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Lorentz-violating gravity theories with a preferred foliation can have instantaneous propagation.
Nonetheless, it has been shown that black holes can still exist in such theories and the relevant notion
of an event horizon has been dubbed “universal horizon”. In stationary spacetimes the universal
horizon has to reside in a region of spacetime where the Killing vector associated with stationarity
is spacelike. This raises the question of what happens to the universal horizon in the extremal
limit, where no such region exists anymore. We use a decoupling limit approximation to study this
problem. Our results suggest that at the extremal limit, the extremal Killing horizon appears to
play the role of a degenerate universal horizon, despite being a null and not a spacelike surface, and
hence not a leaf of the preferred foliation.

I. INTRODUCTION

From a perspective of causality, there seem to be at
least two distinct ways one can violate boost invariance
— an essential part of Lorentz symmetry. The first way
is to introduce a preferred frame and have different types
of excitations propagate at different speeds in that pre-
ferred frame, perhaps some of them superluminal and
some of them subluminal. The second way is to intro-
duce a preferred foliation. This allows for the follow-
ing: (i) a more general modification of the dispersion
relation that can include higher-order terms of the type
ω2 ∝ k2 + αk4/M2

? + . . ., where ω is the frequency, k is
the wave number, M? is a characteristic mass scale as-
sociated with Lorentz symmetry breaking, and α is a di-
mensionless parameter; (ii) degrees of freedom that carry
no time derivatives at all [1–3]. Either way, one can have
infinitely fast propagation (either for very large momenta
or for all momenta respectively).

Superluminal propagation at finite or infinite speed re-
quires one to rethink the concept of a black hole. The
existence of black holes in the Universe might appear to
be the ultimate vindication of the causal structure of gen-
eral relativity and of Lorentz symmetry. However, before
making such a statement, one actually needs to under-
stand whether and how the concept of black holes fits
into Lorentz-violating gravity theories. In fact, this is in
its own right a very strong motive for studying Lorentz-
violating theories in the first place.

In a Lorentz-violating theory in which excitations
propagate with different but finite speeds in a preferred
frame, it is rather straightforward to suitably generalise
the definition of a black hole. Such excitations can be
thought of as propagating along null cones of different ef-
fective metrics [4]. A stationary black hole spacetime will
possess a succession of horizons, one for each excitation
that travels at a unique speed. All of these horizons will
be null surfaces of the corresponding metric. They will
all cloak the singularity and the innermost one, the one
corresponding to the fastest mode, will act as the bound-
ary of the region that is causally disconnected from the
exterior [4, 5]. This scenario is well studied in the context

of Einstein-aether theory (æ-theory), which is the most
general theory of a unit timelike vector (aether) coupled
to Einstein gravity, containing only two derivatives of the
unit vector uµ [6, 7]. Because of the unit constraint

gµνu
µuν = 1, (1)

the aether field uµ never vanishes but instead always de-
fines a preferred frame. The theory propagates spin-2,
spin-1 and spin-0 modes that propagate along null tra-

jectories of the effective metrics g
(i)
µν ≡ gµν−(s2

(i)−1)uµuν ,

where s(i) is the speed of the corresponding spin-i mode.
The issue of the existence and definition of black holes

is more subtle in the case of a theory with a preferred
foliation, since infinitely fast propagation seems particu-
larly hard to reconcile with our conventional understand-
ing of horizons. Additionally, notions like null trajecto-
ries, null surfaces, and null infinity become irrelevant for
causality, which is now defined by the leaves of the folia-
tion that correspond to constant preferred time surfaces
(see Ref. [8] for a more detailed discussion). Remark-
ably, a suitable notion of black hole does exist in such
theories and it is related with the behaviour of the foli-
ation instead of the metric. In a generic asymptotically
flat spacetime, the leaves of the foliation extend to space-
like infinity. If a leaf fails to satisfy this requirement it
actually bounds a region that cannot communicate with
infinity, since any signal can only penetrate a leaf in a
single direction while traveling into the future. Hence,
such a leaf defines a black hole (see Ref. [8] for a rigorous
definition) and it is dubbed universal horizon [2, 5].

The concept of a universal horizon was first uncovered
in the context of static, spherically symmetric solutions
in Einstein-aether theory and the infrared limit of Hořava
gravity [2, 5]. Hořava gravity [9–11] is actually a quantum
gravity candidate. Its infrared limit, on which we will fo-
cus here, bears similarities with Einstein-aether theory,
as will be discussed in more detail below. A key differ-
ence though is that unlike Einstein-aether theory, Hořava
gravity has a preferred foliation. That is, the equations
are second order in time derivatives only in a specific fo-
liation, which is thus causally preferred [1, 8, 12]. More-
over, the theory exhibits instantaneous propagation even
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in the infrared limit [2, 3]. Hence, Hořava gravity is the
ideal test bed for a quantitative study of the concept of
a universal horizon.

