
1

Interval Type-2 A-Intuitionistic Fuzzy logic for
Regression Problems

Imo Eyoh, Student Member, IEEE, Robert John, Senior Member, IEEE, and Geert De Maere

Abstract—This paper presents an approach to prediction based
on a new interval type-2 Atanassov-intuitionistic fuzzy logic sys-
tem (IT2AIFLS) of Takagi-Sugeno-Kang (TSK) fuzzy inference
with neural network learning capability. The gradient descent
(GD) algorithm is used to adapt the parameters of the IT2AIFLS.
The empirical comparison is made on the designed system
using some benchmark regression problems - both artificial
and real world datasets. Analyses of our results reveal that
IT2AIFLS outperforms its type-1 variant, other type-1 fuzzy
logic approaches and some type-2 fuzzy systems in the regression
tasks. The reason for the improved performance of the proposed
framework of IT2AIFLS is because of the introduction of non-
membership functions and intuitionistic fuzzy indices into the
classical IT2FLS model. This increases the level of fuzziness in the
proposed IT2AIFLS framework, thus providing more accurate
approximations than AIFLS, classical type-1 and interval type-2
fuzzy logic systems.

Index Terms—Interval type-2 A-intuitionistic fuzzy logic sys-
tem; Regression problems; Gradient descent algorithm.

I. INTRODUCTION

Fuzzy set (FS) theory was introduced by Zadeh [1] as a
generalisation of the classical notion of a set and has served
as an indispensable mathematical tool for handling uncertainty
and computing with words [2]. According to Zadeh [3],

Fuzzy logic is a precise conceptual system of reason-
ing, deduction and computation in which the objects
of discourse and analysis are, or are allowed to
be, associated with imperfect information. Imperfect
information is information which in one or more
respects is imprecise, uncertain, incomplete, unre-
liable, vague or partially true.

Despite the extensive use of type-1 FS (T1FS) and its connota-
tion of uncertainty, previous studies have shown that T1 fuzzy
logic cannot directly handle the high level of uncertainty in
many real world applications [4]. Zadeh [5] introduced type-2
fuzzy set (T2FS) which has the capacity to handle uncertainties
that T1 struggles with because membership grades of T2FS
are themselves fuzzy which give them the flexibility to adapt
to uncertain environments. This flexibility provides a soft
decision boundary and has a close resemblance to human
decision making [6] such that classes of objects can have
a gradual rather than abrupt transition from membership to
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non-membership. The hallmark of type-2 fuzzy logic systems
therefore, is the ability to directly model uncertainties in data
[4] such as noisy data and different word meanings.

Atanassov [7] extended the concept of Zadeh’s fuzzy sets to
intuitionistic fuzzy sets, hereafter referred to as AIFSs, which
handle uncertainty by taking into account both the membership
and non-membership degrees of an element x to a fuzzy set A
together with extra degree of indeterminacy (hesitation). With
AIFS, the fuzzy characteristic of “neither this or that” (neutral
state) can be described, thus providing IFS the flexibility
and the ability to capture more information than FS [8].
AIFSs are found to be useful for dealing with vagueness [9],
[10]. Szmidt and Kacprzyk [11] state that AIFSs are useful
in problem domains where the use of linguistic variable to
describe the problem in terms of membership functions only
seems too restrictive. According to Olej and Hajek [12], the
representation of attributes by means of membership and non-
membership functions provides a better way to express uncer-
tainty. Castillo et al. [13] pointed out that the non-membership
degrees or intuitionistic fuzzy indices enable the representation
of imperfect knowledge and also allow adequate description of
many real world problems. According to [14], when dealing
with the problem of vagueness where there is insufficient
information leading to an inability to satisfactorily specify the
membership function, the AIFS theory becomes more suitable
than fuzzy sets to deal with such problems. It is argued that
AIFS is a tool for a more human consistent reasoning under
imperfectly defined facts and imprecise knowledge [15].

Studies involving AIFSs have drawn much attention in
recent times and have been successfully applied in different
problem domains such as time series analysis [13], [16],
threat assessment [17], prediction [12], [18], classification
[19], control [20], [21], bankcruptcy forecasting [22], credit
scoring [23] and e-learning to evaluate student knowledge of
Mathematics in university courses [24]. As more number of
neurons tend to slow down the learning process of a modular
neural network (MNN), Sotirov et al. [25], proposed an A-
intuitionistic fuzzy intercriteria analysis approach for reducing
the number of neurons/parameters in an MNN thereby speed-
ing up the learning process. However, most of these studies
have focussed on type-1 Atanassov’s intuitionistic fuzzy logic
systems (AIFLSs). We believe that the use of type-1 FLS
(classical or A-intuitionistic) in handling uncertainties in some
areas may not be appropriate, especially in circumstances
where the determination of exact membership function is
difficult to pinpoint. Hence, similar to the notion of a clas-
sical T1FS, the type-1 AIFLS may not handle or minimize
the plethora of uncertainties that are inherent in real world
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applications as their membership and non-membership degrees
are exactly defined.
Perhaps the best way to describe this deficiency of FS and IFS
is in the words of Gorzalczany [26] and Gerhre et al. [27]:

“. . . it is not always possible for a membership func-
tion of the type µ : X → [0, 1] to assign precisely
one point from the interval [0, 1] to each element
x ∈ X without loss of at least a part of information.”
[26].

Gorzalczany formalised the theory of IVFSs and studies have
shown that IVFSs are equivalent to AIFSs [28], [29], [30], [7].
According to Gerhre et al. [27]

“· · · But an increasingly prevalent view is that mod-
els based on [0,1] are inadequate. Many believe that
assigning an exact number to an expert’s opinion is
too restrictive, and that the assignment of an interval
of values is more realistic.”

To tackle this problem, Atanassov and Gargov [31] extended
the concept of IFS to interval valued AIFSs (IVAIFS) which
are characterised by membership and non-membership func-
tions and defined in the interval [0, 1].

In the literature, IVFSs [26] are regarded as the special
cases of IT2FSs [14], [32], [33], [34]. We argue that this will
include both classical and A-intuitionistic IVFSs. Specifically,
and more notably is the work of Bustince et al [33] which
demonstrates indepth, a wider and general view of the rela-
tionship between IT2FSs and IVFSs. According to [33], IVFSs
are only a special case of IT2FSs and as such both kinds of
fuzzy sets should be treated differently. In their paper, four
representations are defined for the primary membership func-
tions of IT2FSs namely, as type-1 fuzzy sets, as interval-valued
fuzzy sets, as multi-fuzzy sets and as multi-interval fuzzy sets.
Thus, IT2FSs can easily be used to model other concepts, a
capability not obtainable with IVFSs [33]. Similar to IT2FS
and its representations, we argue that IT2AIFS can also be
used in a more general perspective to represent concepts that
are not possible with IVAIFSs, hence our adoption of IT2AIFS
instead of IVAIFSs. It is useful to make this distinction in the
context of this research as it serves to distinguish the much
broader concept of IT2AIFS from the more specific concept of
IVAIFS. Secondly, for IVAIFS, the general constraints is that
the summation of the upper-bound membership and upper-
bound non-membership degrees is less than or equal to 1.
On the contrary, for IT2AIFS, the summation of the upper-
bound membership and lower-bound non-membership is less
than or equal to 1 and the summation of the lower-bound
membership and upper-bound non-membership degrees is less
than or equal to 1, i.e. for IT2AIFS, the constraints are: 0 ≤
µÃ∗(x) + νÃ∗(x) ≤ 1 and 0 ≤ µ

Ã∗(x) + νÃ∗(x) ≤ 1 for all
x ∈ X [35]. This also presents IT2AIFS as a concepts different
from IVAIFS. Consistent with previous studies on T2FLS
[36], [37], we believe that the resulting interval type-2 A-
intuitionistic fuzzy logic systems (IT2AIFLSs) whose degrees
of membership and non membership are intervals are capable
of providing better performance in some applications than the
type-1 A-intuitionistic fuzzy logic systems (T1AIFLSs).

