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An idealised study that identifies the mechanisms in the long term evolution of10

crescentic bar systems in nature is presented. Growth to finite amplitude (i.e., equi-11

libration, sometimes referred to as saturation) and higher harmonic interaction are12

hypothesised to be the leading nonlinear effects in long-term evolution of these sys-13

tems. These nonlinear effects are added to a linear stability model and used to14

predict crescentic bar development along a beach in Duck, North Carolina (USA)15

over a 2-month period. The equilibration prolongs the development of bed pat-16

terns, thus allowing the long term evolution. Higher harmonic interaction enables17

the amplitude to be transferred from longer to shorter lengthscales, which leads to18

the dominance of shorter lengthscales in latter post-storm stages, as observed at19

Duck. The comparison with observations indicates the importance of higher har-20

monic interaction in the development of nearshore crescentic bar systems in nature.21

Additionally, it is concluded that these nonlinear effects should be included in mod-22

els simulating the development of different bed patterns, and that this points a way23

forward for long-term morphodynamical modelling in general.24
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1 Introduction27

Nearshore sea bed patterns are a common feature around the world and may28

provide some protection to beach and coastal areas (Hanley et al., 2014).29

As one of the most common nearshore sea bed patterns, crescentic bars are30

observed worldwide, see e.g. Van Enckevort et al. (2004). Such near shore sand31

bars can reduce wave momentum flux, or radiation stress, as the wave breaking32

on top of it. Furthermore, it can also provide sand to the beach if it migrates33

onshore (Ribas et al., 2015b). Because of their prevalence, their possible role34

in coastal protection, and the need to gain more understanding of nearshore35

coastal dynamics in general, it is important to study the evolution of these36

morphological features.37

Increasingly, the genesis of such quasi-periodic patterns is thought to be due38

to morphological instability (see Ribas et al., 2015a). An often used method39

for describing the development of crescentic bed-forms in idealised scenarios is40

therefore linear stability analysis, see e.g. Deigaard et al. (1999); Falqués et al.41

(2000); Damgaard et al. (2002); Calvete et al. (2005); Van Leeuwen et al.42

(2006); Calvete et al. (2007). In this method, infinitesimally small perturba-43

tions are imposed on an equilibrium (basic) state. The interaction of flow and44

sea bed may give rise to a so called fastest growing mode, a bed-form with45

largest growth rate, which will dominate the sea bed pattern after a period46

of evolution. Linear stability analysis has proved to be useful in revealing the47

initialization and short term evolution of crescentic bars.48

Following this approach, Tiessen et al. (2010) predicted the development of49

crescentic bed-patterns at Duck, North Carolina (USA), for a period of two50

months, starting from an along-shore constant bed. The forcing used was the51

measured wave and tidal data at the same field site. Although the predicted52

crescentic pattern lengthscales were similar to those observed, they tended to53

exhibit a much bigger fluctuation. Such significant discrepancy is found to be a54

combined result of missing nonlinear effects in the linear model and the effect55

of pre-existing bed patterns in the natural environment. This is because linear56

stability analysis is limited when pre-existing bed-forms are present, since an57

alongshore constant initial bathymetry is assumed at each instant. Another58

reason is that the exponentially growing bed form will violate the small am-59

plitude assumption after some time, and nonlinear effects will dominate the60

evolution thenceforth. Therefore, a nonlinear analysis is necessary for reliable61

long-term prediction of crescentic bars (Dodd et al., 2003).62

Using fully nonlinear numerical models, Tiessen et al. (2011) and Smit et al.63

(2012) included nonlinear effects and investigated the impact of pre-existing64

bed-patterns. Smit et al. (2012) showed that pre-existing bed-patterns ‘with65

significant variability’ do not adapt to changed hydrodynamic conditions, and66
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dominate subsequent development. Moreover, such tendency holds for increas-67

ing wave energy. This suggests that, under certain circumstances, pre-existing68

modes are not affected by the present forcing conditions and that once a cer-69

tain threshold of development is reached, only a reset-event, such as a storm,70

can remove pre-existing bed-forms and the corresponding dominant crescentic71

bed-pattern lengthscale.72

On the other hand, Tiessen et al. (2011) showed that pre-existing modes can73

modify the subsequent development of different crescentic bar lengthscales.74

Pre-existing modes (patterns) of finite amplitude will persist if those same75

modes show significant linear growth (i.e., initial growth from an infinitesi-76

mally disturbed beach). On the contrary, pre-existing lengthscales that show77

only limited growth or even decay when developing from an infinitesimally78

disturbed beach, become overwhelmed by faster growing modes. However, the79

lengthscale of these pre-existing, slowly growing or decaying modes, and that80

of the newly-arising crescentic bed-form are linked. This is because the more81

rapid initial development of higher harmonics of the pre-existing lengthscale82

can excite a linearly unstable mode at a smaller wavelength, prior to decaying83

to insignificance.84

The findings of Tiessen et al. (2011) and Smit et al. (2012) suggested a few85

important nonlinear effects in the long-term evolution of crescentic bars: higher86

harmonic interaction, persistence of bed-forms through weak storm and the87

importance of pre-existing bed-forms. Although the long term development88

of crescentic bars has been studied by many nonlinear numerical studies (e.g.89

Garnier et al., 2008; Castelle and Ruessink , 2011; Tiessen et al., 2011; Smit90

et al., 2012), all the existing nonlinear modelling studies are so far restricted91

