
Research Article
Shrimp Feed Formulation via Evolutionary
Algorithm with Power Heuristics for Handling Constraints

Rosshairy Abd. Rahman,1 Graham Kendall,2,3 Razamin Ramli,1

Zainoddin Jamari,4 and Ku Ruhana Ku-Mahamud5

1Department of Decision Science, School of Quantitative Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
2University of Nottingham Malaysia Campus, Semenyih, Malaysia
3University of Nottingham, Nottingham, UK
4Mariculture Research Centre, Bukit Malut, 07000 Langkawi, Malaysia
5School of Computing, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia

Correspondence should be addressed to Rosshairy Abd. Rahman; shairy@uum.edu.my

Received 30 May 2017; Revised 26 August 2017; Accepted 2 November 2017; Published 26 November 2017

Academic Editor: Michele Scarpiniti

Copyright © 2017 Rosshairy Abd. Rahman et al.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

Formulating feed for shrimps represents a challenge to farmers and industry partners. Most previous studies selected from only
a small number of ingredients due to cost pressures, even though hundreds of potential ingredients could be used in the shrimp
feed mix. Even with a limited number of ingredients, the best combination of the most appropriate ingredients is still difficult to
obtain due to various constraint requirements, such as nutrition value and cost. This paper proposes a new operator which we call
Power Heuristics, as part of an Evolutionary Algorithm (EA), which acts as a constraint handling technique for the shrimp feed or
diet formulation. The operator is able to choose and discard certain ingredients by utilising a specialized search mechanism. The
aim is to achieve the most appropriate combination of ingredients. Power Heuristics are embedded in the EA at the early stage of a
semirandom initialization procedure. The resulting combination of ingredients, after fulfilling all the necessary constraints, shows
that this operator is useful in discarding inappropriate ingredients when a crucial constraint is violated.

1. Introduction

Shrimps are crustaceans and are among the main aquatic
organisms being farmed. It contributes to the fast growing
aquaculture industry in the food-production sector [1]. Feed
has been identified as the most expensive component of the
total cost when farming shrimps [2–5]. Providing a better
shrimp feed, with minimum cost, could help farmers reduce
costs and increase profits.

Shrimps require several nutrients for healthy growth.
Shrimp nutrients are a complex subject because the nutri-
tional requirements change at each stage of its life cycle (i.e.,
larval, nursery, juvenile, and adult). Thus, shrimp feed must
be specifically formulated for different stages of its life [6].
Juvenile shrimps require higher nutritional values, especially
protein, than shrimps in other life stages. For this reason,

most previous studies have focused on juvenile shrimps [7–
13]. This study also focusses on formulating feed for juvenile
shrimps.

The quality of shrimp feed depends on two factors:
nutrients and ingredients. Shrimps require specific nutri-
tional requirements such as protein, lipid, ash, and fibre [14].
Protein is themost expensive nutrient source, comprising two
different types (crude protein and amino acid). There are 22
amino acids that are commonly found in proteins [15], but
shrimps require only ten essential amino acids (EAA), in a
specific ratio, to achieve its optimal growth [15]. Only a small
number of studies have taken into account the value of amino
acids [16] due to a lack of information on the requirement of
total amino acids for optimal growth of juvenile shrimp. The
crude protein level, while maintaining ideal ratios of EAA,
will increase growth [17]. In this paper, we take into account
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the requirement of amino acid in formulating shrimp feed.
However, since the real amino acid requirement for shrimps
is unknown, we estimate the amino acid requirement based
on expert opinion, the scientific literature, and commercial
feed data.

It is important to take into account ingredients, to ensure
that a shrimp’s diet contains appropriate nutrients and has
an attractive physical appearance to entice shrimps [18]. Fish
meal is one of the most expensive ingredients and is also a
primary source of protein [19]. For this reason, it is important
for fish meal to be included in the shrimp diet.

This paper presents a feed formulation problem for
juvenile shrimps, which is motivated by real world require-
ments, as experienced by theDepartment of Fisheries (DOF),
Malaysia. The problem dataset has several new constraints in
addition to those currently experienced by the DOF. Previous
studies [20, 21] have obtained a ratio of ingredients based on
a set of preselected ingredients. However, the combination
of some ingredients is sometimes unable to return a feasible
solution as each ingredient has a minimum quantity require-
ment. Therefore, in order to choose only the appropriate
ingredients, a semirandom initialization operation [21] acts
as a way of precontrolling the nutrient requirement. Our
work utilises this semirandom initialization, improving upon
it with a new alternative initialization operator based on
the work in [22]. Our improvement differs from [22] in the
computation of obtaining new ingredient values within the
Evolutionary Algorithm (EA).

