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A B S T R A C T   

Covariate selection when the number of available variables is large relative to the number of observations is 
problematic in epidemiology and remains the focus of continued research. Whilst a variety of statistical methods 
have been developed to attempt to overcome this issue, at present very few methods are available for wide data 
that include a clustered outcome. The purpose of this research was to make an empirical evaluation of a new 
method for covariate selection in wide data settings when the dependent variable is clustered. We used 3300 
simulated datasets with a variety of defined structures and known sets of true predictor variables to conduct an 
empirical evaluation of a mixed model stability selection procedure. Comparison was made with an alternative 
method based on regularisation using the least absolute shrinkage and selection operator (Lasso) penalty. Model 
performance was assessed using several metrics including the true positive rate (proportion of true covariates 
selected in a final model) and false discovery rate (proportion of variables selected in a final model that were 
non-true (false) variables). For stability selection, the false discovery rate was consistently low, generally 
remaining ≤ 0.02 indicating that on average fewer than 1 in 50 of the variables selected in a final model were 
false variables. This was in contrast to the Lasso-based method in which the false discovery rate was between 
0.59 and 0.72, indicating that generally more than 60% of variables selected in a final model were false variables. 
In contrast however, the Lasso method attained higher true positive rates than stability selection, although both 
methods achieved good results. For the Lasso method, true positive rates remained ≥ 0.93 whereas for stability 
selection the true positive rate was 0.73–0.97. Our results suggest both methods may be of value for covariate 
selection with high dimensional data with a clustered outcome. When high specificity is needed for identification 
of true covariates, stability selection appeared to offer the better solution, although with a slight loss of sensi-
tivity. Conversely when high sensitivity is needed, the Lasso approach may be useful, even if accompanied by a 
substantial loss of specificity. Overall, the results indicated the loss of sensitivity when employing stability se-
lection is relatively small compared to the loss of specificity when using the Lasso and therefore stability selection 
may provide the better option for the analyst when evaluating data of this type.   

1. Introduction 

Identification of important or significant predictor variables when 
the number of variables (p) is relatively large compared to the number of 
observations (n), is problematic in epidemiology and remains the focus 
of continued research. In these circumstances, it is acknowledged that 
conventional procedures such as stepwise selection perform poorly, 
often resulting in over fit models (Hastie et al., 2015; Liu et al., 2015; 
Sirimongkolkasem and Drikvandi, 2019; Wasserman and Roeder, 2009). 
Whilst a number of variable selection and data reduction methods have 
been described (Chowdhury and Turin, 2020), many approaches are not 

applicable for wide data that contain a large number of genuine po-
tential predictor variables. For example, pre-selection using a 
one-by-one univariable analysis of individual variables has been sug-
gested (Hosmer et al., 2013) but with high dimensional, wide data, this 
is known to result in selection bias and inclusion of false positive 
covariates (Ambroise and McLachlan, 2002; Kuhn and Johnson, 2013). 
We provide an illustration of this effect in Section 2.1. An alternative 
pre-selection strategy commonly proposed is to use prior knowledge of 
possible causal relationships based on current beliefs or literature 
(Chowdhury and Turin, 2020; Royston et al., 2009), possibly including 
use of formal causal diagrams (Greenland et al., 1999). In this case, 
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however, care is required to avoid the problem of confirmation bias 
(Braithwaite et al., 2021) meaning only expected relationships are 
considered. Furthermore, this approach is not manageable when a large 
number of genuine potential predictors are available for analysis. 

To enable safe exploration of data that contain a large number of 
covariates, a variety of statistical methods have been developed 
including modifications to AIC/BIC (Bogdan et al., 2008) and regular-
isation methods based on functions that penalise model coefficients to 
balance over and under fitting (Fan and Peng, 2004; Tibshirani, 1996; 
Zou and Hastie, 2005). More recent research has focussed on further 
reducing the detection of false positive covariates and has included the 
use of the ‘knockoff filter’ (Barber and Candès, 2015) and ‘stability se-
lection’ (Lima et al., 2021a; Meinshausen and Bühlmann, 2010). The 
‘knockoff filter’ method involves the creation of an equivalent number of 
additional predictor variables to that in the original set, which are 
designed to imitate the correlation structure of the original covariates, 
but with no relationship to the outcome; they are effectively negative 
controls for each variable. Each knockoff variable is compared with the 
equivalent real variable to evaluate statistically whether it differs from 
its knockoff in terms of association with the outcome (Barber and Can-
dés, 2019). Stability selection uses the principle of multiple resampling. 
The concept is that covariates most frequently selected in a model 
repeatedly constructed under resampling of the original data are most 
likely to be truly associated with the outcome (Meinshausen and Bühl-
mann, 2010). As with the knockoff approach, comparison can be made 
with a ‘control’ scenario, in this case through permutation of the 
outcome variable, to determine a stability threshold to minimise selec-
tion of false positive covariates (Green et al., 2021). 