to idealised simplified cases. Therefore, the existing knowledge of important92

nonlinear effects in the long-term evolution of crescentic bars lacks comparison93

with observations.94

The goal of this study is therefore to identify physical mechanisms for long-95

term growth of crescentic bar systems by comparing with field observations.96

To this end, we develop an idealised model that incorporates the processes97

suggested by Tiessen et al. (2011) and Smit et al. (2012) into the linear sta-98

bility analysis. The occurrence of pre-existing modes is also accounted for in99

the model. This approach allows us to consider only those effects identified100

earlier, and, moreover, is time efficient and so can be applied over substan-101

tial durations. The model is used to predict the lengthscale of the crescentic102

bed-forms for a period of two months in 1998 at Duck (NC, USA). The model103

results are compared with field observation (Van Enckevort et al., 2004) over104

the same period.105

The paper is organized as follows. In section 2 the model formulation is given,106
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as well as how linear stability theory is used in the amplitude evolution model.107

In section 3 the amplitude evolution model is presented, and an example test108

case used to illustrate its properties. Model results and a discussion are pre-109

sented in section 4 and 5, respectively. Finally, a conclusion is given in sec-110

tion 6.111

2 Model formulation: governing equations and linear stabiity anal-112

ysis113

The model geometry describes an unbounded, straight alongshore uniform114

open coast, with an example of cross-shore profile being shown in Fig. 1. Quasi-115

steady flow conditions are assumed and the spatial coordinate system, (x, y)116

in m, is aligned with cross- and long-shore directions. The vertical direction is117

denoted by z (m), where z = 0 refers to mean sea level with positive z points118

upwards.119

The model-framework is composed of the phase-averaged shallow water equa-120

tions, in combination with a description of the bathymetric evolution, the121

wave phase and the wave energy density (see Calvete et al. (2005) for a more122

extensive description of this model).123

The equations of the model are:124

125

∂D

∂t
+
∂Duj
∂xj

= 0, (1)

∂ui
∂t

+ uj
∂ui
∂xj

= −g∂zs
∂xi
− 1

ρD

∂

∂xj

S ′ij − S ′′ij
− τbi

ρD
, (2)

∂E

∂t
+

∂

∂xj
((uj + cgj)E) + S ′ij

∂uj
∂xi

= −D, (3)

∂Φ

∂t
+ σ + uj

∂Φ

∂xj
= 0 (4)

∂zb
∂t

+
1

1− p
∂qj
∂xj

= 0, (5)

where i, j = 1, 2, with summation being on j; x1,2 = (x, y) and u1,2 = (u, v),126

where u and v (ms−1) are the cross- and alongshore depth-averaged current127

respectively. t (s) represents time. zs(x, y, t) is the mean sea level, zb(x, y, t) is128

the mean bed level and D is the total mean depth (D = zs−zb). E(x, y, t) (kg129

s−2) is the wave energy density, which can be expressed in terms of the wave130

height (E = 1
8
ρgH2

rms). τbi (kg m−1 s−2) represents the bed shear stress; here131

the expression of Feddersen et al. (2000) is used. g (m s−2) is the gravitational132
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acceleration, Φ (rad) is the wave phase and σ (Hz) is the intrinsic frequency.133

The sediment flux (qi, in kg s−1) is represented by the formula of Soulsby and134

Van Rijn (Soulsby , 1997). The bed porosity p is 0.4 and the seawater density135

(ρ) is 1024 kg m−3. S ′ij (kg s−2) is the radiation stress term and S ′′ij (kg s−2)136

represents the Reynolds stresses (Calvete et al., 2005). D (kg s−3) is the wave137

energy dissipation due to wave breaking described according to Church and138

Thornton (1993).139

140

2.1 Linear stability analysis141

In a linear stability analysis, the variables consist of an alongshore- and time
invariant solution of (1)-(5), the basic state, denoted here with a zero sub-
script, and a small perturbation to that solution.

{zs, zb, u1, u2, E,Φ} = {Zs0(x), Zb0(x), 0, V0(x), E0(x),Φ0(x, t)}
+ Ψ(x) exp (ωt+ iky). (6)

The basic state corresponds to the wave conditions and water levels per-142

taining throughout the 2 months at Duck (see §2.2). It contains bed level143

Zb0, mean water level Zs0, alongshore current V0, wave energy density E0144

and phase Φ0. The second term on the right hand side of (6) is the pertur-145

bation. The disturbances considered are alongshore-periodic with arbitrary146

wavelength λ = 2π/k, and (complex) frequency ω = ωr + iωi. Thus the real147

part of the frequency wr represents the growth rate of the periodic pattern,148

while the imaginary part ωi is related to the corresponding migration rate149

(cm = −ωi/k). A pattern with positive wr indicates a mode unbounded in150

time, i.e. a growing mode. The growthrate is determined by the combined151

effect of wave forcing and bathymetry, and has been studied by Calvete et al.152

(2005). Among all growing modes, the one with largest ωr is defined as Fastest153