The organization of the rest of the paper is as follows. In
Section 2, we describe the feed or diet formulation problem
and present related work. In Section 3, the EA method-
ology for addressing the DOF feed formulation problem
is described. In Section 4, we present the mathematical
formulation of the problem, while in Section 5 we propose
an EA with Power Heuristics as a strategy to improve the
solution methodology for the feed formulation problem. In
Section 6, comparisons between the variations of the EA
are presented, which demonstrates the effectiveness of the
proposed method. The final section concludes the paper and
provides suggested future work directions.

2. Feed Formulation Problem

A feed formulation problem can be categorized in two
forms which address humans and farmed animals. The
term “menu planning problem” normally relates to methods
used for planning menus for the human diet [23], and it
can also be defined as the scheduling of meals associated
with a person’s needs during a given time horizon [24].
In agricultural applications, the diet formulation problem
is commonly known as the feed mix problem [25] or feed
formulation [26, 27]. It involves a combination of several
feed ingredients in specific quantities in order to satisfy
nutritional requirements at a minimum cost [25] for the
diet of farmed animals. Many studies [28–31] have attempted
to formulate animal diets using approaches to improve the
quality of the feed. In this section we highlight past studies
that have discussed the feed formulation problem involving
animals. The approaches can be categorized into four classes:

algebraic, optimization, heuristics, and integrated approaches
[18]. The range of methodologies which have been used
to address the feed formulation problem is presented in
Figure 1.The abbreviations used are as follows: PS = Pearson’s
Square, SAE = Simultaneous Algebraic Equation, LP = Linear
Programming, GP = Goal Programming, CCP = Chance
Constrained Programming, QP = Quadratic Programming,
NLP = Nonlinear Programming, CH = Constructive Heuris-
tics, and MH = Metaheuristics.

2.1. Algebraic Approaches. An algebraic approach is amethod
which involvesmathematical calculations and is normally too
computationally expensive. There are only two approaches
that can be classified as algebraic approaches which have been
applied to the feed formulation problem. These approaches
are Pearson’s Square (PS) [26, 32, 33] and Simultaneous
Algebraic Equations (SAE) [26, 33]. The limitation of PS is
it can only balance one nutrient at a time, while SAE is
computationally expensive when solving many nutrients and
ingredients [34].Therefore, thesemethods are not suitable for
handling ingredient constraints.

2.2. Exact Approaches. Optimization involves maximizing
or minimizing a function by systematically choosing the
best value in a feasible region [35]. It is also defined as
the process of attempting to find the best possible solution
among all those available [36]. Optimization approaches,
with regard to animal feed formulation, have included Lin-
ear Programming [28, 37–62], Goal Programming [63–76],
Chance Constrained Programming [32, 77–83], Quadratic
Programming [84], and Nonlinear Programming [85–87].
These methodologies were frequently used in various feed
formulation problems, with LP dominating the studies. LP
requires that all the constraints for the problem be exactly
formulated, which can be problematic for some problems.

2.3. Heuristic and Metaheuristic Approaches. Heuristics are
based on the concept of rule of thumb [88]. When applying
a heuristic technique, the expectation is to achieve the best-
so-far solution in a feasible region. In the case of feed
formulation, the heuristic and metaheuristic approaches are
discussed together in this section due to the limited number
of studies being carried out using these approaches.

A constructive heuristic starts with an empty solution and
gradually builds a feasible solution, usually by incrementally
adding to the growing schedule, while respecting the problem
constraints [89]. M. O. Afolayan and M. Afolayan [26]
used a trial and error methodology for feed formulation for
poultry. The formulation was done either manually or by
using a spreadsheet. Ruohonen andKettunen [90] proposed a
mixture experiment method to improve on the experimental
design (ED) method. This improved method successfully
shortens time when compared to traditional ED. A few years
later, Forster et al. [91] used the methodology of Ruohonen
and Kettunen [90] to find an optimal diet for shrimps. This
mixture experiment method is a good method for real situa-
tion testing. But of course, it requires a full system for shrimp
growth with tank and expertise. In 2011, [92] proposed a
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All techniques applied in diet formulation

PS
Roush et al. [32] 
M. O. Afolayan & M. Afolayan

M. O. Afolayan & M. Afolayan

M. O. Afolayan & M. Afolayan [26]

[26]

[26]

Gillespie & Flanders 
[33]

