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Abstract. Nutritional perturbation during gestation alters male reproductive development in rodents and sheep. In cattle 
both the developmental trajectory of the feto–placental unit and its response to dietary perturbations is dissimilar to that of 
these species. This study examined the effects of dietary protein perturbation during the peri-conception and first trimester 
periods upon reproductive development in bulls. Nulliparous heifers (n ¼ 360) were individually fed a high- or low-protein 
diet (HPeri and LPeri) from 60 days before conception. From 24 until 98 days post conception, half of each treatment group 
changed to the alternative post-conception high- or low-protein diet (HPost and LPost) yielding four treatment groups in a 
2 � 2 factorial design. A subset of male fetuses (n ¼ 25) was excised at 98 days post conception and fetal testis 
development was assessed. Reproductive development of singleton male progeny (n ¼ 40) was assessed until slaughter at 
598 days of age, when adult testicular cytology was evaluated. Low peri-conception diet delayed reproductive 
development: sperm quality was lowered during pubertal development with a concomitant delay in reaching puberty. 
These effects were subsequent to lower FSH concentrations at 330 and 438 days of age. In the fetus, the low peri-
conception diet increased the proportion of seminiferous tubules and decreased blood vessel area in the testis, whereas low 
first trimester diet increased blood vessel number in the adult testis. We conclude that maternal dietary protein perturbation 
during conception and early gestation may alter male testis development and delay puberty in bulls.
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Introduction

Fetal developmental programming of physiological systems
is a well-established concept (McMillen and Robinson 2005).

Maternal peri- and post-conception nutrition influences fetal
development, which, in turn, can affect postnatal growth, gonad
development, gamete quality and hormonal status of the off-

spring (Sullivan et al. 2009a, 2010; Micke et al. 2010, 2011;
Dupont et al. 2012; Mossa et al. 2013). Seasonal variation in the
nutritional value and the quantity of pasture available to preg-

nant ruminants can occur in grass-fed production systems
(Burns et al. 2010). Such variation in prenatal nutrition has been
shown to affect both testicular development and circulating
gonadotrophin levels in the prepubertal bull (Sullivan et al.

2010). However, the implications for adult reproductive
performance in cattle progeny are not known; this paucity of
research on the direct effects of in utero nutrition on male

progeny postnatal reproductive function and fertility is widely
acknowledged (Dupont et al. 2012; Chavatte-Palmer et al. 2014;
Mossa et al. 2015; Sinclair et al. 2016). Comparable studies in

rams have reported effects upon age at puberty (Da Silva et al.
2001), testicular weight (Bielli et al. 2002), testicular volume
(Da Silva et al. 2001), Sertoli cell numbers, the diameter of

seminiferous tubules (Kotsampasi et al. 2009), prepubertal
testosterone (Da Silva et al. 2001) and pituitary response to
gonadotrophin-releasing hormone (GnRH; Kotsampasi et al.

2009). Age of puberty in cattle (as in sheep) is considered
a driver of efficiency; shortening the generation interval,
increasing genetic gain and thereby overall lifetime productivity
(Barth and Ominski 2000; Yilmaz et al. 2006).

Many studies have shown that folliculogenesis (Fair 2010)
and early embryo development are sensitive to perturbations in
the maternal environment (Edwards and McMillen 2002;
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Ashworth et al. 2009; Mossa et al. 2013). The response to
such perturbations is orchestrated via the developing placenta

(Sullivan et al. 2009b). As the growth trajectory of the bovine
placenta differs from the ovine and rodentmodels, and is, in fact,
more similar to the human (Wooding and Flint 1994), the

resultant response of the feto–placental unit also differs
(Hernandez-Medrano et al. 2015). Correspondingly, unlike
altricial or small ruminant models, bovine embryo development

occurs at similar developmental time points to the human;
organogenesis is complete by 42 days post conception (dpc)
(Hopper 2014), with the genital ridges, forming at 27 to 30 dpc
(Ross et al. 2009). Sertoli cells begin to proliferate between 40

and 50 dpc and play a crucial role in gonad development during
fetal life and in postnatal spermatogenesis (Griswold and
McLean 2006). Disruptions to the proliferation of fetal Sertoli

cells may occur through modifications in the development of
the hypothalamic–pituitary–gonadal axis in early fetal life
(Klonisch et al. 2004; O’Shaughnessy and Fowler 2011) and

associated changes in the concentration of hormones including
follicle-stimulating hormone (FSH), triiodothyronine (T3), thy-
roxine (T4) and growth hormone (GH; Dupont et al. 2012).
Consequently, this may affect development of other testicular

cells, leading to altered testicular function in postnatal life
(Sharpe et al. 2003; Dupont et al. 2012).

Spermatogenesis is a complex process of cellular replication

and differentiation (Barth and Oko 1989; Wrobel 2000). A suite
of molecular pathways is regulated by an interdependent com-
plement of hormones including testosterone, FSH, inhibin and

activin, which rise and fall in a specified sequence during
prepuberty and peri-puberty to result in functional spermatozoa
in the adult bull (Evans et al. 1996; Matsuzaki et al. 2000;

Kaneko et al. 2001). This sequence is known to be disrupted by
nutritional intervention during the preweaning period (Brito
et al. 2007b, 2007c) possibly mediated by metabolic hormones
(i.e. insulin-like growth factor 1 (IGF1); Brito et al. 2007a,

2007c; Barth et al. 2008) with consequent effects upon the
development of spermatogenesis. Previously reported effects of
prenatal nutrition also include changes in concentrations of

many of the aforementioned hormones (Da Silva et al. 2001;
Micke et al. 2010; Sullivan et al. 2010).

The aim of the present study was to examine the effects of

dietary protein intake in heifers during the peri-conception
period and the first trimester on the reproductive development
of their male progeny.We hypothesised that the peri-conception
and first trimester low-protein diet would delay puberty with

deleterious effects upon testicular development and sperm
production and, furthermore, this would be associated with
alterations to the hormonal milieu in the developing bull.

Materials and methods

Ethics approvals

All procedures were performed with the prior approval of
University of South Australia IMVS Animal Ethics Committee,
Australia (Approval number: 18/11), TheUniversity of Adelaide,

Australia (Approval number: S2012–249), The University of
New England, Australia (Approval number AEC14–037) and the
University of Nottingham, UK (Approval number 1117 140320).

Experimental design and animal management

The purpose of this experiment was to evaluate the impact of
maternal dietary protein during the peri-conception (PERI;

�60 to 23 dpc (implantation being 18 to 22 dpc; Wathes and
Wooding 1980; Spencer and Hansen 2015)) and first trimester
(POST; 24 to 98 dpc) periods in nulliparous beef heifers upon

fetal and postnatal reproductive development in the male
progeny.

The study was a 2� 2 factorial design. The animals and

fetuses studied were singleton male progeny of 2-year-old
heifers that have previously been described (Copping et al.