Growing Mode (FGM). For a chosen k, the evolution of the perturbation is154

solved as an eigenvalue problem for eigenvalue ω and eigenfunction Ψ .155

2.2 Basic state: field observation at Duck, 1998156

The basic state consists of forcing, an assumed equilibrium beach state, and157

a corresponding flow field. This forcing is the observed wave and tidal con-158

ditions recorded over a two month period in 1998, from August 20th (day159

232) until October 22nd (day 294)(Van Enckevort et al., 2004). Wave data160

were recorded at about 8 m water depth, around 1000 m offshore, at three161

hour intervals. The same frequency was therefore used to obtain predictions162

from the model. Bathymetric evolution was only recorded at the beginning163
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Fig. 1. Bed level profile resulting from alongshore averaging of the bathymetric
surveys at the beginning and end of the two-month period.

and end of this 2-month period. So, the alongshore averaged bathymetric pro-164

file was determined every three hours by linear interpolation between the two165

alongshore-averaged profiles that were constructed from the full bathymetric166

surveys at the beginning and end of this period. In Fig. 1 we can see these167

two initial and final profiles.168

Note that the tidal variation (M2) was included in the analysis by shifting169

the bathymetry vertically. The reproduced wave conditions and water depth170

are shown in Fig. 2. It can be seen that there are three times at which wave171

heights are increased for short durations (at about days 237, 263 and 272).172

We refer to these as storms 1, 2 and 3 respectively. Wave directions switch173

between northerly and southerly (with respect to the local coast), and so are174

likely to generate longshore currents in opposite directions at various times;175

some normally incident waves can also be seen. Periods are mostly confined176

within 5 and 15s. The tidal range is about 1 m.177

At each time interval, the observed wave data were applied on the offshore178

boundary of the linear stability model with updated bathymetric cross shore179

profile, to obtain predictions from the model. This will be further explained180

in § 2.4.181

2.3 Growth rate curve182

As mentioned in §2.1, k is arbitrary. So, we calculate the growth rate of all183

realistic morphodynamic lengthscales: 0.001 < k < 0.1 [rad m−1], for in-184

crements ∆k = 0.001 rad m−1; corresponding λ values are approximately185

{6.3km, 3.1km, 2.1km, 1.6km, 1.3km . . . 65.4m, 64.8m, 64.1m, 63.5m, 62.8m}, for186

each set of forcing conditions (every three hours). It is assumed that the pre-187

dictions made for each set of forcing conditions are valid for the three hour188

period until a new set of conditions becomes available. We thus require an189

entire growth rate curve for this region of k space for each three-hour predic-190

tion. This allows us to identify a unique growth rate for each k, in order to191

determine the amplitude development of each lengthscale.192

The identification of an entire growth rate curve corresponding to physical193
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Fig. 2. Forcing conditions used in the linear stability model, as they were measured
during observations period. (a) Wave height; (b) Wave angle relative to the coast (0o

is perpendicular to the coast, negative is from north to north-west and positive from
west to south-west); (c) Wave peak period; (d) Water depth above the onshore bar.
This water depth changes as a result of tides, surges and the bathymetric evolution.
The vertical dashed lines represent storm events.
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Fig. 3. (a) Growth rate (ωr) curve; (b) Migration rate (cm) curve. Shown are the
distribution for all k-values of the solutions of the system of equations, with small
black dots for all solutions from Morfo60, blue dots for all physical modes and black
encircled blue dots for selected physical mode.

modes is complicated due to the presence of spurious solutions to the equa-194

tions. For each lengthscale, the number of possible solutions calculated equals195

the number (n) of computational cross-shore nodes, with most of these results196

only describing physically meaningless spurious (i.e. non-physical) solutions to197

the system. These spurious solutions generally display negative or near-zero198

growth rates and, therefore, obscure in particular the negative part of the199

physical growth rate curve.200

For all modes we must be sure that we have correctly identified physical modes.201

These physical modes are identified by testing the convergence of eigenvalues202

and eigenfunctions as n increases. Spurious modes do not exhibit convergence203

and therefore are discarded. Runs were carried out with 300 (n = 300) and204

450 nodes (n = 450). According to Calvete et al. (2005), 300 cross-shore205

nodes is sufficient to achieve convergence. Our tests lead to agreement with206

this condition.207

This is done for all wavenumbers, resulting in multiple physical growth rate208

curves. An example of these curves is shown in Fig. 3. Among these physical209

growth rate curves, the one containing the highest growth rate for the region210

of k space being examined is selected. This growth rate curve is considered to211

be the one that governs evolution of bed-forms for the 3 hours during which212

those forcing conditions pertain. Note, however (Fig. 3), that other physical213

curves do exist; we ignore these.214
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Fig. 4. (a) The growth rate curve at each time step as derived by selecting the
physical growth rate curve as described in § 2.3 and 2.4. Blue indicates negative
growth rate and red positive growth rate, and the black dashed line indicates the
time of the peak of a storm. Black arrows indicate example of circumstances which
all values of k have positive growth rate. (b) Durations where no growth rate curve
could be determined (black dots and bars denote the situation where no data is
available).