CH

Ruohonen & Kettunen [90]
Forster et al. [91]
Pathumnakul et al. [92] 

LP
Waugh [37] 
Swanson & Woodruff [38] 
Nott & Combs [39] 
Rahman & Bender [40] 
Mohr [41]
Chappell [42]
Barbieri & Cuzon [43] 
Glen [44]
Zioganas [45] 
Pierre & Harvey [46] 
De Kock & Sinclair [47]  
Munford [48]
Munford [49] 
O’Connor et al. [50] 
Forsyth [51]
Munford [52]
Thomson & Nolan [53] 
Htun et al. [54]
Olorunfemi [55]
Chakeredza et al. [56] 
Engelbrecht [57]
Al-Deseit [58]
Oishi et al. [59]
Udo et al. [60]
Nguyen et al. [61]
Moraes et al. [62]
Piyaratne et al. [28]

CCP
Popp & van de Panne [77] 
Pesti & Miller [78]
Pesti & Seila [79]
Tozer [80]
Katarkevich et al. [81]  
Roush et al. [32]
Roush & Cravener [82]
Udo et al. [83]

QP
Chen [84] 

NLP
Guevara [85] 
Saxena & Chandra [86] 
Saxena [87]

GP
Rehman & Romero [63, 64] 
Lara [65] 
Lara [66]
Lara & Romero [67]
Mitani & Nakayama [68] 
dit Bailleul et al. [69]
Tozer & Stokes [70] 
Zhang & Roush [71] 
Romero & Rehman [72] 
Castrodeza et al. [73]
Pomar et al. [74]
Peña et al. [75]
Babić & Perić [76] 

MH
Furuya et al. [20] 
Şahman et al. [21] 
Altun & Şahman [30]

Search-based
Li & Jin [103]
Poojari & Varghese [104]

LP-based
Glen [94]
Polimeno et al. [95] 
Cadenas et al. [96] 
Alexander et al. [97] 
Žgajnar et al. [98, 99, 100] 
Sirisatien et al. [101]
Thammaniwit & Charnsethikul [102]

Exact Heuristics IntegratedAlgebraic

SAE

Gillespie & Flanders 
[33]

Figure 1: Classification of solution techniques for feed formulation problems as adapted and enhanced from Rahman (2014).
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search-based heuristic algorithm to solve several small-scale
problems involving four to ten ingredients for swine feed
formulation. However, to gain the optimal solution using this
approach requires high computational time especially when
there was a lot of ingredients and nutrients that need to be
considered.

A metaheuristic is a high level algorithm that provides
a set of strategies or procedures, which seek an optimal
solution [93]. In relation to animal feed formulation, [20, 92]
conducted studies using an Evolutionary Algorithm (EA),
while [30] utilised Particle Swarm Optimization. Furuya et
al. [20] solved nonlinear constraints involving ratios of ingre-
dients for livestock feed. Their study showed that an EA is a
promising methodology for the diet formulation problem as
a feasible solution could be obtained even for a problem that
had no apparent solution. They considered minimum and
maximum ratios of ingredients, with many of the ingredients
being free from any requirement or constraint.

Şahman et al. [21] produced a good solution for a cattle
feed problem with a few constraints, which aimed to obtain a
zero value for their EA penalty function. Şahman et al. [21]
also worked on the feed formulation problem for poultry,
which had many nutrient constraints. Altun and Şahman
[30] explored a PSO (Particle SwarmOptimization) approach
to solve nonlinear constraints of nutrients. In comparison
to a Genetic Algorithm, the PSO solution is superior, with
respect to achieving lower penalty values. However, both
[21, 30] did not consider a ratio constraint in their animal feed
formulation problems.

2.4. Integrated Approaches. Integrated approaches are the
combination of two or more methodologies. In a feed formu-
lation problem, most of the integrated techniques are based
on LP [94–102], with a few being search-based [103, 104].

2.5. Discussion. Considering the four approaches discussed
above, an algebraic approach is not applicable since it is
not able to cater for more than one nutrient. Optimization
approaches are the favoured methodology in a diet formu-
lation problem. However in determining the minimum cost
feed, the linear or nonlinear constraints are increasingly
complex and thus difficult to handle. In these situations,
applications of standard linear or nonlinear programming
techniques are both time consuming and inefficient [21].
Therefore, the EA as a metaheuristic has the potential of
returning quality solutions which is the reason why it has
been used by previous researchers. We hypothesize that
an EA with enhanced search operators, such as in the
initialization stage, will provide superior solutions even when
new constraints are introduced.

