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ABSTRACT

Mesenchymal stem cells (MSCs) are being exploited in regenerative medicine due to their tri-lineage

differentiation and immunomodulation activity. Currently, there are two major challenges when

directing the differentiation of MSCs for therapeutic applications. First, chemical and growth factor

strategies to direct osteogenesis in vivo lack specificity for targeted delivery with desired effects. Sec-

ond, MSC differentiation by gene therapy is difficult as transfection with existing approaches is clini-

cally impractical (viral transfection) or have low efficacy (lipid-mediated transfection). These

challenges can be avoided by directly delivering nonvirally derived recombinant protein transcription

factors with the glycosaminoglycan-binding enhanced transduction (GET) delivery system (P21 and 8R

peptides). We used the osteogenic master regulator, RUNX2 as a programming factor due to its stage-

specific role in osteochondral differentiation pathways. Herein, we engineered GET-fusion proteins

and compared sequential osteogenic changes in MSCs, induced by exposure to GET fusion proteins or

conventional stimulation methods (dexamethasone and Bone morphogenetic protein 2). By assessing

loss of stem cell-surface markers, upregulation of osteogenic genes and matrix mineralization, we

demonstrate that GET-RUNX2 efficiently transduces MSCs and triggers osteogenesis by enhancing tar-

get gene expression directly. The high transduction efficiency of GET system holds great promise for

stem cell therapies by allowing reproducible transcriptional control in stem cells, potentially bypass-

ing problems observed with high-concentration growth-factor or pleiotropic steroid therapies. STEM
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SIGNIFICANCE STATEMENT

Many regenerative medicine approaches employ the use of mesenchymal stem cells (MSCs) as
they can be obtained directly from the patient from a number of tissues, can be expanded in
culture, and have been shown to have positive clinical outcomes in a number of trials. These
cells are multipotent meaning they have the ability to become different tissue-type cells (fat,
bone, cartilage) with a predisposition to convert into specific tissue types (differentiate)
depending on the source tissue from which they were first isolated. Methods to control or
change this predisposition will be key to exploiting them to repair tissue in cell therapies. Here,
we describe a method to program the gene expression of MSCs to differentiate them efficiently
into bone cells. Importantly, this technique can overcome the predisposition to become alterna-
tives (such as cartilage) directly at the level of gene expression. Our technology is based upon
delivering a recombinant transcription factor protein (RUNX2) which does not genetically modify
cells unlike gene therapy. This can now be exploited for programming MSCs when developing
strategies for repairing bone trauma and disorders.

INTRODUCTION

New regenerative cellular therapies for bone dis-
eases and trauma often involve the use of
patient-derived or heterologous adult stem cells.
Mesenchymal stem cells (MSCs), which are rela-
tively easy to harvest for transplantation, expand
and differentiate into multilineages in vitro, and
are biocompatible with scaffolds [1]. Despite their
promise in clinical applications, there are various

challenges to consider before MSCs can be used

for therapies. Biochemical and molecular interac-

tions in specific MSC niches are highly complex

and difficult to reengineer using in vitro cell cul-

ture and in tissue regeneration strategies [2, 3].

Therefore, understanding and using the molecular

factors involved in MSC differentiation for thera-

peutic applications will be essential for enhancing

the success of adult stem cells in therapy.
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Currently, predominant strategies to achieve directed differen-
tiation employ the use of chemical induction or exogenous growth
factors or hormones, all of which may elicit nonspecific, pleio-
tropic effects on untargeted cells [4]. Ideally, to regenerate bone,
osteogenic signaling pathways would be specifically activated
using programming factors that perform distinctive roles and that
do not affect other related pathways. Therefore, engineering of a
targeted regulatory molecule, with higher degree of control over
differentiation and an effective, nontoxic delivery system for clini-
cally relevant cell types such as stem cells would significantly
improve bone regenerative medicine. One such group of specific
regulatory molecules are transcription factors (TFs), which are
excellent modifiers of cell fate, play very distinct, stage-specific
roles in differentiation pathway but are very difficult to deliver
intracellularly in a biologically active form.

Efficient delivery of these proteins can be achieved by using
glycosaminoglycan-binding enhanced transduction (GET) peptides,
which are multidomain peptides comprising a GAG-binding pep-
tide (to promote cell interaction) and a cell-penetrating peptide
(CPP) for high efficiency membrane transduction [5].We have pre-
viously demonstrated that GET can be used to effectively deliver
recombinant skeletal muscle TF, MYOD in HEK293T cells to induce
zonal myogenesis in a three-dimensional gradients [6]. Here, we
wanted to efficiently program human MSCs (hMSCs) using the
GETsystem. Among the various osteogenic TFs, RUNX2 (also called
Core-binding factor alpha, CBFa1) is the most essential for osteo-
blast commitment, differentiation, matrix production, and miner-
alization during bone formation [7]. RUNX2 regulates downstream
genes that determine the osteoblast phenotype and controls the
expression of osteogenic marker genes such as ALP (Alkaline phos-

phatase), OPN (Osteopontin), OSX (Osterix), COL1A1 (type-I colla-

gen), BSP (Bone sialoprotein), and OCN (Osteocalcin) [2, 3, 8, 9]
in response to physiological signals [10]. RUNX2 binds to
osteoblast-specific cis-acting elements (OSE2), which are present
in the promoter regions of several osteoblast-specific genes.
Therefore, an appropriate dosage of active RUNX2 is crucial for
normal bone development. Interestingly however, in differenti-
ated osteoblasts, RUNX2 needs to be suppressed in order to form
mature bone [9, 11]. Therefore, RUNX2 activity is explicitly
required to trigger the initial osteogenic gene regulatory network
and direct the bone developmental program.

Reprogramming or programming factors can be delivered as
DNA, RNA, or proteins to manipulate MSC differentiation. How-
ever, hMSCs are difficult to transfect; both viral- and lipid-
mediated transfection systems have been proven inapplicable for
therapies due to virus-based safety risks and low efficiency in
vivo, respectively. Since we have developed the GET delivery
method for TFs to efficiently transduce cells, we hypothesized
that its use for osteogenic TF delivery could considerably impact
hMSC differentiation and drive osteogenic programming.We have
used this system to study the effects of osteogenic TF, RUNX2 on
osteogenic and chondrogenic differentiation of hMSCs under neu-
tral and pro-osteo or -chondral culture conditions. Our study dem-
onstrates that GET-RUNX2 could be used to directly trigger the
osteogenic gene regulatory network without other osteogenic
stimuli and prevent chondrogenesis. As a result, an efficient and
specific method of osteogenic induction was developed, removing
the need to use pleiotropic compounds (such as dexamethasone),
or growth-factors (such as BMP-2) which may trigger unwanted
off-target cellular responses.

