexNAc3Fuc 

 β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-[β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)]-β-D-Gal-(1→4)-β-D-

Glc
 a

 

β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-[β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)]-β-D-Gal-(1→4)-β-D-

Glc 
a
 

1729.64 Hex5HexNAc3Fuc2 

 β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-GlcNAc-(1→6)-[β-D-

Gal-(1→3)-β-D-GlcNAc]-β-D-Gal-

(1→4)-β-D-Glc
 a
 

β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-GlcNAc-(1→6)-[β-D-
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Gal-(1→4)-β-D-GlcNAc-(1→3)]-β-D-

Gal-(1→4)-β-D-Glc
 a
 

β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-[β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-GlcNAc-(1→3)]-β-D-

Gal-(1→4)-β-D-Glc
 a
 

β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-[β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-GlcNAc-(1→3)]-β-D-

Gal-(1→4)-β-D-Glc 
a
 

Fr2 

691.25 Hex2HexNAcFuc 
α-D-GalNAc-(1→3)-[α-L-Fuc-(1→2)]-

β-D-Gal-(1→4)-β-D-Glc (HMO30) 

707.25 Hex3HexNAc 

β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-β-D-Glc (HMO6) β-D-

Gal-(1→4)-β-D-GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc (HMO7) 

837.25 Hex2HexNAcFuc2 

β-D-GlcNAc-(1→3)-[α-D-Neu5Ac-

(2→6)]-β-D-Gal-(1→4)-β-D-Glc
a
  

α-D-Neu5Ac-(2→6)-β-D-GlcNAc-

(1→3/6)-β-D-Gal-(1→4)-β-D-Glc
a
  

853.31 Hex3HexNAcFuc 

α-L-Fuc-(1→2)-β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO9) 

β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO10) 

β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO11) 

β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-Glc 

(HMO12) 

β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)[α-L-Fuc-(1→3)]-β-D-Glc 

(HMO13) 

999.36 Hex3HexNAcFuc2 

α-L-Fuc-(1→2)-β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc (HMO18) 

 β-D-Gal-(1→3)-[α-L-Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-Glc (HMO19) 

 β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-(1→4)-[α- L-
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Fuc-(1→3)]-β-D-Glc (HMO20) 

1218.44 Hex4HexNAc2Fuc 

 β-D-Gal-(1→3/4)-β-D-GlcNAc 

(1→3/6)-β-D-Gal-(1→3/4)-[L-Fuc-

(1→3/4)]-β-D-GlcNAc-(1→3/6)-β-D-

Gal-(1→4)-β-D-Glc 

Fr3 

342.31 Hex2 β-D-Gal-(1→4)-β-D-Glc (Lactose) 

488.17 Hex2Fuc 

α-L-Fuc-(1→2)-β-D-Gal-(1→4)-β-D-

Glc (HMO1) 

β-D-Gal-(1→4)-[α-L-Fuc-(1→3)]-β-D-

Glc (HMO2) 

707.25 Hex3HexNAc 

β-D-Gal-(1→3)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-β-D-Glc (HMO6)  

β-D-Gal-(1→4)-β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-β-D-Glc (HMO7) 

 633.21 Hex2Sia 

α-D-Neu5Ac-(2→3)-β-D-Gal-(1→4)-β-

D-Glc (HMO3) 

α-D-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-

D-Glc (HMO4) 

Fr4 

836.20 Hex2HexNAcSia  

β-D-GlcNAc-(1→3/4)-[α-D-Neu5Ac-

(2→6)]-β-D-Gal-(1→4)-β-D-Glc
 a
 

 

α-D-Neu5Ac-(2→6)-)-β-D-GlcNAc-

(1→3/4)-β-D-Gal-(1→4)-β-D-Glc
 a
 

998.34 Hex3HexNAcSia 

α-D-Neu5Ac-(2→3)-β-D-Gal-(1→3)-β-

D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO14)  

α-D-Neu5Ac-(2→6)-[β-D-Gal-(1→3)]-β-

D-GlcNAc-(1→3)-β-D-Gal-(1→4)- β-D-

Glc (HMO15)   

α-D-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-

D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO16)  

α-D-Neu5Ac-(2→3)-β-D-Gal-(1→4)-β-

D-GlcNAc-(1→3)-β-D-Gal-(1→4)-β-D-

Glc (HMO17) 

1289.44 Hex3HexNAcSia2 

α-D-Neu5Ac-(2→3)-β-D-Gal-(1→3)-[α-

D-Neu5Ac-(2→6)]-β-D-GlcNAc-(1→3)-

β-D-Gal-(1→4)-β-D-Glc (HMO25) 