A foliation by spacelike hypersurfaces corresponds to
the level surfaces of a scalar field whose gradient is ev-
erywhere timelike. Let us call this field T . The unit
one-form

uµ =
∂µT√

gµν∂µT∂νT
. (2)

allows one to describe the foliation in a coordinate-
invariant fashion and without the need to label the sur-
faces, as uµ is invariant under reparametrizations of the
type T → f(T ). The reason that we chose uµ for both the
normalised gradient of T here and the aether in Einstein-
aether theory will become clear shortly. In stationary
spacetimes it has been shown that one can characterise
the universal horizon by the local condition uµχ

µ = 0
provided that aµχ

µ 6= 0, where χ is the Killing vector
associated with stationarity and aµ ≡ uν∇νuµ is the ac-
celeration of uµ [8]. The condition uµχ

µ = 0 bears a
strong similarity with the local characterisation of event
horizons as Killing horizons in general relativity and the
condition χ2 = 0. The aµχ

µ 6= 0 requirement came up
as a technical restriction in the proof given in Ref. [8],
but it appears to have a physical interpretation as a non-
degeneracy condition for the universal horizon. In par-
ticular, it can be shown that aµχ

µ is constant along the
universal horizon [8] and it has been argued to play the
role of surface gravity [13, 14].

Since uµ is timelike per definition, the condition
uµχ

µ = 0 can only be satisfied in a region of spacetime
where χµ is spacelike. Indeed, in all of the known station-
ary solutions the universal horizon lies in such a region
[2, 5, 15–21]. This raises the question of what happens
to the universal horizon in the limit where a rotating
or a charged black hole becomes extremal. In GR, in
the extremal limit the Killing vector is everywhere time-
like except on the (degenerate) Killing horizon, where
it is null. Hence, it appears that no such solution can
have a universal horizon. If instead one considers a non-
extremal solution with a universal horizon, then the lat-
ter is expected to lie between two Killing horizons [8]. As
one moves closer to extremality, the two Killing horizons
should get closer to each other and to the universal hori-
zon and there is no reason to expect that any singularity
will appear even for an arbitrarily small deviation from
extremality.

Motivated by the above, we study here the behaviour of
the foliation in extremal and nearly extremal black holes
in the infrared limit of Hořava gravity. To be able to re-
strict ourselves to spherical symmetry that simplifies the
analysis, we consider charged instead of rotating black
holes. As we will discuss below, the assumption of spher-
ical symmetry has the added advantage that our analy-
sis will apply to Einstein-aether theory as well [12, 16].
An additional restriction we impose is that we use the
decoupling limit: i.e. we consider only the behaviour

of the foliation in a fixed black hole background that
solves Einstein’s equations and ignore the backreaction
of the foliation-defining field on the geometry. Though
this might seem drastic, we believe that it provides tech-
nical simplification without compromising the qualitative
understanding of the problem at hand.

II. EINSTEIN-AETHER THEORY AND
INFRARED LIMIT OF HOŘAVA GRAVITY

Below we will use the infrared limit of Hořava grav-
ity. For the purposes of our analysis it is instructive to
introduce the corresponding action and field equations
through their relation to æ-theory. The action of æ-
theory reads

S =
1

16πGæ

∫
d4x
√
−g(−R−Mαβ

µν∇αuµ∇βuν), (3)

where R is the Ricci scalar and

Mαβ
µν = c1g

αβgµν+c2δ
α
µδ
β
ν+c3δ

β
µδ
α
ν+c4u

αuβgµν , (4)

with ci being dimensionless coupling constants whereas
Gæ is related to Newton constant GN as measured in a
Cavendish experiment by GN = Gæ/(1 − c14/2) and we
are following the convention cij = ci + cj . The aether
satisfies the unit timelike constraint (1) that can be im-
posed explicitly in (3) as a Lagrange multiplier term
ζ(gµνu

µuν − 1).
The equations of motion for the metric and aether

fields can be obtained by varying the action with respect
to gµν and uµ and using the unit constraint to eliminate
the Lagrange multiplier. This process yields

Gµν − Tæ
µν = 0, (5)

Æµ = 0, (6)

where Gµν ≡ Rµν − 1
2Rgµν is the Einstein tensor,

Tæ
αβ =∇µ

(
J µ

(αuβ) − Jµ(αuβ) − J(αβ)u
µ
)

+ c1 [(∇µuα) (∇µuβ)− (∇αuµ) (∇βuµ)]

+
[
uν (∇µJµν)− c4u̇2

]
uαuβ + c4u̇αu̇β −

1

2
Lægαβ ,

(7)
is the aether stress energy tensor,

Jαµ = Mαβ
µν∇βuν , u̇ν = uµ∇µuν ,

and

Æµ = ∇αJαµ − c4u̇α∇µuα. (8)

As discussed in the Introduction, the unit constraint (1)
implies that the aether cannot vanish in any spacetime,
including the Minkowski spacetime. Instead, the aether
defines a preferred threading by timelike trajectories and
hence it introduces a preferred frame.
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One could further restrict the aether to be hypersurface
orthogonal [12]. Taking into account the unit constraint
as well, hypersurface orthogonality can be imposed by the
local condition (2). The fact that uµ is timelike implies
that T will always have a timelike gradient throughout
spacetime. That is, T defines a foliation by spacelike
hypersurfaces and uµ is the normal to the leaves of this
foliation.