Some studies in the literature on applications involving
T2FS and AIFS include, Nguyen et al. [35] who proposed
a clustering approach using IT2 fuzzy C-mean (IT2FCM)
and AIFS for the clustering of different types of images
especially those corrupted with noise. Experimental results
reveal improvement in the clustering quality of images using
IT2FCM and AIFS compared to representative algorithms
like FCM and IT2FCM. Nghiem et al. [38] also applied A-
intuitionistic type-2 fuzzy set to image thresholding using
Sugeno intuitionistic fuzzy generator. The authors in [38]
claim that their proposed method exhibits higher thresholding
quality with noisy images compared to typical algorithms
such as image segmentation using type-1 fuzzy set and AIFS.
Naim and Hagras [39], presented a hybrid approach where
IT2 and AIFS are utilised in multi-criteria group decision
making (MCGDM). The proposed system employs IT2FS to
handle the linguistic uncertainty while utilising intuitionistic
evaluation in the design of the non-membership function
degrees. The authors applied the proposed method to the
evaluation of postgraduate study involving 10 candidates.
Analysis of results shows that variations in the group decision
making using the proposed method of IT2FS and IF evaluation
provided better agreement with the human experts decision
than AIFS, FS and IT2 fuzzy systems. In Naim et al. [40],
fuzzy logic-MCGDM (FL-MCGDM) is proposed for selecting
appropriate and convenient lighting level for reading to meet
each individual needs as this varies among users. The proposed
hybrid system was developed using the concepts of IT2FS and
the hesitation indices provided by the IFS. The membership
function of the IT2FS for the left and right end-points were
represented in intuitionistic values. Experimental evaluation
revealed a significant correlation between the user’s linguistic
appraisal and the result provided by the proposed FL-MCGDM
system. The authors concluded that the combination of T2FS
and IFS provides FL-MCGDM with enhanced capability for
decision making. Another FL-MCGDM is proposed in Naim
and Hagras [41] for intelligent shared environment. The pro-
posed model also utilises IT2FS and hesitation indices of
AIFS in the design of the decision making model. In order to
evaluate the effectiveness of the designed approach, the authors
applied the model to an intelligent apartment and concluded
that the results were consistent with the human decision as
compared to classical fuzzy MCGDM.

Castillo et al. [42], proposed the concept of using IFS to
represent IT2FS. The authors pointed out that this can be
achieved with a suitable choice of interval function (g). As a
follow up, in Castillo et al. [43] the authors discussed the use
of IFS and its multidimensional (MDIFS) variant to interpret
FSs, IT2FSs and generalised T2FSs (GT2FSs). Recently [44]
proposed a new IT2FLS by introducing the non-membership
function into IT2FS and incorporating the hesitation indices
of AIFS into the FOUs of the proposed fuzzy set definitions,
otherwise known as interval type-2 Atanassov intuitionstic
fuzzy set (IT2AIFS). The proposed interval type-2 Atanassov-
intuitionistic fuzzy logic system (IT2AIFLS) was applied to
the prediction of non-linear systems. Evaluation of results
reveal better performance of IT2AIFLS compared to some
standard T2FLS and its type-1 counterpart. Cuong et al. [45]
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have defined some operations for T2IFS and their properties
and concluded that many applications will benefit from the
use of such sets.

As discussed, FSs of type-1 are not able to directly model
uncertainties, type-2 fuzzy sets (T2FSs) are therefore very
appropriate for our purpose. The key advantage being that
the membership functions of T2FSs are themselves fuzzy
where the actual degree of membership is assumed to belong.
That is, T2FSs has a greater capability to model imprecise
and imperfect information as they are able to capture the
uncertainties in their footprints of uncertainty (FOUs).

Type-2 fuzzy sets and systems can be classified into general
type-2 (GT2) and interval type-2 (IT2). The GT2FSs are
computationally intensive, difficult to use and understand [46]
because the secondary membership grades of elements have
different magnitudes. In recent years, research has focussed
mostly on interval type-2 fuzzy sets which are quite practical
with manageable computational intricacies since the secondary
membership grades all take the value 1 [37]. The work in this
research also adopt the principles of IT2FS.

The use of IT2FSs to model uncertainty in data cannot
be over-emphasized as there exists abundance of applications
involving IT2FLSs which employ at least one IT2FS in the rule
base (see [47], [48], [49], [50], [51]). It is generally known
that the membership functions of IT2FSs are themselves
fuzzy which make them more versatile to handle uncertainty
well. That is, IT2FSs are quite useful in cases where it is
difficult to specify a single crisp numeric membership function
value and where linguistic and numerical uncertainties abound,
particularly in many real world applications. According to Wu
[52], one of the reasons for the wide spread use of IT2FLSs is
because the rule base is easy to design from expert knowledge
and natural language which increases the robustness of the
system. Also, IT2FLS are adaptive with the ability to model
input-output relationships better than its type-1 counterpart.
For a more detailed advantages of using IT2FLS, (see [52],
[53]). Despite the advantages, the extensive use of IT2FLSs
and their abilities to handle uncertainties in data better than
their type-1 counterparts, they still make use of only the
membership functions (upper and lower) to model these un-
certainties where the non-membership is complementary to the
membership (upper or lower). In a real life scenario, it is not
always the case that the non-membership grade of an element
to a set is complementary to the membership (upper or lower).
There tend to be some extra degrees that represent evidence
of neither belonging nor not-belonging (hesitation or neutral
state) of an element to a set.

The traditional IT2FLS lack the mechanism of tackling this
phenomenon. This research is an attempt to address this draw-
back by introducing Atanassov intuitionism (non-membership
function and hesitation degrees) into IT2FS, leading to an
enhanced FOUs definition for the proposed model - IT2AIFLs.
With this approach, the evaluation becomes more precise and
close to human reasoning than FLS and T2FLS. Thus, with
the ability of IT2FSs to adequately capture the uncertainties
in their FOUs and the ability of IFS to separately cater
for the membership and non-membership grades of elements
with extra degrees of hesitancy, we adopt the integration of

these two concepts to design a new framework to uncertainty
modeling - the so-called IT2AIFLS. The marriage of these two
concepts - IFS and IT2FS - is able to provide a synergistic ca-
pability in dealing with imprecise and vague information. The
proposed model utilises Takagi-Sugeno-Kang (TSK) fuzzy
inferencing. In Lin et al. [54], the Takagi-Sugeno intuitionistic
fuzzy systems are found to be universal approximators with
arbitrarily high approximation accuracy.