3. Evolutionary Algorithm for the Feed
Formulation Problem

An EA is a multistage algorithm, comprising initialization,
selection of parents, crossover, andmutation.These operators
are normally tuned in order to improve their performance.

For example, new initialization procedures have been pro-
posed by [105], selection by [106], crossover by [107], and
mutation by [22].

A new mutation operator known as Power Mutation was
introduced by [22] to cater for constrained problems with
real number representation. It is an enhancement of uniform
mutation and makes use of both lower and upper bounds
of a constraint. The advantage of using each constraint’s
boundaries is that we might get a number of possible
solutions within that constraint’s range. Deep and Thakur
[22] introduced Power Mutation with the aim of using an
EA without any assistance from other constraint handling
techniques. The idea of Power Mutation can be further
extended for other operations such as the initialization.

In an animal feed formulation, [20] has pioneered the
utilisation an EA, aiming to solve the nonlinear constraints
which involve a ratio of ingredients. The study showed that
an EA is able to produce a near optimal solution even for
a problem that has no apparent solution. [20] considered
the minimum and maximum values of each ingredient.
However, almost all of the minimum values were considered
as free values. Reference [21] then continued the work of
[20] utilising a GA to achieve the least cost diet for livestock.
Their experiments produced good quality solutions for this
problem. However, [21] did not consider a ratio constraint
in their study. Only these two studies utilise an EA for the
animal feed formulation. Hence, this paper addresses both
limitations in those two studies. We investigate an EA for the
minimumandmaximumvalues for nutrients and ingredients
and take into account ratio constraints between nutrients.

Previous research for animal feed formulation using
metaheuristics has attempted to get the appropriate mix
of ingredients. For example, eight ingredients can be used
in the formulation, and then a specific percentage of all
ingredients are selected to be included in the formulation.
Based on expert opinion, at most ten ingredients could
be included in the formulation in order to obtain a low
cost diet. However, it is very difficult to find the best ten
ingredients with the optimal quantities to fulfill all specified
nutrients with minimum cost. This paper investigates the use
of an EA, to address the feed formulation problem. Table 1
summarizes the number of ingredients included in previous
studies that have used heuristic approaches. Reference [26]
did not mention the number of ingredients.

As shown in Table 1, the largest number of ingredients in
previous studies was Furuya et al. [20], who considered 20
ingredients. However, [20] did not consider any restriction
on the minimum and maximum values. All ingredients were
considered when the final formulation was calculated. In
other words, if ten ingredients were preselected at the begin-
ning, the final formulation would include all ten ingredients
with a minimum value based on the restriction. However,
in the real world application of feed formulation, there
are many ingredients that could be included. Due to the
operational costs, only a combination of some ingredients
will be considered.Therefore, this study introduces a filtering
heuristic that is able to choose appropriate ingredients and
remove some ingredients based on predefined constraints.
Fourteen ingredients were chosen as this represents real
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Table 1: Number of ingredients used in heuristic approach.

Author Type of animal Technique Number of ingredients
(1)M. O. Afolayan and M. Afolayan [26] Poultry TE —
(2) Pathumnakul et al. [92] Swine Search Dataset 1: 6; dataset 2: 5
(3) Furuya et al. [20] Livestock EA 20
(4) Şahman et al. [21] Poultry and cattle GA Poultry: 11; cattle: 7
(5) Altun and Şahman [30] Poultry, cattle, sheep, rabbit PSO 9

data obtained from manufacturers and the Department of
Fisheries, Malaysia.

4. Shrimp Feed Formulation Model

In the shrimp feed formulation problem, the aim is to satisfy
all the nutritional needs of farmed shrimps at a minimum
cost.Theminimization problem considers 14 ingredients and
18 nutrients. The main aim of this shrimp feed formulation is
to minimize the overall cost of the shrimp feed. In order to
obtain the minimum cost, a penalty system is used. A penalty
value is given if the ingredients and nutrients selected are
unable to fulfill the constraints or requirements as discussed
in the following subsection.