2.4 Growth rate over time215

Every three hours, a separate prediction of the linear growth rate curve is216

created based on the new hydrodynamic forcing conditions and bathymetry.217

The variability of this growth rate curve over time is significant (see Fig. 4(a)).218

Calmer conditions (as occur from day 255 to 259, for instance) generally result219

in very small growth rates, whereas bigger wave heights (as can be observed220

after day 237 in Fig. 2) result in both rapidly growing and decaying modes.221

The effect of the tidal variation (M2) can clearly be seen in the periodically222

varying growth rate. In low tide conditions, there are a few circumstances223

(highlighted by dark arrows in Fig. 4a) that show positive growth rates for a224

broad band of k (lengthscales).225

The identification of the physical growth rates for each k-value has not been226

successful for all cases, as can be seen in Fig. 4(a, b). There are two situations227

when no physical growth rate could be obtained. Sometimes, the growth rate228
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selected by the proposed method greatly deviates from neighbouring (in k229

space) growth rates. In these circumstances we deem that result non-physical,230

and to avoid seemingly unrealistic results, we set ωr = 0, see black dots in231

Fig. 4(b). Additionally, convergence is typically not achieved under more ex-232

treme storm conditions. When this occurred, it was again assumed that all233

lengthscales would show neither growth nor decay (ωr = 0), see vertical black234

bars in Fig. 4(b). For most of the cases, however, a growth rate is available. As235

shown in Fig. 4(b), the percentage of lengthscales that lack a physical growth236

and migration rate over time is about 4%.237

3 Model formulation: amplitude development238

The bed-pattern lengthscale with the highest amplitude at any instant is239

deemed dominant and most likely to be observed in the field. Tiessen et al.240

(2010) took this lengthscale to be that corresponding to the FGM at different241

times. Here we identify amplitude development for all lengthscales and derive242

the dominance of one lengthscale based on competition between these ampli-243

tudes, each of which is influenced by, but not solely dependent on, the linear244

growth rate.245

A systematic approach to doing this is a weakly nonlinear perturbation expan-246

sion (see e.g. Schielen et al., 1993). This approach results in a rapidly increas-247

ing number of different harmonics of k. Motivated by Tiessen et al. (2011)248

we limit our investigation to linear growth, self-limitation of that growth (i.e.,249

equilibration, or saturation), and the generation of the first harmonic. This250

approach is in keeping with that of Knaapen and Hulscher (2001), who used251

data-assimilation techniques to derive coefficients of an ampltiude evolution252

equation that would result from a weakly nonlinear analysis. We thus hy-253

pothesise that the two most important nonlinear effects in the long-term de-254

velopment of crescentic bars are: i) equilibration of growing modes for all k255

values; and ii) generation of higher harmonics by growing modes, which there-256

fore allow energy to be transferred to smaller wavelengths. This generation is257

depicted schematically in Table. 1. The O(ε0) term is our basic state, which258

remains unchanged. We consider the linearly growing (fundamental) mode (at259

O(ε1)), and the first harmonic (O(ε2)) that it generates by self-interaction. As260

noted, we exclude alterations to the mean bed (basic state). Being a mean261

component this will not affect lengthscale evolution. However, interaction of262

the mean term with the fundamental mode (that of the linear instability) will263

give rise to an equilibration (saturation) term at O(ε3); this is included. Sec-264

ond and higher harmonics are excluded. Note also that we assume this model265

to pertain for all k values.266

We choose the generic amplitude equation that can result from a weakly
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−3k −2k −k 0 k 2k 3k

O(ε0) X

O(ε1) X X

O(ε2) X x X

O(ε3) x X X x

Table 1
Schematic depiction of the harmonics included in the amplitude evolution model; a
X(x) indicates inclusion (exclusion). ε represents the (small) amplitude of the bed
pattern.

nonlinear analysis, which embodies the energy transfers described above (see
Drazin and Reid , 1981). This is:

dAk
dt

= ωrk(tn) Ak − lk(tn) A3
k + mk/2(tn) A2

k/2 . (7)

Note that Ak(t) is our bed-form (mode) amplitude hereafter, where the k
subscript refers to the lengthscale to which this amplitude pertains (also for
ωrk). The other coefficients in (7) are:

lk(tn) = |ωrk(tn)|, mk/2 = α(1− A10
k ), (8)

where α is a constant. The first term on the right represents the linear growth267

(or decay). The amplitude (Ak(t)) is therefore an initially exponentially grow-268

ing (or decaying) quantity, assuming a small enough initial amplitude, with269

growth rate ωrk(tn). Ak(t = 0) = Amin = 0.1 is the same for all lengthscales;270

this is also the minimum amplitude. During storm events, all pre-existing bed-271

forms are expected to be erased. This is simulated by resetting the amplitudes272

of all lengthscales to Amin. The maximum amplitude Amax = 1; as amplitudes273

approach this value it is assumed that nonlinear effects will become domi-274

nant, and so further linear development is assumed to cease as this limit is275

approached. The values of Amin and Amax do not convey any intrinsic mean-276

ing themselves, except that choosing Amax = 1 is consistent with the weakly277

nonlinear nature of the expansion (i.e. all powers of Ak < 1) and can be done278

without loss of generality. The value of Amin therefore is arbitrary, except279

that a ten-fold growth seems to represent roughly the duration it takes for a280

crescentic bathymetry to reach a new stable situation after a storm.281

This assumption regarding Amax motivates the choice for lk = |ωrk(tn)|, the282

coefficient of the second term on the right. This ensures the desired long-term283

behaviour. This O(ε3) term represents the equilibration, and the amplitude284

equation including just the first two terms on the right is the Stuart-Landau285

equation (Drazin and Reid , 1981). which emerges in studies in fluid dynamics,286

and represents the effects of equilibration (growth to finite amplitude) only.287

