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Abstract
This article describes a sequence of design research projects, some exploratory others more formal, on the teaching of mod-
elling and the analysis of modelling skills. The initial motivation was the author’s observation that the teaching of applied 
mathematics in UK high schools and universities involved no active modelling by students, but was entirely focused on their 
learning standards models of a restricted range of phenomena, largely from Newtonian mechanics. This did not develop the 
numeracy/mathematical literacy that was so clearly important for future citizens. Early explorations started with modelling 
workshops with high school teachers and mathematics undergraduates, observed and analysed—in some case using video. 
The theoretical basis of this work has been essentially heuristic, though the Shell Centre studies included, for example, a 
detailed analysis of formulation processes that has not, as so often, been directly replicated. Recent work has focused on 
developing a formative assessment approach to teaching modelling that has proved both successful and popular. Finally, the 
system-level challenges in trying to establish modelling as an integral part of mathematics curricula are briefly discussed.

Keywords Modelling · Formulation process · Translations skills · Design principles · Numeracy · Mathematical literacy · 
Strategies for systemic change

1  Initial explorations 1963–1976

My work on the teaching of modelling was stimulated by 
pure mathematicians; this may be unusual, since I am a theo-
retical physicist whose whole working life has been about 
modelling—applying, modifying and creating mathematical 
models of situations in the real world, albeit mostly quantum 
aspects that are very different from everyday life experience. 
Around 1959 a powerful wave of reform to school math-
ematics, led by scientists and mathematicians in The West, 
was stimulated by the Soviet Union’s success in launching 
the first satellite, Sputnik. In the University of Birmingham, 
the drivers were Peter Hilton and Brian Griffiths. Peter, 
though he had been part of the Bletchley Park decipher-
ing effort that ‘cracked’ the Enigma Code in World War 
II, was a distinguished topologist with an active interest in 
improving education. They started a weekly afternoon for 
high school mathematics teachers on the fundamentals of 
mathematics1; this proved popular but, after a few years, 

the course organiser thought it time to have something on 
applied mathematics which was our responsibility in Math-
ematical Physics. I was asked to co-ordinate the course.

In the first year, 1962–1963, I took a deeper look at the 
section of the Mathematics A-level course on Newtonian 
Mechanics (a peculiar British tradition, due to Newton and 
still going!) along with introductory lectures on modern 
topics from Quantum Mechanics and Relativity to Game 
Theory. As I worked through the 12 standard problem situ-
ations in the mechanics syllabus (ladders against walls, 
projectiles, pendula, etc), I became outraged at the lack of 
serious attention to the situations being modelled. On the 
ladder problem, for example, why was only the ‘slipping 
instability’ considered? Why was there friction at the floor 
but not at the wall?

I decided that the course in the following year 
1963–1964 should be about modelling. It included a ses-
sion “On falling off ladders”, that considered all the ways 
that could happen, and why the standard situation is, 
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indeed, particularly dangerous. For that you have to study 
what happens as a person climbs the ladder—not included 
in A-level; on the bottom part their weight increases the 
stability but above half way it’s the reverse, with poten-
tially serious consequences! (Hence the practical guidance 
that another person should always stand on the bottom of 
the ladder.) The weekly sessions were similar, with analy-
ses of a variety of everyday situations by the participants. 
The workshop pedagogy was a well-intentioned but fairly 
unsophisticated version of inquiry-based learning, with all 
the suggestions coming from the group. In fact I made a lot 
of input by writing the suggestions on the blackboard in a 
way that injected structure. (On seeing a video of one ses-
sion a colleague, the great Paul Black, said unkindly “That 
was a great interactive lecture you gave there, Hugh”.)

The course notes included an early version of the mod-
elling diagram that specifically identified both the usual 
transition processes and the intervening model states. (The 
PISA version does this too.)

The results of these early explorations formed the basis 
of The Real World and Mathematics (Burkhardt 1981), 
written after I moved into mathematics education profes-
sionally as Director of the Shell Centre. I had negotiated 
with the University a revised brief for the Centre, focused 
on research and development aimed at direct impact on 
improving practice. Recognizing the importance of cre-
ative design in this mission I was able to discover and 
recruit Malcolm Swan, whose contributions have played 
such an important role in the Centre’s work. Figure 1 
shows his skill, insight and gentle wit.

On modelling, several things had become clear—for 
example, the need for “translation skills among dif-
ferent representations "  (see e.g. Janvier 1978)   and a 
deeper understanding of the processes summarized in the 

modelling diagram. I found it useful to distinguish, among 
other things:

• analytic modelling based on the underlying structure of 
the problem situation from the descriptive modelling 
involved in data analysis and curve fitting;

• different levels of ‘reality’ in problems, which I summa-
rised as: Action, Believable, Curious, Dubious and Edu-
cational. Application problems in most curricula rarely 
rise above the Dubious, the real context being purely cos-
metic; my goal was to include a lot of Believable prob-
lems (Educational problems are essentially Dubious but 
irresistible for concept development).

Since that time there have, of course, been numerous 
studies of the teaching of modelling—for example in the 
series of ICTMA books and in volume 38(2) of this jour-
nal—which the present volume carries forward. Here, in the 
spirit of the title, I will focus on the things that I and my col-
leagues have studied—the insights we found, and the tools 
we have developed for teaching, assessment and professional 
development. The theoretical basis of the work is unapolo-
getically heuristic.