At present, an important omission from the research base is that very 
few methods are available for, or applicable to, wide data that include a 
clustered dependent variable. Whilst limited research has been con-
ducted for mixed models that incorporates regularisation (Eliot et al., 
2011; Li et al., 2018; Schelldorfer et al., 2014), such methods tend to be 
unwieldy to employ and are rarely used in practice. Clustered dependent 
variables are common in epidemiologic research (e.g., repeated mea-
surements within subject or multiple subjects within a group), therefore, 
a straightforward method to manage robust variable selection with wide 
data and a clustered outcome would be of value. 

The purpose of this research was to make an empirical evaluation of 
a stability selection method for covariate selection in wide data settings 
when the dependent variable was clustered. To achieve this, we used 
multiple simulations and a variety of wide data structures to investigate 
the performance of a mixed model stability selection procedure and 
compare this to the performance of an alternative current method, 
incorporating regularisation. 

2. Materials and methods 

Before considering stability selection, in Section 2.1 we present an 
illustrative example of conventional covariate selection that comprises a 
univariable pre-selection procedure followed by a final backward step-
wise selection. We apply this method to increasingly wide, randomly 
generated data, purposefully with no signal. Subsequently, in Section 
2.2 we describe a new method for the analysis of similar data through 
use of stability selection. 

2.1. Illustration of selection bias: an example of covariate selection using 
random effects models when no signal is present 

To illustrate the impact of covariate selection bias associated with 
use of a univariable pre-filtration step, a simulation study was conducted 
using 1200 hypothetical datasets. Data generation and analysis were 
conducted using the R platform (R Core Team, 2020). All explanatory 
variables within the data consisted of randomly generated vectors 
(columns) drawn from random standard normal distributions such that 
each had a mean = 0 and standard deviation = 1. The number of rows (n 
= 500, 1000) and columns (p = 30, 50, 100, 300, 500, 1000) varied by 
dataset; the latter constituted the independent variables. A further 
vector that constituted the dependent variable was added to each set of 
data. Therefore, each simulated dataset contained a dependent variable 
which was a single column of length n (equivalent to the number of rows 
in that dataset) and p independent variables (where p sequentially 
equalled 30, 50, 100, 500, 1000 or 5000). The dependent variable had a 
clustered structure (and was therefore appropriate for a random effects 
analysis) and was generated as the sum of a draw from a standard 
normal distribution (mean = 0, standard deviation = σa) and a draw 
from a standard normal distribution at cluster level (mean = 0, standard 
deviation = σb). The values of σa and σa were drawn from a uniform 
distribution U(0.5, 6) to allow the degree of higher level clustering to 
vary between simulations. The dependent variable was clustered in 
groups of 5; that is there were 5 lower level units (rows of data) within 
each higher level cluster. The structure of the simulated datasets was 
similar to that of dataset D2 in later analysis (see below and Table 1) 
except that the dependent variable had no relationship with the inde-
pendent variables and was simply a randomly generated, clustered 
vector. For example, for the size of dataset with 500 rows of data 
(n = 500), 300 independent variables (p = 300) and a clustered, 
dependent variable (of length 500), data were simulated at random 50 
times and the 50 separate datasets subjected to an identical analytic 
procedure to allow comparison of results. 

Using these randomly generated datasets with no pre-defined re-
lationships between predictor and outcome variables, a commonly used 

Table 1 
An overview of 3300 simulated datasets generated to conduct random effects stability selection analyses. U – uniform distribution.  