MATERIALS AND METHODS

Expression and Purification of Recombinant Proteins

8R, P21, RUNX2, and RUNT cDNAs were synthesized de novo
(Eurofins MWG Operon, Ebersberg, Germany). We cloned cDNAs
into the pGEX6-P1 expression vector (Novagen Watford, U.K.) and
expressed proteins in BL21 (DE3) pLysS E. coli (Novagen, Watford,
U.K.) as previously described [5]. Briefly, exponentially growing LB
cultures were induced using 1 mM IPTG for 24 hours at 258C and
sonicated in 13 STE extraction buffer (50 mM Tris, pH 7.5,
150 mM NaCl, 1 mM EDTA containing 1 mM DTT, 0.2 mg/ml lyso-
zyme, and 13 protease inhibitor cocktail). Insoluble protein was
retrieved using the Rapid GST inclusion body solubilization and
renaturation kit (AKR-110; Cell Biolabs, Inc., San Diego, CA). GST-
tags were removed by PreScission Protease cleavage (GE health-
care, Amersham, U.K.) in 13 cleavage buffer (50 mM Tris-HCI pH
7.0, 150 mM NaCl, 1 mM EDTA, and 1 mM DTT). Protein was puri-
fied, and the buffer was exchanged to phosphate-buffered saline
(PBS) using Bio-Spin P6 spin columns (Bio-Rad,Watford, U.K.). We
determined protein concentration using Bradford assay [12].
Standards and samples were analyzed using the TECAN infinite
200 PRO multimode reader (Reading, U.K.). Aliquots were stored
at 2808C until use.

Cell Culture

Human mesenchymal stem cells (hMSCs) from two different
donors (20 and 21 years; both male; Lonza, Slough, U.K.) were
maintained in hMSC growth medium (Lonza, Slough, U.K.) in 5%
(vol/vol) CO2 humidified incubator at 378C. hMSCs were subcul-
tured at 80% confluence preventing spontaneous differentiation
and contact inhibition of growth. hMSCs were used between pas-
sage 4 and 6 for all experiments. All data shown represent three
experiments with triplicate samples, unless otherwise stated.

GET-Fusion Protein Delivery Assay

To visualize delivery, P21-RUNX2-8R was tagged with Fluorescein
isothiocyanate (FITC) using NHS (N-hydroxy-succinimidyl-ester)-
Fluorescein as per manufacturer’s protocol (Thermo Scientific,
Paisley, U.K.) at a 1:50 protein: label molar ratio and purified/
buffer exchanged to PBS using Bio-Spin P6 spin columns (Bio-Rad,
Watford, U.K.). A total of 35,000 cells per well (in 24-well plates)
were seeded, incubated for 6 hours for attachment, and trans-
duced overnight with P21-RUNX2-8R-FITC or P21-mRFP-8R in
growth media. After transduction, cells were washed with PBS,
trypsinized with Trypsin-EDTA (Lonza, Slough, U.K.), and fixed in
4% (wt/vol) PFA (Sigma, Irvine, U.K.) for flow cytometry.

Osteogenesis Assay

Dulbecco’s modified Eagle medium (F12 media; Life technologies,
Paisley, U.K.) supplemented with 10% (vol/vol) fetal bovine serum,
2 mM L-glutamine, 100 units/ml penicillin, and 100 mg/ml strepto-
mycin (Sigma, Irvine, U.K.) was used as the basal media for osteo-
genic and chondrogenic media. A total of 8,000 cells per well
were seeded in a 24-well plate and cultured for 4 weeks depend-
ing on the experiment with appropriate media. Furthermore, 50
lg/ml L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate
(Sigma, Irvine, U.K.) and 10 mM b-glycerophosphate disodium salt
pentahydrate (Acros Organics, Paisley, U.K.) were added to the
basal media for osteo-permissive medium. To make osteo-
inductive media, 10 or 100 nM dexamethasone (Sigma, Irvine,
U.K.) was added to the osteo-permissive medium. Cells were
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cultured for 3–4 weeks for complete osteogenesis. For effective
osteogenic induction, P21-RUNX2-8R (30 lg/ml) was delivered
overnight in osteo-permissive media two times per week during
the first week, and the cells were cultured in osteo-inductive
(10 nM dexamethasone) for three more weeks. This delivery strat-
egy was used to induce osteogenesis in hMSCs for further experi-
ments. Medium was changed every other day.

Chondrogenesis Assay

To determine the chondrogenic potential of hMSCs transduced
with P21-RUNX2-8R, cells were cultured in two ways; high-density
monolayer on a 24-well plate or aggregate culture on a U-
bottomed 96-well plate. A total of 100,000 cells per well (in 96
well round bottom plate) or 600,000 cells per well (in 24 well
plate) were seeded and transduced with 30 lg/ml of P21-RUNX2-
8R overnight in growth media. After transduction, medium was
changed to defined chondrogenic medium according to the stand-
ard chondrogenesis culture method mentioned by Tew et al. and
Penick et al. [11, 13]. This defined medium contains basal media
supplemented with 10 ng/ml recombinant human TGF-b1 (Pepro-
tech, London, U.K.), 100 nM dexamethasone (Sigma, Irvine, U.K.),
50 lg/ml L-ascorbic acid 2-phosphate sesquimagnesium salt
hydrate (Sigma, Irvine, U.K.), 1 mM sodium pyruvate (Life Technol-
ogies, Paisley, U.K.), 40 lg/ml L-proline, and 13 ITS1 1 (Insulin,
Transferrin, Selenium, Linoleic acid and bovine serum albumin,
Sigma, Irvine, U.K.). The cells were cultured in chondrogenic media
for 2 weeks by changing the media every day, and the cultures
were taken for further analysis.

Flow Cytometry

For flow cytometry, cells were trypsinized (unless otherwise
stated), fixed in 4% (wt/vol) Paraformaldehyde (PFA), resuspended
in PBS (pH 7.5), and analyzed on a MoFlo Astrios (Beckman,
Wycombe, U.K.). Flow cytometer using a 488 nm laser (50,000
cells; gated on live cells by forward/side scatter; for P21-mRFP-8R
transduced cells) or FC 500 (Beckman, Wycombe, U.K.) flow
cytometer using 488 laser (30,000 cells for P21-RUNX2-8R-FITC
transduced cells; 10,000 cells for immunostained cells; gated on
live cells by forward/side scatter). The median relative fluores-
cence unit was used for statistical analyses after subtracting the
background from un-labeled/transduced cells.