For the rest of this paper we will focus on the theory
described by action (3) together with the condition (2).
This condition is imposed before the variation and T is
now the fundamental field. One can show (see Ref. [17]
for a detailed discussion) that the equation of motion for
T is

∇µ
(

Æµ

√
∇νT∇νT

)
= 0, (9)

The field equation that one obtains when varying with
respect to the metric is given by Eq. (5) with uµ satisfying
Eq. (2). If one decides to use T as a time coordinate
and write the theory in the foliation defined by T , then
the action coincides with the action of Hořava gravity,
truncated to two derivatives in that foliation [12]. Hence,
we refer to the theory as the infrared limit of Horava
gravity and the action (3) supplemented by the condition
(2) is its manifestly covariant formulation.

In its full glory, Hořava gravity includes terms that
contain higher order spatial derivatives. These terms
lead to higher-order dispersion relations and infinitely
fast propagation, as discussed in the Introduction. At
the same time they improve the UV behaviour of the
theory [9]. In principle one needs to include in the action
all such terms that have up to six spatial derivatives and
are compatible with the symmetries of the theory, i.e.
diffeomorphisms that respect the foliation, t → t̃(t) and
xi → x̃i(xi, t). There is a large number of such terms
that makes the theory less tractable and raises concerns
about predictability. As a result, various restricted ver-
sions that consistently reduce the number of UV terms
have appeared [22–26] but this reduction usually comes
at the cost of infrared viability [27–34].

Here we will not be concerned with the UV comple-
tion of Hořava gravity. Hence, we will ignore the higher
order terms and focus on the infrared limit as defined
above. Already in that limit, the theory has the charac-
teristics that we want: a preferred foliation and instanta-
neous propagation. This last statement might not seem
obvious, because the infrared limit does away with the
higher order terms in the dispersion relations and renders
them linear. Some intuition can be gained by inspecting
Eq. (9). This equation is fourth order in derivatives of T ,
as Æµ contain two derivatives of uµ, uµ contains a fur-
ther derivative of T and there is a extra explicit deriva-
tive. However, if one chooses T as a time coordinate
then the only nonvanishing component of uµ is uT = N ,
where N is the lapse of the foliation defined by T = const
surfaces. Moreover, Æνuν = 0 identically: i.e., Æν is or-
thogonal to uν and it lies entirely on T = const surfaces.

Hence, the derivative that appears explicitly in Eq. (9)
becomes a spatial divergence on a leaf. These suggest
that the theory is second order in time derivatives only
in the preferred foliation and that there is some elliptic
equation that needs to be solved on each slice. Indeed,
more detailed analysis has shown that both statements
are true [1–3].

III. SETUP IN THE DECOUPLING LIMIT

A. The Reissner-Nordström metric

In general relativity, the Reissner-Nordström (RN)
metric describes a spherically symmetric object with elec-
tromagnetic charge. The parameters needed to describe
this solution are its mass M and electric charge Q. The
metric reads:

ds2 = f(r)dt2 − dr2

f(r)
− r2dθ2 − r2 sin2θ dφ2, (10)

where f(r) = 1 − rs
r +

r2q
r2 , rs = 2GNM and r2

q =

Q2GN/(4πε0). The RN metric admits a Killing vector
that is timelike at infinity and it is given in our coordi-
nate as χµ = (1, 0, 0, 0). The condition for the Killing
vector being null determines the position of the Killing
horizons that are located at

r± =
rs ±

√
r2
s − 4r2

q

2
. (11)

The cosmic censorship conjecture [35] states that in or-
der to avoid naked singularities rq ≤ rs/2. Thus, the
extremality condition occurs as rq = rs/2 for which the
two radii of Eq. (11) coincide at r = rex = rs/2. We in-
troduce the parameter ε, useful to express the deviation
from extremality

rq =
rs
2

√
1− ε2.

B. Determining the foliation at decoupling

As stated in the Introduction, instead of considering
the full field equations (5) and (9), we will work in the
decoupling limit. That is, we will neglect entirely the
backreaction that T has on the metric and we will solve
Eq. (9) on the RN black hole background that was re-
viewed above. It is worth mentioning that Eqs. (9) and
(6) share all static, spherically symmetric solutions with
flat asymptotics [16]. Hence, our solutions will also de-
termine fully the configuration of the aether in æ-theory
in the decoupling limit.

Assuming that uµ respects the Killing symmetries of
the metric, the most generic form for the scalar field T is

T (t, r) = t+ C(r) (12)



4

with C(r) a generic function of r. The four-velocity vec-
tor will be

uµ = N(r)∂µT, (13)

and then, imposing condition (1) yields

∂C(r)

∂r
=

√
N2(r)− f(r)

f(r)N(r)
. (14)

Recall that aµ ≡ u̇µ. With this ansatz one has

aµ = −
(√

N2(r)− f(r)
∂N(r)

∂r
,
N(r)

f(r)

∂N(r)

∂r
, 0, 0

)
.