2014). Briefly, 360 nulliparous weaned Santa Gertrudis (Bos
taurus�Bos indicus) heifers were selected on the basis of

weight (289.4� 23.4 kg) from S. Kidman and Co herds located
at ‘Glengyle’ and ‘Morney Plains’, south-western Queensland,
Australia. Heifers were transported to ‘Tungali’, Sedan, South

Australia (348290S, 1398180E) where they underwent 60 days of
acclimatisation before commencement of the study. Heifers that
did not acclimatise to the individual feeding were removed from

the study.
At,12months of age, 60 days before artificial insemination,

heifers were stratified by bodyweight and randomly assigned to

two equal peri-conception (PERI) treatment groups, high and
low protein (HPeri and LPeri). Each heifer was fed a high (71MJ
ME and 1.18 kg crude protein per head per day) or low (63MJ
ME and 0.62 kg crude protein per head per day) protein diet

(Table 1) consisting of a pelleted diet supplemented with a
commercial vitamin and mineral preparation (Minmix; Ridley
Agriproducts) that was individually fed in stalls. Straw (5%

crude protein) was available ad libitum in pens.
Heifers underwent a progesterone-based oestrus synchroni-

sation program as previously described (Hernandez-Medrano

et al. 2015) and were artificially inseminated on Day 0 with
frozen semen from one Santa Gertrudis bull. At 23 dpc, half of
each nutritional treatment group was swapped to the alternative
post-conception (POST) treatment, high (HPost: 102MJMEand

1.49 kg crude protein per head per day) or low (LPost: 98MJME
and 0.88 kg crude protein per head per day; Table 1), giving rise
to four groups: HPeri-HPost (HH), HPeri-LPost (HL), LPeri-

HPost (LH), LPeri-LPost (LL). Pregnancy was confirmed in 124
heifers at 36 dpc and fetal sex was determined at 60 dpc by
transrectal ultrasonography. At 98 dpc a sub-set of heifers

(n¼ 46; singleton pregnancy) was humanely slaughtered at a
commercial abattoir and fetuses of both sexes (n¼ 46; single-
tons) collected as described (Copping et al. 2014), with the 25

singleton male fetuses reported herein (n: HH¼ 6, HL¼ 10,
LH¼ 5, LL¼ 4). The fetal cohort was randomly selected based
on maternal weight and sex of the fetus; however, the HL group
had a disproportionate number ofmale fetuses so a larger number

of these animals was available at this point. Fetal gonads were
dissected, weighed and collected for histological processing.

From the end of the first trimester of gestation (98 dpc), all

heifers were fed the same diet, which was formulated to provide
additional growth of 0.5 kg per head per day until parturition
(79MJME and 0.92 kg crude protein per head per day; Table 1).

Heifers received the pellet portion of their diet individually on a
daily basis with straw (5% crude protein) provided ad libitum in
pens until the animals reached parturition.
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Sixty-four heifers completed the study and gave birth to 18
live singleton female and 43 live singleton bull calves. Progeny
remained with their mothers as one group grazing on improved

and native pastures until weaning at 183.3� 0.8 days of age.
After weaning, progeny were segregated according to sex and
grazed improved and native pasture until 507.3� 0.8 days of

age. Non-castrated male progeny were transported from Sedan,
South Australia to the ‘Tulimba’ Research Feedlot, Kingstown,
NSW (308280S, 1518110E) before slaughter at a commercial

abattoir on 598.3� 0.8 days of age with a final liveweight� s.d.
of 652.3� 11.4 (HH), 677.0� 10.0 (HL), 678.6� 19.1 (LH)
and 647.4� 15.5 (LL) kg. At slaughter, gonads were dissected,

weighed and collected for histological processing. Two progeny
were removed from the study after birth, due to poor mothering.
An additional animal was a cryptorchid and was excluded from
the analysis leaving 40 singleton male progeny that completed

the study reported herein (n: HH¼ 10, HL¼ 14, LH¼ 8,
LL¼ 8).

Tissue fixation and processing

The complete left testis in the fetus and a 1 cm3 piece from each
testis (same for every sample) in the adult were dissected and
fixed overnight in 4% paraformaldehyde diluted in 0.1M

phosphate-buffered saline (PBS; 0.14M NaCl, 0.03M

NaH2PO4, 0.05M Na2HPO4) in a ratio of 1 : 5 (tissue volume :
fixative solution volume). Samples were washed three times for
24 h each in PBS. Tissueswere processed on an automated tissue

processor in the following solutions, 30min in the case of fetal
testis and 1 h for the adult testis per solution: 70% ethanol, 80%
ethanol, 95% ethanol, three times in 100% ethanol, two times in

100% xylene and two times in paraffin wax at 608C under
vacuum. Following processing, the testes were orientated and
embedded in paraffin wax.

All samples, both adult and fetus, were sectioned at a
thickness of 10mm using a microtome (Leica 5M 2255). The
sections were dried onto polysilinated slides (Thermo Scientific)

on a hot plate at 428C for 1 h and then for 24 h at room temperature
before histological staining.

Cell counts and proportions

The development of the testis was assessed by the measurement

of the following structures: testicular cell number (Sertoli, germ
and interstitial cells), seminiferous tubules and blood vessels.
These were distinguished within the testis by staining with two

techniques: immunohistochemistry using a Novolink Polymer
Detection immunostaining kit (Leica Microsystems) with
Mis-C20 primary antibody (1 : 1000 dilution; Santa Cruz Bio-

technology) andPicrosirius staining (Polysciences, Inc.).Mis-C20

Table 1. Ingredients and nutrient content of heifer rations for induction period, the PERI- (260 to 23 dpc) and POST-conception periods

(24 to 98 dpc) and second and third trimester of gestation (99 dpc to term)

L, low; H, high

Ration as fed Induction PERI conception POST conception Second & third trimester

L H L H

Wheat (kg) 0.66 1.81 0.48 2.12 0.56 0.60

Canola meal (kg) 2.23 – – – – 0.89

Soybean meal (kg) 0.48 1.83 0.56 2.14 0.44

Barley Straw (kg) 7A 5.5 6.7 10.2 10.7 8.6

Molasses (g) 90 72 72 84 84 60

Biofos MDCP (g) – 19 – 22 – –

Salt (g) 15 12 12 14 14 10

Vitamin / trace mineral premix (g) 3 2 2 3 3 2

Dry matter (kg) 9.1B 7.2 8.3 11.8 12.3 9.6

Total energy (MJ ME) 63 71 98 102 79

% of energy requirementsC 85 96 136 142 125

Total crude protein (kg) 0.62 1.18 0.88 1.49 0.92

% of Protein requirementsC 67 127 72 123 88

% CP (total diet) 8.6 14.2 7.4 12.1 9.6

% FatB 1.5 1.4 1.4 1.4 1.5

% StarchB 15.1 4.7 10.9 3.8 4.8

Total calcium (g) 22 26 37 38 33

% of Calcium requirementsC 110 130 185 190 132

Total phosphorus (g) 17 17 21 21 20

% of Phosphorus requirementsC 130 130 160 160 125

AAssumed value.
BPredicted value.
CDietary requirements were calculated using Nutrient Requirements of Domesticated Ruminants (Freer 2007). Input values were based upon nutrient analysis

of component ingredients in the total diet, liveweight and age of heifers at each diet change, mature cow weight of 550 kg and the desired growth target. Key

assumptions: calculations use the formulated values for pellets and actual values for straw. PERI-conception diet is based upon 340 kg Santa Gertrudis heifer

gaining 0.5 kg day�1. POST-conception diet is based upon 400 kg, 60 dpc Santa Gertrudis heifer gaining 0.5 kg day�1. Second and third trimester diet is based

upon 480 kg, 200 dpc Santa Gertrudis heifer gaining 0.5 kg day�1.
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was combined with haematoxylin staining in order to differen-
tiate the Sertoli cells (Mis-C20 stained), germ cells (morpho-

logically apparent by their distinctive cytoplasm) and the
morphologically distinct interstitial cells/Leydig cells. In the
early stages of testicular development, fetal Sertoli cells are

localised in the periphery of the sex cords (Vergouwen et al.