The final term in (7) allows energy transfer to Ak from lengthscales twice288
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those of the lengthscale λ = 2π
k

. The energy transfer factor, α = 0.3, was289

estimated based on the amplitude development rates of higher harmonic modes290

as observed by Tiessen et al. (2011), see Fig. 8 in Tiessen et al. (2011).291

In § 5.4 we examine the sensitivity of the simulations to changes in α. The292

dependence of mk/2 on Ak is included here to ensure that all modes can only293

achieve the same maximum amplitude, so that this term, if operational, accel-294

erates growth only, and becomes inoperational as |Ak| → 1. This dependence295

is the only part of (7) that would not result from a weakly nonlinear analysis.296

3.1 Numerical experiment on synthetic data297

Before applying (7) to the data-set for Duck, we first illustrate the effect of298

the various terms on the right of (7) by means of an idealised but (synthetic)299

representative example. This example notionally corresponds to two different300

forcing conditions consecutively applied for 12.5 days each. In Fig. 5 (a) and301

(b) we show the (time-invariant synthetic) growth rate curves corresponding302

to these two notional sets of forcing conditions. In Fig. 5 (c), (d) and (e) this303

results in the development of different crescentic bed-patterns with regards to304

lengthscale λ (or k) and amplitude (Ak), for three scenarios: Fig 5 (c) linear305

evolution (first term on the right of (7) only); Fig 5 (d) equilibration (first two306

terms on the right of (7) only); and Fig 5 (e) full model, i.e., linear evolution,307

equilibration and higher harmonic generation (all terms on the right of (7)).308

In the early stages of linear evolution (Fig. 5(c)) there is rapid development of309

the lengthscale λ1 = 700 m. This is the lengthscale of the FGM for the first310

forcing condition (denoted here FGM1, green line, see caption). After the first311

forcing conditions (Fig. 5(a)) have been applied for 12.5 days, the second set312

of forcing conditions (Fig. 5(b)) results in a decay of FGM1, which remains313

dominant until the FGM of the new conditions (FGM2, blue line) surpasses314

it. During day 23, Ak2 exceeds Amax, so further development is terminated.315

Note also the growth of lengthscale λ′1 = 785 m (k′1) in the first 12.5 days: see316

Fig. 5 (a) and (c). This corresponds to that of the mode FGM ′
1 with growth317

rate almost as large as that of FGM1. This mode grows and decays much like318

FGM1.319

For the equilibration case (Fig. 5(d)) bathymetric evolution is self limiting.320

As the amplitudes increase, again, centred around k1 for the first 12.5 days,321

the rate of increase decreases, especially toward the end of this period. The322

subsequent transition from the first to the second forcing conditions (growth323

centred on k1 to growth centred on k2) leads to similar behaviour. However,324

now the amplitude development levels off when the amplitude approaches 1.325

For the full model (Fig. 5(e)) we see qualitatively different behaviour. A small326
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Fig. 5. Example of the three different cases: (a,b) Two different growth rate curves
applied consecutively for 12.5 days; (c) linear evolution only; (d) equilibrated solu-
tion; (e) full model. Light (dark) shading indicates low (high) amplitude. Coloured
lines indicate the position in k (in rad m−1) space (a,b) or λ (in m) space (c-e)
of modes that exhibit significant growth in one or more cases. Solid lines: modes
that only grow linearly. Green: FGM1 (FGM corresponding to growth rate curve
from the first forcing conditions, at k = k1 = 0.009 rad m−1); Magenta: FGM ′1
(mode adjacent to FGM1, for which ωr is only slightly smaller than that for FGM1

under first forcing conditions, k = k′1 = k1 − ∆k = 0.008 rad m−1); Blue: FGM2

(FGM corresponding to the growth rate curve from second forcing conditions, at
k = k2 = 0.03 rad m−1). Dash-dotted lines: Green: higher harmonic of FGM1 (2k1);
Magenta: higher harmonic of FGM ′1 (2k′1). Dashed lines: further higher harmonics
(4k1, 4k′1) of FGM1 and FGM ′1. The lengths of the lines is for illustrative purpose
only.
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but significant amount of energy is fed into 2k1 and 2k′1 during the first 12.5327

days, by higher harmonic generation. Under the second set of forcing condi-328

tions these wavelengths correspond to linearly growing modes, and so these329

continue to evolve during the latter 12.5 days. Additionally, 4k1 and 4k′1 are330

similarly excited, and these modes lie close to k2, so that even though they ini-331

tially possess only limited amplitudes they ultimately grow rapidly. The result332

is a broader range of lengthscales (modes) containing significant amplitudes.333

4 Results334

4.1 The evolution of crescentic bars335

The model predictions representing the two months of field observations at336

Duck (NC) for the three cases are shown in Fig. 6, where the amplitude de-337

velopment for all examined lengthscales is shown over time. We show the338

equivalent three cases to illustrate the effects of the inclusion of these physical339

