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We study how the presence of world-sheet currents affects the evolution of cosmic string networks,
and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated
by these networks. We provide a general description of string networks with currents and explicitly
investigate in detail two physically motivated examples: wiggly and superconducting cosmic string
networks. By using a modified version of the CMBact code, we show quantitatively how the relevant
network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests
that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For
superconducting strings the amplitude of the anisotropies depends on parameters which presently
are not well known—but which can be measured in future high resolution numerical simulations.

I. INTRODUCTION

As demonstrated in [1], symmetry breaking processes
in early universe scenarios can lead to the formation
of topologically stable line-like concentrations of energy,
known as cosmic strings (for general reviews see [2, 3]).
These one-dimensional objects evolve and interact with
each other, forming a cosmic string network. Depend-
ing on their origin, strings can have significantly differ-
ent properties and observational signatures. Examples of
theoretically well-motivated scenarios where the presence
of cosmic strings is expected include brane inflation [4–
7], supersymmetric grand unified theories with hybrid
inflation [8–13] and many others [14–17]. In most cases,
cosmic strings are stable and survive to the present era,
acting as fossils for these models. Hence, quantitative
bounds placed on string networks can lead to strong con-
straints on the underlying early universe model.

One difficulty is precisely that different models can pro-
duce strings with different properties, with varying ob-
servational predictions for the corresponding string net-
works. Hence, in order to achieve reliable observational
constraints on the underlying early universe models from
cosmic string network phenomenology, one needs to de-
velop an accurate description of cosmic string network
evolution, taking into account the distinctive features of
different types of cosmic strings. One way to accomplish
this task is through numerical simulations [18, 19]. This
approach provides reliable results, but is currently lim-
ited by computer capabilities, especially when one tries to
include non-trivial cosmic string features like world-sheet
currents. At present, multi-tension cosmic string net-
works and strings with currents are very time-consuming
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to model, and cannot be simulated with both high-
resolution and sufficiently large dynamic range (see [20]
for a recent field theory simulation of pq-stings). Fur-
ther, numerical simulations have to be repeated for dif-
ferent values of cosmological and string parameters and
are thus not particularly flexible for parameter determi-
nation through direct confrontation with observational
data.

There is an alternative – and largely complementary
– semi-analytic approach for the description of cosmic
string network evolution based on the velocity-dependent
one-scale (VOS) model [21, 22]. In this treatment it
is much easier to add non-trivial features for cosmic
strings [23–30] allowing evolution over large dynamical
ranges that cannot be achieved by numerical simulations.
However, semi-analytic descriptions involve free parame-
ters, which can only be reliably calibrated by comparison
to simulations. As a result, a combination of such ana-
lytic descriptions and numerical simulations is at present
the best approach for studying the evolution of cosmic
string networks with non-trivial properties.

Among different methods for detecting observational
signals from cosmic string networks, cosmic microwave
background (CMB) anisotropies offer one of the most
sensitive and robust probes [31]. Current results ob-
tained using cosmic string network simulations [32, 33]
and calibrated semi-analytic descriptions [34] yield very
similar constraints for simple global cosmic strings, the
current limit on the string tension being at the level of
Gµ <∼ 10−7. However, as discussed above, it is the lat-
ter approach that allows us to go beyond these vanilla
strings and quantitatively study the observational effects
of additional properties on cosmic strings.

One such additional feature that we can anticipate in
many cosmic string models is the presence of a world-
sheet current. This can be caused by a coupling be-
tween the field forming the cosmic string and other fields,
by trapped charged fermion modes along the string [35]
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(which is common in supersymmetric models [36, 37]),
by trapped vector fluxes on non-Abelian stings [38], and
other specific mechanisms (for example symmetry break-
ing of an accidental symmetry in SU(2) stings [39]). From
a phenomenological point of view, the presence of such
currents gives rise to effective, macroscopic properties on
the string. For example, small-scale structure (wiggles)
on strings can be described by a specific type of cur-
rent [40–42].

In what follows we will show quantitatively how the
presence of currents on the string worldsheet can affect
observational predictions for the string CMB signal, pay-
ing particular attention to the special cases of wiggly
strings and superconducting strings. In the case of wig-
gly strings this generalises and extends the work of [43],
where string wiggles were taken into account through a
constant free parameter α. In our approach we can con-
struct the most general model for wiggly strings, leading
to a full description of wiggles, including their evolution
and their effect on the string equations of motion. For
superconducting strings, some relevant model parameters
are less well known (due to the lack of numerical simu-
lations of these models) but we are also able to provide
a full description. In both cases, our results will enable
a more detailed and robust comparison to observations,
which we leave for future work.

II. STRING MODEL WITH CURRENTS

In order to obtain an effective two-dimensional La-
grangian of a string-like object from a four-dimensional
field theory, one usually follows the procedure of [35].
This coarse-graining approach unavoidably involves the
loss of some of the features of the original four-
dimensional description; in particular, it cannot describe
key properties of superconducting strings like current sat-
uration and supersonic wiggle propagation. As a result,
there is only a phenomenological approach to reproduce
properties of the original four-dimensional model [44, 45].
On the other hand, one is often interested in averaged
equations of motion and these can be the same for differ-
ent Lagrangians (for an explicit example see [25]). Thus,
focusing on deriving the exact form of the Lagrangian is
not necessarily the most productive route to obtaining
accurate string network evolution.

Bearing in mind the subtleties described above, we con-
sider the general form of a two-dimensional Lagrangian
involving an arbitrary function of a string current. First,
note that a current on a two-dimensional space can be
represented as a derivative of a scalar field ϕ,

Ja = ϕ,a, (1)

where ,a = ∂
∂σa , with σa the coordinates on the string

worldsheet (Latin indexes a, b run over 0, 1).
We can thus build three possible terms “living” on

the worldsheet, out of which the Lagrangian will be con-

structed

[1]: ϕ,aϕ,bγab = κ,

[2]: εacεbdγabγcd = γ,

[3]: εacεbdγabϕ,cϕ,d = ∆,

(2)

where γab = gµνx
µ
,ax

ν
,b is the induced metric on the string

worldsheet (gµν being the background space-time metric
with Greek indexes µ, ν corresponding to 4-dimensional
space-time coordinates), γ is the determinant of the in-
duced metric and εab is the Levi-Civita symbol in two
dimensions.

The term ∆ is motivated by the Dirac-Born-Infeld
(DBI) action for cosmic strings (relevant studies can be
found in [46], [47] and [26]).

Taking into account the three possible terms in Eq. (2)
we can write down the general form of the action general-
ising the Nambu-Goto action to the case of a string with
current

S = −µ0

∫
f(κ, γ,∆)

√
−γd2σ, (3)

where µ0 is a constant of dimensions [Energy]2 deter-
mined by the symmetry breaking scale giving rise to
string formation.

The arbitrary choice of the function f(κ, γ,∆) can
break reparametrisation invariance of the generalized
action of Eq. (3). In order to preserve invariance
of the action under reparametrizations, the last two
terms 2 should be connected in the following way
f(κ,∆/γ). Hereinafter for the sake of simplicity the func-
tion f(κ,∆/γ) in equations will be denoted just as f .

Assuming that cosmic strings are moving in a flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) back-
ground with metric ds2 = a(τ)

(
dτ2 − dl2

)
, we can build

the stress-energy tensor from the action (3)

Tµν(y) =
µ0√
−g

∫
d2σ
√
−γδ(4)(y − x(σ))(

Ũ ũµũν − T̃ ṽµṽν − Φ(ũµṽν + ṽµũν)
)
,

(4)

where ũµ =
√
εẋµ

(−γ)1/4
and ṽµ = x′µ√

ε(−γ)1/4
are orthonormal

timelike and spacelike vectors respectively (ũµũµ = 1,

ṽµṽµ = −1), ε =
√

x′ 2

1−ẋ2 and

Ũ = f − 2∂f∂γ
∆
γ + 2γ00 ∂f

∂κ ϕ̇
2 + 2γ11 ∂f

∂∆ϕ
′ 2, (5)

T̃ = f − 2∂f∂γ
∆
γ + 2γ11 ∂f

∂κϕ
′ 2 + 2γ00 ∂f

∂∆ ϕ̇
2, (6)

Φ = 2√
−γ

(
∂f
∂κ −

∂f
∂∆

)
ϕ′ϕ̇ ; (7)

here and henceforth dots and primes respectively denote
time and space derivatives.