The motivation for this study stem from the desire to
extend the capability of IT2FSs. The novelty of this study
is the possible integration of the extra notations of AIFS
(non-membership function and hesitation degree) in IT2FS
with the aim of designing a new IT2AIFLS framework where
IT2AIFS are used to define linguistic concepts. In this study,
the hesitancies of the experts are captured in the FOUs for
both the membership and non-membership functions of the
fuzzy sets through a process of scaling and shifting. This
phenomenon is reflected as ripples along the bounds of the
FOUs. The concept of taking into account the contributions of
the non-membership functions and intuitionistic fuzzy indices
in the partitioning of the input space is one of the advantages
of this approach as they increase the fuzziness of the IT2AIFS.
According to [55], “increased fuzziness in a description means
increased ability to handle inexact information in a logically
correct manner.” Hence, we present the IT2AIFLS and the
learning algorithms for the adaptation of its parameters based
on gradient descent (GD) derivative-based method. Our aim
is to apply the proposed framework to model uncertainty in
data by considering both the membership and non-membership
values of the fuzzy sets.

To the best knowledge of the authors, there is currently no
work in the literature where IT2AIFS is applied in a fuzzy
logic inference system for regression problems.

The rest of the paper is structured as follows: In Section
II, AIFS, T2AIFS and IT2AIFS are defined. In Section III,
IT2AIFLS is designed and in Section IV, parameter update
rules are derived. We present our results in Sections V and
VI, and conclude in Section VII.

II. TYPE-1 AND TYPE-2 AIFSS

A. A-Intuitionistic Fuzzy Set (AIFS)

An ordinary FS A is specified by A = {(x, µA(x)) | x ∈ X}
i.e. each set consists of elements and degrees of member-
ship of the elements to the fuzzy set A. Intuitionistic FS
proposed by Atanassov [7] is a generalisation of FS which
consist of degree of membership and of non-membership given
as: A∗ = {(x, µA∗(x), νA∗(x)) | x ∈ X} where µA∗(x) and
νA∗(x) are element in [0,1] defined as degree of membership
and non membership of element x to set A∗ respectively with
the constraint 0 ≤ µA∗(x) + νA∗(x) ≤ 1. Atanassov also
specified a hesitation degree, π, defined as 1 minus the sum of
the degree of membership and non-membership of an element
to a set i.e. πA∗(x) = 1− (µA∗(x) + νA∗(x)).

According to Ejegwa et al. [56], the degree of non-
membership of an element in a fuzzy set may not always be 1
minus the degree of membership, that is, (v(x) 6= 1−µ(x)) be-
cause there may be some degree of hesitation of that element to
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the set. Thus the semantic representation of AIFS, A∗ includes
the degree of membership, degree of non-membership and
the hesitation margin {(µA∗(x), νA∗(x), πA∗(x)) | x ∈ X} re-
spectively. Given the background of AIFS, we now formally
define an AIFS as follows:

Definition 1. [7] Given a finite, non-empty set X , an
AIFS A∗ in X is an object having the form: A∗ =
{(x, µA∗(x), νA∗(x)) : x ∈ X)}, where the function µA∗(x)
: X → [0, 1] defines the degree of membership and νA∗(x) :
X → [0, 1] defines the degree of non-membership of element
x ∈ X and for every element x ∈ X , 0 ≤ µA∗(x)+νA∗(x) ≤
1.

When νA∗(x) = 1−µA∗(x) for every x ∈ X , then the AIFS
A∗ collapses to ordinary fuzzy set A.

Thus, given an AIFS, the degree of hesitancy of x to A∗ is
given by:

πA∗(x) = 1− (µA∗(x) + νA∗(x)).

This is called the A-intuitionistic fuzzy (IF) index of x in A∗.
For ordinary fuzzy set A, πA(x) = 0 ∀x ∈ X .

B. Type-2 A-Intuitionistic Fuzzy Set (T2AIFS)
Definition 2. A generalised T2AIFS denoted by Ã∗ is char-
acterised by a type-2 membership function µÃ∗(x, u), and a
type-2 non-membership function νÃ∗(x, u) [44], i.e.,

Ã∗ = {(x, u) , µÃ∗ (x, u) , νÃ∗ (x, u) | ∀x ∈ X,
∀u ∈ Jµx ∀u ∈ Jνx}

in which 0 ≤ µÃ∗ (x, u) ≤ 1 and 0 ≤ νÃ∗ (x, u) ≤ 1
where ∀u ∈ Jµx and ∀u ∈ Jνx conform to the T1 constraint
that 0 ≤ µA∗ (x) + νA∗ (x) ≤ 1.

Jµx =
{

(x, u) : u ∈
[
µ
Ã∗ (x) , µÃ∗ (x)

]}
Jνx = {(x, u) : u ∈ [νÃ∗ (x) , νÃ∗ (x)]}

When there is no uncertainty, a type-1 AIFS is obtained.
Alternatively,∫
x∈X

[∫
u∈Jµx

∫
u∈Jνx

{µÃ∗ (x, u) , νÃ∗ (x, u)}

]
/ (x, u)

∑
x∈X

∑
u∈Jµx

∑
u∈Jνx

{µÃ∗ (x, u) , νÃ∗ (x, u)}

 / (x, u)

where
∫

is for continuous universe of discourse, and
∑

for
discrete universe of discourse. When µÃ∗(x, u) = 1, and
νÃ∗(x, u) = 1, a T2AIFS translates to an IT2AIFS (see Figure
2 and Equation (1)).

Definition 3. [35] An IT2AIFS, Ã∗, is characterised by
interval membership and non-membership functions defined
as µ̄Ã∗(x), µ

Ã∗(x) and ν̄Ã∗(x), νÃ∗(x) respectively for all
x ∈ X with constraints: 0 ≤ µÃ∗(x) + νÃ∗(x) ≤ 1 and 0 ≤
µ
Ã∗(x) + νÃ∗(x) ≤ 1.

In order to ensure that these constraints 0 ≤ µÃ∗(x) +
νÃ∗(x) ≤ 1 and 0 ≤ µ

Ã∗(x) + νÃ∗(x) ≤ 1 are always

satisfied, the maximum of the returned values for lower
membership and lower non-membership and minimum of the
values for upper membership and upper non-membership of
the input uncertainty are obtained (see Equations (6) to (9)).
The two IF-indices used in this study are the IF-index of
center and IF-index of variance. The IF-indices are m−by−n
matrix randomly generated in the interval [0,1], where m is
the number of linguistic terms and n is the number of inputs.
These IF-indices (hesitations) are then incorporated into the
FOUs of the IT2AIFS. These indices were previously used in
[23] and defined in this work as:

πc(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x))))

πvar(x) = max (0, (1− (µÃ∗(x) + νÃ∗(x))))

πvar(x) = max
(

0,
(

1−
(
µ
Ã∗(x) + νÃ∗(x)

)))
such that: 0 ≤ πc(x) ≤ 1 and 0 ≤ πvar(x) ≤ 1.
The capability of taking the contribution of IF-index into
account, aside from the non-membership degree, in the parti-
tioning of the input space gives this approach a leverage over
some conventional fuzzy approaches.
As defined above, an IT2AIFS Ã∗ is characterised by interval
type-2 membership function, µÃ∗(x, u) and interval type-2
non-membership function, νÃ∗(x, u) for all x ∈ X expressed
as:

Ã∗ =

∫
xεX

∫
uεJµx

∫
uεJνx

1/ (x, u)

=

∫
xεX

[∫
uεJµx

∫
uεJνx

1/ (u)