mechanisms on predictions. For the predictions made solely by linear growth340

rates (Fig. 6(a)), the amplitude development is terminated when the fastest341

growing lengthscale reaches Amax (about day 246, after storm 1). In the field,342

the crescentic bars are likely to be removed during a storm (Van Enckevort343

et al., 2004). We thus assume that all pre-existing bed pattern are erased in344

a storm (shown as dashed lines), and predictions resume immediately after a345

storm. This eradication of pre-existing bed-forms during a storm is also applied346

for the other cases. During the subsequent bed evolution, the development of347

crescentic bars starts again from Amin.348

The rate of development after the first and third storms is similar, which can be349

seen in the emergence of significant amplitudes at post-storm times. Although350

after storm 3, the significant amplitude emerges at a later post-storm time than351

that after storm 1. This development is larger than that after the second storm.352

The growth rate curve (Fig. 4(a)) shows why this difference happens. The only353

large growth rates after the second storm occur immediately after it, i.e., in a354

short period as the wave height is subsiding from its peak. In contrast, both the355

first and third post-storm periods exhibit significant durations when growth356

rates are significant (see the regions with ‘red’ growth rates in Fig. 4(a)). These357

durations roughly correspond to times when Hrms > 0.5m (see Fig. 2(a)).358

After storm 1, such duration of positive growth rate comes right after the359

storm, whereas after storm 3, such duration comes after a quiet period of360

roughly 4 days. This explains significant amplitudes emerge at a later post-361

storm time after storm 3 than after storm 1. Furthermore, the time interval362

between second and third storms is shorter than that between first and second363

storms, thus allowing less time for development of these bed-forms.364
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Fig. 6. Amplitude development for the three cases compared to the observed length-
scales (large white circles) (Van Enckevort et al., 2004), where coloured dots denote
the predicted dominant lengthscale. (a) linear evolution; (b) equilibration; (c) full
model.

For the equilibration case, development rates are reduced by the equilibration365

term during the latter post-storm stages. As a result, more gradual growth is366

seen latterly, but qualitatively behaviour is the same, except that the whole367

time period can now be accommodated.368

In the case of higher harmonic interaction (full model), the simulation shows369

a significant amplitude transfer occurring from longer lengthscales to shorter370

lengthscales. This gives rise to a wider range of developing modes than is the371

case when only the linear evolution or equilibration are considered.372

To better illustrate the model results, we reconstruct the sea bed patterns of373

dominant lengthscales with eigenfunctions calculated by Morfo60. An exam-374

ple is given in Fig. 7, showing the structure of the perturbations of dominant375

length scale. A crescentic bar shaped perturbation is observed on top of the376

alongshore bar (located at 88 m away from shoreline). With the inclusion of377

equilibration, the amplitude of the perturbation is smaller. In the full model378
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Fig. 7. Sea bed pattern of dominant length scales on day 245 (denoted by large blue
dots in Fig. 6), for (a) linear evolution, with λ = 523.6 m; (b) equilibration, with
λ = 523.6 m; (c) full model, with λ = 392.7 m. Color indicates perturbation, with
red and blue for positive and negative perturbations, respectively.

case, the perturbation shows a smaller lengthscale (λ = 392.7 m) and is the379

higher harmonic mode of λ = 785.4 m, which also exhibits significant ampli-380

tude in linear evolution case (see Fig. 6).381

A comparison of the predicted and observed lengthscale evolution is also shown382

in Fig. 6. The predicted dominant lengthscale (that of the biggest amplitude383

at each time t = tn) is shown as a coloured dot, and the observed lengthscales384

are shown as larger white dots. Note that the observation data is not avail-385

able in between day 251 and day 259 (see the blank space of white circles in386

Fig. 6). In between storms, amplitude development based on linear evolution387

and equilibration generally over-predict the dominant lengthscale. Higher har-388

monic interaction (full model) results in a more rapid development of shorter389

lengthscales which is more in line with field observations (Fig. 6(c)). In some390

aspect, the full model reproduced the observed stabilisation of the bed-form391

lengthscales after storm 1, as the predicted lengthscale fluctuated in a nar-392

row band of observed lengthscale. These fluctuations in predicted lengthscale,393

as can be seen from the amplitudes in Fig. 6(c), are due to relatively small394

amplitude differences between a number of co-existent modes.395
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plitude Āy = 0.5 × (Ay1 + Ay2)/2. The horn of the crescent is labelled with filled
circles, whereas the bay is labelled with an open circle.