Microscopy

For bright-field microscopy of stained cells, the wells were imaged
after staining with phase-contrast inverted microscope Eclipse
TS100 (Nikon, Kingston, U.K.). For fluorescent-labeled and immu-
nostained cells, a Leica DM IRB fluorescence microscope (Leica,
Milton Keynes, U.K.) was used to image the cells. For confocal
images, P21-RUNX2-8R-FITC transduced cells were fixed, counter-
stained with Hoechst 33258 (Sigma, Irvine, U.K.), and viewed in
Zeiss LSM880 confocal laser scanning microscope.

Trypan Blue Exclusion Assay

Trypan blue (Fisher Scientific, Loughborough, U.K.) was added to
10 ll of cell suspension in a ratio of 1:1, mixed gently, and then
counted using the improved Neubauer hemocytometer (Scientific
Laboratory supplies, Nottingham, U.K.).

Luciferase Reporter Assay

Cells were transfected with firefly luciferase reporters (kindly
gifted by Dr. Haijun Zhang, Indiana University) mOG2-Luc or

6XOSE2-Luc along with the internal control, Renilla luciferase
reporter pRL-TK as previously described [14]. hMSCs were trans-
duced with the GET-fusion proteins before, after, or before and
after transfection. As a positive control to compare the promoter
activity, we transfected hMSCs with pSIN-RUNX2 plasmid DNA (1
lg, as described in Dixon et al.) [15] using Lipofectamine 2000
(Invitrogen, Paisley, U.K.) and analyzed the luciferase activity. Cells
were harvested at different time points, and relative luciferase
activities were measured using dual luciferase assay kit (Promega,
Southampton, U.K.).

ALP Assays

After exposure to osteogenic medium for 1 week, cells were
washed with PBS and fixed with citrate-acetone-formaldehyde fix-
ative and washed again three times with PBS. Extracellular ALP
activity was examined histochemically using Naphthol AS-BI alka-
line solution as per manufacturer’s protocol (Sigma, Irvine, U.K.).
After ALP staining, the samples were washed with PBS and
imaged.

Alizarin Red S Staining

After 28 days, osteogenic cultures were washed three times with
PBS and fixed with 4% (wt/vol) PFA and washed thrice with deion-
ized water. Mineralized matrices were stained with 2% (wt/vol)
alizarin red solution and quantified using an earlier protocol [16].
Briefly, the stained wells were washed three times with PBS, and
200 ll of 10% (vol/vol) acetic acid (Sigma, Irvine, U.K.) was added
to each well (24 well plate) and incubated for 30 minutes in a
shaker to elute the stain. The eluted stain was heated to 858C for
10 minutes, cooled, and neutralized with 10% ammonium hydrox-
ide (Sigma, Irvine, U.K.) read at 405 nm using a spectrophotome-
ter. Fold increase in the absorbance value was calculated by
comparing with un-induced cells in osteo-permissive medium.

Osteocalcin Immunostaining

After 14 days, osteogenic cultures were rinsed with PBS, fixed in
4% (wt/vol) PFA (Sigma, Irvine, U.K.) in deionized water for 20
minutes, stained with antibody osteocalcin (OCN) (Millipore;
1:200), detected with secondary antibodies conjugated to FITC
(Abcam, Cambridge, U.K.), and viewed using fluorescence micros-
copy. To quantify the OCN positive cells, after 14 days, the cells
were trypsinized and stained with antibody against osteocalcin
and analyzed by flow cytometry.

Dimethyl Methylene Blue Assay

To determine the glycosaminoglycan content in chondrogenic cul-
tures, dimethyl methylene blue (DMMB) assay was performed as
described by Barbosa et al. [17]. Briefly, 21 mg of 1,9-dimethyl-
methylene blue dissolved in 5 ml of absolute ethanol with 2.0 g of
sodium formate and stir thoroughly in 800 ml of distilled water.
Concentrated formic acid was titrated into the dye solution to
adjust the pH to the desired level (pH 3.0 for the pellet cultures)
and made to a final volume of 1,000 ml. The cells were washed
after 3 weeks of chondrogenic culture and then lysed with pro-
teinase K (50 lg/ml proteinase K in 100 mM K2HPO4, pH 8).
DMMB solution (1,000 ll) was added to 50 ll of cell lysate or
medium supernatant, vortexed vigorously for 30 minutes, and
absorbance was measured at 656 nm in a microplate reader.
Standard curve was produced using different concentrations of
chondroitin-4-sulfate (C-4-S) to be compared with the samples.
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Alcian Blue Staining

Chondrogenesis of aggregate micromasses of hMSCs were
assessed using Alcian Blue staining [18]. Chondrogenic cultures
were stained for sulfated GAGs with Alcian blue 8GX (Sigma,
Irvine, U.K.) solution (1% wt/vol Alcian blue in 0.2 M acetate
buffer with 0.06 M MgCl2) overnight at room temperature,
washed thrice with PBS and images under a dissection
microscope.

Gene Expression Analysis

Total RNA was extracted from hMSCs using RNAeasy kit (Qiagen,
Manchester, U.K.) for osteogenic cultures and using TRIzol Rea-
gent (Invitrogen Paisley, U.K.) for chondrogenic cultures accord-
ing to the manufacturer’s instructions. RNA samples were
treated with DNase I (Invitrogen), quantified using a NanoDrop
1000 spectrophotometer (Thermo-Fisher Paisley, U.K.). Osteo-
genic genes (ALP – Hs01029144_m1; RUNX2 – Hs00231692_m;

OSX/SP7 – Hs00541729_m1; OCN (BGLAP) – Hs01587814_g1;

OPN – Hs00959010_m1) and chondrogenic genes (ACAN –

Hs00153936_m1 and SOX9 – Hs00165814_m1) were determined
relative to ACTB according to the TaqMan gene expression assay
protocol (Applied Biosystems/Life Technologies, Paisley, U.K.).
TaqMan primers and probes were from Applied Biosystems
(Paisley, U.K.). All TaqMan PCR reactions were performed in
duplicate with three biological repeats.

MSC Marker Analysis

MSC marker analysis was done on hMSCs after exposure to differ-
ent osteogenic conditions by staining them using Stemflow hMSC
Analysis Kit (Beckman,Wycombe, U.K.) as per manufacturer’s pro-
tocol. Mouse anti-human monoclonal antibodies CD90 FITC, CD73
APC, and CD105 PerCP-Cy5.5 were used for positive identification
of hMSCs. The stained cells were immediately harvested and ana-
lyzed on the flow cytometer.

Statistical Analysis

Statistical comparisons were carried out using GraphPad Prism.
The statistical significance was determined using the Holm sidak
method for viability and intracellular delivery experiments, one-
way ANOVA for alizarins red S quantification, one-way ANOVA
with Dunnett’s post hoc test for MSC marker flow cytometry, two-
way ANOVA for reporter assay, and osteogenic gene expression
experiments. Results were considered significant at p< .05.