]/
x

(1)

where x is the primary variable, and u is the secondary
variable. The uncertainty about an IT2AIFS is completely
described by the footprints of uncertainty (FOUs) as shown
in Figure 2 and expressed as:

µ̄Ã(x) ≡ FOUµ(Ã∗) ∀x ∈ X
µ
Ã

(x) ≡ FOUµ(Ã∗) ∀x ∈ X

ν̄Ã(x) ≡ FOUν(Ã∗) ∀x ∈ X
νÃ(x) ≡ FOUν(Ã∗) ∀x ∈ X

(2)

Thus, two FOUs are defined namely: FOUµ regarding the
uncertainty of the membership function and FOUν defined
with respect to the non-membership function of IT2AIFS Ã∗

(see Figure 2) as follows:

FOUµ

(
Ã∗
)

=
⋃
∀x∈X

[
µ
Ã∗(x), µ̄Ã∗(x)

]
(3)

FOUν

(
Ã∗
)

=
⋃
∀x∈X

[νÃ∗(x), ν̄Ã∗(x)] (4)

We have provided the background on which our fuzzy frame-
work is based. We highlighted variants of fuzzy sets that
have motivated this study. However, because of the associated
complexities of the GT2FS as discussed above, we construct
our A-intuitionistic fuzzy framework based on the notion of
IT2FS.
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III. INTERVAL TYPE-2 A-INTUITIONISTIC FUZZY LOGIC
SYSTEM

The main purpose of this work is to introduce a new
interval type-2 A-intuitionistic fuzzy logic system (IT2AIFLS)
that utilises the membership and non-membership functions
together with hesitancy index (HI) for regression problems.
The proposed type-2 AIFLS (T2AIFLS) consists of the fuzzi-
fier, rule base, fuzzy inference engine and output processing
module which is similar to a T2FLS, but because of the
intuitionism involved in the fuzzy set, the T2AIFLS mod-
ules are therefore referred to A-intuitionistic fuzzifier, A-
intuitionistic rule base, A-intuitionistic fuzzy inference engine
and A-intuitionistic output processing [17] as shown in Figure
1.

Fig. 1. Type-2 A-Intuitionistic Fuzzy Logic System

A. Fuzzification

There are two fuzzification procedures namely: singleton
and non-singleton. For this study, our focus is on singleton
fuzzification. We intend to use non-singleton fuzzification
in a future study and compare their performances using
the proposed model. The fuzzification process involves the
mapping of a numeric input vector x ∈ X into an IT2AIFS
Ã∗ in X which activates the inference engine. For each crisp
input x ∈ X , A-intuitionistic fuzzy values for membership
and non-membership are generated. Here, interval singleton
type-2 fuzzification is used to obtain membership and non-
membership values.
For membership:

µÃ∗(x) =

{
1/1, if x = x′

1/0, if x 6= x′

For non-membership:

νÃ∗(x) =

{
1/1, if x = x′

1/0, if x 6= x′

The firing strength for membership and non-membership
functions are intervals [fµ, fµ] and [fν , fν] respectively. A
number of membership functions exist which are employed

in the computation of type-2 fuzzy grades (fuzzification).
These include triangular, trapezoidal, Gaussian, sigmoidal and
others. In the literature, many applications benefit from the
use of Gaussian functions for the design of FLSs because
they have only two design parameters and thus help to reduce
the computation time. In this study, the Gaussian is also
adopted for the representation of both the membership and
non-membership functions of the IT2AIFLS. According to Wu
[57], “Gaussian IT2 FLCs are simpler in design because they
are easier to represent and optimize, always continuous, and
faster for small rulebases.” For classical Gaussian IT2FLS,
uncertainties can be associated to the standard deviation or
mean of the fuzzy set. Mathematically, the classical Gaussian
membership function is defined as follows:

µik (xi) = exp

(
− (xi − cik)

2

2σ2
ik

)
(5)

where each membership function in the antecedents of the
rule can be represented as an upper and lower membership
functions with c and σ representing the center and standard
deviation respectively assigned to the ith input and kth rule
of the fuzzy system.

In this study, the classical Gaussian function is modified
with the inclusion of hesitation indices. Thus, for IT2AIFS,
A-intuitionistic Gaussian membership (Equations 6 and 7)
and non-membership functions (Equations 8 and 9) with
uncertain standard deviation are utilised which are defined as
follows.
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Fig. 2. An IT2 A-intuitionistic Gaussian membership and non-membership
functions - IT2AIFS [44]

µik (xi) = min(1, exp

(
− (xi − cik)

2

2σ2
2,ik

)
∗ (1− πc,ik(xi)))

(6)

µik (xi) = max(0, exp

(
− (xi − cik)

2

2σ2
1,ik

)
∗ (1− πc,ik(xi)))

(7)

νik (xi) = min(1, (1− πvar,ik(xi))−

[
exp

(
− (xi − cik)

2

2σ2
1,ik

)
∗ (1− πc,ik(xi)))]

(8)
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νik (xi) =
(
1− πvar,ik(xi)

)
−

[
exp

(
− (xi − cik)

2

2σ2
2,ik

)
∗ (1− πc,ik(xi))] (9)

where πc,ik is the IF-index of center and πvar,ik is the
IF-index of variance [23]1. The parameters σ2,ik, σ1,ik,
πc,ik, πvar,ik and c are premise parameters. Shown in
Figure 2 is an IT2 A-intuitionistic Gaussian membership and
non-membership functions which characterise IT2AIFS. The
FOU for the membership is bounded by lower membership
and upper membership functions while the FOU of the
non-membership is bounded by lower non-membership
and upper non-membership functions respectively. The
FOUs of the model are as shown in Figure 2. The bounds
of the FOUs are somewhat wavy (ripples). A concept
which incorporates the IF-indices (degrees of hesitancy)
in the definitions of the FOUs of IT2AIFS. The scaling
in Equations (6) and (7) captures the hesitation of the
expert in the definition of the membership function FOU
while Equations (8) and (9) include some shifting which
captures the hesitation in the FOU of the non-membership
function of the IT2AIFS. We have highlighted this concept
in Figure 3. This representation satisfies the constraint
in Definition 3. For instance, the membership and non-
membership grades of x = 4.0 in Figure 2 are approximately
{0.45, 0.69, 0.28, 0.54}, which satisfies the constraints:
0 ≤ µÃ∗(x) + νÃ∗(x) ≤ 1 and 0 ≤ µ

Ã∗(x) + νÃ∗(x) ≤ 1 as
shown below following from Figure 2.