2  The elements of formulation

Within the modelling process, the formulation phase is par-
ticularly challenging. Vern Treilibs and Brian Low were 
among a group of outstanding Australians visiting the Shell 
Centre in 1979–1980. Vern agreed make a study of the 
processes involved in formulation the research topic for an 
M.Phil degree. The study and its results were published as 
his Nottingham thesis and summarized in a Shell Centre 

Fig. 1  Malcolm Swan illustrations in The Real World and Mathematics 
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report (Treilibs, Burkhardt and Low 1980). Since I believe 
they are important, and have not been superseded, it is worth 
describing the key features here.

The research design aimed to compare the performance 
of individual students on a set of holistic modelling tasks 
with tasks that tested component skills of model formula-
tion, described as:

GV:  Generating variables—the ability to generate the vari-
ables or factors that might be pertinent to the problem 
situation.

SV: Selecting variables—the ability to distinguish the rela-
tive importance of variables in the building of a good 
model.

Q:  Specifying questions—the ability to identify the specific 
questions crucial to the, typically illdefined, realistic 
problem.

GR: Generating relationships—the ability to identify rela-
tionships between the variables inherent in the problem 
situation.

SR: Selecting relationships—the ability to distinguish the 
applicability of possible relationships to the problem 
situation.

We chose a group of 118 17-year-old students who were 
high-performing in Mathematics. Though their course 
included the models of Newtonian Mechanics,2 they had not 
been taught modelling skills—nobody had. (Their teachers 

were asked to estimate their likely modelling ability and 
these estimates were in broad agreement with the test per-
formances in the study.)

The first challenge was to assess overall modelling skill in 
a ‘screening test’, Fig. 2. The three tasks used were designed 
with a ‘ramp’3 of increasing modelling challenge. In the first, 
MT1, enough data is given for a straightforward solution, 
while needing little of the modelling skills that the other 
two problems require. It was included to provided evidence 
that the test was not simply measuring conventional math-
ematical ability. The modelling questions, MT2 and MT3, 
were designed to fit the following criteria: that the problems 
should be real; that the problems pose most of their difficulty 
in the formulation phase and have relatively simple solution 
phases; that the problems be amenable to analytic modelling.  
Performance on these tasks was our measure of overall mod-
elling skill.

The detailed scoring schemes gave credit for responses 
that: showed grasp of the essence of the problem; took 
into account a greater number of significant aspects; in 
treating each aspect moved up from discussion through 
quantification and reasonable calculation to gener-
alization (Piloting showed reasonable correspondence 
between holistic impression and detailed approaches to 
scoring).

As expected, most of this highly capable group made rea-
sonable attempts at the first problem MT1, though a few of 
the students were unhappy having to tackle problems that 

Fig. 2  The ‘screening test’ of 
overall modelling ability

PROBLEM SHEET MT
Note to students
1. Use only the paper provided. Do your "rough" working on the back of the previous page. Graph paper is 
available. Start each question on a new page. 

2. You may use a calculator if you wish. 

3. The problems tend not to have clear-cut solutions. Credit will be given for sensible reasoning and for well-
organized solutions. 

PROBLEM MT1 
You are considering driving an ice cream van during the Summer break. Your friend, who "knows 
everything", says that "it's easy money". You make a few enquiries and find that the van costs £60 per 
week to hire. Typical selling data is that one can sell an average of 30 ice creams per hour, each 
costing 5p to make and each selling for 15p. 

How hard will you have to work in order to make this "easy money"? (Explain your reasoning clearly.) 

PROBLEM MT2 
Terry is soon to go to secondary school. The bus trip to school costs 5p and Terry's parents are 
considering the alternative of buying a bicycle. 

Help Terry's parents decide what to do by carefully working out the relative merits of the two 
alternatives. 

PROBLEM MT3
A new set of traffic lights has been installed at an intersection formed by the crossing of two roads. 
Right turns are NOT permitted at this intersection. 

For how long should each road be shown the green light? (Explain your reasoning clearly.) 

2 The UK is one of very few countries that include mechanics in 
mathematics as well as in physics. Indeed the curriculum is still much 
as Newton designed it!

3 The use of ‘ramps’, within and between tasks, has proved a pow-
erful design strategy for assessing students of very different perfor-
mance levels with the same rich task.



 H. Burkhardt 

1 3

were not fully specified. Feedback from the students indi-
cated that in general they found MT1 “good”, MT2 “vague” 
and MT3 “difficult”. Furthermore it was clear that they saw 
little similarity in the two modelling problems and, conse-
quently, that the two problems were treated in a dissimilar 
fashion by the students: in the bus v bicycle problem, MT2, 
many factors were retained in the analysis, while the traf-
fic lights problem, MT3, tended to require a more powerful 
treatment of a more concentrated nature. Students had little 
trouble with the underlying economic model of MT2—in 
this respect the problem was similar to MT1 and the scores 
correlated at 0.48. However, the improvement of the solu-
tion beyond the calculation of basic costs for each form of 
transport proved to be a discriminating task. There was little 
correlation between the scores on MT2 and MT3, the latter 
having a much larger variance.