RESULTS

Efficient Delivery of RUNX2 in hMSCs Using

GET-Peptides

GET peptides are potent in promoting macropinocytosis and can
enhance intracellular transduction of conjugated molecules by
orders of magnitude over simple CPPs such as octarginine (8R) or
HIV-derived TAT in many cells types [5]. Importantly, we have pre-
viously demonstrated that fusion of GET peptides to TFs as
recombinant proteins enhance intracellular delivery over CPPs
with retention of TF transcriptional regulatory activity [5]. To build
on our previous studies, we characterized the transduction of a
fluorescent reporter (mRFP) into primary hMSCs. Recombinant
proteins are not significantly transduced into hMSCs without sup-
plementation with GET peptides, P21-8R (Supporting Information
Fig. S1a). We focused on the osteogenic TF, RUNX2 which is vital

for triggering the osteogenic gene regulatory network and has
concentration-dependent, stage-specific roles in osteochondral
development and differentiation.We fused a bacterially optimized
human RUNX2 cDNA directly to the P21 and 8R peptides (50 and
30, respectively), to generate a P21-RUNX2-8R expression con-
struct for bacterial expression. The DNA binding domain of
RUNX2, termed RUNT, was also generated as an inhibitory mole-
cule, as its overexpression has been previously shown to block
RUNX2-mediated transcriptional activation and prevent osteogen-
esis through competitive binding [19–21]. Both GET-tagged and
untagged variants of RUNX2 were expressed and purified as
recombinant proteins in Escherichia coli. To visualize intracellular
delivery of these TFs, we labeled the purified recombinant protein
with NHS-FITC (Fig. 1A). In order to visualize P21-RUNX2-8R-FITC
localization, we used confocal microscopy (Fig. 1D) and observed
significant amounts of P21-RUNX2-8R-FITC colocalized with the
Hoechst stained cell nucleus. However, most protein is localized in
small endosomal vesicles present in perinuclear region in the cyto-
plasm. Controlling for labeling efficiency, we observed a dose-
dependent increase in the uptake of all recombinant GET fusion
proteins in hMSCs. Untagged proteins showed no significant
uptake even at dosages 10-fold (100 lg/ml) of that used for GET-
fusions. Both GET-fused RUNX2 and RUNT showed a decrease in
the viability of cells at the highest dosages used or most frequent
treatment regimens (>30 lg/ml or >2 dosages of 20 lg/ml per
week) (Fig. 1C, 1D) which is not observed with delivery of the
mRFP reporter (Fig. S1b). This is unsurprising as although RUNX2
is a key TF regulating osteogenesis, it has been shown to trigger
cell apoptosis with significant overexpression [22]. Furthermore,
the dosages used could achieve an effective supraphysiological
level of the TF. As the dosing was a simple exposure to media con-
taining the GET-fusion proteins, we could rapidly tailor the dosage
to that which did not affect cell viability and less likely to drive off-
target effects of gene expression (<30 lg/ml).

Optimal Dose of P21-RUNX2-8R Significantly Increases

Mineralization

For hMSC osteogenic differentiation in vitro, ascorbic acid and b-
glycerophosphate (AB) are essential for final stages of bone nod-
ule formation by promoting collagen matrix production and pro-
viding inorganic phosphate for mineralization, respectively, [4]. In
vivo these supplements would be available to the developing
bone naturally within the body. In order to test the effect of P21-
RUNX2-8R and P21-RUNT-8R on complete/terminal bone differen-
tiation programming, this media (AB) condition termed “osteo-
permissive” was used and compared with that lacking these addi-
tives. Importantly, the osteo-permissive environment does not
induce or trigger initiation of any osteogenesis (by gene expres-
sion assessment or immunological assessment) but augments the
final differentiated bone phenotype. hMSCs were exposed to P21-
RUNX2-8R for 7 days in osteo-permissive medium by transducing
(overnight exposure) the cells once, twice, or thrice per week, and
any pro-osteogenic effect assessed. We optimized these condi-
tions to deliver an effective dose but not to affect the viability of
hMSCs by overdosing at supraphysiological levels. This is impor-
tant as overexpression of RUNX2 causes severe disorders in trans-
genic mice at supraphysiological activities [2]. P21-RUNX-8R
indeed triggered osteogenic differentiation which was evident
from the significant calcium mineralization, quantified using aliza-
rin Red S staining 28 days postdelivery. RUNX2 without GET pep-
tides did not initiate osteogenesis, and there was no evident
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mineralization. Furthermore, GET-tagged RUNX2 significantly pro-
moted osteocalcin expression (immunocytochemistry) which was
undetectable in controls or untagged RUNX2 cultures (Fig S2 a).
We assessed the gene expression programming in treated

cultures, with early, mid, and late responsive genes (previously
shown to mark osteogenesis) significantly activated, unlike control
or untagged comparators (Supporting Information Fig. S2b). We
observed the maximum amount of mineralization with least effect

Figure 1.
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on viability by delivering P21-RUNX2-8R twice per week (30 lg/ml
dose) during the first week, followed by no further delivery and
culture in osteo-permissive medium up to 28 days (Fig. 1E, 1F).
We conducted other optimization experiments with continuous
lower dosages (10 and 20 lg/ml) over the 28 day experiment.
Lower continuous dosages produced significant but lower levels
of mineralization. Continued dosing significantly inhibited the final
mineralized phenotype to the point that no mineralization was
evident if a continuous high-dose of GET-tagged RUNX2 was used.
We therefore optimized a high-dose, short-term treatment regime
to effectively induce osteogenesis in hMSCs. It is known that
RUNX2 levels and relative levels to SOX9 are important for key
fate decisions in osteogenic differentiation, programmed at the
transcriptional level [23, 24]. These results are therefore intriguing
as they demonstrate that the initial priming of osteogenesis and
not later stages require RUNX2 activity, and furthermore high
RUNX2 activity over the entire developmental program can be
inhibitory, especially when cells are terminally differentiating to
produce a mineralized phenotype. It is interesting to note that
Loebel et al. demonstrated effective osteogenesis induction
through SOX9 downregulation leading to increased RUNX2/SOX9

ratio [23].