µÃ∗(x) + νÃ∗(x) = 0.69 + 0.28

= 0.97 ∈ [0, 1]

πÃ∗(x) = 1− 0.97

= 0.03 ∈ [0, 1]

µ
Ã∗(x) + νÃ∗(x) = 0.45 + 0.53

= 0.98 ∈ [0, 1]

πÃ∗(x) = 1− 0.98

= 0.02 ∈ [0, 1]

Fig. 3. Hesitancy of the expert as reflected on the FOUs of IT2AIFS

B. Rules

The rule representation of IT2AIFLS is similar to the
classical IT2FLS, the only exception is that both membership
and non-membership functions are involved in the inputs of

1Petr Hajek in an email conversation pointed out that “IF-index of centre is
used to express the hesitancy on the centre of the membership function while
the IF-index of variance represents the hesitancy on the radius” and these
values are small numbers in the interval [0,1]

the IT2AIFLS, that is, the fuzzy sets are A-intuitionistic fuzzy
sets of type-2. The IF-THEN rule of an IT2AIFLS can thus
be expressed as follows:

Rk : IF x1 is Ã∗1k · · · and xn is Ã∗nk
THEN yk is f (x1, x2, · · · , xn)

= w1kx1 + w2kx2 + · · ·+ wnkxn + bk (10)

where Ã∗1k,Ã∗2k, · · · ,Ã∗ik,· · · ,Ã∗nk are IT2AIFS and yk
is the output of the kth rule formed by linear combination
of the input vector: (x1, x2, · · · , xn). The above general rule
for IT2AIFLS can be decomposed into both membership and
non-membership functions as follows:
For membership function, the rule in Equation (10) translates
to:

Rµk : IF x1 is Ã∗
µ

1k · · · and xn is Ã∗
µ

nk

THEN yµk = wµ1kx1 + wµ2kx2 + · · ·+ wµnkxn + bµk

For non-membership function, the rule becomes:

Rνk : IF x1 is Ã∗
ν

1k and · · · and xn is Ã∗
ν

nk

THEN yνk = wν1kx1 + wν2kx2 + · · ·+ wνnkxn + bνk

where yµk and yνk are the membership and non-membership
outputs of the kth rule, w′s are the function parameters
(coefficients of the independent variables) plus a constant term
b known as the bias.

C. Inference

The inferencing approach adopted for this study is the
Takagi-Sugeno-Kang fuzzy inferencing where the antecedent
parts are IT2AIFS and the consequent parts are linear combi-
nations of the inputs, otherwise known as A2-C0 model.

The learning of IT2AIFLS is similar to adaptive-neuro
fuzzy inference system (ANFIS) [58] and T2-ANFIS [59]
approaches. An IT2AIFLS structure with two inputs, three
membership functions and nine rules is as shown in Figure 4.
According to [22], the output of IFIS-TSK can be computed

Fig. 4. An IT2AIFLS Structure - adapted from [60]

using two approaches: (i) by the combination of membership
output, yµ, and non-membership function output, yν and (ii)
by direct defuzzification. In this study, the former approach is
adopted and the final output of IT2AIFLS which is a closed
form equation is defined as follows:
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y =
(1− β)

∑M
k=1

(
fµk + fµk

)
yµk∑M

k=1 f
µ
k +

∑M
k=1 f

µ
k

+
β
∑M
k=1

(
fνk + fνk

)
yνk∑M

k=1 f
ν
k +

∑M
k=1 f

ν
k

(11)

where fµ
k

, f
µ

k , fν
k

and f
ν

k are the lower membership, up-
per membership, lower non-membership and upper non-
membership firing strength respectively. This is a modification
of a novel inference method proposed in [61] for IT2-TSK
fuzzy system and motivated by the Nie-Tan [62] closed form
type-reduction method for IT2FLS where iterations are not
required in the computation of the defuzzified crisp value but
depends only on the lower and upper bounds of the mem-
bership function footprint of uncertainty (FOU). As shown in
equation (11), the final output of IT2AIFLS apart from also
utilising the bounds of the membership function FOU, also
utilises the upper and lower bounds of the non-membership
function FOU with an additional design factor β [61] to
weigh their contribution in the final output. In this study, the
implication operator employed is the “prod” t-norm such that:

fµk (x) = µ
Ã∗

1k
(x1) · µ

Ã∗
2k

(x2) · · · · · µ
Ã∗

nk
(xn)

fµk (x) = µÃ∗
1k

(x1) · µÃ∗
2k

(x2) · · · · · µÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) · νÃ∗
2k

(x2) · · · · · νÃ∗
nk

(xn)

fνk (x) = νÃ∗
1k

(x1) · νÃ∗
2k

(x2) · · · · · νÃ∗
nk

(xn)

where · is the “prod” operator, yµk and yνk are the outputs of
the kth rule for membership and non-membership functions
respectively. The overall output of IT2AIFLS is a weighted
average of each IF-THEN rule’s output. The parameter β,
0 ≤ β ≤ 1; specifies the weight of the membership and non-
membership values in the final output. Apparently, if β = 0,
the IT2AIFLS output is computed using only the membership
function and if β = 1, then only the non-membership function
contributes to the model’s output. With the neural network
learning ability, the parameters of the IT2AIFS are tuned as
discussed in the next section.

IV. PARAMETER UPDATE RULE

This study utilizes gradient descent algorithm (GDA) for the
update of both the antecedent and the consequent parameters
of the rules. The gradient-based algorithms are widely used
in the literature for training FLSs and one of the important
concepts involved in GD learning is the cost function. The cost
function is a measure of the deviation of a particular solution
from an optimal solution to the problem being solved. The
GDA searches through the solution space to find a function
that has the lowest possible cost (error). The cost function for
a single output is defined as:

E =
1

2
(ya − y)

2

where ya is the actual output and y is the network output.
The antecedent parameters are (c, σµ1 , σµ2 , σν1 , σν2 ) while the
consequent parameters are (wµ, bµ, wν , bν). For this study, σµ1
= σν1 and σµ2 = σν2 . The update rule for the generic parameter
θ is as expressed in Equation (12):

θik(t+ 1) = θik(t)− γ ∂E
∂θik

(12)

where γ is the learning rate (step size) that must be carefully
chosen as a large value may lead to instability, and small
value on the other hand may lead to a slow learning process.
The IF-indices for this study are fixed i.e. they are not
tuned. We intend to tune them in a future study. This will
enable us to investigate the effect of tuning the IF-indices on
the interval type-2 A-intuitionistic fuzzy sets separately. The
parameter β in Equation (11) is initially specified and then
tuned to allow for adaptive adjustment of the membership and
non-membership function in the final output. A number of
experiments are conducted using publicly available benchmark
regression datasets in order to test the validity and efficiency
of our proposed framework.

V. EXPERIMENTS AND RESULTS

Next, we present our experimental analysis and discus-
sion of simulation results. We demonstrate the effectiveness
of IT2AIFLS on some regression problems. The IT2AIFLS
utilises the IT2AIFS [44] which is represented in Figure 2
to as inputs to the fuzzy logic system. For a fair compar-
ison of our proposed model with previous approaches, the
experimental evaluations are conducted on the basis of same
datasets (benchmark) that are publicly available, same numbers
of input partitioning and same performance metrics (RMSE
and NMSE). Each of the datasets are arranged as closely
as possible to those reported previously in the literature. We
measure the robustness of the approach by evaluation in the
presence of some noise in the data such as the Friedman
problem. For ease of comparison with previous works in the
literature, we also adopt the root mean squared error (RMSE)
as the performance criterion for all experiments. Using the
test dataset to evaluate model performance gives an unbiased
estimate 2 of the model error. The RMSE is computed as
follows:

RMSE =

√√√√ 1

N

N∑
i=1

(yai − yi)
2

where ya is the actual output, y is the output of the model
and N is the number of testing data points.
The number of parameters of the proposed framework for all
datasets are 6n+2M(n+1), where n is the number of inputs,
and M is the number of rules. For all experiments, we assumed
that there are uncertainties in only the antecedent’s part of
each rule. The number of membership and non-membership
functions for each input of the IT2AIFLS is arbitrarily set to
2 and the parameter β is initially set at 0.5 for all simulations.
All experiments are carried out using MATLAB c© 2015

2https://uk.mathworks.com
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running on a 64-bit Intel core i3-4130 CPU@3.40GHz /8GB
RAM configuration computer.