1991; Jégou 1992; Abd-Elmaksoud 2005) surrounding the germ
cells, which are situated near the centre of the testicular cord

(Vergouwen et al. 1991; Jégou 1992; Abd-Elmaksoud 2005).
Interstitial/Leydig cells distribute across the interstitium
between the seminiferous cords (Vergouwen et al. 1991; Abd-
Elmaksoud 2005). Picrosirius staining was used to assist iden-

tification of blood vessel from seminiferous tubules. Following
tissue staining, sections were photomicrographed using a
DM5000B microscope (Leica Microsystems Inc.) with a Leica

CTR5000 light box and Leica DFC420 colour capture camera.
The magnification of the eyepiece and lens is stated below for
each count using systematic random sampling and stereology

methods previously described (Mayhew 1991, 2011). In brief,
sections were selected using systematic random sampling
(ensuring a minimum of 200mm between samples to avoid
double cell counting). Photomicrographs were captured from

each section in a systematic randommanner before stereological
counting and measurements being undertaken (n¼ 5 sections
per sample for cell counts and proportions and n¼ 3 sections

per sample for seminiferous tubules and blood vessel mea-
surement). This technique ensured unbiased measurements
throughout the tissue. In the fetal testis every testicular cell was

identified and manually counted on a total of 420 photo-
micrographs. Seminiferous tubule numbers and dimensions
(n¼ 315 photomicrographs, 20� magnification) and capsular

and parenchymal blood vessels (n¼ 5670, photomicrographs at
10� and 40� magnification respectively) were measured
manually using an image analysis program (Image-Pro Plus,
Version 6.3; Media Cybernetics; n: HH¼ 5, HL¼ 7, LH¼ 5,

LL¼ 4). In the adult testis seminiferous tubules and blood
vessels were measured using the same image analysis program
(n¼ 400 micrographs, 10� magnification and n¼ 800 photo-

micrographs, 20� magnification respectively; n: HH¼ 10,
HL¼ 14, LH¼ 8, LL¼ 8). Following calibration of the imaging
software, tubules and vessels were manually circumscribed and

the average number of tubules and blood vessels per tissue area
(referred to throughout as ‘number’ of blood vessels or semi-
niferous tubules) was calculated. In addition, the blood vessel
and seminiferous tubule areas occupied per tissue section were

calculated; this is referred to as blood vessel or tubule ‘area’
throughout. Importantly all samples were fixed, processed and
sectioned in the same manner so that groups could be directly

compared.

Animal measures

Liveweight and scrotal circumference

Heifers were visually monitored 24 h a day throughout

calving. Progeny birthweight was recorded within 15min
of birth and before first suckling. Liveweight was recorded
monthly from birth. Scrotal circumference was assessed

monthly from 214.3� 0.8 days of age (after weaning) using

the Australian Cattle Veterinarians recommended procedure
(Beggs et al. 2013) with a Reliabull scrotal measuring tape

(Lane Manufacturing Inc.).

Blood sampling

Progeny blood sampleswere collected approximatelymonthly

from weaning until slaughter at 20 months of age. Prior to the
commencement of other procedures, samples of whole blood
were collected by venipuncture directly into Vacutainer tubes

containing lithium-–heparin (Becton, Dickinson and Co.). Tubes
were rotated by hand for 5 to 10 s and stored on ice before
centrifugation (Eppendorf 5702R; Eppendorf Zentrifugen

GMBH) at 3000g for 10min at 48C within 90min of collection.
Plasma was harvested then stored frozen at�808C until analysis.

Assays

Plasma concentrations of FSH, leptin, IGF1, testosterone, anti-

Müllerian hormone (AMH), inhibin and activin A were assayed
as detailed.

Plasma FSHwasmeasured in duplicate by a double-antibody

radioimmunoassay (Atkinson and Adams 1988) using
NIAMDD-oFSH-RP-1 (biopotency 75� NIH-FSH-S1) and
NIADDK-anti-oFSH-1 serum. The intra-assay coefficients of

variation were 5.7%, 2.7% and 4.4% for control plasma with
means of 1.27 ngmL�1, 2.25 ngmL�1 and 3.15 ngmL�1 respec-
tively. The limit of detection was 0.15 ngmL�1. As the sample

levels were 3–4 times higher than the limit of detection they
were read in the linear part of the standard curve.

Plasma was assayed for leptin in duplicate by a double-
antibody radioimmunoassay (RIA; Blache et al. 2000) with

samples processed in a single assay. The assay included six
replicates of three control samples containing 0.29, 0.71 and
1.68 ngmL�1, which were used to estimate the intra-assay

coefficients of variation of 5.4%, 4.4% and 6.6%. The limit of
detection was 0.05 ngmL�1.

Plasma testosterone was assayed in duplicate using the

reagents of the Immunochem double antibody testosterone
RIAkit (MPBiomedicalAustralia) following themanufacturer’s
protocol and validated using a serial dilution of two bovine
samples. The intra-assay coefficients of variation for quality

control samples containing 0.26 ngmL�1 and 2.3 ngmL�1 were
6.5% and 2.9% respectively. The lowest and highest limits of
detection were 0.07 ngmL�1 and 6.5 ngmL�1 respectively.

Plasma was assayed for IGF1 in duplicate by double-
antibody radioimmunoassay with human recombinant IGF1
(ARM4050; Amersham-Pharmacia Biotech) and anti-human

IGF1 antiserum (AFP4892898; National Hormone and Pituitary
Program of the National Institute of Diabetes and Digestive and
Kidney Diseases) following acid–ethanol extraction and cryo-

precipitation (Breier et al. 1991). The assay was previously
validated for bovine samples (Chagas et al. 2007). Sampleswere
processed in a single assay. The intra-assay coefficients of
variation for control samples containing 51.6 ngmL�1 and

253.6 ngmL�1 were 6.2% and 5.9% respectively. The limit of
detection was 0.1 ngmL�1.

AMH levels were determined using a bovine AMH enzyme-

linked immunosorbent assay (ELISA) kit (Ansh Laboratories)
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following the manufacturer’s protocol. Samples were diluted
15 times using the sample diluents provided in the kit. The intra-

assay coefficients of variation for quality control samples
containing 290.8 pgmL�1 and 875.0 pgmL�1 were 2.6% and
3.7% respectively. The limit of detection was 28.4 pgmL�1.

Bovine inhibin levels were measured at the Hudson Institute
of Medical Research using a radioimmunoassay employing a
rabbit antiserum raised against the a-subunit of bovine inhibin
(McLachlan R.I. et al. 1986), which detects both inhibinA andB
proteins and free inhibin a-subunit (including pro-a-C) in
multiple species. Iodinated human recombinant 31-kDa inhibin
was used as tracer and 31-kDa human recombinant inhibin was

used as standard. Goat anti-rabbit IgG (GAR#12; Hudson
Institute) was used as second antibody. The assay has been
validated for measurement of inhibin in bovine serum samples

and values (in ngmL�1) are expressed relative to the purified
human inhibin standard. The intra-assay coefficient of variation
was 6.2% and the lowest and highest limits of detection were

0.26 ngmL�1 and 8.73 ngmL�1 respectively (based on effective
dose (ED) 90 and ED10 values).