It is important to note that for this modification of the
Lagrangian, the stress-energy tensor (4) has non-diagonal
terms induced by the presence of the current. Let us
obtain the equations of motion for the action (3) using
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the definitions of Ũ in (5), T̃ in (6) and Φ in (7). Variation
of the action (3) with respect to xµ and ϕ gives

∂τ (εŨ) + ȧ
aε
(
ẋ2(Ũ + T̃ ) + Ũ − T̃

)
= ∂σΦ, (8)

ẍεŨ + ẋε ȧa
(
1− ẋ2

) (
Ũ + T̃

)
=

= ∂σ

(
T̃
ε x
′
)

+ x′
(

2 ȧaΦ + Φ̇
)

+ 2Φẋ′, (9)

∂τ

((
∂f
∂κ + ∂f

∂∆

)
εϕ̇
)

= ∂σ

((
∂f
∂κ + ∂f

∂∆

)
ϕ′

ε

)
. (10)

where we have chosen a parametrisation satisfying the
transverse temporal conditions ẋ · x′ = 0 and x0 = τ .

As can be seen from the equations of motion (8)
and (9), string dynamics does not depend explicitly on
the form of the current contribution f(κ,∆/γ). The dy-

namics of the string is defined completely by Ũ , T̃ and
Φ, which can be associated to mass per unit length and
string tension. Indeed, it is only the dynamics of ϕ it-
self – equation (10) – that explicitly depends on ∂f/∂κ
and ∂f/∂∆. This provides us an alternative approach
to studying string dynamics effectively, without an ex-
plicit connection between an effective Nambu-Goto-like
action and the original field theory model. One can in-
stead study the behaviour of Ũ , T̃ and Φ in the original
four-dimensional model in the framework of field theory
(as it was done for example in [48–52]) and then insert

the dynamics of Ũ , T̃ and Φ in the equations of motion
(8) and (9).

Additionally, we also note that one can easily general-
ize the equations of motion (8)-(10) to include any num-
ber of uncoupled scalar fields, associated to correspond-
ing currents. In this case, we can simply rewrite the
variables κ and ∆ as

κi = γabϕ
,a
i ϕ

,b
i , ∆i = εacεbdγabϕi,cϕi,d , (11)

where the index i runs over the number of fields. There
is no summation over i; if a sum over this index is to be
taken it will be written explicitly.

Definitions (5), (6) and (7) in the case of multiple cur-
rents generalise to

Ũ = f + 2
∑
i

(
γ00 ∂f

∂κi
ϕ̇i

2 + γ11 ∂f
∂∆i

ϕ′ 2i −
∂f
∂γ

∆i

γ

)
, (12)

T̃ = f + 2
∑
i

(
γ11 ∂f

∂κi
ϕ′ 2i + γ00 ∂f

∂∆i
ϕ̇i

2 − ∂f
∂γ

∆i

γ

)
, (13)

Φ = 2√
−γ
∑
i

(
∂f
∂κi
− ∂f

∂∆i

)
ϕ′iϕ̇i. (14)

With definitions (12)-(14) the form of the stress-energy
tensor (4) and the equations of motion (8)-(9) stay un-
changed. On the other hand, the equation of motion for
the scalar field (10) is substituted by the set of equations

∂τ

((
∂f
∂κi

+ ∂f
∂∆i

)
εϕ̇i

)
= ∂σ

((
∂f
∂κi

+ ∂f
∂∆i

)
ϕ′i
ε

)
. (15)

We see, therefore, that if we extend the action (3) to
include additional scalar fields ϕi, the structure of the
equations of motion together with the form of the general

stress-energy tensor remains unchanged; we only need to
add a new index i to κ and ∆. This fact will be useful
in our considerations below. For now, let us diagonalise
the stress-energy tensor (4) and define the mass per unit
length and tension for these strings with currents, follow-
ing references [40, 49]

Tµν u
ν = Uδµν u

ν , (16)

Tµν v
ν = Tδµν v

ν . (17)

The new orthonormal timelike uµ and spacelike vµ vec-
tors are eigenvectors of the stress-energy tensor (4) with
corresponding eigenvalues U (mass per unit length) and
T (tension). These eigenvalues are related to the original

Ũ , T̃ and Φ in (5-7) by

U = µ0/2
(
Ũ + T̃ + ∆

)
, (18)

T = µ0/2
(
Ũ + T̃ −∆

)
, (19)

while the eigenvectors can be expressed in terms of the
original ũµ and ṽµ as

uµ = aũµ +
√
a2 − 1ṽµ, (20)

vµ =
√
a2 − 1ũµ + aṽµ, (21)

with

a =
1

2

[
1 +

Ũ − T̃
∆

]

and

∆ =

√
(Ũ − T̃ )2 − 4Φ2 .

The passage from the equations of motion of a sin-
gle string segment to an effective description of a whole
network of strings is done through an averaging proce-
dure [21] leading to the VOS model for cosmic strings.
Following this approach, we begin by dotting equation (9)
with vectors ẋ and x′ and using the property of our
parametrization ẋ · x′ = 0 to obtain

ẋ · ẍεŨ + ẋ2ε ȧa
(
1− ẋ2

) (
Ũ + T̃

)
=

= T̃
ε ẋ · x

′′ − 2Φẍ · x′, (22)

x′ · ẍεŨ − x′ · x′′ T̃ε + 2Φx′′ · ẋ =

= x′2
(

2 ȧaΦ + Φ̇ + T̃ ′

ε −
T̃
ε2 ε
′
)
. (23)

Using the expression ε′

ε = x′·x′′
x′2 −

x′·ẍ
1−ẋ2 we can elimi-

nate the terms proportional to ε′ and x′ · ẍ obtaining the
equation

ẋ · ẍεŨ + ẋ2ε
ȧ

a

(
1− ẋ2

) (
Ũ + T̃

)
− T̃

ε
ẋ · x′′ =

= 2Φ
1− ẋ2

Ũ − T̃

(
T̃ ′ + ε

(
2
ȧ

a
Φ + Φ̇− 2Φ

x′′ · ẋ
x′2

))
.

(24)
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We now introduce the macroscopic variables

E = µ0a
∫
Ũεdσ , (25)

E0 = µ0a
∫
εdσ , (26)

v2 =
〈
ẋ2
〉
, (27)

where 〈...〉 =
∫
... εdσ∫
εdσ

denotes the (energy-weighted) av-

eraging operation. These macroscopic quantities are, re-
spectively, the total energy, the ’bare’ energy (without
the contribution form the current) and the Root-Mean
Squared (RMS) velocity. Using these definitions we pro-
ceed to average equations (24) and (8) finding

Ė + ȧ
aE
(
υ2 (1 +W )−W

)
= 〈Φ′/ε〉E0, (28)

υ̇ + υ ȧa
(
1− υ2

)
(1 +W )− (1− υ2)k(υ)

Rc
=

=
〈

2 Φ
Ũ

1−ẋ2

1−T̃ /Ũ

(
T̃ ′

ε + 2 ȧaΦ + Φ̇− 2Φx′′·ẋ
x′2

)〉
. (29)

Here, we have defined W =
〈
T̃ /Ũ

〉
and introduced the

average comoving radius of curvature of strings in the
network, Rc, and the curvature parameter, k(υ), satisfy-

ing

〈
ẋ
ε ·
(

x′

ε

)′〉
= k(υ)

Rc
υ(1 − υ2). For ordinary cosmic

strings, an accurate ansatz for the curvature parameter
as a function of velocity

k(υ) =
2
√

2

π
(1− v2)(1 + 2

√
2v3)

1− 8v6

1 + 8v6
, (30)

has been derived in [22]. We assume that this function
stays valid for strings with currents as well.

Following the procedure of [21, 22], we rewrite the aver-
aged equations of motion (28-29) in terms of more conve-
nient macroscopic variables: the comoving characteristic
length Lc and the comoving correlation length ξc, which
are related to the energies in (25-26) by the following
expressions

E =
µ0V

a2L2
c

and

E0 =
µ0V

a2ξ2
c

,

where V is the volume over which the averaging has been
performed. In addition, we employ the VOS model ap-
proximation that the average radius of curvature of cos-
mic strings in the network is equal to the correlation
length, i.e. Rc ≈ ξc. Assuming further that the av-

eraged macroscopic quantities can be split as
〈

ΦŨ T̃
〉

=

〈Φ〉
〈
Ũ
〉〈

T̃
〉

we obtain the following system of equations

2L̇c = ȧ
aLc

(
υ2 (1 +W )−W + 1

)
−
√

1−υ2Q,s

Û
, (31)

υ̇ + υ ȧa
(
1− υ2

)
(1 +W )− (1− υ2)k(υ)

ξc
=

= 2Q
Û

1−υ2

1−W

(√
1− υ2 T̂,s + Q̇+ 2Q

(
ȧ
a −

k(υ)υ
ξc

))
, (32)

where 〈Φ〉 = Q,
〈

Φ̇
〉

= Q̇, Û =
〈
Ũ
〉

, T̂ =
〈
T̃
〉

, the

correlation and characteristic lengths are related by ξc =

Lc
√
Û and a new derivative variable ,s = ∂

∂s has been
introduced, corresponding to the parametrization ds =√
x′2dσ.