4.1. Objective Function and Constraints. As part of modelling
the shrimp feed formulation problem, objective function and
constraints are defined as follows:

𝑓 (𝑠) = min
14

∑
𝑖=1

(𝑋𝑖 × 𝐶𝑖) , (1)

where 𝐶𝑖 is the cost of ingredient 𝑖, 𝑋𝑖 equals the weight of
the 𝑖th ingredient, and 𝑓(𝑠) is the total cost of the feed,

subject to
(i) ingredients’ range based onmaximum andminimum

value as shown in Table 2:
𝑋𝑖 = 0

or 𝐿𝑋𝑖 ≤ 𝑋𝑖 ≤ 𝑈𝑋𝑖
∀𝑋𝑖,

(2)

where 𝐿𝑋𝑖 is lower bound of ingredient i,𝑈𝑋𝑖 is upper
bound of ingredient 𝑖, and𝑋𝑖 equals the weight of the
𝑖th ingredient;

(ii) total ingredients weight is
𝑛

∑
𝑖=1

𝑋𝑖 = 𝑌, (3)

where 𝑌 is a total ingredients weight as predefined by
the user in the user interface,
the specific amount is fixed at 100 kg;

(iii) single nutrients’ range based on maximum and mini-
mum values as shown in Table 3:

𝐿𝑁𝑘 ≤
𝑛

∑
𝑖=1

𝑁𝑘𝑖𝑋𝑖 ≤ 𝑈𝑁𝑘 , (4)

where 𝐿𝑁𝑘 is lower bound of total value of nutrient
k, 𝑈𝑁𝑘 is upper bound of total value of nutrient k,
and 𝑁𝑘𝑖 is total value of nutrient k in ingredient 𝑖,
𝑘 = 1, 2, . . . , 16;

(iv) combination of nutrients’ range based on maximum
and minimum value as shown in Table 3:

𝐿𝑁𝑘(𝑖𝑗) ≤
𝑛

∑
𝑖=1

𝑁𝑘(𝑖𝑗)𝑋𝑖 ≤ 𝑈𝑁𝑘(𝑖𝑗) , (5)

where 𝐿𝑁𝑘(𝑖𝑗) is lower bound of combination nutrients
i and j and 𝑈𝑁𝑘(𝑖𝑗) is upper bound of combination
nutrients i and j;

(v) ratio of nutrients’ range based on maximum and
minimum value as shown in Table 3:

𝐿 ratio ≤
∑𝑛𝑖=1𝑁𝑘𝑖
∑𝑛𝑖=1𝑁𝑘𝑗

≤ 𝑈ratio, (6)

where 𝐿 ratio is lower bound of ratio between nutrients
i and j and 𝑈ratio is upper bound of ratio between
nutrients i and j.

4.2. Ingredients and Nutrients. In this study, 14 ingredients
and 18 nutrients are considered. The ingredients have min-
imum and maximum percentages that can be used. These
values are shown in Table 2. The nutrient constraints are
categorized into three types which are single, combination,
and ratio. There are 16 nutrients that are classified as a single
type, that is, crude protein, lipid, fibre, ash, calcium, phos-
phorus, and ten essential amino acids (EAAs). These EAAs
are arginine, histidine, isoleucine, leucine, lysine, methion-
ine, phenylalanine, threonine, tryptophan, and valine. These
nutrients are shown in Table 3. For the combination types,
there are two, which are combinations of methionine and
cystine and also phenylalanine and tyrosine. A ratio of
calcium and phosphorus is also taken into consideration.
The minimum and maximum percentages and values given
represent the lower and upper bounds for each of the
ingredient and nutrients, respectively.

Based on our interviews with experts in the aquaculture
industry and authority, shrimp can grow well if they get
enough nutrients [14, 108]. In relation to nutrient levels, the
best solution occurs when each of the nutrient’s constraints
are fulfilled. The higher the penalty value given, the more
the nutrient constraints that were unable to be satisfied. The
minimum value is considered the best penalty value, which
relates to the minimum feed cost achieved.
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Table 2: A list of ingredients and its specific range.

Ingredient Minimum (%) Maximum (%)
Rice bran,𝑋1 5 10
Soybean meal,𝑋2 15 50
Palm kernel cake,𝑋3 3 5
Local fishmeal, 𝑋4 5 50
Wheat flour,𝑋5 30 40
Wheat pollard,𝑋6 5 15
Poultry meal,𝑋7 5 15
Crude palm oil,𝑋8 2 5
Imported fish meal,𝑋9 15 60
Meat and bone meal,𝑋10 5 15
Poultry by product,𝑋11 5 15
Blood meal,𝑋12 3 5
Krill meal,𝑋13 3 5
Squid meal,𝑋14 3 5

Table 3: A list of nutrients and its specific range.