A. IT2AIFLS vs FIS, IFIS and IT2FLS on Regression Prob-
lems

This section compares the performance of IT2AIFLS with
FIS and IFIS for both linear and non-linear regression prob-
lems. The regression datasets used for the analysis are Fried-
man, energy, stock and autoMPG6 which are obtained from
[63]. We adopt the same computational protocol in [18]
for Friedman, energy, stock and autoMPG6 dataset to aid
comparison with FIS and IFIS.

1) Datasets Description:

TABLE I
DATASET CHARACTERISTICS

Dataset
No. of
input

No. of
sam-
ples

Trn set Tst set

Friedman#1 5 1200 600 600
Friedman#2 5 1200 200 1000

Energy 6 365 183 182
Stock 9 950 475 475

AutoMPG6 5 392 196 196
Elect.

volt. line 2 495 396 99
Elect.Maint 4 1059 847 212

Abalone 8 4177 3342 835

Friedman [64] The Friedman prediction problem is a syn-
thetic dataset with the following data generation formula:

y = 10sin (πx1x2) + 20 (x3 − 0.5)
2

+ 10x4 + 5x5 + n̂ (13)

where xis are the input variables and n̂ is white Gaussian
noise with a mean of zero and standard deviation of 1. Each
of the sample consists of five input variables x1, x2, x3, x4, x5
independently and uniformly distributed over [0, 1] and one
target variable y generated using equation (13). For the
Friedman dataset, 1200 data samples are randomly generated
which are then split equally into 600 samples for training
and 600 samples for testing, we shall refer to the dataset as
Friedman#1. There are a total of 32 rules for Friedman dataset
with 6(5) + 2*32(5+1) = 414 parameters.

Energy [63]: The daily electric energy problem involves the
prediction of the daily average price of TkWhe electricity
energy in Spain. The data set contains real values from
2003 about the daily consumption in Spain of energy from
hydroelectric, nuclear electric, carbon, fuel, natural gas and
other special sources of energy. There are a total of 365 data
instances. For energy dataset, IT2AIFLS generated 64 rules
with a total of 932 parameters.

Stock [63]: The stock dataset is a highly non-stationary
dataset and consists of daily stock prices from January 1988
to October 1991 for ten aerospace companies. The task is to
predict the price of the 10th company based on the prices
of the other nine (9) companies. The dataset consists of 950

samples. Stock data is a high-dimensional dataset with a total
number of 512 rules and 10294 parameters for the IT2AIFLS.

AutoMPG6 [63]: The task here is to predict the city-cycle
fuel consumption in miles per gallon (mpg) in terms of
1 multi-valued discrete and 5 continuous attributes (where
two multi-valued discrete attributes - Cylinders and Origin -
from the original dataset are removed). For autoMPG6, 392
data samples are available for analysis. The total number of
parameters for AutoMPG6 are 414 with 32 rules.

The analysis of the above datasets was previously conducted
by Hajek and Olej [18] using type-1 A-intuitionistic fuzzy in-
ference system. We extend this work by employing IT2AIFLS
to the same datasets. For ease of comparison, the above
datasets are arranged as closely as possible to those reported in
[18]. The datasets (Friedman#1, energy, stock and autompg6)
are randomly sampled 5 times and sequentially split into two
equal parts as in Table I for each run with 500 training
epochs. The results presented in Table II shows the average
RMSE and standard deviation (SD) over 25 simulations for
each dataset. The initial values of the consequent parts of
the rule (w and b) for membership and non-membership, are
generated randomly from the interval [0, 1] and updated using
the above derived parameter update rule. The learning rate is
chosen as 0.1. The RMSE defined as in Equation (V) is used
as performance criterion. Table II shows the comparison of the
RMSE on the test data of IT2AIFLS with FIS and IFIS (which
also uses the design parameter β to weigh the membership and
non-membership contributions to the final output). From Table
II, IT2AIFLS outperforms both FIS and IFIS on the selected
test samples. This is consistent with the reports in the literature
that T2FLSs (IT2AIFLSs in this case) model uncertainty in
certain applications better than T1FLSs. Our proposed model
of IT2IFLS is also compared with classical IT2FLS, as shown
in Table II, IT2IFLS performs better than the classical IT2FLS.
Due to additive noise in the Friedman dataset, 30 Monte-
Carlo simulations are also realised and the average RMSE
and standard deviation for IT2AIFLS are 1.0865 and 0.058
respectively.

B. Friedman#2

This example studies the Friedman problem as reported in
[65]. In this example, we perform experiments using Friedman
to evaluate the performance of our model on non-fuzzy and
fuzzy approaches, particularly with other T2 fuzzy approaches.
For comparison purpose, we adopt the experimental set-up as
reported in [65]. Similar to [65], 1400 samples are randomly
generated using equation (13), 200 samples are used for
training, 200 for validation while the remaining 1000 samples
are used for testing (this we shall refer to test dataset 1) and
this is repeated 20 times with the average RMSE and standard
deviation reported in Table III. The learning rate α = 0.1. The
plot of the actual and predicted output is as shown in Figure 5).
This problem was also analysed in [66] and [67]. While Carney
and Cunningham [66] employed neural bootstrap aggregation
(NBAG), benchmark and simple bagged ensemble; Lee et al.
[67] on the other hand proposed a general regression neural
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TABLE II
RMSE AND SD OF IT2AIFLS VS FIS/IFIS/IT2FLS ON REGRESSION PROBLEMS

Models Friedman#1 Energy Stock AutoMPG6
FIS [18] 1.353 ± 0.026 7.443 ± 1.579 1.423± 0.227 3.702 ± 0.211
IFIS [18] 1.332 ± 0.032 4.776 ± 2.776 1.402 ± 0.219 3.684 ± 0.195

IT2FLS-TSK 1.095 ± 0.046 0.567 ± 0.125 0.750 ± 0.026 1.792 ± 0.048
IT2AIFLS 1.026 ± 0.011 0.558 ± 0.005 0.611 ± 0.006 1.700 ± 0.064

network with fuzzy adaptive resonance theory (GRNNFA)
for the analysis of this first set of data. Similar to [65], we
also study the performance of IT2AIFLS when the output
of the nonlinear Friedman equation is noise free. In this
second case, 1000 test samples are generated with n̂ = 0
(this we refer to test dataset 2). Similar to [65] we adopt
self-constructing neural fuzzy inference network (SONFIN)
and support vector based fuzzy model (SVR-FM) for type-1
comparison with our model. The parameters of SONFIN are
learned using training-error minimisation through the com-
bination of Kalman filtering and GDA. For type-2 systems,
we adopt type-2 models such as type-2 FLS, self-evolving
interval type-2 fuzzy neural network (SEIT2FNN) and interval
type-2 fuzzy neural network with support vector regression
(IT2FNN-SVR). T2FLS employs GDA for parameter learning
referred to as T2FLS-G. SEIT2FNN is designed with structure
learning and utilises rule-ordered Kalman filter together with
GDA for parameter learning. SEIT2FNN has IT2FS in the
antecedents trained with GDA with TSK interval type-1 sets
in the consequent. Two flavors of IT2FNN-SVR are proposed
in [65] namely IT2FNN-SVR(N) and IT2FNN-SVR(F). The
difference between the two is in the representation of the input
nodes. The former consists of input nodes with numerical
values with interval output nodes while the latter consists of
input nodes with fuzzy numbers and interval output nodes.
SONFIN and SEIT2FNN are previous studies involving the
first author in [65]. We compare our results with these models
already reported in the literature as shown in Table III. The
results in Table III indicate the RMSE and standard deviation
for AIFLS, IT2AIFLS and similar works in the literature. It
is shown that IT2AIFLS exhibits lower RMSE compared to
its type-1 counterpart, the non-fuzzy, the two T1FLSs and the
T2FLSs. For 30 Monte-Carlo realisations, the average RMSE
and standard deviation for IT2AIFLS on Friedman#2 with
additive noise are 1.5057 and 0.1022 respectively.
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Fig. 5. Actual and predicted outputs of Friedman with Gaussian white noise