Equations (31-32) are the averaged macroscopic equa-
tions describing a network of cosmic strings with a cur-
rent. It is apparent that scaling solutions (Lc = εcτ, υ =
const when a ∝ τn with εc and n constants [21, 22]) exist

if the averaged quantities Û , T̂ and Q are appropriately
restricted. In particular we see from (31)-(32) that scal-
ing behaviour – typical for ordinary string networks –
can arise when Û , T̂ , Q = const, while T,s and Q,s ∼ 1/τ .
Additionally, the requirement of a well-defined εc implies
the condition

υ2 <
2 + n(W − 1)

n(W + 1)
. (33)

Equation (33) relates the rms string velocity υ to the

ratio W =
〈
T̃ /Ũ

〉
for a given expansion rate (charac-

terisd by n) for a cosmic string network with currents.
These general relations will be useful when we consider
the special case of a wiggly string network.

We now concentrate on how these modifications can
influence predictions for the CMB anisotropy from cos-
mic strings. We follow the approach of [43, 53, 54].
Rather than working with the full network of cosmic
strings, we consider a number of straight string segments
in Minkowski space that decay according to the evolu-
tion of strings in an expanding FLRW metric, and have
velocities and lengths determined by the VOS model.

We start from the Fourier transform of the stress-
energy tensor (4) of a single straight string segment on
which the contribution from string currents has been av-
eraged as above

Θµν = µ0

∫ ξ0τ/2

−ξ0τ/2

[
ÛεẊµẊν − T̂ X

′µX ′ν

ε
−

−Q
(
ẊµX ′ν + ẊνX ′µ

)]
eik·Xdσ,

(34)

where the vector Xµ = xµ0 + σX ′µ + τẊµ represents the
straight, stick-like solution for a string moving with ve-
locity υ (so that ẊµẊµ = 1−υ2) and with worldsheet co-
ordinates σ and τ in the transverse temporal gauge. The
comoving length of a string segment at conformal time τ
is ξ0τ , where ξ0 will be determined from the macroscopic
evolution equations (31-32). Variables Û , T̂ and Q are
constants for the straight string, as follows from the equa-
tions of motion (8-10). The four-vector xµ0 = (1,x0) is
a random location for a single string segment, while X ′µ

and Ẋµ are randomly oriented and satisfy the transverse
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condition X ′µẊ
µ = 0. We can choose these vectors1 as

Ẋµ =

 1
υ(cos θ cosφ cosψ − sinφ sinψ)
υ(cos θ sinφ cosψ + cosφ sinψ)

−υ sin θ cosψ

 , (35)

X ′ µ =

 0
sin θ cosφ
sin θ sinφ

cos θ

 . (36)

Without loss of generality we can choose the wave vec-

tor along the third axis k = kk̂3 and integrating over σ
we obtain the following expressions

Θ00 = µ0Û√
1−v2

sin(kX3ξ0τ/2)
kX3/2

cos(k · x0 + kX3vτ), (37)

Θij = Θ00

[
v2ẊiẊj − T̂ /Û(1− v2)X ′iX

′
j −

− vQ/Û
(
ẊiX

′
j + ẊjX

′
i

)]
, (38)

where the indices i, j run over the 3-dimensional spatial
coordinates.

The scalar, vector and tensor components can be de-
fined as

ΘS = (2Θ33 −Θ11 −Θ22) /2, (39)

ΘV = Θ13, (40)

ΘT = Θ12. (41)

Substituting (37) and (38) in (39)-(41), we obtain the
scalar, vector and tensor contributions for a straight
string segment with stress-energy tensor (4), (34)

2ΘS

Θ00
=

[
v2(3Ẋ3Ẋ3 − 1)− 6vQ/ÛX ′3Ẋ3−

−(1− v2)T̂ /Û(3X ′3X
′
3 − 1)

]
,

(42)

ΘV

Θ00
=

[
v2Ẋ1Ẋ3 − T̂ /Û(1− v2)X ′1X

′
3−

−vQ/Û
(
X ′1Ẋ3 + Ẋ1X

′
3

)]
,

(43)

ΘT

Θ00
=

[
v2Ẋ1Ẋ2 − T̂ /Û(1− v2)X ′1X

′
2−

−vQ/Û
(
X ′1Ẋ2 + Ẋ1X

′
2

)]
.

(44)

Following the prescription of reference [55], we can
then calculate the unequal time two-point correlators by
averaging over locations, string orientations and velocity
orientations of the string segment

〈
ΘI(k, τ1)ΘJ(k, τ2)

〉
=

2µ2
0F(τ1, τ2, ξ0)

16π3

∫ 2π

0

dφ

∫ π

0

sin θdθ

∫ 2π

0

dψ

∫ 2π

0

dχΘI(k, τ1)ΘJ(k, τ2) . (45)

Here, the indices I and J correspond to the scalar, vector,
tensor and “00” components. The function F(τ1, τ2, ξ0)
describes the string decay rate. It is chosen to have
the same form as for ordinary (without currents) cosmic

1 Note that although we work in the transverse temporal gauge we
have chosen the normalization X′2 = 1. This may seem to be
inconsistent as X′2 = ε2(1 − Ẋ2) and ε is evolving according to
equation (8). However, we are implicitly taking this effect into
account by having the limits of the integral (34) time-dependent
through the time evolution of ξ0. This evolves according to the
macroscopic equation (31), which has been derived by averaging
equations (24) and (8).

strings [43]

F(τ1, τ2, ξ0) =
1

(ξ0Max(τ1, τ2))
3 , (46)

but here ξ0 is determined by modified VOS equations (28-
29). The phase χ = k ·x0 arises from varying over string
locations x0 (refer to equation (37)), which we integrate
over.

We can write the general form of the correlators as〈
ΘI(k, τ1)ΘJ(k, τ2)

〉
=

µ2
0F(τ1,τ2,ξ0)
k2(1−υ2) BI−J(τ1, τ2). (47)

If we are only interested in the approximation kτ < 1
(superhorizon scales), we can expand BI−J keeping only
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terms that are up to k2. In this case the non-zero corre-
lators are the following

B00−00(τ1, τ2) ≈ Û2ξ2
0k

2τ1τ2, (48)

BS−S ≈ 1
5
B00−00

Û2
(τ1, τ2)× (49)(

Û2υ4 + T̂ Ûυ2(1− υ2) + T̂ 2(1− υ2)2 + 3υ2Q2

)
,

BV−V ≈ 1
3B

S−S , (50)

BT−T ≈ 1
3B

S−S . (51)

In the Appendix we give exact expressions for the equal
time two-point correlators BI−J(τ) and provide semi-
analytic expressions for the unequal time two-point cor-
relators valid for all (i.e. from subhorizon through to
superhorizon) modes k.

Having computed the correlators (47), let us now as-
sume that the cosmic string network under consideration
has reached a scaling regime. We can then assume that
ξ0, υ together with Û , T̂ and Q do not depend on τ and
σ. To obtain an analytic estimate of the string-induced
CMB anisotropy, let us consider the string network evolv-
ing in the matter domination epoch (n = 2). For this
case we can use the following solution of the linearised
Einstein-Boltzmann equations [53, 56]

δT

T
= −1

2

∫ τf

τi

dτḣijn
inj ,

ḣij = ḣSij + ḣVij + ḣTij ,

(52)

ḣSij = −ρ
∑
k

eik·x
∫ τ

0

dτ ′(
1

3
δij

(
τ ′

τ

)6

(ΘTr + 2ΘS)− kikj
(
τ ′

τ

)4

ΘS

)
,

(53)

ḣVij =
∑
k

eik·x
(
V̇ikj + V̇jki

)
,

V̇i = ρ

∫ τ

0

dτ ′
(
τ ′

τ

)
ΘV
i ,

(54)

ḣTij = ρ

∫ τ

0

dτ ′k3τ ′4F (kτ ′, kτ)ΘT
ij ,

F (kτ ′, kτ) = G1(kτ ′)Ġ2(kτ)−G2(kτ ′)Ġ1(kτ),

(55)

where ρ = 16πG, G1(kτ) = cos(kτ)
(kτ)2 + cos(kτ)

(kτ)3 , G2(kτ) =
cos(kτ)
(kτ)3 + sin(kτ)

(kτ)2 , δT
T are the CMB temperature fluctua-

tions, ni is a unit vector defining the direction of CMB

photons, and ΘTr is the trace of the Fourier transformed
stress-energy tensor.

We can now compute the angular power spectrum Cl
of the CMB anisotropy using the expression [53]:

CSl =
1

2π

∫ ∞
0

k2dk〈∫ τ0

0

dτ

(
1

3
ḣ1 + ḣ2

d2

d(k∆τ)2

)
jl(k∆τ)

〉2

,

(56)

CVl =
2

π

∫ ∞
0

k2dkl(l + 1)〈∫ τ0

0

dτḣV
d

d(k∆τ)
(jl(k∆τ)/(k∆τ))

〉2

,

(57)

CTl =
1

2π

∫ ∞
0

k2dk
(l + 2)!