Examples of the tasks for the various sub-skills (there 
were 3 tasks for each) are shown in Table 1. The correlations 
between the overall scores and those on the subskills tests 
are shown in Table 2.

The overall results of this Section make it clear that good 
modellers, as defined by the screening test, are better than 
other students of comparable mathematical ability in the 
modelling subskills:

Q identifying questions, GR generating relationships, 
and SR Selecting relationships

This is not, in retrospect, a surprising result but the evi-
dence is valuable.

The mathematics they chose to use was more broadly 
interesting. Numerical assumptions and calculations 
dominated while some students used tables and graphs. 
These students all had 5 years of successful experience 
in algebra yet no student used algebra, even though the 
situations seem ideal for algebraic models. They had a 
‘reading knowledge’ of algebra but could not express their 
thinking algebraically. It was this work that first led me 
to articulate the concept of The Few Year Gap between 
the mathematics a student can use in imitative exercises 
and that they have sufficiently absorbed and connected 
to use autonomously in non-routine problem solving. 
This key concept remains too little understood; people 
still complain that “the mathematics is not up to grade” 
though that is inevitable if a complex non-routine prob-
lem and a routine exercise are to have comparable over-
all difficulty (see http://map.mathshell.org/background.
php?subpage=summative).

Vern also explored a more detailed diagrammatic analy-
sis of the processes within the formulation phase but found 
there was so much ‘looking back’ and ‘looking forward’ that 
the ‘grain size’ of the now traditional modelling phases is 
appropriate. More detail can obscure the key features.

3  The Shell Centre program 1980–1988

The 1980s saw a surge of creative research and development 
in UK mathematics education, inspired by the government-
sponsored Cockcroft Report (1982). Using mathematics to 
tackle real problems was recognised as an important learning 
goal and groups around the country and the world shared 
their developing design expertise. This led David Burghes 
to organize the first ICTMA conference, in Exeter in 1981. 
The proceedings of successive ICTMA-conferences have 
been published since 1984 every second year, initially by 
Horwood Publishers and since ICTMA13 by Springer; they 
summarize the developing story of the teaching of mod-
elling around the world. Having identified the dominant 
influence of the tasks in high-stakes examinations on what 
happens in British classrooms,4 the Shell Centre program 
was developed in association with the Joint Matriculation 
Board (JMB), the largest UK examination provider, under 
the series title Testing Strategic Skills (TSS). An innovative 
change model set out a process of gradual improvement, 
designed to make the pace of change digestible to teachers. 
The plan was to introduce one new task-type each year to 
a high-stakes examination, in this case for age 16 students, 
with well-engineered materials developed to support the new 
teaching and professional development challenges involved. 
This engineering research approach has guided Shell Centre 
work since (see Burkhardt 2006a, 2009).

The work on formulation had brought out the importance 
of ‘translation skills’. This led to the design and develop-
ment, led by Malcolm Swan, of The Language of Functions 
and Graphs (Swan et al. 1985), a module focused on model-
ling everyday life situations with line graphs and algebraic 
functions. Often called “The Red Box”, this module was 
influential in that this topic area became widely accepted and 
implemented in curricula and assessment around the world. 
The Red Box materials influenced many other systems 
and, 40 years later, are still admired, imitated and used.5 
The tasks in Fig. 3 shows something of their liveliness and 
originality.

The TSS model of gradual change in examination and 
curriculum proved popular with students and teachers, who: 
enjoyed the challenge, were glad to back on more famil-
iar ground after 3 weeks, and looked forward to next year’s 
module. The model died after just 2 years because a major 
reorganization—so often the ‘cause of death’ of improve-
ment programs.

4 WYTIWYG (what you test is what you get) was coined at that 
time. WYSIWYG word processors now dominate.
5 In 2008 the International Society for Design and Development in 
Education (ISDDE) awarded Malcolm Swan the first “Eddie”, the 
$10,000 prize for excellence in design, for The Language of Func-
tions and Graphs.

http://map.mathshell.org/background.php?subpage=summative
http://map.mathshell.org/background.php?subpage=summative
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Table 1  Tasks from the tests of component skills in formulation

GV 1 THE PROBLEM 
The Road Safety Council is trying to determine the minimum distance between vehicles required to 
ensure "safe motoring". 

YOUR TASK 
Write down all the factors that the RSC may need to consider in deciding the minimum "safe" distance. 

SV 3 THE PROBLEM 
The management of a large supermarket is trying to estimate how many of the checkout tills should be 
operating at any given time. The factors to be rated are: 

• The average age of customers
• The average bill size
• The efficiency of the checkout girls
• The maximum reasonable queueing time that can be expected of customers
• The number of customers in the store
• The average number of items bought
• The pay rate for checkout girls
• The proportion of customers using baskets rather than trolleys 
• The time of day 

YOUR TASK
Give each factor a rating (out of 4) to indicate how important that factor is to the making of a correct 
estimate of how many checkouts should operate operate. 

Q 1

THE PROBLEM 
A factory uses tin in the production of its goods. A manager has the responsibility of ensuring that 
stocks of tin are always available. 

YOUR TASK 
State concisely what information the manager must give to the clerk who orders the tin. 