TABLE III
PERFORMANCE OF IT2AIFLS ON FRIEDMAN#2

Models
RMSE-
tst1
(noisy)

Std-
tst1

RMSE-
tst2
(noise
free)

Std-
tst2

NBAG [66] 2.1218 - - -
Bench [66] 2.3178 - - -
Simple [66] 2.2244 - - -

GRNNFA [67] 2.136 - - -
SONFIN [68] 2.531 0.138 2.398 0.131
T2FLS-G [69] 2.597 0.137 2.479 0.145

SEIT2FNN [70] 1.941 0.170 1.598 0.216
IT2FNN-SVR(N) [65] 1.788 0.145 1.537 0.201
IT2FNN-SVR(F) [65] 1.597 0.120 1.291 0.151

IT2FLS-TSK 1.778 0.152 1.419 0.210
AIFLS 2.375 0.129 2.227 0.186

IT2AIFLS 1.494 0.111 1.116 0.104

C. The Electrical Engineering Distribution Problems

In [71], two problems involving electrical distribution in
rural towns in Spain are proposed and have become real-world
benchmark problems in fuzzy logic fields. The task here is to
relate some characteristics of certain village with actual low
voltage line it contains and also relate the maintenance cost of
the network in certain towns with some of their characteristics.

1) Computing the Length of Low Voltage lines: The first
problem proposed in [71] is to estimate the length of low
voltage lines in rural towns using some available inputs. The
dataset consist of 495 instances with actual values measured
by a company. The dataset is divided into 396 samples for
training set and 99 samples for testing set with each consisting
of three attributes namely:
• Number of clients in population.
• Radius of i population in the sample.
• Line length, population i.

There are a total of 4 rules generated for low voltage line
estimation with 36 number of parameters. The results pre-
sented in Table IV is averaged over ten simulations with 100
epochs and learning rate set to 0.1. It can be observed in Table
IV that IT2AIFLS has superior performance. compared to the
classical non-linear regression models, neural networks, the
evolutionary approaches and other fuzzy approaches.

Experiment is conducted to ascertain the performance of
IT2AIFLS with IT2FLS-TSK trained with the same number
of design parameters using low voltage line length estimation
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TABLE IV
LOW VOLTAGE LINE LENGTH ESTIMATION PROBLEM

Models RMSE(tst)
Linear [71] 457.8821

Exponential [71] 443.8513
Second order Polynomial [71] 450.8126
Third-order polynomial [71] 450.5452
Three layer Perceptron [71] 408.7689

GA-P [71] 399.7962
Interval GA-P [71] 398.4181

WM Fuzzy model [71] 424.384
Mamdani Fuzzy model [71] 408.2511

TSK Fuzzy model [71] 385.3751
Gr + MF [72] 390.7979

Genetic Learning Process [73] 383.4866
HSLR(WM,3,5) [74] 409.04523

IT2FLS-SA [75] 606.84075
GT2FLS-sampling [75] 594.02365
GT2FLS-VSCTR [75] 590.90565

AIFLS 262.2775
IT2AIFLS 255.3325

TABLE V
PERFORMANCE COMPARISON OF IT2AIFLS WITH CLASSICAL IT2FLS

ON VOLTAGE LENGTH ESTIMATION PROBLEM

Models
Para-
meter RMSE

Run-
time
(s)

IT2FLS-TSK 24 260.7010 12.35
IT2AIFLS 24 260.1041 24.76

dataset. To achieve this, the same consequents are applied
to both the membership and non-membership outputs of
IT2AIFLS and this translate to 4 rules and 24 parameters
for each model. The results in Table V is averaged over 10
simulation runs. As shown in Table V, with the same number
of parameters defined for classical IT2FLS and intuitionistic
IT2FLS, the accuracies of the two models tend to be quite
close with IT2AIFLS performing slightly better than IT2FLS.

2) Computing the Maintenance Costs of Medium Voltage
Lines: The second problem is to estimate the maintenance
cost which are not based on real data. The dataset consists of
1059 samples with 5 attributes namely:
• Sum of the length of all street in the town.
• Total area of the town.
• Area that is occupied by buildings.
• Energy supply to the town.
• Maintenance costs of medium voltage line.

Similar to previous studies, the 1059 samples are divided into
two sets: 847 samples for training and 212 samples for testing
as reported in [71], [72], [73], [74] except [75] which used
only 400 data instances for model evaluation (200 for training
and 200 for testing). This, according to the authors, was
because of the computational burden involved. Our model is
executed for 100 epochs with learning rate set to 0.1. There are

16 rules generated for maintenance cost estimation with a total
of 184 parameters. In order to relate the dependent variable
(maintenance cost) with the independent variables, IT2AIFLS
described above is applied to both the training and the test sets
and results are compared with those reported in the literature
and IT2FLS-TSK. Figure 6, shows the correlation between the
actual and predicted output for electrical maintenance cost.
This result is significant because it means that IT2AIFLS has
a high descriptive capability and can be useful in modeling
natural attributes of physical phenomenon. Table VI shows the
performance of IT2AIFLS, classical IT2FLS-TSK and other
models in the literature in terms of their RMSEs. The results
in Table VI show a significant performance improvement of
IT2AIFLS over IT2FLS-TSK and other works in the literature.
For a fair comparison with IT2FLS-SA, GT2FLS-sampling
and GT2FLS-VSCTR [75], we conducted a similar experi-
ments as reported in [75] with the same computational set-up
(i.e. 200 samples for training and 200 samples for testing).
After 100 epochs of training, IT2AIFLS attains a RMSE of
123.6912 on the test dataset.