Total bovine serum activin A concentrations were measured
at the Hudson Institute of Medical Research employing a two-

site enzyme immunoassay specific for activin A (Knight et al.
1996) modified and validated for measurement of bovine serum
samples. Human recombinant activin A, which is identical in

sequence to bovine activin A, purified as described previously
frommaterial provided by Biotech Australia Pty Ltd (Robertson
et al. 1992), was used as the standard. Values (in pgmL�1) are

expressed relative to the purified activin A standard. The mean
intra- and inter-assay coefficients of variation for three plates
were 5.4% and 7.3% respectively. The lowest and highest

limits of detection were 8.84 pgmL�1 and 1984 pgmL�1

(2 s.d.) respectively.

Semen collection

Semen collection commenced in spring at approximately
monthly intervals from 10 months of age until slaughter at 20
months of age. After preliminary stimulation of the ampulla via

rectal massage, semen was collected using a standard electro-
ejaculation technique (Lane Pulsator IV; Lane Manufacturing
Inc.) as previously described (McAuliffe et al. 2010; Beggs et al.

2013). If an animal did not produce a satisfactory sample within
several minutes following electrostimulation, the animal was
released and a single further attempt was made after a 10-min
interval (Callaghan et al. 2016).

Assessment of semen traits was undertaken immediately
following collection using established methodology and stan-
dards (Entwistle and Fordyce 2003; Fordyce et al. 2006) by the

same technician blinded to treatment. Briefly, ejaculate density
was scored immediately following collection using a 1 (clear to
cloudy) to 5 (creamy) scale. A drop of semen was placed on a

pre-warmed glass slide (378C) with a plastic transfer pipette
(1mL) and assessments made of motility (%) and mass motility
(or wave motion) using a phase-contrast microscope. Motility

was estimated as the percentage of spermatozoa that were
progressively motile under their own propulsion (viewed at
400� magnification). Mass motility was assessed under 40�
magnification on a 1 (no swirl) to 5 (fast distinct swirl with

continuous dark waves) scale (Burns et al. 2013; Corbet et al.
2013). Animals that did not produce an ejaculatewere assigned a

value of zero for density, motility and mass motility (Corbet
et al. 2013). Semen (0.1mL) was diluted with phosphate-
buffered formal saline (4.9mL) for sperm concentration assess-

ment, with spermatozoa counted in a haemocytometer (Perry
et al. 1990).

Semen (1 to 2 drops) was placed into phosphate-buffered

formal saline (1.0mL) for assessment of sperm morphology.
The morphology of 100 individual spermatozoa in each sample
considered to contain sufficient spermatozoa for examination
(Burns et al. 2013)was assessed using 1000�magnification under

differential interference contrast microscopy by an Australian
Cattle Veterinarians accredited sperm morphologist blinded to
treatment at a commercial third-party pathology laboratory.

Morphology traits were individually recorded based on the
sperm abnormality format as described (Fordyce et al. 2006).
The sperm abnormality categories included midpiece abnorma-

lities, knobbed acrosomes, proximal cytoplasmic droplets,
abnormal tails and loose heads, pyriform heads, vacuoles and
teratoid spermatozoa and swollen acrosomes (Fordyce et al.

2006). Total remaining normal spermatozoa were noted as

percentage normal spermatozoa per ejaculate at each time point
(Entwistle and Fordyce 2003).

Determination of pubertal age and sexual maturity

The threshold used for age at puberty was defined as the first
time an ejaculate contained a semen concentration of$50� 106

spermatozoa mL�1 with$10%motile spermatozoa (Wolf et al.

1965). Sexual maturity was characterised as the first time an
ejaculate contained $70% morphologically normal spermato-
zoa with semen concentration $50� 106 spermatozoa mL�1

(Brito et al. 2004).

Statistical analysis

Data were checked for normality and transformed before anal-
ysis if required. Data for maternal liveweight, maternal average

daily gain, fetal weight, fetal testis weight, testicular cell
development, gestation length paired testis weight, age of
puberty, age of maturity, inhibin, activin A and AMH were

analysed using two-way ANOVA (STATA 13.1; Stata Corp
College Station) to determine the effects of maternal diet during
PERI and POST periods and their interaction term. Significant
interactions were explored with Tukey–Kramer post hoc test as

required.
To investigate the interactions between maternal diet (PERI

and POST) and time, hormone concentrations (leptin, FSH,

IGF1, testosterone), sperm traits and scrotal circumference,
linear mixed-effects models were performed, adjusting for
repeated measures over time for each of the 40 calves. An

autoregressive (1) covariance structure was used as it provided
the best fitting model compared with other structures. For sperm
morphological abnormalities, generalised estimating equation

(GEE) models with a Poisson distribution were performed,
adjusting for repeated measures over time for each of the
40 calves. Post hoc comparisons were made for each model:
differences of least-squares means for the linear mixed-effects
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models and incidence rate ratios (IRR) for the Poisson GEE
models. The statistical software used was SAS 9.3 (SAS Insti-

tute Inc.). There were no significant interactions between
maternal diet during PERI and POST periods for the variables
investigated unless expressly stated in the results. Thus, for

clarity, the results have been presented as the main effects of
PERI and POST maternal diet. Statistical significance is
reported at P, 0.05 and tendency at P, 0.10.

Results

Maternal liveweight

At both the commencement and end of the PERI maternal diet
period (�60 to 23 dpc) and the POSTmaternal diet period (24 to
98 dpc), the liveweights of the heifers were similar (Tables 2

and 3; all P. 0.10). There was no interaction of the PERI and
POST diet (P¼ 0.475) on liveweight at the end of the POST
maternal diet period. Average daily weight gain (ADG) during

the PERI diet period was lower (P, 0.001) for the LPeri
(LLþLH) heifers compared with the HPeri (HHþHL) heifers.
ADG during the POST maternal diet period did not differ

between LPost (LLþHL) and HPost (HHþLH) groups (P¼
0.164), nor was there a diet interaction (P¼ 0.482). Heifers that
had received the LPeri diet had higher ADG during the POST

diet period compared with those that received the HPeri diet
(0.36� 0.04 vs 0.17� 0.04 kg per head per day; P¼ 0.002).

From the end of the POSTdiet period to late gestation (99 dpc
to 256 dpc), during which time all dams received the same diet,

maternal liveweights did not differ due to PERI or POST diet,
nor was there a diet interaction (all P. 0.10; LPeri 506.4� 7.3
vs HPeri 507.2� 6.3 kg and LPost 507.3� 6.1 vs HPost

506.3� 7.6 kg). ADG also did not differ (all P. 0.10; LPeri
0.63� 0.02 vs HPeri 0.64� 0.02 and LPost 0.65� 0.02 vs
HPost 0.61� 0.02 kg per head per day). Immediately after

calving, a similar pattern was observed whereby maternal live-
weights did not differ due toPERI orPOSTmaternal diet, norwas
there a diet interaction (all P. 0.10; LPeri 456.6� 8.3 vs HPeri
464.2� 7.7 and LPost 468.6� 7.1 vs HPost 452.4� 8.5 kg).