(15)
As already discussed above, for static, spherically sym-
metric solutions with flat asymptotics, Eqs. (9) and (6)
yield the same solutions [16] and in our setup they can
be reduced to the following equation

N ′′ =
Ns2

(
1− ε2 −N ′2 − 2 f̃(ξ)−N2

ξ2 − (f̃ ′(ξ)−2NN ′)2

4(f̃(ξ)−N2)

)
f̃(ξ) + (s2 − 1)N2

,

(16)
where a prime denotes differentiation with respect to ξ =
rs/2r. f̃(ξ) = f( rs2ξ ) = (1 − ε2)ξ2 − 2ξ + 1 is the tt

component of the metric and

s2 =
c123

c14
. (17)

IV. FOLIATING EXTREMAL AND NEARLY
EXTREMAL BLACK HOLES

A. Extremal case (ε = 0)

As we have already discussed in the Introduction, it
appears to be impossible to satisfy the condition u ·χ = 0
in an extremal RN spacetime. The Killing vector χµ is
everywhere timelike or null, but never becomes spacelike.
uν is always timelike and the inner product of a timelike
vector with a null or timelike vector χµ is never zero.

Recall that u · χ = 0 serves as a local characterisation
of a universal horizon rUH, provided that a ·χ 6= 0, where
aµ is the acceleration of uµ. The condition a · χ 6= 0 has
been suggested as a non-degeneracy condition, similar to
requiring non-vanishing surface gravity for Killing hori-
zons. Extremal horizons might well be degenerate (as in
GR) and hence the arguments above regarding u · χ are
not enough to conclude that there will not be a universal
horizon in the extremal limit. In fact, there is no known
local characterisation of an extremal universal horizon, so
it is not possible to check without having the full solution
and the global causal structure.

There is actually a rather trivial solution to Eqs. (6)
and (9) when ε = 0, T (t, r) = t. It is very tempt-
ing to dismiss this solution, due to the behaviour of
the T (t, r) = t foliation on the Killing horizon. At

r = rex = rs/2 a t = const surface is null, so it can-
not be a leaf of a regular foliation by spacelike hypersur-
faces. Said otherwise, the normal vector to these surfaces
is parallel to the Killing vector χ, and (if normalized) it
satisfies aether’s equation of motion (6), but at the same
time it needs to be null at r = rex = rs/2. This implies
that the foliation is not well defined there and cannot be
smoothly continued past that surface.

Consider, however, t = const surfaces in the exterior
of the extremal RN spacetime, which corresponds to the
analytic solution of Eq. (16),

N0(ξ) = 1− ξ. (18)

The foliation leaves are everywhere spacelike and they
have the right asymptotic behaviour N0(0) = 1. Indeed,
for r → ∞, the aether uµ aligns with the killing vec-
tor χµ and this corresponds to the condition N(0) = 1.
Moreover, N0 becomes zero at ξ = 1 (corresponding to
r = rex). This last features implies that all leaves asymp-
tote and pile up on the r = rex = rs/2, which is exactly
the behaviour they are expected to have as they approach
a universal horizon. Hence, this seemingly unphysical,
trivial solution is actually compatible with the naive ex-
pectation that the universal horizon and the Killing hori-
zon coincide in the extremal limit. In the next section,
we will demonstrate numerically that the exterior of the
universal horizon in nearly extremal RN black holes does
indeed approach this analytic solution as ε→ 0.

B. Nearly extremal case

We now move on to nonextremal black holes. The
plan is to generate the foliation numerically by integrat-
ing Eq. (16). First it is important to understand how
many independent parameters our solutions will have.
Clearly, given that Eq. (16) is a second-order ODE, gener-
ically there will be a 2-parameter family of solutions for
a black hole of given mass and electric charge. However,
these solutions are expected to be singular whenever the
denominator of the right-hand side of Eq. (16) vanishes.
The locations of these singularities are determined by the
roots of the following equation

(1− ε2)ξ2 − 2ξ + 1 + (s2 − 1)N(ξ)2 = 0, (19)

which we collectively denote as ξc.
As discussed earlier, the spin-0 mode propagates along

null geodesics of the effective metric, g
(0)
µν ≡ gµν − (s2

0 −
1)uµuν . This can be explicitly seen by performing per-
turbative analysis around an arbitrary background for
Eq. (5) and either Eq. (6) or Eq. (9). The square of the
speed of the spin-0 mode that is present in both æ-theory
and Hořava gravity is

s2
0 =

c123(2− c14)

c14(1− c13)(2 + c13 + 3c2)
. (20)



5

At the decoupling approximation that we are using here,
backreaction is neglected and one solves Eq. (6) or Eq. (9)
in a fixed background. One can now determine the effec-
tive metric just by linearising Eq. (6) or Eq. (9). This

yields g
(0)
µν ≡ gµν−(s2−1)uµuν , where s is as in Eq. (17).

That is, s is the speed of the spin-0 mode at decou-
pling. Indeed, in the limit where all ci → 0, one has
that Tæ

µν → 0 and s0 → s, as expected.