TABLE VI
MAINTENANCE COST ESTIMATION PROBLEM

Models RMSE(tst)
Linear [71] 191.8828

Second order Polynomial [71] 212.9131
Three layer Perceptron [71] 181.9478

GA-P [71] 147.9324
Interval GA-P [71] 135.3699

WM Fuzzy model [71] 166.1776
Mamdani Fuzzy model [71] 150.3030

TSK Fuzzy model [71] 108.7934
Gr + MF [72] 102.049

Genetic Learning Process [73] 102.3034
HSLR(WM,3,5) [74] 154.3276

IT2FLS-SA [75] 353.99755*
GT2FLS-sampling [75] 424.3692*
GT2FLS-VSCTR [75] 317.43325*

IT2FLS-TSK 79.6075
AIFLS 61.1401

IT2AIFLS 53.7200
* used a subset of the dataset
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VI. COMPLEX HIGH DIMENSIONAL REGRESSION
PROBLEMS

In this section, we analyse two high dimensional regression
problems namely: abalone and house sales data.
• Abalone dataset [63]

The effectiveness of the proposed model is demonstrated using
a real world high dimensional regression datasets namely the
abalone dataset. The abalone dataset is a highly noisy dataset
that contains physical measurements of abalone (large edible
sea snails). The dataset consists of 4177 samples with 8 input
attributes. The goal is to predict the age of abalone by counting
the number of rings on the abalone through a microscope
[63]. Similar to [76], [77], [78], [79], 5-fold cross validation
is adopted where the dataset is randomly split into five folds
with each set containing 20% of the dataset. For each run,
four folds are used for training and one for testing. Each fold
is executed 5 times and the average cross validation error for
25 trials is computed. Each trial was executed for 100 epochs
with learning rate set to 0.1. For the abalone dataset, 256 rules
are generated while 4656 parameters are tuned. The result of
evaluation of the abalone dataset using IT2AIFLS is compared
with IT2FLS-TSK, AIFLS and similar works in the literature.
As shown in Table VII, IT2AIFLS exhibits MSE that is lower
than other models in this problem domain.

TABLE VII
RESULTS COMPARISON OF IT2AIFLS FOR ABALONE DATASET WITH

OTHER MODELS

Models MSE(tst) std MSE
TS-NSGA-II [79] 2.526 0.242

TS-NSGA-SPEA2Acc [79] 2.511 0.263
TS-NSGA-IIA [79] 2.535 0.265
TS-NSGA-IIU [79] 2.520 0.237

TS-NSGA-SPEA2 [79] 2.518 0.246
TS-NSGA-SPEA2Acc2 [79] 2.517 0.230

Multiobjective GFS [78] 2.423 0.173
FSMOGFS[77] 2.697 0.204

FSMOGFSe [77] 2.708 0.216
FSMOGFS+TUN [77] 2.454 0.163

FSMOGFSe +TUNe [77] 2.509 0.184
ANFIS-SUB [76] 2.733 -

TSK-IRL [76] 2.642 -
Linear-LMS [76] 2.472 -
LEL-TSK [76] 2.412 -

METSK-HDe[76] 2.392 -
IT2FLS-TSK 2.798 0.045

AIFLS 2.763 0.074
IT2AIFLS 1.042 0.034

In Table VIII, the final values of β for IT2AIFLS for
the listed datasets are presented. The initial value for all
experiments was chosen as 0.5.

TABLE VIII
TABLE SHOWING FINAL β VALUES FOR IT2AIFLS ON THE LISTED

DATASETS

Fman#1 Energy Stock Auto
MPG6

Elect.
Volt

Elect.
Maint Abalone

0.22 0.64 0.9 0.27 0.41 0.37 0.58

• House sales in King County, USA [80]

The house sales dataset is one of the large-scale high dimen-
sional regression problems obtained from [80]. The purpose
of this analysis is to demonstrate the prediction performance
between IT2AIFLS and classical IT2FLS. The house sales
dataset consists of 18 features and 21,613 samples and the
task is to predict the house price as closely as possible to the
actual price. Figure 7 shows the house sales feature ranking.
All the features below the mean ranking of 0.2 are regarded
as negligible and a total of 15 input features are used in the
analysis in order to reduce the computational burden of the
system. The entire dataset is split into 70% training and 30%
testing with 10 simulation runs and 100 epochs for each run.

Fig. 7. Feature ranking of house sales data [81]

TABLE IX
COMPARISON OF IT2AIFLS WITH CLASSICAL IT2FLS USING LARGE AND

HIGH DIMENSIONAL HOUSE SALES DATA

Models RMSE (trn) RMSE(tst)
IT2FLS-TSK 3.2348e-05 1.5337e-05

IT2AIFLS 2.9157e-05 1.4159e-05

Table IX shows the performance of IT2AIFLS (utilising
membership and non-membership functions) compared with
the classical IT2FLS with only the membership functions
specification. As shown in the table, IT2AIFLS performs better
than the classical IT2FLS with reduced RMSE on this problem
domain. We conclude that the proposed model of IT2AIFLS is
a more viable method for regression problems. The proposed
framework incorporating IF-indices in the membership and
non-membership functions tend to be more consistent with
human or natural language description than the classical
IT2FLS.

VII. CONCLUSION

In this study, an IT2AIFLS-TSK approach is applied to
different regression problems. Consistent with previous studies
in the literature on T2FLSs, the IT2AIFLS can accommodate
more imprecision thereby modeling imperfect and imprecise
knowledge better than T1FLSs. The key contribution in this
design is the introduction of non-membership functions and
Atanassov’s IF-indices into IT2FLS (IT2AIFLS) which model
the level of uncertainty of every input in each data set.
The presence of the non-membership functions and IF-indices
provides IT2AIFS more flexibility thus making it suitable for
handling uncertainties even in complex situations. However,



12

we intend to conduct more experiments in order to generalise
our findings.

In the future, we intend to train IT2AIFLS using hybrid
approaches involving combinations of derivative-based meth-
ods, derivative and non-derivative methods. We also intend to
develop a non-singleton IT2AIFLS and apply AIFS to design
a general type-2 FLS (GT2AIFLS). Although the GT2AIFLS
is computationally more intensive, the results are more robust
to the uncertainties inherent in many applications. For this
study, only the Gaussian functions are utilised in the design
of IT2AIFLS. We intend to apply other functions such as
triangular and trapezoidal functions to design the proposed
A-intuitionistic-based T2FLS and compare their performances.
More importantly, in the future, we intend to carry out analysis
of the characteristics of the proposed system in order to
understand and interpret its performance in more technical
terms. The associated shortcoming of the model proposed
here is the high computational burden. As the dimension
of the input increases, the parameters also increase (curse
of dimensionality). It will be interesting to explore further
ways of reducing the exponential growth of the parameters
of IT2AIFLS.
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[12] V. Olej and P. Hájek, “If-inference systems design for prediction of
ozone time series: the case of pardubice micro-region,” in Artificial
Neural Networks–ICANN 2010. Springer, 2010, pp. 1–11.

[13] O. Castillo, A. Alanis, M. Garcia, and H. Arias, “An intuitionistic fuzzy
system for time series analysis in plant monitoring and diagnosis,”
Applied Soft Computing, vol. 7, no. 4, pp. 1227–1233, 2007.

[14] C.-M. Own, “Switching between type-2 fuzzy sets and intuitionistic
fuzzy sets: an application in medical diagnosis,” Applied Intelligence,
vol. 31, pp. 283–291, 2009.

[15] E. Szmidt and J. Kacprzyk, “Medical diagnostic reasoning using a
similarity measure for intuitionistic fuzzy sets,” Note on IFS, vol. 10,
no. 4, pp. 61–69, 2004.
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[79] M. J. Gacto, R. Alcalá, and F. Herrera, “Adaptation and application of
multi-objective evolutionary algorithms for rule reduction and parameter
tuning of fuzzy rule-based systems,” Soft Computing, vol. 13, no. 5, pp.
419–436, 2009.

[80] https://www.kaggle.com/datasets, accessed: 2017-10-21.
[81] https://www.kaggle.com/arthurtok/feature-ranking\

\-rfe-random-forest-linear-models, accessed: 2017-10-21.