P21-RUNX2-8R Promotes Rapid Loss of the Multipotent

MSC Phenotype

We aimed to confirm that P21-RUNX2-8R directly induced the
commitment of hMSCs toward osteogenic differentiation with a
concomitant loss of hMSC phenotype. Using flow cytometric anal-
ysis, we performed MSC phenotyping by measuring surface
markers (CD73, CD90, CD-105) as recommended by the Interna-
tional Society of Cellular Therapy (ISCT) [25]. We labeled GET-
RUNX-transduced cells with hMSC markers and assessed the tim-
ing of MSC marker downregulation with upregulation of the
osteogenic program. We observed an initial decrease of CD105
(0.2-fold; p< .05), CD90 (0.2-fold p< .05), and slight downregula-
tion (0.08 fold; p< .05) of CD73 in both P21-RUNX2-8R trans-
duced and dexamethasone-treated osteogenic cells (Fig. 2F) after
12–14 days of culture compared with noninduced controls. Reduc-
tion in CD105 and CD90 antigens represents cellular commitment
to nonmyocardial lineages [26], and maturation toward
osteoblast-like cells [27], respectively. Interestingly, CD73 antigen
retention suggests osteochondral pathway differentiation [28].
Previously it has been shown that MSC populations with higher

CD79 and CD39 positivity exhibit higher expression of SOX9 and
RUNX2 [29–31]. Our data agree with this study and indicate
heightened osteochondral differentiation potential triggered
through P21-RUNX2-8R exposure [29–32].

To directly confirm rapid generation of reciprocal osteogenic
marker upregulation during exposure, we assessed transduced
cells for the early osteogenic marker, OSTEOCALCIN (OCN). OCN
expression confirms full osteogenic commitment before progres-
sion toward bone nodule formation [33]. We observed a strong
expression of OCN in P21-RUNX2-8R transduced cells early (14
days) postexposure with the highest expression observed 21 days
post-treatment (Fig. 2A, 2C). Interestingly, we routinely detected
two cellular populations of OCN: high and low positive cells (Fig.
2B). This variation in OCN expression is likely to be generated from
the heterogeneous potency of starting population of hMSCs lead-
ing to asynchronous induction toward osteogenesis [34–36].
Importantly, due to the efficient initiation of osteogenesis by P21-
RUNX2-8R, leading to almost complete programming of the cul-
ture, any heterogeneity in the starting MSC population can be
effectively overridden, inducing osteogenesis in cells likely to have
a propensity for differentiation into other lineages (such as adipo-
genic and chondrogenic lineages) [37].

Transcriptional Activity of Transduced P21-RUNX2-8R Is

Higher than Exogenously Overexpressed RUNX2

In order to confirm transcriptional activity of P21-RUNX2-8R in
the most direct assay possible, we examined immediate transcrip-
tional activation of RUNX2-responsive luciferase reporters contain-
ing the transcriptional responsive sequence from the
OSTEOCALCIN (OCN) promoter. To optimize the dual luciferase
assay for maximum transcriptional induction, we transduced test
proteins at different time points in relation to reporter transfec-
tion (before, after, or both) (Fig. 3A, 3B).We observed that dosing
cells pre-, post- and pre-, and post-transfection produced signifi-
cantly different transcriptional induction levels (using the mOG2-
Luc reporter). We determined that predosing and postdosing gen-
erated the highest induction by P21-RUNX2-8R. As positive and
negative controls, we used pDNA vectors with strong EF1a-
promoters (pSIN vectors) [15] to drive either RUNX2 or RUNT

cDNA expression, respectively. We observed P21-RUNX2-8R indu-
ces mOG2-Luc reporter expression to a greater magnitude to
pSIN-RUNX2 plasmid (p)DNA (15.5-fold vs. 14.3-fold). A synthetic
reporter containing six copies of the OSE2 element from the

Figure 1. Efficient delivery and dosing of P21-RUNX2-8R to initiate osteogenesis in human mesenchymal stem cells (hMSCs). (A): Design of
the osteogenic constructs. P21-RUNX2-8R is a RUNX2 transcription factor with an N-terminal fusion of P21 and a C-terminal fusion of 8R.
P21-RUNT-8R contains only the DNA binding domain, RUNT, sandwiched between P21 and 8R. (B): To assess the delivery of the fusion pep-
tide, the proteins were labeled with FITC and delivered at different concentrations overnight. Flow cytometry analysis of percentage positivity
and relative fluorescence unit of hMSCs treated with different concentrations of P21-RUNX2-8R-FITC (10, 30, 50 lg/ml) overnight. Statistical
significance was determined using the Holm-Sidak method, a 5 0.05;*, p< .05. (C): Viability of hMSCs measured using trypan blue at day 1
and 7 after overnight treatment with 30 lg/ml of P21-RUNX2-8R. Thirty lg/ml of P21-RUNX2-8R was used as the optimal concentration on
further experiments. Statistical significance determined using the Holm-Sidak method, with a 5 .05; *, p< .05. (D): Confocal images of
hMSCs treated with 30 lg/ml P21-RUNX2-8R-FITC overnight and counter stained with Hoechst (nuclei stain) at 340 magnification. Significant
amounts of P21-RUNX2-8R-FITC are colocalized with the Hoechst stained cell nucleus. Most P21-RUNX2-8R-FITC is localized in small endoso-
mal vesicles present in perinuclear region in the cytoplasm (hatched area). Scale bar is 10 lm. (E): Fluorescence microscopy images of hMSCs
treated with 10, 30, and 50 lg/ml P21-RUNX2-8R-FITC overnight. As the concentration increases, fluorescence intensity of P21-RUNX2-8R-
FITC inside hMSCs increases. Scale bar is 50 lm. (F): For the first week, hMSCs were treated overnight with P21-RUNX2-8R (30 lg/ml) every
other night (33), every 3 days (23), or treated only once (13). Viability of hMSCs measured using trypan blue at day 1 and 7 after overnight
treatment with 30 lg/ml of P21-RUNX2-8R once, twice and thrice per week. Statistical significance determined using the Holm-Sidak method,
with a 5 0.05; *, p< .05. (G): Treated hMSCs were cultured in osteo-permissive medium for 3 weeks, stained with alizarin red S (ARS) for
matrix mineralization and quantified using a microplate reader. Thirty lg/ml of P21-RUNX2-8R treated twice during the first week was identi-
fied as the optimal dose, and the same conditions were used in the subsequent assays. Statistical significance was determined using one way
ANOVA, with a 5 0.05;*, p< .05; **, p< .005; ***, p< .001. Error bars indicate standard deviation (SD). hMSCs from two different donors
were used for this study.

6 Recombinant RUNX2 Delivery

Oc 2017 The Authors STEM CELLS TRANSLATIONAL MEDICINE published by
Wiley Periodicals, Inc. on behalf of AlphaMed Press

STEM CELLS TRANSLATIONAL MEDICINE



OSTEOCALCIN (OCN) promoter (6xOSE2-Luc) also induced with
P21-RUNX2-8R delivery or RUNX2 plasmid, but to a lower magni-
tude than the mOG2-Luc reporter. Neither plasmid-expressed
RUNT (pSIN-RUNT) nor P21-RUNT-8R transduction had significant
effect on the reporters (Fig. 3C) as expected. Importantly, these
data demonstrate direct activity immediately after transduction of

P21-RUNX2-8R. The kinetics of the effect on the transfected lucifer-
ase reporters are clearly different to that of coexpressing TFs from
plasmids which is as expected; GET-delivered TFs can, therefore,
directly access the cell nucleus and regulate gene expression imme-
diately upon intracellular transduction; unlike DNA vectors which
require transcription/translation before produce any activity.