Nutrients Minimum Maximum
Single nutrient
Crude protein, % 38.00 45.00
Lipid, % 0.08 0.18
Fibre, % — 4.00
Ash, % — 15.00
Calcium, % — 2.30
Phosphorus, % 0.30 0.70
Arginine, % 1.60 2.32
Histidine, % 0.60 0.84
Isoleucine, % 1.00 1.33
Leucine, % 1.70 2.16
Lysine, % 1.55 1.65
Methionine, % 0.70 0.96
Phenylalanine, % 1.40 1.60
Threonine, % 1.30 1.44
Tryptophan, % 0.20 0.32
Valine, % 1.20 1.60
Nutrients combination
Methionine + cystine, % 1.00 1.44
Phenylalanine + tyrosine, % 2.70 7.10
Nutrients ratio
Calcium: phosphorus, % 1 : 1.3 1 : 1.3

4.3.The Evolutionary AlgorithmModel. Theconstraints func-
tion is embedded as part of the fitness function in our EA as
shown in Algorithm 1.

The EA draws from other established operators, such as
the Roulette Wheel Selection [109, 110], one-point crossover
[110], and Power Mutation (excerpted from [22]). However,
in this study we highlight the use of a Power Heuristic, which
is incorporated in the initialization stage of the EA to help
obtain a good quality feasible solution for formulating shrimp
feed mix with many ingredients.

5. Power Heuristics Algorithm
for EA Initialization

The original idea of Power Heuristics came from a mutation
operator known as Power Mutation, introduced by [22].
Power Heuristics is capable of deleting inappropriate ingre-
dients and, thus, searches for the most suitable combination
of ingredients. When too many preferred ingredients are
candidates, nutrient constraints might be violated as each
ingredient has its own restrictions. Hence, Power Heuristics
are embedded in the early stage of the EA, to act as a filter
against a poor combination of ingredients and search for
better alternatives with minimal penalty values.

PowerHeuristics uses a local search concept that searches
around the neighbourhood of a solution. It begins by check-
ing the feasibility of a potential solution. If the solution is
infeasible, a new ingredient will be located that is within the
range of one unit (kilogram) from the current ingredient.
This mechanism is able to remove a few ingredients. Finally,
the penalty value for the new solution is calculated. This
mechanism is useful when inappropriate ingredients need
to be removed in the case of an important constraint being
violated; that is, the total ingredient weight exceeds the
required amount. The incorporation of this operator can at
least reduce the initial penalty value, thus increasing the
possibility of locating a feasible solution. The algorithms
for Power Heuristics and Power Mutation are presented in
Algorithms 2 and 3, respectively.

Power Heuristics is adapted from the Power Mutation
operator as originally introduced by [22]. As the purpose of
Power Mutation is to obtain a feasible solution, introducing a
new weight for each ingredient in the mutation stage (𝑋𝑖𝑚) is
designed to include a lower and upper bound as in equations
(∗∗∗∗) and (∗∗∗∗∗).

Power Heuristics aims to reject some ingredients and
then repair the solution to achieve a lower penalty value. The
formula for getting an adjusted weight for each ingredient
is designed so that the adjusted weight for the particular
ingredient (𝑋𝑖𝑓) can be either zero or slightly different from
the original weight as shown in equation (∗∗) (refer to
Algorithm 2). Most previous studies (e.g., [111–115]), espe-
cially those that used experimental design approach, used less
than ten ingredients for aquaculture feeds including shrimps.
The reason was to cut down the operation costs such as
ordering and storage [18].

In order to test the practicality of Power Heuristics,
two initialization procedures were tested to obtain some
insights and suggest the best initialization operator. The first
procedure is a semirandom initialization operation which
employed a formula using lower and upper bound values of
the weight of each ingredient, as shown in (7). The second
procedure also employed the same formula, but with the
inclusion of PowerHeuristics, as indicated inAlgorithm 2, for
filtering purposes.

For 𝑖 = 1, 2, 3, . . . , 14

IPOP𝑗 = rand ⌊𝐿𝑋𝑖 , 𝑈𝑋𝑖⌋ , (7)
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(i) Initialize solution in semi random procedure
Incorporate Power Heuristics

(ii) Evaluate each individual penalty value
(iii) Select pair to mate using either Roulette Wheel Selection operator
(iv) Do Crossover using One-Point Crossover operator
(v) Do Power Mutation
(vi) Repair operator using Power Heuristics
(vii) Apply elitism operator
(viii) Repeat step (iii) until step (vii) until a number of generations is reached

Algorithm 1: The EA algorithm.