4.2 Amplitude evolution396

Due to the lack of observational data of the vertical amplitude of crescentic397

bars, a straight comparison of the amplitude of the predicted dominant length-398

scales with field observation is not possible. However, in Van Enckevort et al.399

(2004), the horizontal amplitude (Āy) of the crescentic bar at Duck is recorded.400

This amplitude was calculated as half the average cross-shore distance between401

the bay and the two horns (Figure 8). We hypothesize that the vertical am-402

plitudes of crescentic bars is proportional to Āy. In figure 9, the predicted403

amplitude of the dominant lengthscale (solid black curve) is compared with404

the observed Āy (dash-dotted blue curve). In the full model evolution, ampli-405

tude growth and equilibration after storm 1 is consistent with that observed.406

After storm 3 the model produces more rapid growth to a higher amplitude407

than that observed, but, nonetheless, qualitatively similar behaviour. Again,408

the effect of the higher harmonic interactions may be observed by compar-409

ing figure 9 (b) and (c). The differences are small, but remember that the410

simulated amplitudes are those of the dominant lengthscale, and these are in411

general over predicted by the equilibration model. A substantial difference be-412

tween the observation and simulation is found after storm 2. In a short period413

after storm 2, the observed amplitude recovers to the amplitude before the414

storm, whereas very limited amplitude development is observed in our model415

result. This, as also noted by Tiessen et al. (2010), points to the persistence416

of bed-forms through the second storm. This will be further discussed in § 5.2.417
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Ā
y
[m

]

0 

20

40

60

240 250 260 270 280 290

A

0  

0.5

1  

1.5
(b) equilibration

Ā
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Fig. 9. Comparison between the observed and predicted dominant amplitudes, for
three simulations: (a) linear evolution; (b) equilibration; (c) full model. The solid
dark curve describes the amplitude of dominant lengthscale, whereas the dash-dot-
ted blue curve refers to the observed longshore averaged horizontal amplitude (Āy).

5 Discussion418

5.1 Importance of nonlinear effects419

The most striking nonlinear effect on our simulation results is the higher420

harmonic interaction. A quantitative comparison between the observed and421

predicted lengthscales (Table 2) shows that the inclusion of higher harmonic422

interaction reduced the absolute and relative error of predicted and observed423

dominant length scale. The improvement in correspondence with the inclusion424

of higher harmonic interaction is also apparent in Fig. 10 where the predicted425

dominant lengthscale is compared to the observed lengthscale at the moments426

when observations could be made. The incorporation of the equilibration term427

is necessary.428
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Absolute error [m] Relative error [-]

Linear evolution 190 0.54

Equilibration 168 0.49

Full model 108 0.31

Table 2
The error between predicted and observed dominant length scale of the different
scenarios. Note that the comparison is taken at the moments when observation
could be made, and both the absolute and relative error are averaged values.
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Fig. 10. Comparison between the observed and predicted dominant lengthscales,
for three simulated : (a) linear evolution; (b) equilibration; (c) full model. The
area between the dashed lines corresponds to relative error < 0.3. The contour
line denotes the density of data points, with red color for high density and blue
color for low density, see color bar. The unit of color bar is ’number of observations
(comparison) per unit area.’

5.2 The persistence of bed pattern after storms429

In the model we have assumed that all pre-existing bed-forms have been eradi-430

cated after each storm, and the development of all lengthscales starts from the431

same Amin. This assumption is based on the notion that each storm is powerful432

enough and of long enough duration for an alongshore constant sandbar to be433

formed. However, field observation shows that some crescentic bed patterns434

can survive through a storm (Van Enckevort et al., 2004). After second storm435

(Fig. 6), the field observed dominant length scales stay close to the length436

scale before the storm, which are distinctly different to our model findings. As437

previously postulated in Tiessen et al. (2010), this might be due to the persis-438

tence of crescentic bed-forms throughout a comparatively less powerful storm.439

Moreover, apart from one observation at ∼ 700m (see Fig. 6) the observed440

lengthscales right after the third storm stay in a narrow band close to the441

dominant wavelength after the second storm. This is distinctly different from442

the fluctuation of lengthscales observed after the first storm, and consistent443
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with the aforementioned persistence of bedforms through the second storm.444

To investigate this effect, we introduce a so-called persistence ratio (µ) of
pre-existing bed patterns after a storm,

µ =
Ak,t+s − Amin
Ak,t−s − Amin

,

where t−s (t+s ) refers to the time immediately before (after) the storm. The445

value of µ therefore ranges from 0 to 1, where µ = 0 (1) means that all pre-446

existing bed-forms have been eradicated (preserved), so the initial amplitude447

after storm Ak,ts+ = Amin(Ak,ts−). Previously (Fig. 6) µ = 0 is used for all448

storms. Here we relate the value of µ to storm strength which is represented449

by the maximum wave height of each storm. From this perspective, storm 2450

and 3 are of similar strength, whereas storm 1 is more powerful, see Fig. 2.451

We thus assume µ = 0 after the first, and investigate the effect of varying452

the (same) value of µ after second and third storms for the full model (7). In453

Fig. 11 (black dashed line) we see the effect of this variation in µ. By allowing454

more bed amplitude to be preserved we observe a reduction in relative error of455

lengthscale as µ increases from 0 (its value in Fig. 6), and thereafter a modest456

increase. In fact, there is a max. error for µ = 0. Further research is required457

to clarify the mechanism lying beneath µ. The sensitivity of model behaviour458

on µ is further discussed in § 5.4.459

5.3 Energy transferred to higher harmonics460

The energy transferred from λ to λ
2

is characterised by a factor α (see § 3). As461

mentioned in § 3, the value of α in this study was chosen based on the rate of462

energy transfer observed by Tiessen et al. (2011). A high value of α indicates a463

rapid transfer of energy to λ
2

and hence probably leads to an earlier post-storm464

dominance of short wavelength. It is apparent (see Fig. 11 for µ = 0) that the465