Figure 2.
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P21-RUNX-8R Triggers Early Lineage Specification but

Inhibits Terminal Differentiation

Next, we examined the effect of P21-RUNX2-8R on early and late
marker genes for osteogenesis. P21-RUNX2-8R significantly indu-
ces endogenous RUNX2 expression both in osteo-permissive and
osteo-inductive medium after week 1 (Fig. 4A, 4C). OSTERIX (OSX),
a TF immediately downstream of RUNX2, is equally induced post-
transduction (Fig. 4A–4d) confirming the initiation of osteogenic
pathways [38]. Expression of Osteopontin (OPN), an important
component in bone nodule formation [39], however, was lower in
osteo-permissive medium with P21-RUNX2-8R transduction in
comparison to dexamethasone-induced cells. OSTEOCALCIN (OCN)

(BGLAP, bone gamma-carboxyglutamic acid-containing protein), a
protein secreted by mature osteoblasts, is significantly upregu-
lated during week 4 in P21-RUNX2-8R treated cells cultured in
osteo-permissive medium (Fig. 4B, 4D). The expression pattern is
comparable to the results obtained through OCN immunostaining
and quantification, where addition of 10 nM dexamethasone sig-
nificantly enhanced OCN expression in P21-RUNX2-8R treated
cells (Fig. 2A–2C). Considerable change in gene expression profile
can be seen between week 1 and week 4 cultures both in osteo-
permissive and osteo-inductive media between these induction
methods. RUNX2 expression is significantly higher (13.4-fold over
noninduced control; p< .01) during the first week than in week 4
(8.2-fold over noninduced control; p< .05) when cultured in
osteo-permissive media using P21-RUNX2-8R. This terminal
decrease in RUNX2 expression during osteogenesis was observed
and suggested as essential for osteoblast function in RUNX2-
dependent osteogenesis studies by Liu et al. [40]. Addition of P21-
RUNT-8R did not induce any significant downregulation in RUNX2

and OSX although reduction in OPN expression was observed (0.9-
fold decrease compared with nontransduced control) (Fig. 4A).
This suggests that P21-RUNT-8R has an inhibitory effect on osteo-
genesis. Addition of subthreshold dose of dexamethasone
(10 nM), instead of 100 nM (used for full osteogenic induction),
efficiently enhanced OPN and OCN expression in P21-RUNX2-8R
transduced cells after 4 weeks of culture (Fig. 4D; Supporting
Information Table S1). It is interesting to note that P21-RUNX2-8R
delivered with 10 nM dexamethasone doubled RUNX2 and OSX

expression in comparison to 100 nM dexamethasone in week 1
cultures (Fig. 4A). Addition of 10 nM of dexamethasone without
P21-RUNX2-8R did not have major effect on any osteogenic
marker genes both in short-term and long-term cultures. The
same can be confirmed for matrix mineralization of cultures under
these conditions stained using alizarin red S (Fig. 2E).We speculate
that this might be due to the extremely low concentration of
dexamethasone which is not adequate to activate the necessary

gene regulatory networks to initiate osteogenesis as observed
previously by Walsh et al. [41].

Alkaline phosphatase (ALP) present in bone-related cells is a tis-
sue nonspecific hydrolytic enzyme which is active in multiple other
locations such as liver and kidney. We performed gene expression
analysis of ALP (tissue nonspecific gene variant) of our cultures and
found pronounced expression during early osteogenesis with P21-
RUNX2-8R, both in osteo-permissive and osteo-inductive condi-
tions (Fig. 4A, 4C). However, ALP staining of these cultures did not
show significant variation among the treatments (Fig. 2D). We
assessed cultures for ALP activity at day 7 since we found the stain-
ing of transduced cells increased with every dose of P21-RUNX2-8R
with maximum expression between day 5 and day 8. Since ALP can
be found in various tissue sources without bone formation and the
ALP expression during osteogenesis varies significantly, this marker
is not ideal to confirm genuine osteogenic induction [12, 42].

To further examine how P21-RUNX-8R can augment osteo-
genic programming in comparison to other bone differentiation
strategies, we examined the effect of transduction on BMP-2-
stimulation of hMSCs. Both BMP-2 (growth factor) and dexameth-
asone (steroid) stimulation can be enhanced with co-stimulation
of cells with P21-RUNX2-8R (Supporting Information Fig. S3a), but
this does not have the pleiotropic effects seen on other gene-
regulatory programs. BMP-2 without dexamethasone induction
did not induce osteogene expression when added at the start of
osteogenic culture. Also, the common use of dexamethasone in
osteogenic as well as chondrogenic induction media for MSCs rein-
forces the pleiotropic effects of such steroids. The expression of all
the genes tested were less (<0.5-fold decrease in RUNX2 and OSX

expression; 0.95-fold decrease in OPN expression, p> .05) in com-
parison to cells in osteo-permissive media alone (Supporting Infor-
mation Fig. S3a). These data suggest that P21-RUNX2-8R could
also represent a tool to create a more “sensitive” osteo-permissive
transcriptional condition for other bone differentiation strategies.

P21-RUNX-8R Does Not Trigger Osteogenesis

Pleiotropically

In order to assess if P21-RUNX2-8R could enhance bone differen-
tiation in other cell types, we tested its effects on cell types which
cannot naturally undergo osteogenic differentiation. This is impor-
tant as an understanding of the possible pleiotropic effect that
P21-RUNX2-8R might have on viability and osteogene expression
in other cell types could affect how it could be applied clinically.
No significant increase or decrease in osteogene expression was
observed in P21-RUNX2-8R transduced endothelial (HUVECs;
0.02-fold increase compared with nontransduced cells, p> .05)
(Supporting Information Fig. S4b) and a major decrease in osteo-
genic gene expression was observed in fibroblasts (HUES7 hESC-