GR 1

(from
Janvier
1978) 

THE PROBLEM 
A motorist starts his car at the 
point marked A on a country road, 
drives 6 miles along the route 
shown, and stops at the point 
marked B. H is able to drive at 
60 mph on the straight sections of 
the route but has to slow 
down for the corners. 

YOUR TASK 
Sketch a graph showing how the 
car's speed varies along the 
route. 

SR 2 THE PROBLEM 
My socks seem to shrink every time they are washed. Which graph shows this situation most 
realistically?
Four graphs were offered including the two below; "None of these" was also an option.
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4  Numeracy through problem solving 
1985–1989

Encouraged by the reception of the TSS modules, the Shell 
Centre and the JMB agreed to develop a curriculum com-
ponent focused on mathematical literacy. Designed for stu-
dents in the age range 11–16, it took the form of five 3-week 
modelling projects, each tackling a specific real-world chal-
lenge of concern or interest from everyday life. (They have 
also been used successfully with younger children, and with 
adults to show what a curriculum focused on mathematical 
literacy might mean.) The five modules are Design a Board 
Game, Produce a Quiz Show, Plan a Trip, Be a Paper Engi-
neer, Be a Shrewd Chooser (Swan et al. 1987–89).

Each NTPS module provides a theme within which the 
students take responsibility for planning, organizing and 

designing. They are based around the everyday interests 
of most students. Students work both individually and in 
groups, choosing which areas of mathematics to deploy 
in tackling the problem. They also implement the results 
of their own decisions - a vital educational experience! 
Each module is designed to take between 10 and 20 h to 
complete.

The modules work on a group-project basis, and have 
four stages. The work is primarily guided by a student book-
let, with the teacher playing a facilitative consultant role. 
In Stage 1 students explore the domain by working on and 
evaluating exemplars provided. Stage 2 is about generating 
and sifting ideas, which are developed and implemented in 
detail in Stage 3. In Stage 4, each group evaluates the things 
that the other groups have produced. These stages take forms 
which fit the context of the module, illustrated here for Be 
a Paper Engineer. (http://www.mathshell.com has extracts 
from each module.)

In Be a Paper Engineer, students design, make and evalu-
ate 3-dimensional paper products including gift boxes and 
pop-up greetings cards. In doing this they explore 3-dimen-
sional shape-and-space, making generalizations using words 
and algebra.

Stage 1 In groups, students make a wide variety of pop-
up cards, gift boxes and envelopes from nets provided in 
order to familiarize themselves with the techniques involved. 
Figure 4 shows three of the 30 examples Malcolm Swan and 
the team designed. Students classify them according to their 
perception of the structures involved.

Table 2  Correlations between overall modelling screening test and 
subskills tests

**Probability of random occurrence is < 0.01 (99% confidence level)

Sub-skills v modelling skill MT1 MT2 + MT3

GV (F1) 0.10 0.30**
GV (F2) 0.15 0.24**
SV 0.17 0.08
Q 0.28** 0.37**
SR 0.07 0.35**
GR 0.24** 0.38**

Fig. 3  Tasks from The Language of Functions and Graphs 

http://www.mathshell.com
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Stage 2 Students investigate a few techniques. These 
include a 2-dimensional representation of a 3-dimensional 
product, explaining design features, making a 3-dimen-
sional product etc. Figure 5 shows a simple example—note 
the emergence of parallelogram theorem results from this 
investigation. Other examples were more sophisticated.

Stage 3 The group pools ideas for paper products and 
then, individually, students attempt to design and make an 
accurate version of one of the products.

Stage 4 Students now attempt to produce ‘kits’ of their 
designs so that other people can make the products.

Figure 6 shows examples of student creations from the 
classrooms in which this module was developed.

Fig. 4  Paper products to construct and analyze

Fig. 5  Investigating techniques—here “The Rolls Royce”—and two solutions
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It is worth pointing out the modelling elements in this 
work, involving as it does both geometry and algebra. These 
may be summarised as:

Formulating

Identify specific questions:
“How can I make a card that pops out like this..?”
Make simplified drawings:
“Let’s simplify this card so we can see its structure…”
Represent mathematically:
“How can we draw this 3D shape in 2D … ?”
Identify significant variables:
“Which lengths/angles are important here?”
Generate relationships:
What relationship between lengths for the card to 
work?”
Make a plan
“What shall we design and how?"

Solving

Carry out the plan, monitor progress
“Can we draw before making cuts?”
Select and use appropriate mathematics:
“Can we use some of the principles we discovered?”

Interpreting and Evaluating

Interpreting results:
“Can you interpret John’s instructions for making the 
box?”
Evaluating the solution:
"How well does the plan work?"
“Can you reconstruct the card from John’s instruc-
tions?”

The other modules, while designed on the same princi-
ples, are in contexts that make them sufficiently different to 
be worth a brief outline.

Fig. 6  A plan and two products from Paper Engineering
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In Design a Board Game, groups design and produce 
their own board games. These games are then played and 
evaluated by other class members. (This involves developing 
ideas from 2-dimensional shape-and-space, together with 
basic concepts of probability.)

• Students play a number of games6 that are provided, dis-
covering and classifying the more and less obvious faults 
and shortcomings built in—unfair, can’t end, etc—and 
suggesting improvements.

• Students in a group share their ideas, then develop a 
rough plan for their own board game.