(l − 2)!〈∫ τ0

0

dτ

(k∆τ)2
ḣT jl(k∆τ)

〉2

,

(58)

where ∆τ = τ0 − τ (with τ0 the value of conformal time

today), jl(k∆τ) are spherical Bessel functions, and ḣ1,

ḣ2 are defined as

ḣ1(τ) = −ρ
∫
dτ ′
(
τ ′

τ

)6

(ΘTr(τ ′) + 2ΘS(τ ′)), (59)

ḣ2(τ) = −ρ
∫
dτ ′
(
τ ′

τ

)4

ΘS(τ ′). (60)

We proceed by making a further approximation on the
correlators (47). The dominant contribution to the two-
point correlator is when τ1 → τ2 (see for example [55]),
which allows us to approximate (47) as

〈
ΘI(k, τ1)ΘJ(k, τ2)

〉
=
µ2

0F(τ1, τ2, ξ0)

k2(1− υ2)
×

BI−J(τ1)δ(τ1 − τ2),

(61)

where δ(τ1 − τ2) is Dirac delta function and BI−J(τ1) =
BI−J(τ1, τ1).

By using this form of the correlators (61) one can
rewrite equations (56), (57) and (58) as
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CSl = κ2

2π

∫∞
0
k2dk

∫ τ0

0
dτ1
∫ τ0

0
dτ2
∫ τ1

0
dτ ′1

f(τ ′1,ε)
k2(1−v2)

τ ′81
τ4
1 τ

4
2
Fsc(τ

′
1), (62)

CVl = 2κ2

π

∫∞
0
k2dkl(l + 1)

∫ τ0

0
dτ1
∫ τ0

0
dτ2

j′l(kτ1)
kτ1

j′l(kτ2)
kτ2

∫ τ1
0
dτ ′1

τ ′81 f(τ ′1,ξ0)
k2(1−v2) B

V−V (τ ′1), (63)

CTl = κ2

2π

∫∞
0
k2dk (l+2)!

(l−2)!

∫ τ0

0
dτ1
∫ τ0

0
dτ2

jl(kτ1)
(kτ1)2

jl(kτ2)
(kτ2)2

∫ τ1

0
dτ ′1k

6τ ′81 F (τ ′1, τ1)F (τ ′2, τ2)
f(τ ′1,ξ0)
k2(1−v2)B

T−T (τ ′1), (64)

where

Fsc = 1
9jl(kτ1)jl(kτ2)

τ ′41
τ2
1 τ

2
2

(
BTr−Tr(τ ′1) + 4BTr−S(τ ′1) + 4BS−S(τ ′1)

)
+

+ 1
3

(
j′′l (kτ1)jl(kτ2) τ

′ 2

τ2
2

+ j′′l (kτ2)jl(kτ1) τ
′ 2

τ2
1

) (
BTr−S(τ ′1) + 2BS−S(τ ′1)

)
+ j′′l (kτ1)j′′l (kτ2)BS−S(τ ′1), (65)

with trace components: BTr−Tr(τ ′1) =
[
1 + v2 − T̃ /Ũ(1− v2)

]2
B00−00(τ ′1), (66)

BTr−S(τ ′1) =
[
1 + v2 − T̃ /Ũ(1− v2)

]
B00−S(τ ′1). (67)

In the final form of equations (62) and (65) we have
expressed the contribution from the “00” component
in terms of the trace component “Tr” using the rela-
tions (66) and (67), which can be derived from (37)
and (38). It should be stressed that in obtaining equa-
tions (62), (63) and (64) we have only used the approx-
imation (61). We have thus succeeded to derive full
semi-analytic expressions for the scalar, vector and tensor
contributions to the angular powerspectrum from cosmic
strings with arbitrary currents, valid in matter domina-
tion and under the approximation (61).

In the superhorizon limit kτ < 1 considered above, the
two-point correlators have the simple form (48)-(51) and
we can factor out from the integrals (62)-(64) the key
quantities characterising the cosmic string network: υ,
ξ0, Û , T̂ and Q. This allows us to establish a direct con-
nection between cosmic string network parameters and
the string contribution to CMB anisotropies, valid on
superhorizon scales. For the vector (63) and tensor (64)
contributions it is easy to see that

CV,Tl ∼ (Gµ0)2×
Û2υ4 + T̂ Ûυ2(1− υ2) + T̂ 2(1− υ2)2 + 3υ2Q2

ξ0(1− v2)
,

(68)

which agrees with the result of [55] in the limit Q = 0,
U = αµ0 and T = µ0/α.

The treatment of the scalar mode (62) is more sub-
tle. We will estimate it to leading order, using the fol-
lowing asymptotic form of the spherical Bessel function
jl(x) ∼ xl, valid when 0 < x <<

√
l + 1. This approx-

imation is justified when we consider the scalar contri-
bution at large multipole moments l. Since the angular
power spectrum Cl for cosmic string networks typically
peaks at l > 500 we can take the leading term of (65) as
j′′l (kτ1)j′′l (kτ2)BS−S(τ ′1). It follows that, in this approx-
imation, the scalar contribution will be the same as the
above approximate expressions for the vector and tensor

components

CS1<<l ∼ (Gµ0)2×
Û2υ4 + T̂ Ûυ2(1− υ2) + T̂ 2(1− υ2)2 + 3υ2Q2

ξ0(1− v2)
.

(69)

Let us briefly summarize the results presented in this
section. For the action (3) describing a string with ar-
bitrary current we first derived the stress-energy ten-
sor (4) and obtained the (microscopic) equations of mo-
tion (8)-(10), the mass per unit length (18) and string
tension (19). From these, we then developed a macro-
scopic VOS evolution model (31)-(32) for a string net-
work with arbitrary currents and used it to estimate an-
alytically the CMB contribution (68)-(69) from such a
string network in the matter domination era. All these
results are determined by Û , T̂ and Q. In particular,
changing the form of the function f(κ,∆/γ) in the string

action (3) leads to a redefinition of Û , T̂ and Q rather
than a change in the string equations of motion (8)-(9).

In the next two sections we will consider two specific
physically motivated cases: wiggly and superconducting
(chiral) cosmic string networks.

III. WIGGLY MODEL

In this section we consider the case of wiggly cosmic
strings. This model was developed as an effective descrip-
tion of small-scale structure on cosmic strings [40–42].
By applying a suitable phenomenological Lagrangian,
the evolution of wiggly string networks was studied
in [24, 57]. However, a great deal about the dynamics
and scaling behaviour of the network can be understood
by focusing on the equation of state for wiggly strings,
without specifying the precise form of the Lagrangian.

The equation of state for wiggly strings is

UT =µ2
0,

U = µ0µ, T = µ0/µ,
(70)
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or equivalently

Û T̂ =1 ,

Û = µ, T̂ =1/µ, Q = 0 ,
(71)

where µ is a dimensionless parameter quantifying the
amount of wiggles on the string, and µ = 1 corresponds
to the usual Nambu-Goto string (the same parameter was
denoted as α in [43]).

Applying the equation of state (70) to the averaged
equations of motion (31) and (32) we obtain

2dLcdτ = ȧ
aLc

[
1 + υ2 − 1−υ2

µ2

]
, (72)

dυ
dτ =

(
1− υ2

) [ k(υ)
Lcµ5/2 − ȧ

aυ
(

1 + 1
µ2

)]
. (73)

Note that the comoving correlation length is connected to
comoving characteristic length by the following relation
ξc =

√
µLc.

We can now include an energy loss term F (υ, µ) on
the right-hand side of equation (72) and assume scaling
behaviour of the network Lc = ετ (while ξc = ξ0τ). Note
that in this case the previously obtained constraint (33)
has the form

v2 <
2/n− 1 + 1/µ2

1 + 1/µ2
, (74)

where, in the scaling regime, µ is a constant.
The expression (74) means that the rms string velocity

has an upper limit, determined by the expansion rate n
and amount of wiggles µ on the string; this is illustrated
in figure 1.

Figure 1. The constraint (74) on the square of the rms veloc-
ity, v2, depending on the expansion rate n and the amount of
wiggles µ.

It is important to note that this restriction was ob-
tained just by using the equation of state for wiggly cos-
mic strings (70) in our general equation (31). This means

that any Lagrangian suitable for wiggly string description
(i.e. any choice of f(κ,∆/γ) satisfying (70) for the equa-
tion of state) cannot change this relation. Moreover, it is
valid for any energy loss function F (v, µ). Thus, any wig-
gly cosmic string network with any energy loss function
of the form F (v, µ) must satisfy the constraint (74).