Dataset 
Name 

Number 
simulated 
sets 

Size 
(rows / 
columns) 

Number of higher 
level clusters of 
outcome variable 

Number of subjects per 
cluster (* and cluster 1 
per cluster 2) 

True covariates at subject 
(a) cluster1 (b) cluster2 
(c▴) level 
( a – b - c▴) 

Distribution to draw error 
for cluster 1 (and cluster 
2■) 

Distribution to draw 
error at subject level 

D1  300 500/500  1 20 6–2  U(0.5, 6)  U(0.5, 6) 
D2  300 500/500  1 5 6–2  U(0.5, 6)  U(0.5, 6) 
D3  300 500/500  1 20 4–4  U(0.5, 6)  U(0.5, 6) 
D4  300 500/500  1 5 4–4  U(0.5, 6)  U(0.5, 6) 
D5  300 500/ 

5 × 103  
1 5 4–4  U(0.5, 6)  U(0.5, 6) 

D6  300 500/104  1 5 4–4  U(0.5, 6)  U(0.5, 6) 
D7  300 500/500  1 20 10–10  U(0.5, 6)  U(0.5, 6) 
D8  300 500/500  1 5 10–10  U(0.5, 6)  U(0.5, 6) 
D9  300 500/500  2 20, 5 * 3 – 3–2▴  U(0.5, 4) 

U(0.5, 2)■  
U(0.5, 6) 

D10  300 500/500  2 5, 10 * 3 – 3–2▴  U(0.5, 4) 
U(0.5, 2)■  

U(0.5, 6) 

D11  300 500/106  1 5 4–4  U(0.5, 6)  U(0.5, 6)  
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modelling procedure was implemented as follows. An initial data 
reduction step was applied using a univariable Pearson correlation. The 
correlation between the dependent and each independent covariate was 
calculated, and independent covariates retained for further modelling 
when the correlation P value was less than a defined threshold (set as 
either 0.1 or 0.2; this is standard practice when a univariable pre- 
filtration method is used). Remaining variables were carried forward 
to a random effects model constructed using the lme4 package (Bates 
et al., 2015), with final variables selected using conventional backward 
stepwise regression based on P < 0.05. Backward stepwise regression 
was implemented using the lmerTest package (Kuznetsova et al., 2017) 
in R. For each of the simulated dataset structures described above, the 
procedure was repeated 50 times (i.e., with 50 different sets of randomly 
generated data) and the number of independent covariates selected in 
the final model recorded. Results were displayed graphically to illustrate 
the distribution of the number of false discovery variables selected in 
each dataset. Code to reproduce this analysis is provided in Supple-
mentary Materials. 

Results are presented in Fig. 1 and demonstrate that after a pre- 
selection procedure to reduce the number of variables, when no un-
derlying association between dependent and independent variables 
were present in the data, a substantial number of false discovery vari-
ables were selected. As expected, as the number of columns of randomly 
generated independent variables increased, the number of false dis-
covery covariates selected for each dataset also increased. Whilst it is 
well known that an increase in independent variables results in multiple 
testing that requires some statistical adjustments to control the false 

discovery rate (Curran-Everett, 2017; Simas et al., 2014), a univariable 
pre-filtration step does not alleviate the issue. Importantly from these 
examples it can be seen that once the number of columns reaches ≥ 300, 
the number of false discovery covariates selected is substantial and this 
effect occurs whether the dependent variable is clustered or not (anal-
ysis not shown). Yet in epidemiological research, it is common practice 
to use univariable pre-filtration followed by conventional stepwise se-
lection with P < 0.05 to determine final covariates. 

2.2. Stability selection for mixed effect models 

In this section we describe a procedure for implementing stability 
selection for data with a clustered outcome based on a linear mixed 
effect, random intercept model. In Section 2.2.1 we describe the creation 
of simulated datasets, with a clustered outcome ‘y_out’ dependent on 
either eight or twenty known ‘true’ predictor variables, and which 
incorporated a large set of additional random ‘noise’ variables. In Sec-
tion 2.2.2 we describe the stability selection procedure and in Section 
2.2.3 define the approach to evaluation of model performance. In Sec-
tion 2.2.4 we describe an alternative current method of variable selec-
tion, based on regularisation, to compare results with stability selection. 