• Each group of students produces a detailed design, makes 
it, and checks the finished version.

• The groups exchange games and test them. When they 
are returned, each group re-assesses its own game in the 
light of another group’s comments.

In Produce a Quiz Show students devise, schedule, run 
and evaluate their own classroom game shows. This involves 
preparing, timing and testing questions using number and 
statistical concepts, planning room layouts, and scoring 
systems.

• Groups of students take it in turns to act out a number of 
TV-type quizzes that are provided, identifying and com-
menting on faults and shortcomings in the organization, 
rules, questions, scoring systems and presentation.

• Students in a group share ideas for their own quiz, reach 
agreement on which to develop, and draw up a plan of 
action.

• Each group prepares, tests and organizes its questions, 
scoring systems, rules and final running order. Groups 
also decide how the furniture and equipment will be 
arranged during the presentation of the show.

• Groups take it in turns to present their quizzes, with 
the rest of the class acting as competitors and audience. 
Afterwards, each quiz is evaluated first by other members 
of the class, and then by the group who produced it. A 
further opportunity may be given for a group to enact 
their quiz with different groups of contestants - perhaps 
a different class.

In Plan a Trip students plan and undertake a class trip out 
of school. (This involves costings, scheduling, surveys and 
everyday arithmetic.)

• In a card game simulation, groups undertake and record 
imaginary trips, encounter problems and errors of judge-
ment, then seek to correct them by better planning.

• Students in a group share ideas of possible places to go 
and produce a leaflet explaining these ideas. The class 
then work together to reach a decision on the best desti-
nation and look at possible means of transport.

• The class lists, and then shares out and undertakes the 
preparatory tasks that need to be done before the trip can 
take place.

• The trip now takes place and, afterwards, the students 
reflect on what happened, identifying successes and fail-
ures.

In Be a Shrewd Chooser, students research and provide 
expert consumer advice for ‘clients’ in their class.

• Students listen to a radio show on audiotape which con-
tains a number of interviews with people who have just 
bought different products, and an interview with two stu-
dents who have been involved in producing a consumer 
report on choosing orange drinks. As students reflect on 
and analyse the tape and the report, they begin to con-
sider important factors that are taken into account when 
making a choice and different methods of making con-
sumer decisions.

• Students in a group now begin to work on their consumer 
report. They have to choose a product and decide on their 
research aims and methods.

• Students develop their plan. They will be involved in 
conducting surveys, writing questionnaires and carry-
ing out experiments in the classroom. They will also be 
considering how best to present their findings. This could 
involve posters and oral presentations in addition to writ-
ten reports.

• All the written reports are circulated around the other 
groups, and any group making an oral presentation does 
so. The reports are evaluated by the rest of the class, 
and then each group improves its own report taking into 
account these comments.

In all the modules the class comes together from time to 
time, to consider issues that arise and in the final evaluation 
phase. For example, a major early challenge of Plan a Trip 
is the class agreeing on the choice of destination.

The assessment of each module was at three levels: Basic, 
Standard and Extension. The Basic level assessment was 
carried out by the teacher, based on assessment tasks built 
into the module materials; it’s main goal was formative—to 
check that every student was up to speed with the group’s 
work. Standard and Extension levels were assessed through 
timed written examinations, administered by the JMB. Their 
goal was to assess students’ ability to ‘transfer’ the skills 
they had learned in the context of the module to other con-
texts. For Standard level these were closely related (e.g. 
other board games); for Extension level, less close. This 

6 The fact that these badly-designed games “came from the exam 
board” gave students real pleasure.
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approach has the advantage of ‘controlled transfer distance’, 
since the module gave each student the same basic experi-
ence in solving that kind of problem.

Despite the enthusiasm of the teachers and students 
of all performance levels in whose classrooms this work 
was developed, its initial take-up was modest, and mainly 
confined to low-achieving classes where teachers are more 
willing to innovate. The roots of the scheme in ‘numeracy’, 
together with its emphasis on practical activity, made some 
teachers reluctant to use it with more able students. The time 
involved for each module, 10–20 h, was too much for many 
teachers. Teachers also found that NTPS took them outside 
what they understood to be Mathematics. (In some schools 
it was adopted as a cross-curricula scheme.) As always with 
teaching modelling, the pedagogy was very different to what 
they had been used to in a curriculum dominated by proce-
dural learning.

Later, a syllabus for the established GCSE examination 
for age 16 was built around the modules. This increased the 
take-up until the introduction of the National Curriculum in 
1990 swept aside the many excellent developments of the 
1980s—its design, based on detailed content criteria, had the 
unintended but inevitable consequence (Burkhardt 2009) of 
reducing ‘mathematics’ to a checklist of short procedures.

These five modules exemplified the modelling process in 
a form that teachers and students could grasp. The theoreti-
cal grain size exemplified in the standard modelling diagram 
proved digestible to students as supportive insight for their 
work on the problem7.