1509.54 Hex4HexNAc2FucSia 

Neu5Ac-(2→6)-β-D-Gal-(1→3/6)-β-D-

GlcNAc-(1→3/6)-β-D-Gal-(1→3)-[L-

Fuc-(1→3/4)]-β-D-GlcNAc-(1→3/6)-β-

D-Gal-(1→4)-β-D-Glc
 a 
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1655.59 Hex4HexNAc2Fuc2Sia 

α-D-Neu5Ac-(2→6)-β-D-Gal-(1→4)-β-

D-GlcNAc-(1→3)-[α-L-Fuc-(1→2)-β-D-

Gal-(1→4)-α-L-Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-β-D-Gal-(1→4)-β-D-

Glc 
a
 

α-L-Fuc-(1→2)-β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-GlcNAc-(1→3)-[α-D-

Neu5Ac-(2→6)-β-D-Gal-(1→4)]-β-D-

GlcNAc-(1→3)-]-β-D-Gal-(1→4)-β-D-

Glc
 a

 

1800.63 Hex4HexNAc2FucSia2 

α-D-Neu5Ac-(2→6)-[ α-D-Neu5Ac-

(2→6) -β-D-Gal-(1→3)-]-β-D-GlcNAc-

(1→4)-[α-L-Fuc-(1→2)-]-β-D-Gal-

(1→4)-β-D-GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 
a
  

a. Possible structures based on CID results and identified HMOs reported in references 13 

and 14. 
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Table 2. MW and monosaccharide composition (Hex ≡ Glc or Gal; HexNAc ≡ GlcNAc; Fuc ≡ 

fucose and Sia ≡ sialic acid) of HMO ligands of hGal-3C identified from Fr1 – Fr4 using CaR-

ESI-MS. The identity of specific HMO structures was based on a comparison of IMS-ATs and 

CID fingerprints of deprotonated ligand ions released from hGal-3C and those of HMO1 – 

HMO31.
 
 

Measured  

MW  

(Da) 

Theoretical 

MW 

(Da) 

Monosaccharide 

composition 
Confirmed/Putative HMO Structures 

488.17 488.17 Hex2Fuc 
α-L-Fuc-(1→2)-β-D-Gal-

(1→4)-β-D-Glc (HMO1)  

633.22 633.21 Hex2Sia 

α-D-Neu5Ac-(2→3)-β-

D-Gal-(1→4)-β-D-Glc 

(HMO3) 
 

691.29 691.25 Hex2HexNAcFuc 

α-D-GalNAc-(1→3)-[α-

L-Fuc-(1→2)]-β-D-Gal-

(1→4)-β-D-Glc 

(HMO30) 
 

707.24 707.25 Hex3HexNAc 

β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc (HMO6)  
 

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc (HMO7) 
 

836.20 836.20 Hex2HexNAcSia 

 β-D-GlcNAc-(1→3/4)-

[α-D-Neu5Ac-(2→6)]-β-

D-Gal-(1→4)-β-D-Glc
 a 

 

α-D-Neu5Ac-(2→6)-β-

D-GlcNAc-(1→3/4)-β-

D-Gal-(1→4)-β-D-Glc
 a

 

 

837.20 837.25 Hex2HexNAcFuc2 

α-L-Fuc-(1→3/4)-β-D-

GlcNAc-(1→3/6)-[α-L-

Fuc-(1→2/3)]-β-D-Gal-

(1→4)-β-D-Glc
 a

 

 

853.30 853.31 Hex3HexNAcFuc 

α- L-Fuc-(1→2)-β-D-

Gal-(1→3)-β-D-GlcNAc-

(1→3)-β-D-Gal-(1→4)-

β-D-Glc (HMO9) 
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 β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO10) 

 

β-D-Gal-(1→4)-[α-L-

Fuc- (1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO11) 

 

β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-[α-L-Fuc-(1→3)]-

β-D-Glc (HMO12) 
 

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)[α-L-Fuc-(1→3)]-

β-D-Glc (HMO13) 
 

998.33 998.34 Hex3HexNAcSia 

α-D-Neu5Ac-(2→3)-β-

D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO14)  

 

 
 

α-D-Neu5Ac-(2→6)-[β-

D-Gal-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)- β-D-Glc 

(HMO15) 

 

α-D-Neu5Ac-(2→6)-β-

D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO16) 

 

 
 

 α-D-Neu5Ac-(2→3)-β-

D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO17) 

 

999.37 999.34 Hex3HexNAcFuc2 

α-L-Fuc-(1→2)-β-D-Gal-

(1→3)-[α-L-Fuc-(1→4)]-

β-D-GlcNAc-(1→3)-β-

D-Gal-(1→4)-β-D-Glc 

(HMO18) 

 