Killing horizons of g
(0)
µν are referred to as spin-0 hori-

zons and act as causal boundaries for the spin-0 mode.
Interestingly, their locations are also determined by roots
of Eq. (19), ξc, in our setup. In fact the denominator of
the right-hand side of Eq. (16) is the norm of the Killing
vector that generates the spin-0 horizon. This behaviour
is expected, as it has been seen on all previous works
(e.g. [2, 4, 5]).

This suggests that the most general solution will be
singular on one or more spin-0 horizons.∗ There is always
a 1-parameter subfamily of solutions that is regular on
at least one spin-0 horizon of choice. To see this, recall
that a solution to Eq. (16) can be generated starting from
any given radius and selecting two pieces of “initial data”,
the values of N and N ′ there (that correspond to the two
parameters of the general family). One can then choose
to start from a spin-0 horizon located at ξc and denote
Nc ≡ N(ξc). Assuming that Nc 6= 0 and imposing that
N ′(ξc) ≡ N ′c satisfies the bond

N ′c =
1− ξc(1− ε2)− s

√
ε2 +

2N4
c s

2(s2−1)
ξ2c

Nc(s2 − 1)
, (21)

makes the numerator of the right-hand side of Eq. (16)
vanish and one can integrate outwards and inwards and
generate a solution that is regular on the spin-0 horizon
and its vicinity. Given that the bond above relates the
two pieces of initial data, there will be a 1-parameter
family of such solutions.

For what comes next, we will apply this prescription
to the outermost spin-0 horizon. The solutions of the 1-
parameter family one obtains when integrating outwards
toward infinity (ξ → 0) do not generically satisfy the
asymptotic condition N(0) = 1. Imposing this condition
requires tuning the remaining piece of initial data.

In practice, we impose the asymptotic condition via
shooting. We impose that N − 1 vanishes to a desired
tolerance at a large but finite radius rmax ≡ rs/(2ξmin).
We set the tolerance to be O(ξmin), as the general ex-
pectation is that N will have a 1/r decay asymptotically

∗ Note that here we are interested in solutions with a universal
horizon. The latter will always be cloaked by a spin-0 horizon
[8]. In static, spherically symmetric solutions this follows easily
from the fact that u · χ = 0, which has to hold on the universal
horizon, requires χµ to be spacelike with respect to the spin-
0 metric (or any spin-i metric as defined above). Since χµ is
timelike at infinity, there needs to be a spin-0 horizon outside
the universal horizon.

(ξmin is chosen in the range [10−4, 10−6], depending on the
solution). Imposing the regularity condition (21) is not
trivial when integrating numerically, because one needs
to start the integration from a point where both the nu-
merator and the denominator of the right- hand side of
Eq. (16) vanishes. To avoid this problem, we expand
N(ξ) in a Taylor series in δ = ξ − ξc (δ can be positive
or negative depending on the direction we are solving
the equation) and we integrate analytically from ξc to
ξc + δ, up to fifth order, with δ = 10−5. We then start
the numerical integration from this point. The error of
the perturbative solution at ξc+δ is then O(δ5) ∼ 10−25,
comparable to the machine accuracy, i.e. 24 significant
digits for our real numbers.

In general, it is conceivable that a boundary value
problem gives rise to multiple solutions with the same
boundary conditions. According to Eq. (19), Nc can

only take values in the interval [0, ε/
√

(s2 − 1)(1− ε2)]
for s ≥ 1. We have explored this interval numerically
(∼ 100 points) and we did not find another solution that
satisfies the asymptotic condition N(0) = 1. Though
this is not a rigorous proof that our solution is unique,
considering numerical limitations the outcome is rather
reassuring.

Starting with the same values of N and N ′ that gave a
solution with the right asymptotic behaviour and regular
on the outermost spin-0 horizon, one can then integrate
inwards and generate the interior down to a desired ra-
dius. This process is quite straightforward up to (and
including) the universal horizon, which is the location
where N vanishes. In the next section we present and
discuss these solutions, i.e. the exterior of the universal
horizon. If one attempts to continue this integration well
past the universal horizon, a complication arises: even-
tually one will encounter a second spin-0 horizon.† The
solution does not need to be smooth there and no fur-
ther regularity condition can be imposed. So, they are
essentially two options: (a) the solution is “accidentally”
smooth; (b) one will encounter a singularity. In Sec.
IV B 2 we will present strong evidence that supports the
latter case, but we will also argue that this does not af-
fect the solution for the exterior of the universal horizon,
even when ε→ 0.

1. Exterior of the universal horizon

There is degeneracy between changing the mass of the
RN black hole and rescaling the radial coordinate in our
equations. This implies that one can find a solution for a
fixed mass and then obtain all other solutions by rescal-

† In most cases that can be referred to as the inner spin-0 horizon,
but in some cases there might be more than two spin-0 horizons
in total.
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ing r. We have generated exterior solutions‡ for different
values of s but there is little qualitative difference be-
tween them. Hence, we will present here only solutions
for s = 1.5 and for different values of ε.