5  Bowland mathematics 2006–2010

This collection of teaching and professional development 
materials was funded by the Bowland Charitable Trust, with 
contributions from the Department for Education to coincide 
with a new version of the National Curriculum for England 
for 11–14 year old students. The project broke new ground in 
several ways, starting with the approach to commissioning: 
A clear framework was set out by the funders: the Bowland 
Trust and the overall director Quentin Thompson, along with 
an expert advisory committee. Quentin based it on the Har-
vard Business School “case study” approach to learning, 
looking for modules, lasting 4–5 lessons, based on real world 
contexts in which the need for and form of mathematics 

involved would not be clear at the beginning. Rather than 
the usual practice of requiring tenderers to produce fully 
developed proposals at their own expense, the commission-
ing started with an open invitation to submit 1-page out-
lines—resulting in around 200 ideas, of which 40 were each 
awarded £5,000 funding for the development of full propos-
als. In this process the Shell Centre’s original 10 ideas, were 
reduced to 3, then to the 2 commissioned: Reducing road 
accidents and How risky is life? Overall, the project com-
missioned 26 “case studies” from 14 diverse groups includ-
ing university educational research groups, TV/media stu-
dios, educational computing suppliers and one enthusiastic 
teacher. The use of technology varied between “case studies” 
from materials to download and print, through collections of 
videos for whole-class use to entirely interactive activities.

Reducing road accidents (Pead and Swan 2008) was built 
around a custom-tailored database of 120 reports on the road 
accidents in a small fictional town. This allowed the students 
to explore various factors involved in each accident. The data 
could be selected in terms of these variables and displayed 
in various ways, see Fig. 7.

The task, working in pairs, was to prepare and justify 
advice for the town council, given the cost of various 
improvements, on the best way to reduce accidents within a 
specified budget. This module was among the most popular 
in schools. The students clearly engaged in and enjoyed the 
work, seeing it as relevant to life in the real world—a key 
goal of the project. Reports were carefully prepared, some-
times supported by Powerpoint presentations.

How risky is life? (Burkhardt, Swan and Pead 2008) 
aimed to confront students with the mismatch between 
their media-driven impressions of the hazards of every-
day life and the facts. Since hazard has two factors, the 
seriousness of the event and the probability of it happen-
ing, we decided to fix the first by confining ourselves to 
lethal risks: deaths in a year from unnatural causes, then 
all deaths in a year. Early trials confirmed the well-estab-
lished fact8 that probabilities are most easily grasped when 
re-expressed in terms of numbers within a defined popula-
tion; we chosen the population of England, ~ 50,000,000. 
The student challenge then came in understanding large 
numbers. For this Malcolm Swan designed a key presenta-
tion: a sheet of paper with 10 rows of 10 ‘large’ squares, 
each of which was divided into 10 by 10 small squares. 
Each small square thus represented 5000 people.

In the first lesson students, who had been asked to look 
at newspapers, were encouraged to suggest various unnat-
ural causes of death and to estimate how many people 7 A cautionary note—around this time I worked with Oliver Penrose 

and others at the Open University in the design of a modelling unit 
for the revised introductory mathematics course. The core problem 
was modelling the changing water level in a plastic container with a 
hole in the bottom. Typical student feedback was “We could solve the 
problem OK but had a terrible time relating it to The Six Box Dia-
gram”.

8 Studies have shown this for professional groups, including doctors, 
as well as the population as a whole. We sustained the probabilities as 
part of the analysis throughout to reinforce the link.
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die of each in a year—as expected, murder and terror-
ism loomed large. The estimates were shared and rank-
ordered- on a wall or a line strung across the classroom. 
In the second lesson they looked at the actual data from 
national statistics and compared it to their speculations—
accidents at work, then on roads, led the field, with terror-
ism vanishingly small. Students were then asked to colour 
in the various numbers on the sheet of squares; the total, 
typically ~ 10,000, is represented by just two of the small 
squares. This representation powerfully makes the point 
that in the UK these risks are very low—in contrast to 
impressions given in the media. Lesson three goes on to 
look at health-related deaths: their age dependence, how 
for the 15–25 age group there are large gender differences, 
and how these arise.

This module uses technology only in the final lesson 
where a simulation looks at the expected year-to-year fluc-
tuations (~ 100; the √N heuristic is noted). This makes 
the point that terrorism is not detectable against this back-
ground, even in the UK’s worst year, 2005, when about 50 
people were killed. It’s not a serious risk—but it does sell 
newspapers.

6  The Shell Centre‑Berkeley program 1992–
2015

The most recent Shell Centre experiment on teaching model-
ling was carried out in the context of formative assessment 
for learning. The review of research by Paul Black and Dylan 
Wiliam (1998) had shown the power of this approach, when 
done well, in forwarding student learning. The Mathemat-
ics Assessment Project (2014), a collaboration between the 
Shell Centre and the University of California at Berkeley, set 
out to see how far teachers can be supported in the pedagogi-
cal and mathematical challenges inherent in high-quality 
formative assessment through teaching materials designed 
for this purpose. (Earlier attempts had worked through a 
professional development approach. This proved expensive, 
requiring work with expert leaders over many years.) Of the 
20 “Classroom Challenges” for each grade, 6 through 10/11, 
about a third are on problem solving, mostly modelling (the 
others focus on concept development). I shall illustrate the 
design principles and structure (see Swan and Burkhardt 
2014 for more detail) with the example of “Matchsticks”, a 
formative assessment on lesson on modelling for age 13–15.