To get a feeling for the size of the maximum network
velocity in (74) we consider two limiting cases: strings
without wiggles (µ = 1) and highly wiggly strings (µ →
∞):

v2 < 1/n (µ = 1), (75)

v2 < 2/n− 1 (µ→∞). (76)

As seen from Eq. (75), for strings without wiggles only
very fast expansion rates n can cause a significant re-
striction to the string network velocity, while for highly
wiggled strings the limit (76) provides a severe constraint
even when n = 2 (matter domination era). For wiggly
strings with µ = 1.5 in the matter domination era (n = 2)
the velocity is limited as v2 < 0.3, which is close to the
values of rms velocities from field theory simulations [19]
in the matter domination era.

Let us now study the full description of the wiggly
cosmic string network model [24, 57] described by the
action

S = µ0

∫
ω
√
−γd2σ, (77)

where ω =
√

1− κ.
The derivation of the averaged equations of motion for

this model can be found in [24, 57]. We will use the final
system of equations in the following form (where we have
omitted the term responsible for scale dependence)

2dLcdτ = ȧ
aLc

[
1 + υ2 − 1−υ2

µ2

]
+ cfaυ√

µ , (78)

dυ
dτ =

(
1− υ2

) [
k

Lcµ5/2 − ȧ
aυ
(

1 + 1
µ2

)]
, (79)

1
µ
dµ
dτ = υ

L
√
µ

[
k
(

1− 1
µ2

)
− c(fa − fo − S)

]
−

− ȧ
a

(
1− 1

µ2

)
, (80)

where the three functions fa(µ), f0(µ) and S(µ) quantify
energy loss/transfer:

2
(
dξ
dt

)
only big loops

= cf0(µ)υ, (81)

2
(
dL
dt

)
all loops

= cfa(µ)υLξ , (82)

2
(
dξ
dt

)
energy transfer

= cS(µ)υ . (83)

Here, c is a constant “loop chopping” parameter (see be-
low), t =

∫
adτ , and ξ = ξca, L = Lca are the physical

(rather than comoving) lengthscales corresponding to ξc
and Lc.

The term f0(µ) accounts for the energy loss due to the
formation of big loops. Here, “big” means that they are
formed by intersections of strings separated by distances
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of order the correlation length ξ or by self-intersections at
the scale of the radius of curvature R ≈ ξ. The function
fa(µ) describes the energy loss caused by all types of
loops, and the difference fa(µ) − f0(µ) corresponds to
the energy loss by small loops only, which is driven by
the presence of wiggles.

In order to reproduce correctly the original model with-
out wiggles, we can use the energy loss/transfer functions
as discussed in [57]

f0(µ) = 1, (84)

fa(µ) = 1 + η
(

1− 1√
µ

)
, (85)

S(µ) = D(1− 1
µ2 ), (86)

where D and η are constants.

Thus, the evolution of a wiggly string network is
described by the system of ordinary differential equa-
tions (78)-(80), which, in view of equations (84)-(86) in-
cludes three free constant parameters c, D and η [57]:

• c is the “loop chopping efficiency” parameter quan-
tifying how much energy the network looses due to the
production of ordinary loops;

• η is a parameter describing the energy loss enhance-
ment due to the creation of small loops caused by the
presence of wiggles;

• D is a parameter quantifying the amount of energy
transferred from large to small scales.

By making various different choices of parameters
c, η and D we can explore the effects of the energy
loss/transfer mechanisms described above on the evolu-
tion of the string network. Note that c has been mea-
sured in Abelian-Higgs and Goto-Nambu simulations to
be c = 0.23±0.04 [58, 59], but there are no such measure-
ments for the other two parameters. Let us study how
these phenomenological quantities can change the pre-
diction for the CMB anisotropy caused by wiggly cosmic
string networks.

In order to investigate in detail the effects of string
wiggles on the predicted CMB anisotropies from cos-
mic string networks, we implement the wiggly VOS
model (78)-(80) into the CMBact code [43]. The original
code was developed so as to take into account the pres-
ence of string wiggles in the computation of the string-
induced CMB anisotropy. However, in the original CM-
Bact package, wiggles were modelled by a single (con-
stant) phenomenological parameter α = µ modifying the
effective mass per unit length and string tension at the
level of the stress-energy tensor (87). In other words,
within the approximations of the original CMBact code,
the amount of wiggles was not a dynamical parameter
and did not influence the equations of motion, while from
the wiggly VOS model we have just discussed it is clear
that these effects must, in general, be present. Here, we
implement the full description of wiggly strings in CM-
Bact. Using the equation of state for wiggly strings (70)

we first rewrite the stress-energy tensor (4) as

Tµν(y) =
µ0√
−g

∫
d2σ(

εµẋµẋν − x′µx′ν

εµ

)
δ(4)(y − x(σ)) ,

(87)

where µ is the amount of wiggles, which is now dynami-
cal, satisfying equation (80). The size of string segments
is set to be equal2 to the correlation length ξ0τ . We
also change the VOS equations of motion in CMBact
to the full system (78)-(80) and implement the stress-
energy components (42)-(44). With these modifications,
we achieve a full treatment of wiggly cosmic string net-
works in CMBact.

In figure 2 we show our results for network evolution
and in figure 3 the corresponding CMB anisotropies com-
puted in our modified version of CMBact. In both figures
we also show the corresponding results of the original
CMBact code [43] for comparison. Regarding figure 2,
we note thet the accuracy of CMBact is comparatively
worse at low redshifts; this explains why the effects of
the matter to acceleration transition seemingly become
visible around reshifts of a few, while the onset of accel-
eration occurs below z = 1. This point is not crucial for
our analysis, since our goal is to make a comparaive study
of the effects of the additional degrees of freedom on the
strings. Moreover, these low redshifts have a relatively
small effect on the overall CMB signal. Nevertheless, this
is an issue which should be adressed if this code is to be
used for quantitative comparisons with current or forth-
coming CMB data.

We have chosen to vary parameter D, keeping η fixed,
which allows us to cover a wide range of µ values. Fix-
ing D and increasing η is equivalent to decreasing the
amount of wiggles and an effective change of c, which is
already covered from our variation of D with fixed η. It
is also important to note that in order to have an attrac-
tor scaling solution when a ∝ τn the following condition
must be satisfied

η >
D
(
1− 1/µ2

)
1− 1/

√
µ

. (88)

Physically, this means that in order to achieve a scal-
ing solution, small scale structure should be able to lose
energy (controlled by parameter η) faster than it receives
the energy from large scales (controlled by parameter
D). When the condition (88) is violated, energy accumu-
lates at small scales and there is no stable scaling regime

2 For an even more realistic model we could consider the strings
segments to have a range of sizes and speeds picked from appro-
priate distributions as in [34], but here we want to focus on the
effects of string wiggles only and compare to the results of the
original CMBact code, which also takes all segments to have the
same size and speed.
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Figure 2. Evolution of the rms velocity υ, comoving characteristic length Lc and amount of wiggles µ as a function of redshift
z for wiggly cosmic string networks with different values of the parameter D, obtained by a modified version of the CMBact
code [43]. The horizontal dashed red and blue lines correspond to the usual (without wiggles; µ = 1) scaling regimes for
radiation (red shaded area) and matter domination (blue shaded area) epochs respectively. Note that the horizontal (redshift)
axis is depicted in a linear scale in the redshift range 0 < z < 1 and in a logarithmic scale for z > 1.

for these wiggly cosmic strings. In practice, the condi-
tion (88) is used as a guide for estimating the range of
variation of D.

Figure 3 shows how the full treatment of wiggly cos-
mic string networks affects the prediction for the string-
induced CMB anisotropy. Note that the CMB contribu-
tion is generally smaller than for ordinary cosmic strings
(i.e. without wiggles, µ = 1). This is mainly due to
a reduction in the rms string velocity υ (see figure 2)
when the amount of wiggles µ increases. In view of the
observed changes to the usual CMB predictions for cos-
mic strings, we argue that to achieve accurate results
for wiggly cosmic strings, one should study them in the
framework of the complete wiggly model (78)-(80) and
the modified version of CMBact developed here. This
generally leads to a weakening of the CMB-derived con-
straint on the string tension µ0 (but note that there is

also a region in parameter space – for large D – where
the correlation length can actually become smaller than
for ordinary strings, see figure 2).

Note that both the evolution and CMB results from
our wiggly VOS model are somewhat closer in compari-
son to results from Abelian-Higgs simulations (and sim-
ilarly ordinary VOS results are closer to Nambu-Goto
simulations). It is then tempting to speculate that wig-
gles play a dynamical role analogous to that of the aver-
aged field fluctuations that appear in Abelian-Higgs field
theory simulations (as opposed to effective Nambu-Goto
simulations). This hypothesis may be investigated by
direct comparisons of Abelian-Higgs and Goto-Nambu
simulations with suitably high resolutions and dynamic
ranges.