(i) Generate uniform random number, 𝑟 between [0, 1]
(ii) Get t using formula:

𝑡 =
𝑋𝑖 − 𝐿𝑋𝑖
𝑈𝑋𝑖 − 𝑋𝑖

(∗)

where𝑋𝑖: ingredient 𝑖 value from initial solution, 𝐿𝑋𝑖 : lower bound of ingredient 𝑖,
𝑈𝑋𝑖 : upper bound of ingredient 𝑖

(iii) Compare value t with r and determine which one is greater
(iv) Find new value of𝑋𝑖𝑓 by comparing r with t

If 𝑟 > 𝑡,
Then new value of𝑋𝑖𝑓 = 0
If 𝑡 ≥ 𝑟,
Then generate new value of𝑋𝑖𝑓 by the formula:

(𝑋𝑖 − 1 < 𝑋𝑖 < 𝑋𝑖 + 1) (∗∗)
(v) Repeat step (ii) to (iv) for other allele and also for other infeasible individuals
(vi) Calculate new fitness value for the solution

Algorithm 2: Power Heuristics algorithm.

where 𝐿𝑋𝑖 is ingredients’ lower bound, 𝑈𝑋𝑖 is ingredients’
upper bound, and 𝑗 is the number of populations.

6. Results and Discussions

Semirandom initialization operation, adapted from [21], was
implemented to find solutions at the initial stage so as
to ensure that the weight of ingredients lies within the
ingredients’ limitations. The experimentations between these
two initialization operations were carried out and the results
are shown in Table 4. The generation of the proposed
EA model with a Power Heuristic operator (EA-PH) was
carried out with certain established operators, which are
Roulette Wheel Selection, One-Point Crossover, and Power
Mutation.

The evolutionary model with semirandom initialization
operation (EA-SR) was used as a benchmark. Since this
work is the first attempt of filtering some ingredients from
the list, the only appropriate algorithm to be compared is
by using EA-SR. Each model was run 30 times using the
algorithm from Algorithm 1. Experimentations of EA with
two initialization operators, that is, EA-PH and EA-SR, were
conducted. These initialization operators were tested, while
other EA operators remain the same. As in Table 4, the
EA-SR provided an infeasible solution in every run, whereas

the EA-PH model showed that no solution was infeasible.
This experimentation shows that Power Heuristics allows
unnecessary ingredients to be filtered out of the system. As
a result, the total selected ingredients in the system might be
less than fourteen. Indirectly, the requirements of ingredient’s
weight and nutrient’s range can be fulfilled.

A sample solution for the shrimp feed formulation is
shown each in Tables 5 and 6 as obtained from EA-SR and
EA-PH, respectively. In comparison, the EA-SR solutions
in Table 5 include all ingredients with a total weight of
124.4231 kg, while EA-PH solution in Table 6 shows that
only eight ingredients were selected for the solution with
a total weight of 100.0514 kg. The total price for this feed
combination using EA-SR was MYR 297.34, and MYR 217.08
was the price for EA-PH. The results from this experiment
conclude that Power Heuristics in the EA model is able to
remove some inappropriate ingredients in searching for a
feasible solution when many possible ingredients are under
consideration.

In addition, the performance of the EA-PH model was
statistically evaluated with 𝜇EA-PH = 547.67, 𝜇EA-SR = 100422,
𝜎EA-PH = 139.778, and 𝜎EA-SR = 114.816. As confidence level
of 95% using 𝑧-test, and 𝑝 value being 0.0001, performance of
the EA-PH model is significantly better than that of the EA-
SR model. Therefore, we can conclude that the performance
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(i) Generate uniform random numbers, 𝑠1 and 𝑟 between [0, 1]
(ii) Get s using formula: 𝑠 = 𝑝(𝑠1)𝑝−1

where 𝑠1 is the random number and p is the index of Power distribution
(iii) Get t using formula:

𝑡 =
𝑋𝑖𝑐 − 𝐿𝑋𝑖
𝑈𝑋𝑖 − 𝑋𝑖𝑐

(∗ ∗ ∗)

where𝑋𝑖𝑐 : ingredient 𝑖 value from crossover stage, 𝐿𝑋𝑖 : lower bound of ingredient 𝑖,
𝑈𝑋𝑖 : upper bound of ingredient 𝑖
If (𝑡 < 𝑟),
Then generate a new value of𝑋𝑖𝑚by the formula

𝑋𝑖𝑚 = 𝑋𝑖𝑐 − 𝑠 (𝑋𝑖𝑐 − 𝐿𝑋𝑖) (∗ ∗ ∗∗)
Else if (𝑡 ≥ 𝑟)
Then find a new value of𝑋𝑖𝑚 by the formula

𝑋𝑖𝑚 = 𝑋𝑖𝑐 + 𝑠(𝑈𝑋𝑖 − 𝑋𝑖𝑐 ) (∗ ∗ ∗ ∗ ∗)
(iv) Repeat step (iii) to (iv) until all alleles in chromosome i are mutated.
(v) Calculate new fitness value for the solution

Algorithm 3: Power Mutation algorithm [22].