Fig. 7  Screens from reducing road accidents 



 H. Burkhardt 

1 3

The structure of these “Classroom Challenges”9 is as 
follows:

In a prior lesson, the problem situation and the task are 
presented to students, who each tackle the problem unaided. 
The Matchsticks task is shown in Fig. 8. (The US still uses 
traditional units, which makes the task more challenging 
technically, but not conceptually; the metric equivalents 
we use in other countries are, in order: 25 m, 60 cm, 2, 2, 
50 mm.)

The teacher collects and makes an overall assessment of 
the student work (without scoring it) and prepares qualitative 
feedback on the reasoning. In this they are supported by the 
Common Issues table, which lists the challenges students 
are likely to have and suggests non-leading questions or 
prompts—mostly questions—for each. The first few entries 
for Matchsticks, Table 3, make the point.

The other ‘issues’ in this lesson are: uses an inappropriate 
formula; works unsystematically; work is poorly presented; 
has difficulty substituting into a formula.

The main lesson structure is as follows.

• The teacher re-introduces the main task.
• Students respond to the prepared questions by reviewing 

and revising their individual solutions.
• The students, working in small groups, compare their 

solutions. From this discussion they produce a poster 
showing a joint solution—completing the inherent peer 
assessment.

• The posters are displayed promoting an inter-group dis-
cussion. Groups compare approaches, justifying their 
own and recognising others.

• Each group now analyses and critiques sample student 
work we provided,10 Fig. 9. This leads them to discuss 
approaches they may not have considered. The groups 
then work to improve their solutions to the problem.

• Whole class discussion follows, seeking to combine a 
review of what has been learned with discussion of the 
processes, assumptions and their implications, and alter-
native representations, their strengths and weaknesses.

The role of sample student work, another design tactic 
used in this work, is interesting (Evans and Swan 2014). The 
two samples in Fig. 9 are chosen to illustrate the range. The 
first response sees the problem in 2-dimensions; apart from 
that, there is evidence of an estimation process for areas, 
albeit with errors. The second response is more powerful, 

Fig. 8  The task from the Match-
sticks Classroom Challenge

Matchs�cks are o�en made from pine trees – this tree this tree is 80 
feet high with a base diameter of 2 feet

Matchs�cks are rectangular prisms 
1/10 inch by 1/10 inch and 2 inches long

Es�mate how many matchs�cks 
you can make from this tree.

Table 3  Part of the common issues table for Matchsticks 

Common issues Suggested questions and prompts

Has difficulty getting started What do you know? What do you need to find out?
How could you simplify the problem?

Ignores the units
For example: the student calculates the volume of a matchstick in cubic 

inches and the volume of the tree trunk in cubic feet

What measurements are given?
Does your answer seem reasonable if you consider the size of a 

matchstick compared to the size of a pine tree?
Makes incorrect assumptions
For example: the student multiplies the volume of the tree trunk in cubic 

feet by 12 and assumes this gives the volume of the tree trunk in cubic 
inches

Can you explain why you have multiplied by 12?
When you figure out a volume how many dimensions do you multiply 

together? How does this calculation effect how you convert the 
volume from cubic feet to cubic inches?

Can you describe the dimensions of the tree in inches? What do you 
notice?

9 They can be downloaded, free for non-commercial use, from map.
mathshell.org. The Matchsticks lesson is at http://map.mathshell.org/
download.php?fileid=1691.

http://map.mathshell.org/download.php?fileid=1691
http://map.mathshell.org/download.php?fileid=1691
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seeing it as a volume problem, gets the matchstick volume 
correct, but ignores tapering of the tree, recognises but mis-
handles the conversion of cubic feet to cubic inches, and 
shows no sense of appropriate accuracy (a much neglected 
issue in many curricula). I go into this detail to illustrate 
the value, and the challenge, of asking students to analyse 
sample student work.

The impact of this work has been remarkable—with sup-
port from the Bill & Melinda Gates Foundation that funded 
the project, there have been over 7,000,000 lesson down-
loads so far. Evaluations show widespread enthusiasm and 
suggest a considerable impact on teachers and on learning 
(Inverness Research Associates 2014; Herman et al. 2014). 
The concept-development lessons have been more popular 
than the modelling lessons, though the pedagogical demands 
are similar. This is not surprising since teachers are already 
focused on the challenges of teaching concepts and skills.

7  Comments on the theoretical approach

The theoretical approach of this work has been essentially 
heuristic. Like Polya’s in How to solve it (Polya 1945), it 
started with my reflections as a professional modeller but 
these were tested and developed, largely from empirical 
feedback in the design and development process. I believe 
that this is the right approach for work whose priority is 
improving practice rather than building fundamental theory 
(see Burkhardt 1988). Of course, the work described here 
builds on many results of educational research; for example, 

as well as those referenced above, the “classroom contract” 
concept of Brousseau (1997), Hatano and Inagaki’s (1986) 
“adaptive expertise” as developed in Swan (2006) are central 
to the work.