The T = const surfaces (surfaces orthogonal to aether)
correspond to leaves of the preferred foliation. T is
defined from Eq. (12) as T = t + C(r). In out-
going Eddington-Finkelstein coordinates (v, r∗), where
v = t + r∗ and r∗ is the tortoise coordinate defined by
dr∗ = dr/f(r), one has

T (v, r) = v +

∫ r (∂C
∂r′
− 1

f(r′)

)
dr′. (22)

In Fig. 1 we show sets of foliation leaves for different
values of ε in a (r, v) plane. The leaves have a different
behaviour depending on the value of ε. As expected, as
extremality is approached, the Killing horizon (red verti-
cal dashed line) moves closer and closer to the universal
horizon (green vertical solid line). In all non-extremal
cases the leaves of the foliation asymptote to the univer-
sal horizon in the same fashion qualitatively. However,
as one moves closer to extremality the foliation becomes
denser, i.e. one would need to cross more leaves to move
radially from a fixed r to another, smaller fixed r.

Another illuminating way to compare the foliations is
to define a new spatial coordinate such that the locations
of the Killing horizon of the metric and universal horizon
rUH do not change for different values of ε. Indeed, one
can define such a coordinate as

w =
r − rUH

r − r+
, (23)

where w(rUH) = 0 and w(r+) = 1.
In Fig. 2 we show one leaf from three different fo-

liations (ε = 0.1, 0.02, 0.001) in a (w, v) plane. The
leaves cross at a point (w0, v0) but we remark that, due
to the ε-dependent definition of w, (w0, v0) does not cor-
respond to a single point in (r, v) coordinates. One can
reproduce the entire foliation simply by shifting up and
down the leaves we are showing in this plot. The range
of the plot has been chosen rather freely, approximately
twice the distance between the Killing horizon and the
universal horizon. This plot clearly exhibits the different
ways leaves approach the universal horizon as one moves
closer to extremality.

The bottom panel of Fig. 1, corresponding to the ex-
tremal case and the analytic solution (18) , shows remark-
able similarity with the panel right above it that corre-
sponds to ε = 0.001. A remarkable difference is that the
analytic solution breaks down on the extremal horizon
and, hence, there is no foliation leaf that coincides with
(or crosses) this location. In what follows we attempt to

‡ From here onwards we will be referring to solutions that de-
scribe the exterior of the universal horizon simply as “exterior
solutions”.

FIG. 1: Leaves of preferred foliation for different values of ε, and
s = 1.5. The green vertical solid line shows the universal horizon
and the red vertical dashed line shows the outer Killing horizon.
The bottom panel shows T = t =const in extremal RN, i.e. the

analytic solution in Eq. (18).
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FIG. 2: One leaf of preferred foliation for different values of ε,
and s = 1.5 in a (w, v) plane, with w defined in Eq. (23). The w
coordinate is chosen such that the positions of rUH and r+ are

ε-invariant.

quantify the agreement between the numerical solutions
and the analytic one as ε→ 0.

Fig. 3a shows the difference between the analytic, ex-
tremal solution N0(ξ) and the numerical solutions Nε(ξ).
ξs and ξex are the corresponding values to rs and rex, re-
spectively, i.e., ξs = 0.5 and ξex = 1. For all values of ε,
N0(ξ) serves as a good approximation at large radii, as
expected. There is deviation as one approaches the black
hole horizon, but it clearly decreases as ε decreases. In
Fig. 3b one can clearly read off the scaling of these de-
viations. Indeed, this plot suggests that the numerical
solutions differ from N0(ξ) by an ε2 correction.

To explicitly show this behaviour, we define the dis-
tance d(0) between the numerical solutions Nε(ξ) and
N0(ξ) (in the region [0, ξex]) as follows

d2
(0)(ε) =

∫ ξex

0

dξ

ξex

(
Nε(ξ)−N0(ξ)

)2

. (24)

We compute d(0) for different values of ε and plot them
in Fig. 4. In fact, upon further investigation one finds
that the leading order term to Nε(ξ)−N0(ξ) is expected

to be − ε
2

2 ξ
2(1 + ξ). To demonstrate this, we define and

compute the distance

d2
(2)(ε) =

∫ ξex

0

dξ

ξex

(
Nε(ξ)−N0(ξ) +

ε2

2
ξ2(1 + ξ)

)2

,

(25)
and investigate its behaviour for different values of ε. Fig.
4 shows d(2) as well, and it reveals that it scales as ε4.

This confirms that Nε(ξ) − N0(ξ) = −ε2ξ2(1 + ξ)/2 +
O(ε4).