value used in Fig. 6 (following Tiessen et al., 2011) gives something close to466

the minimum relative error for the full model.467

5.4 Model sensitivity to µ and α468

The full sensitivity of the full model behaviour to µ and α is shown in Fig. 11,469

with 0.2 ≤ α ≤ 0.8 and 0 ≤ µ ≤ 1 (note that we still assume that µ = 0 for the470

first, larger storm). The relative error of the predicted dominant lengthscales471

and observed lengthscales is smaller for non-zero µ. This suggests that part472

of pre-existing bed pattern (and therefore lengthscale(s)) persists after second473

and third storms, and, by implication, that the second and third storm are not474
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Fig. 11. sensitivity of full model behaviour on persistence ratio µ of pre-existing bed
patterns and energy transfer factor α. The vertical black dashed line refers to the
choice of α = 0.3 in section 4. Colours indicate the relative error of the predicted
dominant lengthscales and observed lengthscales, with blue for low relative error
and red for high relative error.

strong enough to erase all the existing bed forms. There is a region of broadly475

minimum error for about 0.2 ≤ µ ≤ 1 and 0.3 ≤ α ≤ 0.6. The conclusion476

appears to be that a higher µ after storm 2 and 3 leads to slightly better477

correspondence between prediction and observation.478

The minimum error is actually achieved (Fig. 11) for α = 0.41 and µ = 0.78,479

resulting in a relative error of 0.24 (as compared to 0.31 for µ = 0, α = 0.3,480

see Table 2). Using these values we re-run the model for the full duration,481

and results are shown in Fig. 12. Additionally, we see results of the predicted482

dominant amplitude plotted against that observed. The predicted dominant483

amplitude now shows better correspondence with observation after the second484

storm, but poorer correspondence after the third storm. This and Fig. 10485

suggest that these two storms correspond to different µ values.486

6 Conclusions487

In this study, we hypothesize that the dominant mechanisms for evolution of488

crescentic bar systems in nature are linear growth allied to equilibration (self-489

limitation) and higher harmonic generation by self-interaction. These mecha-490

nisms have been implemented into a model that would result from a weakly491

nonlinear perturbation analysis, but in which the coefficients of the nonlin-492

ear terms (in particular, that governing higher harmonic interactions) are set493
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Fig. 12. Amplitude (top, figure explanation is as Fig. 6) and dominant amplitude
(bottom, figure explanation similar as Fig. 9) development for the full model with
α = 0.41 and µ = 0.78.

based on observations. This model is then used to investigate the bathymetric494

evolution of a crescentic-barred beach at Duck (North Carolina, USA). The495

model was used to reproduce a 2-month period, over which field observations496

were analysed by Van Enckevort et al. (2004). Results show that nonlinear497

effects of equilibration and higher harmonic interaction lead to significantly498

improved reproduction of long-term evolution of a crescentic bar system in499

terms of observed lengthscales.500

In between storms when crescentic bars develop, their initial development501

corresponds well with the results from a basic linear stability analysis. The502

addition of a self-limitation term (Drazin and Reid , 1981) extends the predic-503

tive range of the linear stability model to the entire post-storm period. The504

inclusion of the term describing generation of higher-harmonics (as suggested505

by Tiessen et al., 2011) leads to a significant improvement in prediction of506

observed lengthscales. With these extra effects, an approach based on linear507

stability analysis can describe the observed change from immediately post-508

storm large lengthscales to the subsequent shorter lengthscales, related to509

calmer conditions in between storm events, and the subsequent stabilisation510
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of the bed.511

Note that the present approach is a significantly larger undertaking than that512

of just determining a single fastest growing mode (FGM), i.e. corresponding to513

a single k at one time, as done by Tiessen et al. (2010). Here we must determine514

a whole, unique growth rate curve at each time. Nonetheless, the present ap-515

proach is still significantly less demanding in terms of computational time than516

the simulations typically required to describe the development of the whole sea517

bed over this area (this is generally done using a fully nonlinear model, and ei-518

ther 2DH or 3D). An additional advantage of the currently proposed method is519

the significantly reduced need for beach-specific parametrisation, because de-520

tailed, spatially-variable planform-bathymetric data is not required. Similarly,521

only relatively idealised and schematised conditions regarding wave climate522

and tidal elevation are needed for a linear stability approach.523

Whilst these findings represent an improvement on a linear stability model524

(Tiessen et al., 2010), several effects are not yet included or fully understood.525

For instance, the occurrence of a storm-related eradication of the crescen-526

tic bed-forms needs to be further investigated. The current research suggests527

that certain storms might not be strong enough to cause a wipe-out of along-528

shore bedforms. Additionally, the energy transferred in the higher harmonic529

interaction is not yet quantified. More work is needed on developing a system-530

atic approach to deriving the amplitude equations. Doing this would allow a531

more complete description of long-term crescentic development (as opposed to532

just lengthscale and amplitude). Note also that in our approach we consider533

discrete wavelengths as opposed to the continuum of wavelengths that are de-534

scribed by a Ginsburg-Landau equation (Schielen et al., 1993). Finally, note535

that for some forcing conditions there is likely to be more than one physically536

relevant growth rate curve (see Fig. 3).537
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