2.2.1. Simulated datasets 
Simulated datasets were constructed with a specified outcome vari-

able dependent on a set of fixed effects (n = 8 or 20) and in which error 
in the outcome arose from combinations of unknown effects at both 
subject and cluster level. Steps in dataset generation were as follows: 

Fig. 1. An illustration of the distribution of false positive covariates selected from 1200 simulated datasets with different numbers of rows (nrows) and columns 
(ncols), in which a clustered dependent and standard normal independent variables were generated at random. i.e., no relationship between dependent and inde-
pendent variables existed. The modelling procedure comprised an initial univariable filter based on a Pearson correlation P value (with a threshold for variable 
inclusion defined on the x-axis as ‘Filter P Value’) followed by conventional backward stepwise mixed effect linear regression based on P < 0.05. The number above 
each boxplot represents the median value, over 50 simulations, of the number of false positive variables selected. 
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i. Size of dataset specified as comprising 500 rows and either 500, 
5000, 10,000 or 100,000 predictor variables  

ii. A hierarchical clustered structure of y was specified as either:  
a. 1 level of clustering with either 5 subjects (rows) per cluster or 

20 subjects per cluster  
b. 2 levels of clustering with either 5 subjects per level 1 cluster 

and 10 level 1 clusters per level 2 cluster, or 20 subjects per 
level 1 cluster and 5 level 1 cluster per level 2 cluster.  

iii. A sets of ‘true’ predictor variables (fixed effects) were defined at 
both subject and cluster level. The number of true variables at 
each level varied by dataset (see Table 1).  

iv. For simulated datasets in which the dependent variable had one 
higher level cluster, the outcome variable, “y_out”, was specified 
as follows; 

youtij = Intercept+
∑r

k=1
2xij +

∑q

l=1
2xj + clj + eij (1)  

clj ∼ N(0, σcl)

eij ∼ N(0, σe)

Where youtij represented an outcome consisting of values for 
subjects i within clusters j, Intercept = 1, xij represented the kth of r 
true covariates at subject level drawn from a standard normal 
distribution, xj represented the lth of q true covariates at cluster 
level drawn from a standard normal distribution, clj was a 
random variable at cluster level drawn from a Normal distribu-
tion with mean = 0 and standard deviation drawn randomly from 
a uniform distribution U(0.5, 6) and eij a random variable that 
represented all other unknown effects on youtij drawn from a 

Normal distribution with mean = 0 and standard deviation also 
drawn randomly from a uniform distribution U(0.5, 6) (Table 1). 
No covariance was assumed between clj and eij. 

The effect size of the true covariates was set at 2 because, 
alongside the random variation incorporated in the outcome as 
defined by the distributions of σcl and σe, this provided sufficient 
signal for all true covariates (xij and xj) to be ‘significant’ in a 
conventional analysis (P < 0.05) when modelled alone (i.e., 
without additional noise variables). 

For two simulated datasets in which the dependent variable 
had two higher level clusters, similar principles were used to 
specify the dependent variable with the addition of an extra 
random variable to define error of the higher-level cluster.  

v. To complete each dataset, additional ‘noise’ variables were 
generated, each from a standard normal distribution. For each 
data set, additional noise variables were added such that the total 
number of variables available for selection were either 500, 5000, 
10,000 or 100,000. 

Therefore, each simulated dataset contained a clustered outcome 
variable dependent on a set of true covariates, with randomly assigned 
associated error at both subject and cluster level and a large number of 
additional noise variables generated at random. The characteristics of all 
datasets are summarised in Table 1. Code to reproduce example simu-
lated datasets is available at https://github.com/cran/stabiliser (see 
Supplementary Materials). 

2.2.2. Stability model construction 
All analyses were conducted using R statistical software (R Core 

Team, 2020). A detailed, step by step description of the stability selec-
tion procedure, including calculation of the stability threshold, is 

Table 2 
Performance metrics for stability selection models across 3300 simulated datasets that contained a clustered outcome variable. TPR - true positive rate, FDR - false 
discovery rate, FDER - false discovery noise error rate, NIR - no information rate, fFDR - filtered false discovery rate, iqr – interquartile range.  

Dataset Name Number 
simulated sets 

TPR 
Mean 
(median, iqr) 

FDR 
Mean 
(median, iqr) 

FDER 
Mean 
(median, iqr) 

NIR 
Mean 
(median, iqr) 

fFDR 
Mean 
(median, iqr) 

D1  300 0.96 
(1.00, 
1.00–1.00) 

0.02 
(0, 
0–0) 

0.0004 
(0, 
0–0) 

0.001 
(0, 
0–0.002) 

0.35 
(0.33, 
0.20 –0.47) 

D2  300 0.97 
(1.00, 
1.00–1.00) 

0.02 
(0, 
0–0) 

0.0004 
(0, 
0–0) 

0.001 
(0, 
0–0.002) 

0.32 
(0.33, 
0.20 –0.47) 