Figure 2. P21-RUNX2-8R programs human mesenchymal stem cells (hMSCs) toward osteogenesis. (A): Representative fluorescent micro-
scopic images of hMSCs cultured in osteo-permissive medium or in osteo-inductive medium (100 nM or 10 nM dexamethasone) with or with-
out 30 lg/ml of P21-RUNX2-8R (treated overnight, twice per week) and stained for OCN after 3 weeks. Scale bar is 20 lm. (B, C): Flow
cytometry was performed after OCN staining to measure percentage positivity. Two distinct population of differentially stained OCN1 cells
can be observed in P21-RUNX2-8R treated hMSCs in the histogram. Statistical significance was determined using multiple t test in comparison
to hMSCs cultured in osteo-permissive medium, with a 5 0.05; *, p� .05; **, p� .005; ***, p� .001. RFU is relative fluorescence units. (D):
Representative images of hMSC cultures after 1 week under different treatments stained for alkaline phosphatase. Images of the wells were
taken in a dissection microscope at 31.5 magnification. (E): Representative images of matrix mineralization assessment by alizarin red S stain-
ing on hMSC cultures with different treatment after 4 weeks. Images of the wells were taken in a dissection microscope at 31.5 magnifica-
tion. (F): P21-RUNX2-8R modifies the expression of bone marrow specific MSC markers toward bone differentiation. hMSCs were cultured in
different conditions for 2 weeks, stained for mesenchymal stem markers, and analyzed by flow cytometry. Statistical significance was deter-
mined using one-way ANOVA with Dunnett’s post hoc test in comparison to the undifferentiated nontreated control hMSCs, with a 5 0.05;
*, p� .05; **, p� .005. Error bars indicate SD. hMSCs from two different donors were used for this study. Abbreviations: OCN, osteocalcin;
RFU, relative fluorescence unit.
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derived fibroblasts;>0.6-fold decrease in RUNX2 and OPN expres-
sion compared with nontransduced cells, p> .05) (Supporting
Information Fig. S4c). Interestingly, small but significant increases
in OSX expression (fourfold, p> .05 in HUVECs and twofold
increase, p> .05 in HUES7 hESC-derived fibroblasts), and a minor

decrease in viability was observed with dexamethasone (100 nM)
in both cell types (Supporting Information Fig. S4). Overall, these
data suggest that P21-RUNX2-8R does not possess pleiotropic
activity, such as that demonstrated here and in the literature for
dexamethasone- or BMP-2-strategies [43–46].

Figure 3. P21-RUNX2-8R significantly activates osteocalcin promoter. (A): Schematics of the set-up to assess the transcriptional activity of
P21-RUNX2-8R and P21-RUNT-8R using dual luciferase assay by transfecting human mesenchymal stem cells (hMSCs) using Lipofectamine
2000 with a luciferase-based osteocalcin promoter reporter (mOG2-Luc or 6XOSE2-Luc), Renilla luciferase promoter with or without plasmids
(pSIN RUNX2/RUNT DNA—as positive control for the assay) as indicated. During transduction, the cells were treated with the proteins (30
lg/ml) overnight. The cells were transduced with the protein before (Pre) or after (Post) or before and after (Pre & Post) the reporter trans-
fection. (B): Luciferase activity was determined after day 1, 2, 3 on Pre, Post and Pre & Post conditions on hMSCs. Statistical analysis was per-
formed using two-way ANOVA, a 5 0.05. (C): Both the reporters (mOG2-Luc and 6XOSE) were tested for luciferase activity on all three
conditions (Pre, Post, Pre & Post) by transducing with GET-fusion proteins, P21-RUNX2-8R or P21-RUNT-8R. Relative luciferase activity was
determined 28–32 hours after reporter transfection. Base level luciferase expression of nontransfected and nontransduced cells are repre-
sented with dotted lines and compared with other treatments for statistical analysis using multiple t test, with a 5 0.05; *, p� .05;
**, p� .005. Error bars indicate SD. hMSCs from two different donors were used for this study.
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P21-RUNX2-8R Induced Osteogenesis Inhibits

Chondrogenesis

In order to understand the effect of P21-RUNX2-8R on the cross-
talk between osteogenesis and chondrogenesis differentiation

pathways, we transduced hMSCs at a chondrogenesis-conductive
seeding density, cultured in osteogenic or chondrogenic media
and analyzed the gene expression profile of osteogenic and chon-
drogenic genes. Two-dimensional (low and high seeding density)

Figure 4. P21-RUNX2-8R significantly activates osteogenic genes. Human mesenchymal stem cells (hMSCs) were cultured in osteo-permissive
and osteo-inductive media with and without protein transduction. The wells were washed and total RNA was extracted after 1 and 3 weeks.
After DNAse treatment, gene expression analysis of ALP, RUNX2, OSX, OCN, and OPN of P21-RUNX2-8R or P21-RUNT-8R transduced hMSCs on
Week 1 (A, C) and 4 (B, D), cultured in osteo-permissive (A, B) or osteo-inductive medium (C, D) was performed. The results were plotted on the
graph based on expression fold change to nontransduced hMSCs cultured in osteo-permissive medium (dotted line). Statistical analysis was per-
formed using two-way ANOVA in comparison with the nontransduced hMSCs, with a 5 0.05; *, p� .05; **, p� .005. Error bars indicate SD.
hMSCs from two different donors were used for this study. Abbreviations: ALP, alkaline phosphatase; OPN, Osteopontin; OSX, Osterix.
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and three-dimensional culture (round bottom aggregate culture)
systems were initially assessed (Supporting Information Figs. S5
and S6) and used to test the transduction efficiency of GET and
chondrogenesis potential of these cultures with transduction.
Consequently, we compared cell culture that induces chondrogen-
esis (aggregates formation) in the presence and in the absence of
osteogenic and chondrogenic media and assessed if P21-RUNX2-
8R can override these cues to promote an osteogenic program.
Protein transduction was carried out prior to aggregate formation
to ensure high transduction efficiency as aggregates showed
<50% transduction positivity (Supporting Information Fig. S5b).

Our extensive expression analyses demonstrated SOX9 expres-
sion was significantly reduced in transduced cells in both high-
density monolayer (0.53-fold decrease compared with nontrans-
duced control) and aggregate culture (0.43-fold decrease com-
pared with nontransduced control) with chondrogenic medium. It
is interesting to note that addition of P21-RUNX2-8R suppresses
SOX9 in both culture conditions.

In aggregate culture, P21-RUNX2-8R effectively supresses chon-
drogenic gene expression, SOX9 and ACAN, and increases RUNX2

expression in chondrogenic medium after 2 weeks, suggesting that
P21-RUNX2-8R meticulously steers the signaling pathway toward
osteogenesis even under chondrogenic conditions. This might also
suggest hypertrophy as higher expression of RUNX2 at terminal
stages of culture could mean hypertrophy or intramembranous ossi-
fication [15]. Overall, chondrogenic genes (SOX9 and ACAN) were
relatively less expressed in osteogenic medium compared with
chondrogenic medium under both culture conditions (Fig. 5A, 5B).