In Fig. 5 we show some more features of the numerical
solutions found. The upper panel shows a · χ evaluated
on the universal horizon. As one approaches extremality
a · χ → 0, in agreement with what is expected from the
analytical solution N0, for which a · χ = 0 everywhere.
Our approximate fit Nε(ξ) ' 1− ξ− ε2ξ2(1 + ξ)/2 above
yields a · χ(ξUH) ' −2ε, compatible with Fig. 5. In

0.000

0.001

0.002

0.003

0.004

(a)

10-6

10-5

10-4

0.001

0.010

(b)

FIG. 3: The difference between the extremal, analytic solution in
Eq. (16) and numerical solutions Nε(ξ) for different values of ε

and s = 1.5. In panel (a) one can see that all solutions approach
N0 at infinity. They deviate from it at smaller radii but the

deviation decreases as one approaches extremality. Panel (b) is a
logarithmic plot of N0(ξ) −Nε(ξ) in a region close to the radius

of the extremal horizon, ξex. N0(ξ) −Nε(ξ) scales as ε2.

the lower panel we show the behaviour of the universal
horizon ξUH, the outer spin-0 horizon ξ+

c , and the outer
metric horizon ξ+. As expected the three horizons tend
to merge at ξex for small ε, but with different scalings.
With the approximate fit Nε(ξ) ' 1− ξ − ε2ξ2(1 + ξ)/2,
we get a quadratic scaling for the universal horizon ξUH '
1 − ε2 [by solving N(ξUH) = 0]. Analogously, the spin-0
horizon has a linear dependence on ε as ξ+

c ' 1−ε/s [Eq.
(19)]. Straightforwardly, for small ε one finds ξ+ ' 1−ε.

We close this section with a comment about backre-
action, which we have ignored above, as we have used
the decoupling limit. We can employ the approximation

N(ξ) ≈ 1 − ξ − ε2

2 ξ
2(1 + ξ) we derived earlier, which

should work well for small ε, in order to evaluate the
stress-energy tensor for uµ or T field (7). Up to second
order in ε

Tæµ
ν = Tæµ

(0) ν + ε2Tæµ
(2) ν (26)
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FIG. 4: The blue dots show d(0) for different values of ε and

s = 1.5. The blue dashed line shows ε2 behaviour. The yellow
dots show d(2) for different values of ε and s = 1.5. The yellow

dashed line shows ε4 behaviour.

where

Tæµ
(0) ν =

c14r
2
s

8r4
diag(1, 1,−1,−1) (27)

Tæµ
(2) ν = − r2

s

32r6
diag(8c14r

2 + 4c14rrs + 6c13r
2
s ,

−4c14rsr − 3c14r
2
s + 6c13r

2
s ,

4c14rsr + 3c14r
2
s − 12c13r

2
s ,

4c14rsr + 3c14r
2
s − 12c13r

2
s) (28)

The resulting stress-energy tensor is manifestly paramet-
rically small which justifies the earlier assumption of ig-
noring backreaction.

2. Interior of the universal horizon

We now want to describe the behavior of the aether
inside the universal horizon. As argued before, when
integrating from the outer spin-0 horizon inwards, upon
reaching another spin-0 horizon, one can encounter two
possibilities: (a) the solution is “accidentally” smooth;
(b) a singularity arises on the inner spin-0 horizon. It
is not trivial to check numerically which of the above
is true. If the solution were accidentally smooth, both
the numerator and the denominator in the right-hand
side of (16) would vanish at the spin-0 horizon. This
would introduce an uncontrollable error in the numerical
integration which would be hard to distinguish from an
actual singularity.

To overcome this difficulty, we proceed as follows. We
generate a new solution, starting from the second spin-0
horizon. We select a value for N and Eq. (19) is used to
determine the value of ξ there. Regularity uniquely de-
termines N ′ and then we integrate outwards, in precisely
the same fashion as we did for the outermost horizon.

0.00 0.02 0.04 0.06 0.08 0.10

●

●

●

●

●-0.20

-0.15

-0.10

-0.05

0.00

FIG. 5: The upper panel shows aµχµ evaluated at the universal
horizon for various values of ε (blue dots). In this range there is a

clear −2ε scaling (blue solid line). The lower panel shows the
location of the universal horizon ξUH, outer spin-0 horizon ξ+c and

outer Killing horizon ξ+ as a function of ε. Dots are numerical
solutions and solid lines are ξH = 1 − ε2, ξ+c = 1 − ε/s and
ξ+ = 1 − ε. In both plots the spin-0 sound speed is s = 1.5.

FIG. 6: Mismatch of N ′ evaluated at the matching point ξex. The
dashed line shows the ε3 behavior

This generates a 1-parameter family of solutions. This
parameter can be thought of as the value of N on the
second spin-0 horizon. By changing N , we then attempt
to match this solution to the solution we used for the
exterior at some radius. We chose to do the match at the
radius of the extreme horizon (or ξex), since this location
always lies between the two spin-0 horizons.

Since Eq. (16) is a second order differential equation,
N and N ′ have to match at the matching point to have
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a smooth solution. However, we have only one param-
eter to tune to achieve a matching, the value on N on
the second spin-0 horizon. If a solution exists that is acci-
dentally smooth on the second spin-0 horizon, then when
one matches N at the matching point, N ′ should show
no discontinuity as well. This is the hypothesis we have
checked and it turns out not to be valid. Fig. 6 shows the
difference between the derivatives of two solutions on the
matching point. It is important to mention that we have
attempted to change the accuracy of the matching in N
or the overall accuracy of our solutions and recalculated
the mismatch in N ′. ∆N ′ has shown no sensitivity to
such changes, so it seems sensible to conclude that there
is a genuine discontinuity.