D3  300 0.92 
(1.00, 
0.88–1.00) 

0.03 
(0, 
0–0) 

0.0006 
(0, 
0–0) 

0.001 
(0, 
0–0.002) 

0.35 
(0.33, 
0.20 –0.47) 

D4  300 0.95 
(1.00, 
0.87–1.00) 

0.02 
(0, 
0–0) 

0.0004 
(0, 
0–0) 

0.001 
(0, 
0–0.002) 

0.33 
(0.33, 
0.20 –0.47) 

D5  300 0.80 
(1.00, 
0.75–1.00) 

0.05 
(0, 
0–0) 

0.000003 
(0, 
0–0) 

2 × 10-5 

(0, 
0–0) 

0.47 
(0.50, 
0.33 – 0.62) 

D6  300 0.73 
(1.00, 
0.63–1.00) 

0 
(0, 
0–0) 

0 
(0, 
0–0) 

3 × 10-6 

(0, 
0–0) 

0.49 
(0.53, 
0.37 – 0.64) 

D7  300 0.78 
(0.78, 
0.65–0.90) 

0.02 
(0, 
0–0) 

0.0005 
(0, 
0–0) 

0.002 
(0, 
0–0.002) 

0.26 
(0.27, 
0.11–0.38) 

D8  300 0.95 
(1.00, 
0.95–1.00) 

0.02 
(0, 
0–0) 

0.0004 
(0, 
0–0) 

0.002 
(0.002, 
0–0.004) 

0.31 
(0.33, 
0.20–0.42) 

D9  300 0.84 
(0.88, 
0.75–1.00) 

0.02 
(0, 
0–0) 

0.0005 
(0, 
0–0) 

0.001 
(0, 
0–0.002) 

0.31 
(0.33, 
0.20–0.43) 

D10  300 0.91 
(1.00, 
0.87–1.00) 

0.03 
(0, 
0–0) 

0.0005 
(0, 
0–0) 

0.001 
(0, 
0–0.002) 

0.34 
(0.33, 
0.27–0.47) 

D11  300 0.63 
(0.70, 
0.45–0.85) 

0 
(0, 
0–0) 

0 
(0, 
0–0) 

0 
(0, 
0–0) 

0.34 
(0.35, 
0.19–0.47)  
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provided in Supplementary Materials Table S1. The R code to reproduce 
stability selection analyses is available at https://github.com/cran/-
stabiliser (see Supplementary Materials). In brief, steps in the stability 
selection procedure were as follows: 

i. A univariable Pearson correlation between each individual co-
variate and the outcome was calculated and the 100 covariates 
with the largest absolute Pearson correlation coefficients were 
caried forward for further analysis. Although this step was not 
essential, it reduced computation time without resulting in se-
lection bias (this was tested by computing the no-information 
rate, as descried below).  

ii. A backward stepwise, mixed effects model was built using the 
lme4 package (Bates et al., 2015). A conventional bootstrapping 
procedure (sampling of rows with replacement, to a sample size 
equal to that of the original data (Efron, 1979)) was used to es-
timate covariate stability as previously described (Lima et al., 
2020). In brief, stability selection was defined as the percentage 
of times each covariate was selected in the mixed effect model 
across 100 bootstrap samples.  

iii. Variables were selected in a final model when their stability 
exceeded a specified stability threshold (see Supplementary Ma-
terials Table S1 for full details). In brief, the stability threshold 
represents the maximum stability that would be expected when no 
true covariates are present in the data. To estimate covariate sta-
bility when no true covariates are present, the outcome variable 
is randomly permuted to sever any relationships between 
outcome and explanatory variables. Using the permuted 

outcome, a bootstrap resampling procedure is repeated as 
described above in ii) and the stability of all covariates estimated; 
this represents a null or baseline stability distribution for the 
data. The permuted bootstrap resampling is repeated ten times 
and the mean of the maximum covariate stability in each 
permuted run is calculated and set as the stability threshold for 
the full model analysis. 