SOX9 and RUNX2 expression ratio is crucial in determining the
shift in equilibrium toward osteogenesis or chondrogenesis
[47–49]. In spite of chondrogenic conditions and increased
SOX9 expression, osteogenes were expressed in both culture con-
ditions in the presence of P21-RUNX2-8R. SOX9/RUNX2 ratio,
chondrogenesis-conducive aggregate culture, and osteogenesis
inductive P21-RUNX2-8R can likely promote osteoclast formation
needed for osteochondral differentiation. Similar gene expression
profile was observed in the works of Schagemann et al. and
Glueck et al., where TGFb (present in chondrogenesis medium)
enhances chondrocyte differentiation, osteoblast maturation, and
osteoclast maturation [50, 51].

Figure 5. P21-RUNX2-8R significantly inhibits chondrogenic genes under osteogenic conditions. Human mesenchymal stem cells (hMSCs)
were cultured in osteo-inductive media (with 100 nM Dexamethasone) with or without protein transduction under two different seeding
conditions mentioned below. The cells were washed and total RNA was extracted after 2 weeks. After DNAse treatment, gene expression
analysis of osteogenic genes (RUNX2 and OPN) and chondrogenic genes (Aggrecan and SOX9) of P21-RUNX2-8R transduced and nontrans-
duced hMSCs was performed. The cells were cultured as a high-density monolayer on flat bottom plate (A) or as aggregate masses (B) on a
round bottom plate in osteo-inductive medium with 10 nM Dexamethasone (OST) or chondrogenic (CHON) medium. The results were por-
trayed in a graph based on expression fold change to un-transduced hMSCs cultured in basal media (dotted line). Statistical analysis was per-
formed using two-way ANOVA, with a 5 0.05; *, p� .05. Error bars indicate SD. hMSCs from two different donors were used for this study.
Abbreviation: CHON, chondrogenic; OPN, Osteopontin.
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DISCUSSION

MSCs are a heterogeneous population of cells, and their lineage
inclination, differentiation potential, and functional properties are
often determined by their tissue source. Various reports have
been published detailing that MSCs from certain tissues favor par-
ticular biological characters, for example, bone-derived MSCs are
more prone to osteogenic lineages [35]; synovial membrane-
derived MSC prefer chondrogenic lineage [52]; amnion-derived or
chorion-derived MSCs not only have multilineage differential
potential but also possess immune suppressive ability [36, 53].
Also, isolating and purifying homogeneous population of MSCs
are very difficult. Even the surface marker-based enrichment of
MSCs does not produce highly purified population with the same
clonogenic and differentiation potential [54, 55]. Lack of well-
defined MSC biomarkers, variability in the MSC phenotype, and
clonal heterogeneity of MSCs make it essential to understand the
molecular signaling biology of their differentiation so as to effec-
tively direct lineage-specific tissue regeneration [56, 57].

Genetic alteration using viral vectors to program MSCs in a
regenerative therapy scenario brings safety concerns involving
genetic modification and deviations in cell fate caused by tran-
sient changes in transcriptome after DNA delivery [58–61]. There-
fore, manipulating MSCs by targeting upstream molecular targets
using small molecules will enable safer and effective therapeutic
application [34]. Direct programming of cells using exogenously
delivered TFs can by-pass growth factor complexity, but these
technologies heavily rely on viral delivery or have low efficacy.

TFs are the backbone of regulatory networks in the cell that
orchestrate stage-specific gene expression or repression in order
to prompt a biological function [4]. Gene expression control can
be achieved without altering the genetic sequence by the use of
TFs. TFs act as mediators in the regulatory network that governs
various cellular functions such as differentiation, proliferation,
development, and immunomodulation. Developmental and cell-
type specific genetic transcriptional regulators are activated or
repressed by the integration of multiple signaling molecules
which is highly complex to control. Fundamental behavior such as
cell fate, growth, and death are programmed through the inter-
pretation of these signals and by the activity of transcription regu-
lators. These transcription regulators are used in programming,
reprogramming, or transdifferentiation of cells in vitro such as
PU.1 and C/EBP a and b that transforms fibroblasts into
macrophage-like cells [62], or a combination of GATA4, TBX5,
NKX2.5, and BAF60c (GTNB) converting human embryonic stem
cells and fibroblasts into cardiomyocytes [15]. These TFs can also
be delivered as proteins which can be readily taken up by the
cells thereby alleviating the need for DNA/RNA transfection or
viral delivery. Here we have built upon our previous demonstra-
tion that MYOD coupled with intracellular delivery peptides (GET
peptides) enhance myotube formation in HUES7 embryonic stem
cells [5].

Use of intracellular delivery peptides to transport TFs inside
the cells for reprogramming opens a wide range of application in
regenerative therapy. In order to test this delivery peptide plus TF
concept on biological functions, we focussed on differentiating
hMSCs into osteocytes. Conventional methods of osteogenesis
from hMSCs for regenerative therapies involve the use of growth
factors or chemicals. Bone morphogenetic protein 2 (BMP-2), a
member of transforming growth factor (TGF) superfamily, is
involved in both bone and cartilage development. Although BMP-

2 has been in orthopaedic use for bone injuries in clinical applica-
tion [45], the capacity of BMP-2 to initiate MSC commitment
toward osteogenesis over chondrogenesis is not completely
understood [4, 63–65]. Various clinical reports have highlighted
operative site edema complications in craniomaxillofacial and spi-
nal applications using recombinant human BMPs [43–46]. Dexa-
methasone is a common component added in the media for
osteogenic induction in vitro. It is a corticosteroid clinically used
for inflammatory diseases such as arthritis, ulcerative colitis, psori-
asis, lupus, and other allergic disorders, and hence it has been cau-
tiously used in bone-related therapies in vivo due to its possible
pleiotropic effects [4, 64, 66, 67]. To overcome these problems,
RUNX2, the key master regulator of bone formation was used as
the osteogenesis initiator in hMSCs. Here, we have created a
transducible-version of RUNX2 with GET peptides. With this
approach, we could also develop better targeted strategies to re/
program stem cells by using loaded or coated microparticles for
controlled release of the factors. Presently, we are developing
controlled release strategies for GET-RUNX2 and these will be
applied to bone-repair models in vivo. Our strategy of delivering
specific factors for enhancing bone formation also helps in pre-
venting undesirable undirected differentiation or off-target or sys-
temic side-effects. Furthermore, as this represents an efficient
nonviral delivery system there will be less regulatory aspects to
resolve before clinical application.

CONCLUSION

We demonstrated that the GET peptides promoted TF delivery
thereby directing the differentiation toward a desired lineage. The
ability to trigger specific differentiation programs while isolating
the effects of competing stimulation at the transcriptional level
will allow more precise control of cell programming to direct cellu-
lar behavior for many regenerative medicine applications. We
believe that our improvement of the long-established ex vivo
osteogenesis methods has the potential to become a patient-
applicable translational technology for cell-based therapies and
regenerative medicine.
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