The above implies that asymptotically flat solutions
with a regular outermost spin-0 horizon will exhibit a
singularity on the second spin-0 horizon. Note that the
decoupling limit that we are using here cannot be trusted
anymore near the singularity. Within our approach this
appears to be a singularity in the foliation only, because
backreaction is neglected. However, one expects that,
beyond decoupling, backreaction will render the spin-0
metric singular on the second spin-0 horizon.

Since the second spin-0 horizon is located inside both
the outermost spin-0 and the universal horizon, this sin-
gularity poses no threat to causality — it is not naked in
any sense. However, one can be rightfully worried about
the role of this singularity as ε→ 0, as the second spin-0
horizon approaches the universal horizon and the outer-
most spin-0 horizon. In fact, this is precisely the limit we
have studied in the previous section. Fig. 6 clearly shows
that ∆N ′ actually decreases as ε→ 0. For larger value of
ε, ∆N ′ is well above numerical accuracy, but it scales as
ε3. The distance between the two spin-0 horizon scales
as ε. Remarkably, for any given accuracy for numeri-
cal solutions, one can always find some sufficiently small
ε, such that ∆N ′ would appear to be continuous within
numerical tolerance. This strongly suggests that the sin-
gularity on the second spin-0 horizon does not affect the
numerical calculation that has been used to generate the
exterior solution as ε→ 0.

V. DISCUSSION

We have studied black holes in the extremal limit
in Einstein-aether theory and the low-energy limit of
Hořava gravity. We have used a decoupling limit approx-
imation which reduces the problem to determining the
preferred foliation of a Reissner-Nordström spacetime.
For a black hole of given mass and charge and for flat
asymptotics there exists a foliation that has a universal
horizon and is regular on it and everywhere in its exterior.
Our numerical results strongly suggest that this foliation
is unique. However, it also appears to be singular at a
specific location in the interior of the universal horizon.
This location corresponds to an inner spin-0 horizon: a
Killing horizon of the effective metric that defines the

propagation cones of spin-0 excitations. This singular-
ity, and the universal horizon, are always cloaked by an
outermost spin-0 horizon.

The decoupling approximation that we have used here
clearly breaks in the vicinity of the singular inner spin-
0 horizon. However, our results strongly indicate that
the decoupling approximation is valid for the exterior of
the universal horizon and that our exterior solution is
unaffected by the existence of this singularity, even at
the extremal limit.

As expected, as extremality is approached, the univer-
sal horizon, the Killing horizons of the metric, and the
outer and inner spin-0 horizons, all move toward the loca-
tion of the extremal Killing horizon. The exterior of the
universal horizon smoothly approaches an analytic solu-
tion in which preferred time slices are constant t slices,
where t is the standard time coordinate in the Reissner-
Nordström line element. Clearly, such a solution is not
well defined on the extremal Killing horizon and on the
extremal universal horizon, yet it offers a well defined
description of the exterior.

Our results provide important hints for the appropri-
ate definition of an extremal universal horizon. In every
nearly-extremal solution, u · χ vanishes at constant ra-
dius surface, whose radius is larger than the radius of
the Killing horizon in the extremal solution. This sur-
face can be identified as the universal horizon. It is a
spacelike surface and a leaf of the preferred foliation that
fails to reach spatial infinity, well in line with the defini-
tions and results of Ref. [8]. Moreover, a ·χ, which can be
thought of as analogous to surface gravity [8, 13, 14], does
not vanish on that surface for any non-extremal solution.

It is important to examine the behaviour of the folia-
tion in the extremal limit near the extremal Killing hori-
zon: as Q2/M2 → 1, a ·χ→ 0 everywhere in the exterior
and u · χ → 0 as r → rex. That is, all leaves that span
the exterior appear to asymptote and “pile up” on the
Killing horizon at the extremal limit. Remarkably, the
extremal Killing horizon appears to satisfy the require-
ments of the global definition of a universal horizon, as
given in Ref. [8]. The fact that a · χ→ 0 in the extremal
limit suggests that such a universal horizon is degenerate
in the appropriate sense, as expected. However, most of
the rest of the definitions and proofs of Ref. [8] are in-
applicable to the extremal solution. A key assumption
of Ref. [8] is that every point of the manifold belongs
to a leaf of the foliation and our analysis indicates that
points that lie on the extremal Killing horizon cannot
satisfy this property. Indeed, a Killing horizon cannot be
a leaf of the foliation, as it is a null surface. Moreover,
when a · χ = 0, the proof of Ref. [8] that a universal
horizon must be a leaf (Proposition 2 in Sec. 4) does not
apply.§

§ Note that Theorem 4 in the same section relies heavily of Propo-
sition 2.
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It would be interesting to study nearly extremal and
extremal black holes with universal horizons without us-
ing a decoupling approximation. It is also important to
consider spinning as opposed to electrically charged black
holes. It is also important to understand the role of ex-
tremal universal horizons in the context of universal hori-
zon thermodynamics (see e.g. [13–15, 36, 37].
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