2.2.3. Model performance 
Performance of the stability selection procedure across simulated 

datasets was judged using the following criteria:  

a) True positive rate (TPR); the proportion of true covariates selected in 
the final model. This was effectively a measure of the power of 
analysis; the probability that a true covariate was identified.  

b) False discovery rate (FDR); the number of noise variables selected as 
a proportion of the total number of variables selected in the final 
model. 

c) False discovery noise error rate (FDER); the number of noise vari-
ables selected in the final model as a proportion of the total noise 
variables available for selection. 

d) To evaluate whether selection bias was present in the stability se-
lection procedure, the no information rate (NIR) was calculated for 
each dataset. To achieve this, for each simulated dataset and 
modelling procedure, the dependent variable was permuted to remove 
underlying relationships to the true covariates. Having rerun the sta-
bility selection procedure with a permuted outcome, the mean NIR 
was defined as the number of noise variables selected in the final 

Fig. 2. Smoothed line plots (using locally estimated scatterplot smoothing: LOESS) depicting the mean and 95% confidence interval (shaded) proportion of true 
covariates selected in each of 300 models by stability selection (true positive rate (TPR)) with increasing model error at subject level (SD1) or cluster 1 level (SD2). 
The smoothed line and 95% confidence intervals were calculated by fitting local polynomial regression using the default loess function in the stats package of R (R 
Core Team, 2020). In general, the TPR tended to decrease as SD values increased. 
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model as a proportion of the total noise variables available. There-
fore, the NIR represented the false discovery error rate when no true 
covariates were present in the data. 

In addition, to provide a comparison with a common conventional 
method of variable selection, a ‘pre-filtration’ approach was used for the 
analysis of all simulated datasets. This comprised undertaking an initial 
univariable Pearson correlation between each covariate and the 
outcome to identify the 100 covariates with the highest absolute cor-
relation coefficients and subsequently conducting a backward stepwise 
selection at p < 0.05 to determine covariates in a final model. The mean 
number of noise variables selected as a proportion of the total number of 
variables selected in each final model across 300 data simulations was 
calculated and termed the ‘filtered false discovery rate’ (fFDR). 

2.2.4. Comparison with glmmlasso 
To compare results obtained from stability selection with a published 

alternative method of covariate selection, a regularized linear mixed 
model with the least absolute shrinkage and selection operator (Lasso) 
penalty was implemented, as previously described (Schelldorfer et al., 
2014). In brief, the method includes a parameter, λ, that governs the size 
of a penalty applied to the sum of the covariate coefficients, which has 
the effect of reducing coefficient size. Coefficients of some variables are 
set to zero meaning they are not selected in the model, hence the Lasso 
provides in-built covariate selection (Tibshirani, 1996). In this study the 
value of lambda was optimised using five-fold cross validation to iden-
tify the minimum mean absolute error (Kuhn and Johnson, 2013). The 
method was implemented in R using the glmmLasso package (Groll, 

2017). For computational reasons (the algorithm is very slow to 
implement on very wide data), it was not possible to implement the 
algorithm on datasets with 100,000 covariates and only 100 datasets 
were used with 10,000 covariates. Comparisons between stability se-
lection and glmmLasso were made using the metrics TPR, FDR and 
FDER. 

3. Results 

3.1. Stability selection; model performance 

A summary of stability selection model performance for all 3300 
simulated datasets is shown in Table 2. For stability selection, across all 
dataset classes, the false discovery rate and false discovery noise error 
rates were consistently low. The mean FDR remained ≤ 0.05 indicating 
that on average fewer than 1 in 20 of the variables selected in a final 
model were noise variables. This was in contrast to the mean filtered 
false discovery rate which ranged from 0.15 to 0.47 indicating that, as 
expected, a univariable filtration followed by conventional backward 
stepwise selection resulted in a substantial number of noise variables 
being selected in final models. With stability selection, in addition to the 
FDR and fFDR remaining low (≤0.05), the mean true positive rate was 
0.73–0.97 (median 0.78–1.00) with the exception of the dataset using 
100,000 covariates in which the mean (median) TPR was 0.63 (0.70). 
Therefore, the power of analysis remained reasonably high; on average 
the large majority, although not all of the true covariates were identi-
fied. An evaluation of the distributions of TPR across simulations 
(Fig. 2), identified that in general, selection of true variables decreased 

Fig. 3. Smoothed line plots (using locally estimated scatterplot smoothing: LOESS) depicting the mean and 95% confidence interval (shaded) proportion of false 
positive covariates (false discovery noise error rate; FDER) selected in each of 300 models by stability selection and increasing model error at subject level (SD1) or 
cluster 1 level (SD2). The smoothed line and 95% confidence intervals were calculated by fitting local polynomial regression using the default loess function in the 
stats package of R (R Core Team, 2020). It was notable that FDER remained below 1 in 1000 across all models and values of model error incorporated in the data. 
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as model error increased. Increased model error effectively dilutes the 
signal attributable to the true covariates and therefore this pattern is 
unsurprising. Importantly, despite this reduction in power with a higher 
degree of error, the FDR did not increase (Fig. 3) suggesting that even 
when true covariates cannot be identified because the associated error is 
too high, these are not replaced by noise covariates. 