1056.39 1056.39 Hex3HexNAc2Fuc 

α-D-GalNAc-(1→3)-[ α-

L-Fuc-(1→2)]-β-D-Gal-

(1→3)-β-GlcNAc(1→3)-  
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β-D-Gal(1→4)-β-D-Glc 

(HMO31) 

1072.38 1072.38 Hex4HexNAc2 

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-GlcNAc-

(1→3)-β-D-Gal-(1→4)-

β-D-Glc (HMO21)  

 

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→6)-[β-D-

Gal-(1→4)-β-D-GlcNAc-

(1→3)]-β-D-Glc-(1→4)-

Glc (HMO22)  

1218.44 1218.44 Hex4HexNAc2Fuc 

 β-D-Gal-(1→3/4)-β-D-

GlcNAc (1→3/6)-β-D-

Gal-(1→3/4)-[L-Fuc-

(1→3/4)]-β-D-GlcNAc-

(1→3/6)-β-D-Gal-

(1→4)-β-D-Glc 
a
  

 

1289.43 1289.44 Hex3HexNAcSia2 

α-D-Neu5Ac-(2→3)-β-

D-Gal-(1→3)-[α-D-

Neu5Ac-(2→6)]-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO25) 

 

1364.49 1364.50 Hex4HexNAc2Fuc2 

β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-

GlcNAc-(1→6)-[α-L-

Fuc-(1→2)-β-D-Gal-

(1→3)-β-D-GlcNAc-

(1→3)]-β-D-Gal-(1→4)-

β-D-Glc (HMO26)  

 

β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-Gal-

(1→4)-[α-L-Fuc-(1→3)]-

β-D-GlcNAc-(1→3)]-β-

D-Gal-(1→4)-β-D-Glc 

(HMO27) 

 

1509.52 1509.54 Hex4HexNAc2FucSia 

Neu5Ac-(2→6)-β-D-Gal-

(1→3/6)-β-D-GlcNAc-

(1→3/6)-β-D-Gal-

(1→3)-[L-Fuc-(1→3/4)]-

β-D-GlcNAc-(1→3/6)-β-

D-Gal-(1→4)-β-D-Glc
 a
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1655.54 1655.59 Hex4HexNAc2Fuc2Sia 

α-D-Neu5Ac-(2→6)-β-

D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-[α-L-

Fuc-(1→2)-β-D-Gal-

(1→4)-α-L-Fuc-(1→3)]-

β-D-GlcNAc-(1→6)-β-

D-Gal-(1→4)-β-D-Glc 
a
 

 

α-L-Fuc-(1→2)-β-D-Gal-

(1→3)-[α-L-Fuc-(1→4)]-

β-D-GlcNAc-(1→3)-[α-

D-Neu5Ac-(2→6)-β-D-

Gal-(1→4)]-β-D-

GlcNAc-(1→3)-]-β-D-

Gal-(1→4)-β-D-Glc
 a
 

 

1800.62 1800.63 Hex4HexNAc2FucSia2 

α-D-Neu5Ac-(2→6)-[ α-

D-Neu5Ac-(2→6) -β-D-

Gal-(1→3)-]-β-D-

GlcNAc-(1→4)-[α-L-

Fuc-(1→2)-]-β-D-Gal-

(1→4)-β-D-GlcNAc-

(1→3)-β-D-Gal-(1→4)-

β-D-Glc 
a
   

 

a. Possible structures based on CID results and identified HMOs reported in references 13 

and 14.  
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Table 3. HMO ligands of BabA identified from Fr1 – Fr4 using CaR-ESI-MS. The identity of 

specific HMO structures was based on a comparison of IMS-ATs and CID fingerprints of 

deprotonated ligand ions released from hGal-3C and those of HMO1 – HMO31.
 
 

Measured 

MW  

(Da) 

Theoretical 

MW 

(Da) 

Monosaccharide 

composition 
Confirmed/Putative HMO Structures 

488.13 488.17 Hex2Fuc 

α-L-Fuc-(1→2)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO1)    

α-L-Fuc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO2)  

633.23 633.21 Hex2Sia 

α-D-Neu5Ac-(2→3)-

β-D-Gal-(1→4)-β-D-

Glc (HMO3) 
 

α-D-Neu5Ac-(2→6)-

β-D-Gal-(1→4)-β-D-

Glc (HMO4) 
 

691.29 691.25 Hex2HexNAcFuc 

α-D-GalNAc-(1→3)-

[α-L-Fuc-(1→2)]-β-

D-Gal-(1→4)-β-D-

Glc (HMO30) 
 

707.25 707.25 Hex3HexNAc 

β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO6)  

 

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO7) 

 