Fetal and animal measures

Fetal and gonad weight at 98 dpc

As previously reported (Copping et al. 2014), male fetuses
from LPost dams were lighter at 98 dpc compared with males

from HPost dams (see Table S1, available as Supplementary
Material to this paper; P, 0.05). There was no effect of PERI
diet or the diet interaction term on male fetal weight at 98 dpc.

Maternal diet did not influence absolute gonadweight or relative
gonad weight at 98 dpc (Table S1).

Birthweight and post-weaning growth

At birth there was no effect ofmaternal diet upon birthweight
or gestation length (Table S2; P. 0.05). Increased gestation

length was associated with increased birthweight (r¼ 0.475;
P, 0.001). From weaning until slaughter (600 days), live-
weight increased with age (P, 0.0001) but did not vary due

to maternal diet (data not shown; P. 0.10).

Scrotal circumference

Scrotal circumference in all treatment groups increased with

age (see Fig. S1, available as Supplementary Material to this
paper; P, 0.0001). There was no overall effect of either
maternal diet or gestation length upon progeny scrotal circum-

ference measurements between 214 and 554 days of age
(Fig. S1; all P. 0.10).

Semen traits

Semen quality parameters

There were maternal nutrition and time effects on a range of
semen quality parameters (Fig. 1). There were effects of time
(P, 0.0001) and PERI maternal diet (P¼ 0.0433) on mass

motility, such that bulls from LPeri dams had lower semen mass
motility scores compared with bulls from HPeri dams (Fig. 1a).
There were interactions between POST maternal diet and time
for mass motility (P¼ 0.0181), such that bulls from LPost dams

had increased mass motility compared with bulls from HPost
dams at 554 days of age (Fig. 1b; P¼ 0.0433) and tended to be
higher at 351 (P¼ 0.08) days of age. There were effects of time

Table 2. Maternal liveweight and average daily gain (ADG) at start

and end of exposure to diets low (L) or high (H) in protein during the

PERI-conception (260 to 23 dpc) period

Data are mean� s.e.m. Values with different superscripts differ signifi-

cantly (P, 0.05). LL, low protein maternal diets peri- and post conception;

LH, low proteinmaternal diet in the peri-conception period and high protein

post conception; HL, high protein maternal diet in the peri-conception

period and low protein post conception; HH, high protein maternal diets

peri- and post conception

Parameter LPeri HPeri

(LLþLH) (HHþHL)

n 16 24

Start weight (kg) 345.6� 5.5 335.6� 5.3

End weight (kg) 382.9� 6.5 395.3� 5.5

ADG (kg per head per day) 0.40� 0.03a 0.64� 0.02b

Table 3. Maternal liveweight and average daily gain (ADG) at start

and end of exposure to diets low (L) or high (H) in protein during the

POST-conception (24 to 98 dpc) period

Data are mean� s.e.m. LL, low protein maternal diets peri- and post

conception; LH, low protein maternal diet in the peri-conception period

and high protein post conception; HL, high protein maternal diet in the peri-

conception period and low protein post conception; HH, high protein

maternal diets peri- and post conception

Parameter LPost HPost

(LLþHL) (HHþLH)

n 22 18

Start weight (kg) 391.4� 5.5 389.0� 6.9

End weight (kg) 405.7� 5.0 410.6� 5.8

ADG (kg per head per day) 0.20� 0.04 0.30� 0.04
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(P, 0.001) and PERI maternal diet on semen density (Fig. 1c)

and spermmotility (Fig. 1e). Overall, bulls fromLPeri dams had
lower sperm density (Fig. 1c; P¼ 0.04) and motility (Fig. 1e;
P¼ 0.0217) compared with bulls from HPeri dams. There was
an interaction between PERI maternal diet and time for the

motility parameter (Fig. 1e;P¼ 0.0124). Bulls fromLPeri dams
produced ejaculates with reducedmotility at 351 (P¼ 0.03), 395

(P¼ 0.024) and 438 (P¼ 0.0024) days of age and tended to have

reduced motility at 465 (P¼ 0.08) days of age compared with
bulls from HPeri dams. Overall, there were effects of time
(P, 0.001) on semen concentration and concentration tended
to be lower in bulls from LPeri dams (Fig. 1g; P¼ 0.058) but

there was no interaction of maternal diet and age. The POST
maternal diet did not influence density (Fig. 1d), motility
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(Fig. 1f ) or concentration parameters (Fig. 1h), nor was there
any difference in any semen quality parameters due to the diet
interaction (all P. 0.05).

Sperm morphology

There were effects of time (P, 0.0001) and PERI maternal
diet (P¼ 0.0208) on percentage normal spermatozoa (Fig. 2).

Overall, the percentage of normal spermatozoa was lower in
bulls from LPeri dams (Fig. 2a) compared with HPeri. The
reduction in percentage normal spermatozoa within LPeri bulls
was consequent to increased levels of sperm abnormalities

(Fig. 3).
Specifically, a higher overall incidence of abnormal mid-

pieces and knobbed acrosome defects (Fig. 3a, c;P, 0.05)were

observed in ejaculates from LPeri bulls. There were interactions
between PERI maternal diet and time (Fig. 3c; P¼ 0.0043) for
knobbed acrosomes with a higher incidence of this defect in

ejaculates from LPeri bulls at 438 (IRR¼ 4.27; P¼ 0.0061),
465 (IRR¼ 3.60; P¼ 0.0156) and 520 (IRR¼ 5.39; P¼ 0.005)
days of age. There were also interactions between PERI mater-
nal diet and time for abnormal tail and loose head defects

(Fig. 3e; P¼ 0.0024) such that bulls from LPeri dams produced
ejaculates with a higher incidence of abnormal tails and loose
heads comparedwith bulls fromHPeri dams at 465 (IRR¼ 1.87;

P¼ 0.0394), 520 (IRR¼ 2.62; P¼ 0.0039) and 554 days of age
(IRR¼ 2.41; P¼ 0.0248). There was an interaction between
PERI maternal diet and age for vacuole and teratoid defects

(Fig. 3g; P¼ 0.0434); however, there were no differences at any
individual age. There was also an interaction between POST
maternal diet and time for proximal droplet defects (Fig. 3j;

P¼ 0.0032); however, once again there were no differences at
any individual age. Overall, POST maternal diet increased the
incidence of swollen acrosome defects, which was higher
overall in ejaculates from bulls with LPost dams than bulls from

HPost dams (P¼ 0.0352). POST diet did not influence the
incidence of any other sperm defect, nor was there any differ-
ence in any sperm defect due to the diet interaction (all

P. 0.05). There were effects of age overall (Fig. 3; all
P, 0.0001) for all defects reported. (Data not shown for
swollen acrosome and pyriform head defects).

Puberty

Puberty was first reached by a bull at 329 days of age with the
final bull reaching the threshold by 521 days of age. Puberty was
achieved later in LPeri bulls compared with HPeri bulls

(Table 4; P¼ 0.049). There was no difference in puberty due to
POST maternal diet or the diet interaction (Table 4; P. 0.05).

Sexual maturity

Maturity as assessed using the minimum threshold of 70%
normal spermatozoa was not achieved by 17.5% (n¼ 7:

LPeri¼ 4; HPeri¼ 3; LPost¼ 4; HPost¼ 3) of the bulls in this
study. The first bull reached the threshold at 330 days of age. Of
those bulls that achievedmaturity (n¼ 33), there was a tendency

for bulls from LPeri dams to reach maturity later than bulls
from HPeri dams (466.9� 19.0 vs 425.9� 12.2 days of age;
P¼ 0.079). There were no differences due to POST maternal

diet (LPost 435.3� 15.6 vs HPost 448.0� 15.2 days of age;
P. 0.10) or the diet interaction (P. 0.05).