A comparison with medicine is useful (Burkhardt and 
Schoenfeld 2003). A century ago medical practice was 
largely empirical. Though too often based on the experi-
ence of individual physicians or surgeons, analysis of 
observations had discovered some general principles—for 
example, that it was better if surgeons washed their hands 
between patients and wells were not located near sewers. 
The influence from more fundamental theory got started, 
notably with Pasteur’s work on the source of infections. Over 
the last century the growth of our fundamental understand-
ing of biology has greatly increased the input from science 
into medical practice, though much remains empirical; for 
example, nearly a century after Fleming’s chance observa-
tion of the effect of penicilium mould, most new antibiotics 
are still sought by testing thousands of wild organisms—
though this may be beginning to change through the use of 
DNA engineering techniques like CRISPR. (That this came 
65 years after the discover of the structure of DNA is a use-
ful reminder of the timescale of turning theoretical advances 
into practical applications.)

Educational research seems many decades behind 
research in medicine for a variety of reasons (not exclusively 
lack of funding, see Burkhardt 2015), so a heuristic approach 
that complements deeper understanding is important in sup-
porting the improvement of practice. If done well, it has 
substantial theoretical outputs of a phenomenological kind, 
often expressed as design principles of the kind described 
above. If such principles are to be useful in design, they need 
empirical warrants for the generalizability, which requires 
parallel studies that explore boundaries of validity; unfor-
tunately, replication is not highly regarded in the academic 

Fig. 9  Student responses to the Matchsticks task

10 This an example of ‘role shifting’ (Phillips et al. 1988), an impor-
tant design tactic—moving students into ‘teacher roles’ reliably raises 
the quality of reasoning in discussion.



 H. Burkhardt 

1 3

value system is education, and so is rare. These issues are 
discussed further in (Burkhardt 2013, 2014).

8  The challenges of systemic improvement 
1984–?

As result of research and development over the last half-
century (see for example, Muller et al. 2007), I believe it is 
fair to assert that:

We now know how to enable typical teachers to teach 
much better mathematics, including modelling, much 
more effectively.

The importance of mathematical modelling in the school 
curriculum is clear. It both demonstrates the widespread 
applicability of mathematics and enhances mathematical 
understanding through inquiry. It serves as a powerful cor-
rective to those who view mathematics as a set of discrete 
facts and procedures to be taught and learned.

Yet, if an informed observer were to look in at, say, 100 
randomly chosen classrooms in any country in the world, I 
believe they would be unlikely to see in any of them the stu-
dents actively modelling situations from the real world (see 
e.g. Burkhardt with Pollak, 2006b). Why is this so? What 
might we do about it?

The difficulties of implementing widely-agreed changes 
seem to be the core barriers to the improvement of our 
students’ education in mathematics. While modelling, our 
focus here, is a particularly area for improvement, the dif-
ficulty of achieving reform applies more widely. It seems 
to be a property of school systems and the way ‘this kind 
of organism’ functions. This still-unsolved problem is too 
big a subject for detailed discussion here (Burkhardt 2009, 
2015) but, as a major barrier to improvement, it should not 
be overlooked. I shall confine my comments to the follow-
ing key factors:

• Making systemic improvement happen is a design and 
development challenge.

• In many countries education is a ‘hot’ political issue 
with school system leadership making decisions of a 
technical kind that they would not contemplate in, for 
example, medicine. So we must recognize that politicians 
and other policy makers are part of the system and take 
their priorities into account if we are to develop models 
of change that actually improve teaching and learning. 
While the rhetoric at all levels emphasises teaching and 
learning, the day-to-day pressures on leaders at all levels 
are very different; these need to be understood and taken 
into account in the design and development initiatives.

• To take a key example, in countries with ‘high-stakes’ 
assessment the range of performance types that are 

assessed ensures that these performances are developed 
in the classroom. (WYTIWYG) In particular, if mod-
elling is to happen in most classroom is needs to be 
assessed in the tests. Yet changes to these tests are always 
a sensitive issue, with teachers understandably preferring 
the known to the unknown. The replacement of TIMSS 
by PISA, with its modelling emphasis, as the focus of 
politicians’ concerns has been important; but such tests 
are not ‘high stakes’ for individual teachers or students 
so have less leverage.

• Explicit design, development and formative research 
should look at different models of change. Policy makers 
tend to attempt comprehensive reform - a new national 
curriculum, for example - which either is largely cos-
metic or, if ambitious, places new demands on teachers 
and other professionals that are not matched with the 
support needed for them to meet those demands. Thus 
does a “big bang” become a whimper. The most success-
ful improvement models in our experience are based on 
gradual change - an approach taken for granted in medi-
cine, of course.

• Educational research should be rebalanced to be more 
solution-focused (Burkhardt and Schoenfeld 2003; Bur-
khardt 2013, 2015), commanding more public trust - and 
funding.

What might be done to make some progress with this sys-
temic challenge? Currently, working with 10 US school sys-
tems in a “network of improvement communities”, we and 
our US partners have begun to design and develop tools11 
(MathNIC 2017) to help system leadership tackle some of 
these issues. But this is just a beginning; I hope that progress 
on ways of tackling this kind of challenge may become a 
major focus of research and development in STEM educa-
tion over the coming decade.

The 50 years’ work described here was made possible by 
the analytic expertise and creative design brilliance of the 
many designer-researchers that I have been fortunate enough 
to discover and to work with. Outstanding among them was 
Malcolm Swan, a lovely man with a touch of genius - this 
paper is dedicated to him.

Open Access This article is distributed under the terms of the Creative 
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

11 These prototype tools may be downloaded from mathnic.org.
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