Table 4: Performance of both models based on penalty value with different initialization procedures.

Model Minimum penalty value Mean penalty value Mean run time
(minutes) Number of infeasible solutions

EA-SR 100000
(infeasible)

100422
(infeasible) 165.71 30/30

EA-PH 300 547.67 201.52 0/30

Table 5: A sample solution obtained from the EA-SR model.

Ingredient Minimum
(kg)

Maximum
(kg)

Assigned
quantity (kg)

𝑋1 5 10 5.1450
𝑋2 15 50 16.4601
𝑋3 3 5 3.0234
𝑋4 5 50 10.6521
𝑋5 30 40 31.0945
𝑋6 5 15 6.1047
𝑋7 5 15 7.2478
𝑋8 2 5 2.5413
𝑋9 15 60 19.549
𝑋10 5 15 4.1310
𝑋11 5 15 6.5470
𝑋12 3 5 3.6587
𝑋13 3 5 5.2343
𝑋14 3 5 3.0342
Total weight for a feed
mix (kg) 124.4231

of EA-PH is better than EA-SR due to the significantly less
penalty value obtained.

Regarding the ingredients, selecting them is based on the
nutritional values obtained in the shrimp feed mix, whether
fish meal is included or not. The underlying rationale for this
selection is that the price of fish meal is relatively high. This

Table 6: A sample solution obtained from the EA-PH model.

Ingredient Minimum
(kg)

Maximum
(kg)

Assigned quantity
(kg)

𝑋2 15 50 42.5860
𝑋3 3 5 4.0431
𝑋6 5 15 14.3030
𝑋7 5 15 13.1132
𝑋8 2 5 4.0231
𝑋11 5 15 12.1350
𝑋13 3 5 4.6120
𝑋14 3 5 5.2360
Total weight for
a feed mix (kg) 100.0514

𝑋1 = 𝑋4 = 𝑋5 = 𝑋9 = 𝑋10 = 𝑋12 = 0.

is not a surprise since fish meal is high in demand and thus,
many researchers [116, 117] have tried to substitute fish meal
with alternative ingredients in their studies. The alternatives
that could maintain the palatability of the shrimp feed such
as krill meal [118, 119] and poultry by product meal [120] have
been tested.

Many other combinations of ingredients could be
obtained through this EA. When our proposed EA is run,
a feasible and good solution or result is recommended by
the embedded model in terms of the best combination of
ingredients that fulfill the quality and cost requirements.
The solution helps to reduce the number of tests that would
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otherwise have to be carried out considering a large number
of combinations of ingredients. A potential extension to this
research could be to use the solution from this research as
input to an ED approach to confirm how the shrimp will
perform. These approaches could complement each other to
obtain the best shrimp feed.

7. Conclusions and Future Work

A shrimp feed formulation problem was explored in this
study using an EA strategy. A heuristic procedure known
as Power Heuristics was incorporated at the initialization
stage in an EA model to explore the neighbourhood area
when the initial solution was infeasible. The function of
this Power Heuristic is to filter unsuitable ingredients and
remove it from the EA computation. The heuristic operator
is capable of filtering some combinations of ingredients from
a selected database of choices, which could lead to potentially
poor solutions. It works well if many options exist in the
search space, which is suitable for a large problem like an
animal diet formulationwithmany possible ingredients being
considered. In future, many new avenues can be explored,
such as improving the integration of Power Heuristics with
the EA or new integration with other population based
techniques with various ingredients, as hundreds of possible
ingredients have been tested in the literature.
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González-Rodŕıguez, and I. Abdo de la Parra, “Partial replace-
ment of fish meal by porcine meat meal in practical diets for
Pacific white shrimp (Litopenaeus vannamei),” Aquaculture,
vol. 277, no. 3-4, pp. 244–250, 2008.

[117] D. M. Smith, G. L. Allan, K. C. Williams, and C. Barlow,
Avances en Nutrición Acuı́cola V. Memorias del V Simposium
Internacional de Nutrición Acuı́cola, Cruz-Sußrez., L. E. Ricque-
Marie, D. Tapia-Salazar, M. Olvera-Novoa, and M. A. y Civera-
Cerecedo, Eds., Mérida, Yucatán, México, 2000.
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