Importantly the mean no information rates for the stability selection 
procedure remained low at ≤ 0.001 across all simulations and data 
structures indicating that even when no relationships were present in 
the data, on average only 1 in 1000 covariates were incorrectly selected 
as false positives. 

Performance metrics for the glmmLasso method are presented in 
Table 3. Across all datasets the mean TPR remained ≥ 0.93 indicating 
that for the vast majority of datasets, all true variables were selected. 
The false discovery rate and false discovery noise error rates, however, 
were consistently high, the FDR was between 0.59 and 0.72, and the 
FDER between 0.04 and 0.12. Therefore, generally more than 60% of 
variables selected in a final model were noise variables. 

4. Discussion 

The purpose of this study was to evaluate a mixed model stability 
selection procedure for covariate selection in data with a clustered 
outcome variable. The proposed method appeared to work well, with 
good overall performance metrics, and notably better than the conven-
tional pre-filtration method (Table 2) that resulted in very high false 
discovery rates. Indeed, a key strength of stability selection appeared to 
be a strong control of false discovery rates resulting in a high degree of 
certainty across all data types and error structures tested, that the var-
iables selected were indeed true positives (>95% certainty). This was in 
contrast to the glmmLasso method which had a tendency to over fit data 

resulting in the selection of substantial numbers of noise variables and 
false discovery rates in the region of 0.60–0.70 (as opposed to <0.05 for 
stability selection). Whilst stability selection provided superior control 
of false discovery rates than the Lasso method, this was associated with a 
slight reduction in TPR (ability to detect the true variables). For most 
classes of dataset, this difference was relatively small at < 0.1 (i.e., the 
Lasso method identified 1 in 10 additional true variables compared to 
stability selection) although as dataset width increased, this difference 
increased to around 0.3. However, as noted previously, the relatively 
high TPR achieved using glmmLasso was accompanied by a very poor 
FDR indicating the two methods appear to have differing strengths. The 
Lasso method tended to over fit, identify a high proportion of true 
positive variables but at the cost of selecting large numbers of noise 
variables, whilst stability selection tended to slightly underfit resulting 
in sparse models that contained nearly entirely only true variables, but 
at the cost of omitting a small proportion of the true variables. This 
suggests the two methods may both be useful in different situations. 
When high specificity is needed in terms of identification of true cova-
riates (i.e., high certainty is needed that selected variables are truly 
associated with an outcome), stability selection appears to offer a good 
solution, although with a slight loss of sensitivity. Conversely when high 
sensitivity is needed (i.e., a high certainty is required that all true 
covariates associated with an outcome are identified, even with addi-
tional noise variables) the Lasso approach may be useful, even if 
accompanied by a substantial loss of specificity. Results from this 
simulation study suggest that the loss of sensitivity when employing 
stability selection is relatively small compared to the loss of specificity 
when using the Lasso and therefore, in general, stability selection may 
provide a better choice for the analyst when evaluating wide data with a 
clustered outcome. 

We conducted additional analyses of the distributions of TPR and 
FDR for stability selection models (Figs. 1 and 2) and identified, as may 
be expected, that TPR tended to decrease as the magnitude of error 
associated with the outcome variable increased. This relationship was 
not surprising since additional error in the outcome variable will dilute 
the direct relationship between the true covariates and outcome 
meaning some may be missed from selection. Whilst such a loss of power 
is not ideal, importantly it was not accompanied by an increase in FDR 
(Fig. 2) which provides confidence in the variables selected using this 
approach; when covariates are selected, there was a high level of cer-
tainty that they were true positives. 