To end this section, let us return to the wiggly
model but this time without referring to the specific La-
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η=3, c=0.23, 10*D=
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Figure 3. CMB anisotropy for wiggly cosmic string networks obtained by a modified version of the CMBact code [43]. The
panels show scalar, vector and tensor contributions (top to bottom) of the BB, TT , TE and EE modes (left to right). (Note
there is no BB contribution from scalar modes.) These have been computed for different values of D with fixed η. The CMBact
result from [43] with α = 2 is shown by the black dashed line for comparison.

grangian (77). We wish to study the scaling regime for
wiggly strings but leaving the amount of wiggles µ as a
free parameter that we can tune. Instead of varying pa-
rameter D, as it was done above, we can vary µ. This
approach does not require an assumption on the energy
transfer function (86); we only need to define how energy
loss depends on the amount of wiggles (85). Let us now
estimate how the rms velocity υ and comoving charac-
teristic length Lc are related to the parameters c, η and
µ in the scaling regime. We insert the scaling solution
Lc = ετ , υ =const to equations (72), (73) to obtain the
algebraic equations

ε
(

2− n
[
1 + υ2 − 1−υ2

µ2

])
= cfa(µ)υ√

µ , (89)

k(υ)
εµ5/2 = nυ

(
1 + 1

µ2

)
, (90)

where we have included energy loss function fa(µ) given
by (85).

Despite the reduction of the equations of motion to
algebraic equations (89) and (90) in the scaling regime,
it is still not possible to solve them analytically, mainly
due to the complicated form of the momentum parame-
ter (30). To study how the amount of wiggles affects the
macroscopic parameters υ (rms string velocities) and ε
(comoving correlation length in units of conformal time)

in the scaling regime we solve the system (89)-(90) nu-
merically for different expansion rates n. The results are
shown in figure 4. It is seen that the rms velocity υ, as
anticipated from the restriction (74), decreases with the
growth of the amount of wiggles µ. This is also in agree-
ment with our results for the rms velocity evolution (see
figure 2) in the dynamical wiggly model for a realistic ex-
pansion history. The situation for ε is more interesting.
The correlation length does not increase monotonically
with the amount of wiggles but has a maximum around
µ = 1.5− 1.9. This is also in agreement to our full treat-
ment in figure 2 where we modelled string wiggles by
varying parameter D and took a realistic expansion his-
tory.

Since we have computed the velocity υ and correlation
length ξ0τ =

√
µετ in the scaling regime, we can use

equations (68) and (69) to estimate how the contribution
to the CMB anisotropy from cosmic strings depends on
the amount of string wiggles. For wiggly cosmic strings
the angular power spectrum Cl has the following depen-
dence (which coincides with the result in [55])

Cl ∼ (Gµ0)2µ
4υ4 + µ2υ2(1− υ2) + (1− υ2)2

µ2ξ0(1− v2)
, (91)

where scalar, vector and tensor components depend on
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Figure 4. Dependence of the scaling values of the rms velocity, v, and the comoving correlation length divided by conformal
time, ε, on the amount of wiggles µ for different expansion rates n.

Figure 5. Comparison between the behaviour of the string-
induced angular power spectrum Cl for different amount of
wiggles in our analytic approximation (solid lines) and the
numerical computation using our modified CMBact code (cir-
cles). The dependence on µ has been estimated analytically
using equations (69), (68) together with the equations for the
scaling regime of the network (89)-(90). Using the value of
µ in the matter domination era and Cl’s for scalar (green),
vector (blue) and tensor (red) components at l = 700 (where
the sum peaks), we have obtained the Cl−µ dependence from
the CMBact code.

string parameters in the same way.
We can now compare the dependence in equation (91)

with our numerical results using our modified CMBact
code. By choosing the µ value for the matter domination
era and looking at the peak (l ≈ 700) of the sum of the
scalar, vector and tensor contributions we plot them in
comparison to the analytic estimate from (68) and (69).
This comparison is shown in figure III. For our approx-
imate estimate it is seen that after a fast decrease of

Cl’s with growing amount of wiggles µ, the value of Cl
reaches a plateau. A similar behaviour is seen for vec-
tor, tensor and scalar components obtained from the full
treatment using our modified CMBact code, even though
the agreement is somewhat weaker for the scalar contri-
bution. These results reaffirm the approximations used
to estimate the analytic dependence of Cl on the string
network characteristics.

IV. SUPERCONDUCTING MODEL
(CHIRAL CASE)

Another special case of current-carrying cosmic strings
of notable physical interest is the case of superconducting
cosmic strings. This type of strings has been studied
thoroughly in the framework of field-theory [35, 48–51,
60, 61]. In all these cases the stress-energy tensor on the
string worldsheet has the following form:

T ab =

(
A+B −C
C A−B

)
. (92)

where A arises from the field responsible for the string
core formation, while B and C represent additional con-
tributions due to coupling with external fields (dynamics
of currents). The stress-energy tensor (92) is written for

the worldsheet metric ηab =

(
1 0
0 −1

)
on a 4-dimensional

Minskowski spacetime background with ε = 1.
Consider now the two-dimensional stress-energy tensor

for the action (3), which reads

T ab =

(
µ0Ũ −µ0

Φ
ε

µ0εΦ µ0T̃

)
. (93)

There is an obvious correspondence between the stress-
energy tensors (92) and (93); they are in agreement if we
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demand the chiral condition [25, 26]

κ→ 0 , (94)

which also means

∆→ 0 ; (95)

here κ and ∆ are defined by Eq. (2). These imply that

Ũ = 1 + Φ, T̃ = 1 − Φ. In Minkowski space (ε = 1)
we see that A = µ0, B = µ0Φ and C = µ0Φ, so we
have the condition B = C. In order to avoid this sit-
uation and be able to reproduce a stress-energy tensor
of the form (92) within the Nambu-Goto approximation,
we need to use at least two scalar fields. It has already
been demonstrated that adding any number of additional
fields (11) together with the definitions (12)-(14) keeps
the evolution equations (8)-(9) unchanged, replacing the
scalar field equation (10) by the set of equations (15).
In effect, introducing additional fields makes C and B
different in Minkowski space.

Indeed, when we add extra scalar fields we obtain a
stress-energy tensor in the form of (92) with the corre-

spondence3 A = µ0, B = 2µ0γ
00
(
∂f
∂κ −

∂f
∂∆

)∑
i ϕ̇i

2 =

µ0Ψ and C = µ0Φ, where Φ is given by equation (14)
and we have assumed a Minkowski background. These
correspond to

Û = 1 + 〈Ψ〉 , T̂ = 1− 〈Ψ〉 , Q = 〈Φ〉 . (96)

Thus, this multiple worldsheet field approach pro-
vides enough flexibility to reproduce the field-theoretical
stress-energy tensor variables in (92) within the Nambu-
Goto approximation.

Let us now consider the equations of motion for chi-
ral currents. We will apply our averaging procedure to
the system of equations (15) for the currents, similarly to
what we already did for first two equations (31) and (32)
for the correlation length and string velocity. First of all,
we note that in order to have the appropriate Nambu-
Goto limit for the action (3) when ϕ = 0 we need to have

f(κ,∆) −−−→
κ→0

1 and additionally ∂f(κ,∆)
∂κ −−−→

κ→0
const (as

well as ∂f(κ,∆)
∂∆ −−−→

∆→0
const). These conditions allow us

to make simplifications, similar to what was done in refer-
ence [26], and consider the case of conserved microscopic
charges for each field

εϕ̇i = φi = const , (97)

ϕ′i = ψi = const , (98)

which leads to the additional condition ε′ = 0. Further-
more, in this case we can define Ψ and Φ as

Ψ =

(
∂f

∂κ
+
∂f

∂∆

)∑
i

φ2
i

a2x′2
, (99)

3 Here we used an assumption that all multipliers ∂f
∂∆i

are equal

as well as all ∂f
∂κi

are equal (94).

Φ =

(
∂f

∂κ
+
∂f

∂∆

)∑
i

φiψi
a2x′2

, (100)

and (94) gives us ∑
i

φ2
i =

∑
i

ψ2
i . (101)

Expressions (99) and (100) tell us that if we use the
condition of conserved microscopic charges (97)-(98) we
have two variables Ψ and Φ which evolve in the same way
and differ only by a multiplicative constant β:

Ψβ = Φ, (102)

where β =
∑
i φiψi∑
i φ

2
i

. Together with (101), this implies

that 0 < β < 1.