Paired testes weight

The absolute and relative weights of the paired testes were
similar between maternal diet groups at slaughter at 598.3� 0.8

days of age (Table S2; P. 0.05). Total paired testis weight at
slaughter was highly correlated with the final scrotal circum-
ference (Table S2) measured at 554.3� 0.8 days (r¼ 0.82;

P, 0.05) irrespective of maternal diet.

Hormone concentrations

Circulating inhibin and activin A concentrations measured at 3

and 4months of agewere not influenced by either PERI or POST
maternal diet (Table 5; P. 0.10) or the diet interaction
(P. 0.05). However, circulating AMH concentrations at
10months of age were higher in bulls from LPeri dams (Table 5;

P¼ 0.04) compared with HPeri bulls and tended to be higher in
bulls from LPost dams compared with HPost bulls (Table 5;
P¼ 0.09).

There were overall effects of time (P, 0.001) on plasma
FSH (Fig. 4), IGF1 (Fig. 5) and leptin levels (Fig. 5). Time also
tended to influence plasma testosterone concentration (Fig. 4;
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P¼ 0.09). There were interactions between PERI maternal diet
and time for FSH (Fig. 4a; P¼ 0.0435) such that LPeri bulls had

lower circulating FSH at 330 (P¼ 0.0317) and 438 (P¼ 0.0147)
days of age and tended to have lower levels at 273 (P¼ 0.06) and
302 (P¼ 0.09) days of age. There were also interactions

between POST maternal diet and time for IGF1 (Fig. 5b;
P¼ 0.0127) such that LPost bulls had higher circulating IGF1
at 465 days of age (P¼ 0.004) comparedwithHPost bulls. There

were no main effects overall of PERI or POST maternal diet or
their interaction term on FSH, testosterone, IGF1 or leptin
concentrations (P. 0.10).

Testis development

The proportions of testicular cells (Sertoli, germ, interstitial/

Leydig cells) in 98 dpc fetuses were not altered either by the
PERI or POSTmaternal diet or their interaction term (Table S3;
Fig. S2; P. 0.05). Seminiferous tubule and blood vessel para-

meters were altered by dietary treatment (Tables 6 and 7).
A higher proportion of seminiferous tubules within the testis
(Table 6;P¼ 0.04) due to a greater number of tubules within the

tissue (Table 6; P¼ 0.04) were observed in the LPeri diet fetal
gonad compared with the HPeri gonad. There were no observed
effects of maternal diet in the adult progeny in seminiferous
tubule parameters (Table 6; P. 0.05).

The LPost fetal gonad displayed decreased numbers of blood
vessels within the capsule of the testis (Table 7; P¼ 0.02) whilst

the tissue area of blood vessels within the parenchyma of the
testis (Table 7; P¼ 0.03) was decreased in the LPeri fetal gonad
compared with the HPeri. In the adult testis, the number of blood

vessels was increased by the LPost maternal diet (Table 6;
P¼ 0.03).

Discussion

This study is the first to our knowledge to investigate the effects

of maternal dietary protein during the peri-conception period
and early gestation upon bovine male reproductive develop-
ment. We examined this during fetal development and postna-
tally through to adulthood. The key findings were that the LPeri

dietary treatment in nulliparous heifers altered reproductive
development of their male progeny in the early postpubertal
period as reflected by differences in reproductive hormones,

testicular cytology and sperm production with a subsequent
delay in reaching puberty. Increasing protein intake in the peri-
conception period may therefore be viable for bull producers as

the ability to use yearling bulls reduces production costs and
shortens the genetic interval (Barth and Ominski 2000).

Decreased protein intake during early gestation reduced
early fetal growth (Copping et al. 2014). This in utero effect

Table 4. Age of puberty in male progeny following exposure to maternal diets low (L) or high (H) in protein during the PERI- (260 to 23 dpc) and

POST-conception (24 to 98 dpc) periods

Data are mean� s.e.m. Values with different superscripts differ significantly (P, 0.05)

Parameter LPeri HPeri LPost HPost P value

(LLþLH) (HHþHL) (LLþHL) (HHþLH) Peri Post Peri*Post

n 16 24 22 18

Age (days)A 436.4� 10.8a 403.3� 11.3b 414.9� 10.9 419.2� 13.1 0.049 0.808 0.503

AAge at which sperm motility$10% and semen concentration $50 � 106 spermatozoa mL�1.

Table 5. Peripheral inhibin (ngmL21) and activin A (pgmL21) levels at 3 and 4 months of age and anti-Müllerian hormone (AMH; ngmL21) at 10

months of age in male progeny following exposure to maternal diets low (L) or high (H) in protein during the PERI- (260 to 23 dpc) and POST-

conception (24 to 98 dpc) periods

Data are mean� s.e.m. Values with different superscripts differ significantly (P, 0.05)

Parameter LPeri HPeri LPost HPost P value

(LLþLH) (HHþHL) (LLþHL) (HHþLH) Peri Post Peri*Post

n 16 24 22 18

3 months

Age (days) 124.7� 1.4 125.7� 0.9 126.4� 1.1 124.0� 1.0

Inhibin (ngmL�1) 7.0� 0.3 7.2� 0.3 7.1� 0.3 7.0� 0.3 0.550 0.697 0.177

Activin A (pgmL�1) 38.1� 1.0 43.3� 2.2 42.0� 2.4 40.3� 1.7 0.178 0.955 0.060

4 months

Age (days) 153.7� 1.4 154.7� 0.9 155.4� 1.1 153.0� 1.0

Inhibin (ngmL�1) 7.7� 0.2 7.6� 0.2 7.7� 0.2 7.5� 0.2 0.720 0.618 0.534

Activin A (pgmL�1) 36.8� 2.0 35.6� 1.4 37.2� 1.6 34.8� 1.8 0.741 0.238 0.110

10 months

Age (days) 301.7� 1.4 302.7� 0.9 303.4� 1.1 301.0� 1.0

AMH (ngmL�1) 18.5� 0.4a 17.3� 0.4b 18.2� 0.4 17.3� 0.5 0.039 0.090 0.550
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was, however, not discernible in later gross measures such as

birthweight or postnatal growth as previously reported in lambs
(Kotsampasi et al. 2009) or calves (Micke et al. 2015) but effects
upon postnatal reproductive development were evident: the

LPeri diet decreased blood vessel area in the fetal testis.
Moreover, seminiferous tubule number and percentage was
increased, although this effect was not evident in the adult. In

the developing bull, the LPeri maternal diet lowered sperm
quality with this effect occurring after lower FSH concentrations
in this group at both 330 and 438 days of age compared with the

HPeri group.