837.20 837.25 Hex2HexNAcFuc2 

α-L-Fuc-(1→3/4)-β-

D-GlcNAc-(1→3/6)-

[α-L-Fuc-(1→2/3)]-β-

D-Gal-(1→4)-β-D-

Glc
 a
 

 

853.31 853.31 Hex3HexNAcFuc 

α- L-Fuc-(1→2)-β-D-

Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO9) 
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β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO10)   

 

β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO11) 

 

β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-[α-L-Fuc-

(1→3)]-β-D-Glc 

(HMO12) 

 

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)[α-L-Fuc-

(1→3)]-β-D-Glc 

(HMO13) 

 

998.33 998.34 Hex3HexNAcSia 

α-D-Neu5Ac-(2→3)-

β-D-Gal-(1→3)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO14) 

 

α-D-Neu5Ac-(2→6)-

[β-D-Gal-(1→3)]-β-

D-GlcNAc-(1→3)-β-

D-Gal-(1→4)- β-D-

Glc (HMO15) 

 

α-D-Neu5Ac-(2→6)-

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO16) 

 

α-D-Neu5Ac-(2→3)-

β-D-Gal-(1→4)-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-β-D-Glc 

(HMO17) 

 

999.38 999.36 Hex3HexNAcFuc2 

α-L-Fuc-(1→2)-β-D-

Gal-(1→3)-[α-L-Fuc-

(1→4)]-β-D-GlcNAc-

(1→3)-β-D-Gal-

(1→4)-β-D-Glc 

(HMO18) 
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β-D-Gal-(1→3)-[α-L-

Fuc-(1→4)]-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-[α-L-Fuc-

(1→3)]-β-D-Glc 

(HMO19)   

 

β-D-Gal-(1→4)-[α-L-

Fuc-(1→3)]-β-D-

GlcNAc-(1→3)-β-D-

Gal-(1→4)-[α- L-Fuc-

(1→3)]-β-D-Glc 

(HMO20) 

 

1218.44 1218.44 Hex4HexNAc2Fuc 

β-D-Gal-(1→3/4)-β-

D-GlcNAc (1→3/6)-

β-D-Gal-(1→3/4)-[L-

Fuc-(1→3/4)]-β-D-

GlcNAc-(1→3/6)-β-

D-Gal-(1→4)-β-D-
Glc

a
   

 

a. Possible structures based on CID results and identified HMOs reported in references 13 

and 14. 

 

Page 32 of 37Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
7 

N
ov

em
be

r 
20

17
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
N

ot
tin

gh
am

 o
n 

27
/1

1/
20

17
 2

1:
14

:2
8.

 

View Article Online
DOI: 10.1039/C7AN01397C

http://dx.doi.org/10.1039/c7an01397c


  

 

 

Figure 1. Overview of the two-step approach (ESI-IMS-MS/MS and CaR-ESI-MS) for screening HMO 
mixtures, extracted from human milk, against lectins.  
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Figure 2. IMS-ATDs measured for the deprotonated HMO ions at (a) m/z 608.22; (b) m/z 690.25; (c) m/z 
706.25; (d) m/z 836.25; (e) m/z 852.31 and (f) m/z 998.36 produced by ESI performed on an aqueous 

ammonium acetate solution (40 mM, pH 6.8) of Fr2 (0.05 µg µL-1).  (g) CID mass spectrum acquired in the 
Transfer region at 30 V for deprotonated HMO ions at m/z 852.31.  
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Figure 3.   (a) Representative ESI mass spectra acquired in negative ion mode for 40 mM aqueous 
ammonium acetate solutions (pH 6.8) of Pref (5 µM), Fr2 (0.05 µg µL

-1)  and hGal-3C (15 µM), (b) CID mass 
spectrum acquired for all (hGal-3C + HMO)7- ions at a Trap voltage of 40 V showing the released HMOs 

ligands; IMS-ATDs of (c) m/z 690.29 (d) m/z 706.24; (e) m/z 836.20; (f) m/z 852.30; (g) m/z 998.37; (h) 
CID mass spectrum acquired for released HMO anions with IMS-AT of 12.43 ms using a Transfer voltage of 

30 V.  
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Figure 4.   (a) Representative ESI mass spectra acquired in negative ion mode for 40 mM aqueous 
ammonium acetate solutions (pH 6.8) of Fr2 (0.05 µg µL-1)  and BabA  (5 µM), (b) CID mass spectrum 
acquired for all (BabA + HMO)13- ions at a Trap voltage of 90 V showing the released HMOs ligands; IMS-

ATDs of (c) m/z 690.29 (d) m/z 706.25; (e) m/z 836.31; (f) m/z 852.31; (g) m/z 998.38; (h) CID mass 
spectrum acquired for released HMO anions with IMS-AT of 12.43 ms using a Transfer voltage of 30 V.  
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