By direct differentiation of equation (99) we obtain the
following evolution equations for the field Ψ (clearly, the
same equations are also obeyed by Φ)

Ψ̇ + 2 ȧaΨ = 2Ψ ẋ·x′′
x′ 2 , (103)

Ψ′ + 2Ψx′·x′′
x′ 2 = 0. (104)

Following the approach of [26], we average the equa-
tions of motion (103), (104) and substitute the equation
of state (96) into equations (31) and (32). This leads to
the VOS model for superconducting chiral strings, tak-
ing into account energy and charge losses (for details on
these loss terms see [26])

dLc
dτ = ȧ

aLc
υ2+Q
1+Q + υ

(
Qsβ

(1+Q)3/2
+ c

2

)
, (105)

dυ
dτ = 1−υ2

1+Q

[
k(υ)

Lc
√

1+Q

(
1−Q(1 + 2sβ

k(υ) )
)
− 2 ȧaυ

]
,(106)

dQ
dτ = 2Q

(
k(υ)υ

Lc
√

1+Q
− ȧ

a

)
+

cυ(1−
√

1+Q)
Lc

√
1 +Q .(107)

We have used the assumption
〈

Ψ′

ε(1+Ψ)

〉
= −s υ

Rc

2Q
1+Q [26]

and that the correlation and characteristic lengths are
related by ξc = Lc

√
1 +Q.

Therefore, our general analysis of chiral current depen-
dence in the action (3) including the addition of extra
worldsheet fields has not introduced significant changes
in the macroscopic equations describing superconducting
chiral cosmic string networks, as compared to the results
in [26] (the only difference is that the constant s has
now been changed to βs). Note also that the final result
does not depend explicitly on the precise form of the La-
grangian; the important physics can be encoded in the
equations of state of the strings, in agreement with our
previous discussion.

The evolution of string networks described by equa-
tions (105)-(107) was carefully studied in [26]. It was
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shown that these networks have generalized scaling solu-
tions4 only if the following relation is satisfied

n =
2k(υ)− cW̃
c+ k(υ)

, (108)

where W̃ =
√

1+Qs−1

1+Q−1
s

, with Qs a constant corresponding

to the scaling value of the function Q. As we can see from
equation (108), the expansion rate n for scaling solutions
(with constant charge) cannot be larger than n ≤ 2. The
maximal value of n is reached when c = 0, while for c =
0.23 (which we use here) we have the condition n <∼ 1.6
for scaling behaviour. For expansion rates n larger that
the right hand side of (108) the charge Q on the string
decays.

It is worth noting that at the same time the asymptotic
value of the charge Qs is limited from equation (106) to
satisfy the following (see figure 6)

Qs <
k(υ)

2sβ + k(υ)
. (109)

Figure 6. Constraints on the possible values of the charge Qs
depending on the rms velocity υ and parameter s.

For all other expansion rates that do not satisfy con-
ditions (108) and (109), there is no scaling regime with
nonzero Q. However, in all cases (even in the absence of
scaling solutions) we can still evolve the network with our

4 In this context, by “generalized scaling solutions” we mean that
all three quantities Lc/τ , v and Q approach constant non-zero
values (and so the strings have non-zero charge). For larger ex-
pansion rates there are also solutions with a decaying charge Q
for which Lc/τ and v are (non-zero) constants but Q approaches
zero in a power-law fashion [26]. These correspond to the stan-
dard linear scaling solutions of (uncharged) Nambu-Goto strings
and we do not discuss them here in detail.

modified VOS model and use equations (42)-(44) with the
stress-energy tensor

Tµν(y) = µ0√
−g
∫ √
−γ
(

(1 + Ψ)uµuν − (1−Ψ)vµvν −

− αΨ(uµvν + vµuν)

)
δ(4)(y − x(σ))d2σ (110)

to modify the CMBact code for a superconducting chi-
ral cosmic string network. In the absence of scaling the
charge Q for the cosmic string network evolution is con-
trolled mainly by the initial condition Q0. Note that,
unlike the wiggly case, there are currently no numeri-
cal simulations which can provide us with benchmarks
for the value of this charge. Thus, by varying Q0 we
obtain different evolutions for cosmic superconducting
string networks (see figure 7) and their corresponding
contributions to the CMB anisotropy (see figure 8).

Let us consider the network at specific values n sat-
isfying equations (108), (109). For that we will use the
typical scaling ansatz Lc = ετ with constant ε, υ and Q
in equations (105)-(106)

ε = nε v
2+Q
1+Q + v

(
Qsα

(1+Q)3/2
+ c

2

)
, (111)

k(v)

ε
√

1+Q

(
1−Q(1 + 2sα

k(v) )
)

= 2nυ. (112)

Equations (111) and (112) describe the network evo-
lution in the scaling regime (they will be valid only in a
range of n satisfying (108)). Using these equations and
the analytic form of the angular power spectrum’s depen-
dence on string network parameters (69), we can make
an estimation of Cl for the network of superconducting
chiral strings

Cl ∼ (Gµ0)2 υ
4(1 + 3β2Q2)

ε(1− v2)
+

v2(3Q2(1− β2) + 4βQ− 1) + (1− βQ)2

ε(1− v2)
,

(113)

where scalar, vector and tensor components depend on
string parameters in the same way.

We can then solve the algebraic equations (111), (112)
numerically for different values of Q (some solutions are
shown in figure 9) and insert them in (113) to get an
estimate of how the angular powerspectrum Cl depends
on the value of the charge Q (figure 10).

In both our numerical calculations using the modified
CMBact code (figures 7, 8) and in our analytic estimates
(figures 9, 10) we observe that the string rms velocity
tends to decrease as we increase the charge Q. The co-
moving correlation length in units of the conformal time ε
increases for small values of the charge, but then reaches
a maximum and eventually decreases for higher values of
the charge Q. Concerning the angular power spectra Cl,
it should be noted that it is difficult to make extensive
comparisons in the case of superconducting strings, as
there is no scaling behaviour in the full range of expan-
sion rates n and we do not know whichQ values we should
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Figure 7. Evolution of the rms velocity υ, comoving characteristic length Lc and charge Q depending on redshift z for
superconducting (chiral) cosmic string networks with different initial conditions Q0 for the string charge, obtained by a modified
version of the CMBact code [43]. The horizontal dashed red and blue lines correspond to the usual (without charge, Q = 0)
scaling regimes for radiation (red shaded area) and matter domination (blue shaded area) eras respectively. Note that the
horizontal (redshift) axis is depicted in a linear scale in the redshift range 0 < z < 1 and in a logarithmic scale for z > 1.

choose from our numerical results in figure 8. However,
it is clear that the analytic approach and numerical com-
putation are in qualitative agreement. In particular the
angular power spectrum Cl decreases as we increase the
charge Q on the string.

V. CONCLUSIONS

There are many well-motivated scenarios in Early Uni-
verse Physics that can leave behind relic defects in the
form of cosmic strings. These relics can be utilised as
“fossils” for cosmological research, helping us to obtain a
better understanding of the physical processes that took
place in the early universe. By developing an accurate de-
scription of the evolution of cosmic string networks and
using it to calculate quantitative predictions of string-

induced observational signals, we can obtain strong con-
straints on theoretical models leading to a better under-
standing of Early Universe Physics. Here, we presented a
detailed study of the evolution of cosmic strings with cur-
rents and demonstrated how the presence of worldsheet
currents affects the predictions for the CMB anisotropy
produced by cosmic string networks.

In section II we considered the action (3) describing
strings with an arbitrary dependence on worldsheet cur-
rents. We have described how to average the microscopic
equations of motion for this model to obtain macroscopic
evolution equations (without energy loss) for the string
network (72)-(73). These describe the time evolution
of the rms string velocity υ and characteristic length
L, and depend only on three parameters Û , T̂ and Q
defining the string equation of state. These same pa-
rameters, together with the network quantities L and
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Figure 8. CMB anisotropy results for superconducting (chiral) cosmic sting networks obtained by our modified version of
CMBact [43]. The panels show the scalar, vector and tensor contributions (top to bottom) to the BB, TT , TE and EE
powerspectra (left to right). The calculations are done for different initial conditions of the charge Q0.

Figure 9. Scaling values of rms velocity, v, and comoving correlation length divided by conformal time, ε, depending on the
charge Q, for different expansion rates n.

υ, appear directly in the string stress-energy tensor (4)
which seeds the string-induced CMB anisotropy. This
provides a direct connection between modelling string
evolution and computing CMB anisotropies from cosmic
string networks, which has allowed us to obtain simple
analytic estimates for the dependence of the string an-

gular power spectrum Cl on macroscopic network pa-
rameters (68)-(69). For a more complete semi-analytic
treatment of the CMB anisotropy for strings with cur-
rents, we have adapted the methodology of [34] and have
provided coefficients for the relevant integrals in the Ap-
pendix. In sections III, IV we considered two specific
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Figure 10. Behaviour of Cl for different string charge Q, ob-
tained from the analytical approximation.

cases of strings with currents: wiggly and superconduct-
ing cosmic strings respectively. In each case we computed
the CMB signal numerically using appropriately modified
versions of CMBact.