The methods implemented in this research, stability selection and 
glmmLasso, have some similarity to statistical correction for multiple 
testing; all of the methods aim to limit identification of false positive 
covariates. Although a detailed comparison is beyond the scope of this 
paper, modern methods for minimising false discovery rates in multiple 
testing have been evaluated recently (Korthauer et al., 2019). In sum-
mary, the more recent methods described for multiple comparison 
correction, such as independent hypothesis weighting (Ignatiadis et al., 
2016) and Adaptive p-value Thresholding (Lei and Fithian, 2018), 
showed only mild advantages over the traditional approaches such as 
the Bonferroni correction (Dunn, 1961) or the Benjamini-Hochberg 
Procedure (Benjamini and Hochberg, 1995). In fact all methods 
showed a tendency for conservatism (reduction in detection of true 
positive covariates (Korthauer et al., 2019)). A further problem arises 
with these approaches regarding the validity in a complex model-based 
setting and this is one reason for continued research in this field (Barber 
and Candés, 2019; Barber and Candès, 2015). It is therefore clear that 
currently these methods do not provide a full solution for the analysis of 
wide data, especially within the context of data with a correlated 
outcome and therefore stability selection may provide a viable alter-
native for such analyses. 

4.1. Study limitations 

There are a variety of limitations to this empirical study. The 

Table 3 
Performance metrics for glmmLasso models across 2800 simulated datasets that 
contained a clustered outcome variable. TPR - true positive rate, FDR -false 
discovery rate, FDER - false discovery noise error rate, iqr – interquartile range.  

Dataset Name Number 
simulated sets 

TPR 
Mean 
(median, iqr) 

FDR 
Mean 
(median, iqr) 

FDER 
Mean 
(median, iqr) 

D1 300 1.00 
(1.00, 
1.00–1.00) 

0.66 
(0.68, 
0.56–0.75 

0.04 
(0.03 
0.02–0.05 

D2 300 0.99 
(1.00, 
1.00–1.00) 

0.64 
(0.65, 
0.56–0.75 

0.04 
(0.03 
0.02–0.05 

D3 300 0.99 
(1.00, 
1.00–1.00) 

0.68 
(0.70, 
0.62–0.77 

0.04 
(0.04 
0.03–0.05 

D4 300 0.93 
(1.00, 
1.00–1.00) 

0.59 
(0.67, 
0.56–0.74 

0.04 
(0.03 
0.02–0.05 

D5 300 0.99 0.79 
(0.71, 
0.62–0.78 

0.01 
(0.04 
0.004–0.02 

D6 100 0.92 
(1.00, 
1.00–1.00) 

0.30 
(0.25, 
0–0.58 

0.001 
(0.0003 
0–0.001 

D7 300 0.98 
(1.00, 
0.95–1.00) 

0.72 
(0.72 
0.66–0.78 

0.12 
(0.11 
0.08–0.135 

D8 300 1.00 
(1.00, 
1.00–1.00) 

0.71 
(0.70 
0.66–0.88 

0.10 
(0.11 
0.08–0.13 

D9 300 0.98 
(1.00, 
1.00–1.00) 

0.68 
(0.71, 
0.62–0.78 

0.05 
(0.04 
0.02–0.06 

D10 300 0.98 
(1.00, 
1.00–1.00) 

0.68 
(0.86, 
0.69–0.93) 

0.05 
(0.04 
0.03–0.06 

D11 NA NA NA NA  
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simulated datasets contained normally distributed fixed and random 
variables which although suitable to meet the assumptions of mixed 
effect models could be considered idealised. For example, non-standard 
Gaussian distributions with skewness may be encountered in real data 
and it is unknown whether the stability selection modelling procedures 
would perform similarly with such data. No non-linear relationships nor 
random slopes were tested in the modelling procedures, and this would 
be a useful subsequent element of research although there is no obvious 
reason to believe this would result in poorer model performance. The 
number of true covariates (8 or 20) in the simulated datasets was rela-
tively low so as to align with the ‘bet on sparsity principle’ (Hastie et al., 
2015), which dictates that for causal variables to be identifiable (in any 
model), a relatively small number of predictors have to be responsible 
for most of the effect on the outcome of interest. Overall, it is important 
to note that our results do not extend beyond the scenarios we have 
tested and further work on stability selection for random effects models 
with a variety of different data structures and an increasing number of 
true variables would be of benefit. 

4.2. Conclusions 

In this research we have proposed a new method of stability selection 
applicable to wide data with a clustered outcome variable. Empirically, 
the method appears effective at controlling false discovery rates 
although with very large numbers of noise variables, this may be 
accompanied by a slight loss of power (ability to detect the true cova-
riates). The R code and functions to implement examples and analyses in 
this manuscript are available at https://CRAN.R-project.org/pack-
age=stabiliser and https://github.com/cran/stabiliser (also in Supple-
mentary Materials). 
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