Nutrition

Variations in natural feed resources in extensive farming sys-

tems are common in many countries. In the northern Australian

rangelands, protein, rather than energy, is often the major lim-

iting nutrient (Norman 1963) with protein supplementation of
replacement heifers a common practice (Bortolussi et al. 2005;
Burns et al. 2010). The dietary protein levels used in the present

study therefore reflected pasture conditions in Australian ran-
gelands without (low) and with (high) protein supplement.
There was a 1.9- to 2.1-fold difference in crude protein (CP)

content and a 1.1-fold difference in energy content between the
high and low diets. The ration was as isocaloric as possible for
ruminants fed the forage component of the diet under group

housing. Dietary fat content was similar and although starch
content differed, levels in both low and high diets were mod-
erately low. Protein intake was restricted during both the peri-
conception period and first trimester in the low group whilst

both groups received similar energy intake. As the variation in

Table 7. Area, number and proportion of blood vessels within the parenchyma and capsule in 98-dpc fetus following exposure to maternal diets low

(L) or high (H) in protein during the PERI- (260 to 23 dpc) and POST-conception (24 to 98 dpc) periods

Data are mean� s.e.m. Values with different superscripts differ significantly (P, 0.05). BV, blood vessel

Parameter LPeri HPeri LPost HPost P value

(LLþLH) (HHþHL) (LLþHL) (HHþLH) Peri Post Peri*Post

n 9 12 11 10

Fetal BV capsule

BV area 1620.4� 163.0 2125.0� 302.2 1858.3� 287.4 1964.1� 261.0 0.273 0.549 0.833

BV no. 73.4� 8.0 54.7� 7.1 50.5� 5.7c 76.3� 8.2d 0.130 0.021 0.495

BV% 9.9� 1.1 9.5� 1.0 9.0� 1.1 10.6� 0.9 0.901 0.300 0.719

Fetal BV parenchyma

BV area 480.6� 39.4a 715.6� 84.6b 573.0� 68.9 660.9� 92.9 0.027 0.309 0.367

BV no. 11.3� 2.4 9.6� 1.5 10.2� 1.8 10.5� 2.0 0.540 0.882 0.200

BV% 0.11� 0.02 0.16� 0.03 0.13� 0.02 0.14� 0.04 0.328 0.986 0.328

Table 6. Area, number and percentage coverage of seminiferous tubules and blood vessels in 98-dpc fetus and adult (20-month-old) bulls following

exposure to maternal diets low (L) or high (H) in protein during the PERI- (260 to 23 dpc) and POST-conception (24 to 98 dpc) periods

Data are mean� s.e.m. Values with different superscripts differ significantly (P, 0.05). Sem tubule, seminiferous tubule; BV, blood vessels. Area¼ average

of total area of tissue occupied by blood vessel or tubule

Parameter LPeri HPeri LPost HPost P value

(LLþLH) (HHþHL) (LLþHL) (HHþLH) Peri Post Peri*Post

Fetal

n 9 12 11 10

Sem tubule area (m2) 2115.9� 214.0 2691.3� 653.7 2560.0� 723.0 2317.8� 200.1 0.691 0.286 0.421

Sem tubule no. 27.1� 2.7a 20.3� 2.0b 24.6� 2.8 21.8� 2.2 0.035 0.166 0.088

Sem tubule% 21.8� 1.0a 17.9� 1.4b 18.5� 1.7 20.7� 0.9 0.041 0.844 0.320

BV area (m2) 1042.8� 87.4a 1457.0� 154.1b 1221.7� 124.1 1343.0� 176.3 0.032 0.466 0.139

BV no. 83.6� 9.0 65.2� 7.6 74.9� 8.8 71.07� 8.51 0.134 0.531 0.435

BV% 1.9� 0.3 2.0� 0.3 2.2� 0.4 1.7� 0.3 0.913 0.318 0.490

Adult

n 16 24 22 18

Sem tubule area (m2) 3842.3� 198.5 3901.1� 142.7 3877.2� 175.7 3878.0� 145.5 0.713 0.890 0.199

Sem tubule no. 15.1� 0.5 15.5� 0.4 15.6� 0.5 15� 0.3 0.585 0.611 0.408

Sem tubule% 54.4� 1.2 57.0� 1.1 56.7� 1.2 55.1� 1.1 0.146 0.325 0.319

BV area (m2) 2451.2� 973.8 962.8� 229.2 1237.1� 486.0 1950.5� 731.4 0.704 0.548 0.653

BV no. 2.3� 0.2 2.4� 0.1 2.6� 0.2c 2.1� 0.1d 0.377 0.025 0.621

BV% 2.1� 0.7 1.1� 0.2 1.4� 0.3 1.6� 0.5 0.928 0.796 0.828
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CP content between the high and low diets was much greater
than that in energy, we therefore consider the differences

observed in the present study are likely attributable to the effects
of protein rather than energy intake.

Testis histology

The lack of effect upon Sertoli, germ and interstitial cells is in
contrast to studies that reported a reduction in the number of
Sertoli cells in newborn lambs undernourished in utero during

the second trimester of gestation (Bielli et al. 2002; Kotsampasi
et al. 2009) but concurs with studies that excised the testis at a
fetal endpoint (Da Silva et al. 2003; Andrade et al. 2013).

The observed decrease in vasculature in the LPeri and LPost
98-dpc fetal testis is a novel finding and may reflect a mecha-
nism whereby maternal protein restriction reduces male repro-

ductive function as previously reported (Zambrano et al. 2005).
Although the observed reduction in parenchymal blood vessel
area and in the number of capsular blood vessels in the LPeri and
LPost testis respectively was transient (suggesting a compensa-

tory ability of either the fetal or pubertal testis), blood supply
affects the physiological function of every organ. The testes are,
however, particularly sensitive to alterations in vasculature as

minor episodes of ischaemia lead to functional disturbances
(Wrobel et al. 1981; Polguj et al. 2015). Furthermore, the
capsule vasculature in ruminants, essential to metabolite and

heat exchange (Godinho et al. 1973), was observed to be
compromised in the LPost cohort. We have previously reported
the long-term effects of this protein restriction model upon
hypertension in the female cohort (Hernandez-Medrano et al.

2015). We propose that this transient vascular perturbation
during this critical gestational phase (O’Shaughnessy and
Fowler 2011) may lead to testicular oxidative stress as previ-

ously reported in a rat model following gestational protein
restriction (Rodrı́guez-González et al. 2014). Interestingly this
model of gestational protein restriction in the postnatal rat also

led to long-term effects upon semen quality and morphology as
we similarly report below.

Concomitantly, in the 98-dpc fetus, the LPeri diet caused an

increment in the number of seminiferous tubules and the
proportion of seminiferous tubules per testis but did not affect
tubule area. In combination, these results may indicate that
the differentiation and proliferation of testicular cells and the

development of the seminiferous tubules is not linked to the
development of the blood vessels during the first trimester.

In the adult bulls the number and proportion of seminiferous

tubules were unaffected by the dietary regimes, further suggest-
ing that compensation may occur during developmental stages
after our dietary intervention either in late gestation or postna-

tally. A prior study observed reduced seminiferous tubule
diameters in bull calves at 5months of age after supplementation
of their mothers’ diets with protein (0 to 180 dpc; Sullivan et al.
2010). This suggests that compensatory mechanisms occur

during the pubertal period.