For wiggly string networks (section III) we studied the
specific case when the parameter κ in (2) only carries
a time dependence, κ = κ(τ). We studied network dy-
namics using an effective action for wiggly cosmic strings,
and introduced the averaged macroscopic equations CM-
Bact, allowing us to compute CMB anisotropies from
these strings. CMBact has already built in the option
to study wiggly strings, but this was done through a sin-
gle constant parameter. Here, for the first time, we were
able to take into account the time evolution of wiggles
and their influence on the macroscopic equations of mo-
tion for the string network. This full treatment brought
important changes in modelling wiggly cosmic string net-
works. From figure (3) we see that wiggly strings can
produce a lower signal in CMB anisotropy than ordinary
strings (when the other parameters are fixed), which had
not been appreciated before our work. We have also com-
pared our analytic estimation (91) to our numerical re-
sults from the CMBact code. The comparison shows that
the main trend for Cl (decreasing of Cl as µ increases,
for multiple moments 1 << l) is captured correctly. We
argue that for reliable constraints on wiggly string net-
works through the CMB signal, the evolution of string
currents and its effect on string dynamics – as captured
by our wiggly model – should be taken into account.

We point out that comparing results from our analytic
wiggly string network evolution and the standard VOS
model for ordinary cosmic strings, has a broad resem-
blance to the differences that appears between Abelian-
Higgs and Nambu-Goto numerical simulations for strings.
In particular, increasing the amount of wiggles µ leads
to slower rms velocities and a lower contribution to the
string-induced CMB anisotropy decreases. This is simi-
lar to the difference between Abelian-Higgs and Nambu-

Goto string networks, where the Abelian-Higgs strings
tend to be slower and produce a lower CMB signal. This
is at present a speculative observation requiring further
investigation to see if a more firm analogy may be estab-
lished.

The other type of strings that were scrutinized in this
work are superconducting cosmic strings. It was shown
that if we use the microscopic charge conservation (97)
and the chiral condition (κ,∆→ 0, which appears in field
theory studies of cosmic strings), we can obtain the aver-
aged equations of motion (105)-(107) without specifying
the precise dependence on string currents f(κi,∆i/γ) in
the action (3). This implies that the debate on the correct
form of the Lagrangian for superconducting strings [45]
– while important from a fundamental physics point of
view – does not have a crucial impact on phenomeno-
logical descriptions based on averaging the microscopic
dynamics. By comparison to the work of [26], we no-
tice that the introduction of additional currents for su-
perconducting strings only led to the change s → βs in
the macroscopic VOS model. Introducing the appopri-
ate modifications to CMBact, we have found that the
string-induced CMB anisotropies tend to decrease with
increasing the charge Q of superconducting stings. Since
the charge Q does not have a scaling behaviour in the
full range of physically relevant expansion rates (108),
but generally decreases with evolution, the main effect
on the CMB anisotropy comes from the initial charge
Q0 at the moment of string formation. We varied the
initial charge to obtain a range of network dynamics his-
tories and computed the corresponding CMB signal pre-
dictions. Numerical simulations are needed to further
quantify the relevant model parameters.

The approach developed here can be useful in Markov
chain Monte Carlo analysis of cosmological models with
cosmic strings [34]. It allows to obtain more accurate
constraints on wiggly and superconducting string net-
work parameters directly from CMB observations.

Finally, it is worth noting that the effects of the pres-
ence of currents on strings, described by our macroscopic
VOS model, will also have a non-trivial impact on an-
other observational windows for cosmic string networks,
such as the stochastic gravitational wave background
generated by string networks [62–71]. Our results on
string evolution and the methodology developed here for
computing the two-point (unequal time) correlator will
be useful for further studies in this direction too.
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APPENDIX

As shown in [55] the integral (45) can be expanded in
the following way

〈
ΘI(k, τ1)ΘJ(k, τ2)

〉
=
f(τ1, τ2, ξ0)µ2

0

k2(1− υ2)
×

6∑
i=1

AIJi [Ii(x−, ρ)− Ii(x+, ρ)] ,

(114)

where I, J correspond to the “00”, scalar, vector and
tensor components of the stress-energy tensor and the
form of the six integrals Ii are as given in [55].

The coefficients AIJi , together with the full expressions
for the analytic equal time correlators BIJ , are listed
below (where, in this Appendix, we use the definitions
ρ = k|τ1 − τ2|υ, x1,2 = kξ0τ1,2, x± = (x1 ± x2)/2):

A00−00
1 = 2Û2,

A00−00
i = 0,

(i = 2, .., 6)

A00−S
1 = Û(T̂ + (2Û − T̂ )v2),

A00−S
2 = −3Û

(
T̂ (1− v2) + Ûv2

)
A00−S

3 = 0

A00−S
4 = −3Û2v2

A00−S
5 = 3Û2v2

A00−S
6 = 0

AS−S1 =
−27Û2v4 + ρ2(T̂ + (2Û − T̂ )v2)2

2ρ2

AS−S2 =
3
(

9Û2v4 + ρ2
(
T̂ 2(1− v2)2 − Û2v4

))
2ρ2

AS−S3 = −9

2

((
Ûv2 + T̂ (1− v2)

)2

− 4v2Q2

)

AS−S4 =
3Ûv2

(
9Ûv2 − ρ2(T̂ (1− v2) + 2Ûv2)

)
ρ2

AS−S5 = −
3Ûv2

(
9Ûv2 − ρ2(T̂ (1− v2) + 2Ûv2)

)
ρ2

AS−S6 = 9v2
(
Û2v2 + T̂ Û(1− v2)− 2Q2)

)
AV−V1 =

3Û2v4 + ρ2v2Q2

ρ2

AV−V2 = −3Û2v4

ρ2

AV−V3 =
(
Ûv2 + T̂ (1− v2)

)2

− 4v2Q2

AV−V4 = −
(
6/ρ2 − 1

)
Û2v4 − v2Q2

AV−V5 =
(
6/ρ2 − 1

)
Û2v4 + v2Q2

AV−V6 = −2v2
(
Û2v2 + T̂ Û(1− v2)− 2Q2

)
AT−T1 =

ρ2T̂ 2
(
1− v2

)2 − 3Û2v4

4ρ2

AT−T2 =
3Û2v4 − ρ2

(
T̂ 2
(
1− v2

)2 − Û2v4
)

4ρ2

AT−T3 = −1

4

(
Ûv2 + T̂ (1− v2)

)2

+ v2Q2

AT−T4 =
v2
(

3Û2v2 + ρ2
(
T̂ Û(1− v2) + 2Q2

))
2ρ2

AT−T5 = −
v2
(

3Û2v2 + ρ2
(
T̂ Û(1− v2) + 2Q2

))
2ρ2

AT−T6 =
v2

2

(
Û2v2 + T̂ Û(1− v2)− 2Q2

)

B00−00(τ) = 2Û2(cos(x)− 1 + xSi(x)),

B00−S = 1
2x

(
Û(2T̂ + v2(Û − 2T̂ ))(x cos(x) + 3 sin(x) + x(xSi(x)− 4))

)
,

BS−S = 1
16x3

([
8T̂ Ûv2(1− v2)(x2 − 18) + 8T̂ 2(1− v2)2(x2 − 18) + Û2v4(11x2 − 54) + 288v2Q2

]
x cos(x) +

+ x3

[
32
(

3v2Q2 − Û2v4 − T̂ Ûv2(1− v2)− T̂ 2(1− v2)2)
)

+
(

11Û2v4 + 8T̂ Ûv2(1− v2) + 8T̂ 2(1− v2)2
)
xSi(x)

]
−

http://polozov.cf/
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− 3 sin(x)

[
8T̂ Ûv2(1− v2)(x2 − 6) + 8T̂ 2(1− v2)2(x2 − 6)− Û2v4(18 + z2) + 96v2Q2

]
,

BV−V = 1
24x3

(
3x cos(x)

[
16T̂ (1− v2)(T̂ − (T̂ − Û)v2) + Û2v4(6 + z2) + 4v2(x2 − 8)Q2

]
+

x3
[
16T̂ (1− v2)(T̂ − (T̂ − Û)v2)− 32v2Q2 + 3v2x(Û2v2 + 4Q2)Si(x)

]
−

3 sin(x)
[
16T̂ (1− v2)(T̂ − (T̂ − Û)v2) + Û2v4(6− x2) + 4v2(x2 − 8)Q2

])
,

BT−T = 1
96x3

(
3x cos(x)

[
(3Û2v4 + 8T̂ Ûv2(1− v2) + 8T̂ 2(1− v2)2)(x2 − 2) + 16v2(2 + x2)Q2

]
+

+ x3
[
64T̂ (1− v2)(v2(T̂ − Û)− T̂ )− 64v2Q2 + 3x(3Û2v4 + 8T̂ Ûv2(1− v2) + 8T̂ 2(1− v2)2 + 16v2Q2)Si(x)

]
+

+ 3 sin(x)
[
Û2v4(6− 5x2) + 8T̂ Ûv2(1− v2)(2 + x2) + 8T̂ 2(1− v2)2(2 + x2) + 16v2(x2 − 2)Q2

])
.
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