Postnatal development

In this study an in utero LPeri diet increased the age at which

bulls reach puberty predicated by the motility, morphology and

concentration of spermatozoa produced in the ejaculate (Barth
and Oko 1989; Perry et al. 1990; Holroyd et al. 2002). The

higher levels of spermatozoa with non-progressive motility, the
overall increased numbers of morphologically abnormal sper-
matozoa and the tendency for lower concentrations suggest that

both epididymal function and spermatogenesis were delayed or
disrupted by the LPeri maternal diet. As expected in pubertal
bulls, the initial high level of proximal droplets in ejaculates

decreased over time (Lunstra and Echternkamp 1982; Barth and
Oko 1989; Perry et al. 1991; Evans et al. 1995) but was not
altered by in utero diet. Midpiece defects and abnormal heads
and tails were increased in the LPeri bulls; both defects are

reported to be associated with disturbance of epididymal func-
tion (Barth and Bowman 1994). Knobbed acrosomes were
similarly increased in the LPeri bulls at 438, 465 and 520 days of

age indicating disturbed spermiogenesis during this peri-
pubertal period (Barth and Bowman 1994; Beggs et al. 2013).
In the present study, the bulls reached puberty at a similar age to

that previously reported for Bos indicus�Bos taurus crossbred
bulls (Chase et al. 2001; Brito et al. 2004) and intermediate to
that reported for Bos taurus (Lunstra et al. 1978; Evans et al.
1995) and Bos indicus breeds (Fields et al. 1982; Aponte et al.

2005). The earlier age of puberty observed in the HPeri bull
cohort is a desirable production outcome (Barth and Ominski
2000).

There was no effect of maternal dietary treatment upon
scrotal circumference or paired testis weight at 600 days. These
findings are in agreement with those in rams (6 weeks and

20 months of age) where Rae et al. (2002) reported no effect of
maternal undernutrition on scrotal circumference. The absence
of in utero dietary effect upon scrotal circumference concurs

with the observed lack of effect upon fetal testis weight and
Sertoli cell count at 98 dpc. Consequently, the effects of
maternal protein restriction on sperm parameters and age of
puberty were considered to be not directly the result of altered

Sertoli cell numbers in the developing postnatal animal (Sharpe
et al. 2003).

The effects on sperm parameters were, however, subsequent

to lower FSH concentrations in the LPeri cohort; FSH is an
integral part of the hormonal cascade regulating sperm produc-
tion (Perry et al. 1991), epididymal function (Grover et al. 2005)

and spermatogenesis in the mature bull (Barth and Bowman
1994; Matsuzaki et al. 2000; O’Shaughnessy 2014). In rumi-
nants, no comparative studies have documented the associations
between prenatal nutrition and sperm abnormalities in the

progeny. The results are, however, consistent with those in the
adult male rat (90 days of age) where Toledo et al. (2011)
reported impairment of sperm counts, spermmotility and higher

levels of spermatozoa with morphological abnormalities fol-
lowing in utero protein restriction (0–21 dpc).

The relationship between reduced FSH and delayed postnatal

activation of the reproductive axis observed in the pubertal and
postpubertal LPeri cohort concurs with previous research: FSH
levels, alongwith LH, rise transiently between 1 and 4months of

age in the prepubertal bull (Rawlings et al. 1978; Evans et al.
1996;Moura and Erickson 1997; Kaneko et al. 2001; Bagu et al.
2006), a rise reported to be associated with the initiation of rapid
testis growth (Moura and Erickson 1997). FSH levels then fall,
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remaining low during peri-puberty and puberty (Moura and
Erickson 1997; Kaneko et al. 2001; Brito et al. 2007c, 2007d).

In the adult, FSH levels increase as bulls age in association
with improvement in sperm quality and quantity (Matsuzaki
et al. 2000). Thus, the observed lower basal FSH in the LPeri

bulls during the pubertal and postpubertal period (330 and 438
days of age) may potentially indicate a hormonal regulation
pathway contributing to the delayed elevation of sperm traits

discussed above.
Collectively, the lack of effect of maternal diet on testoster-

one (Rawlings et al. 2008), prepubertal inhibin (Kaneko et al.

2001) and prepubertal activin A, (Mather et al. 1992), all known

to be involved in regulation of postnatal FSH secretion in the
developing bull, would suggest that the differences in FSH
levels associated with the PERI diet were modulated via other

pathways. Alternatively, the monthly blood sampling regimen
may have been inadequate to detect the effects of maternal diet
on testosterone, inhibin or activinA, particularly considering the

pulsatile and diurnal nature of testosterone secretion.
The later age of puberty in the LPeri bulls was also

associated with higher AMH levels at 10 months. This may
suggest a delay in the downregulation of AMH expression that

occurs at puberty (Rey and Josso 1996; Rey et al. 2003)
coincident with Sertoli cell maturation (Sharpe et al. 2003).
As circulating AMH levels decline sharply in the pubertal bull

(Rota et al. 2002), it is possible the differences measured at one
time point may reflect differences in maturity as opposed to
resulting from the dietary perturbation. However, as birth-

weight and postnatal liveweights were similar, the observed
effects on age of puberty are unlikely to have been mediated by
the persisting influences of prenatal nutrition on postnatal

growth (Micke et al. 2010). This is further supported by the
lack of maternal dietary effect upon progeny IGF1 and leptin
profiles; the relationship between energy homeostasis and
puberty being well recognised (Blache et al. 2003; Barb and

Kraeling 2004; Zieba et al. 2005; Brito et al. 2007a, 2007c,
2007d; Barth et al. 2008). Collectively these observations
indicate that postnatal diet and liveweight were not involved

in the observed changes in postnatal reproductive development,
in contrast to findings reported in prenatally growth-restricted
rams (Da Silva et al. 2001).

Early maternal undernutrition has been reported to disrupt a
range of endocrine pathways with long-term effects on progeny
health (McMillen and Robinson 2005; Gardner et al. 2006;
McMillen et al. 2008). Furthermore, previous studies support

the concept that early maternal undernutrition impacts hypotha-
lamic and/or pituitary function at later postnatal stages, causing
alterations to the endocrine system. These include changes in

gonadotrophin profiles (Rae et al. 2002), reduced testosterone
concentrations and delayed seasonal increase in testosterone
(Da Silva et al. 2001) as well as altered hypothalamic–

pituitary responsiveness to postnatal GnRH challenge in sheep
(Kotsampasi et al. 2009) and prepubertal bulls (Sullivan et al.
2010). In the present study, a GnRH challenge was not

undertaken and bulls were allowed to progress through
puberty without any exogenous hormonal influence; hence,
it is not possible to report on pituitary responsiveness in this
study. Further studies are required to explore the role of

maternal nutrition on the development and function of the
hypothalamic–pituitary–gonadal axis in both the fetal and

adult male bovine.

Conclusion

In summary, we have uniquely shown that in the developing bull
the LPeri maternal diet delayed the onset of puberty and sexual
maturity with negative effects on semen parameters in the early

postpubertal period. These effects were subsequent to lower
FSH concentrations in the LPeri diet group. The histology of the
fetal and adult testis suggests that the early perturbation of the

cytology of the testis has been compensated for during later
development as no corresponding effects were observed in the
adult testis. Whether the effects of this perturbation influenced
testicular function through puberty before excision of the testis

at 20 months, however, is unknown. The circulating hormone
data suggest that the peri-conception diet may have altered
the development of the hypothalamic–pituitary–gonadal axis or

the receptivity to circulating hormones during the peri-pubertal
period.

Whilst this study provides evidence that lowmaternal dietary

protein has a negative impact on reproductive development in
the pubertal and postpubertal offspring, some of themechanisms
that mediate this effect remain to be elucidated. Further research

in cattle is warranted to enable exploration of causal relation-
ships between gestational nutrition and consequent postnatal
male reproductive development of progeny.
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