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A B S T R A C T   

We describe the localized folding of thick layers embedded in a viscoelastic framework. Higher-order partial 
differential equations such as the Swift-Hohenberg equation are standard for modelling the folding process. 
Using a high-order shear theory, we modify the Swift-Hohenberg equation to describe the buckling of thick layers 
and consider the folded layer’s viscoelastic behavior. The use of thick layers enables us to consider shear strains 
parallel to the layers during folding. Our model naturally captures the softening-stiffening behavior by including 
a non-linear viscoelastic description using a Winkler-type foundation. Next, we study the linear stability behavior 
of the system and derive the dispersion relations. Finally, we simulate this new model using a robust custom-built 
isogeometric analysis solver, which allows us to describe thick folded layers with localized folding. The nu-
merical results show that the folding of an elastic layer produces periodic patterns while a viscoelastic layer 
deflects locally. When the horizontal forces are unequal, the periodic folds initiate in the direction of the smaller 
force and the localized deformations occur parallel to the larger force. Later, the nonlocal deformation occurs in 
the direction of a smaller force. Domes and basins or more linear ridges and valleys are formed according to the 
relative magnitudes of the applied forces. Domes and basins are the results of equal horizontal applied forces, and 
non-equal forces result in ridges and valleys.   

1. Introduction 

John Ramsay was one of the great observers of Structural Geology, 
firmly rooted in observing structures in the field where interpretations 
were made in terms of the strain fields that conceivably exist in 
deformed rocks. In some ways, he was perhaps lucky to have undertaken 
a lot of his work before the theoretical studies of Biot became entrenched 
as a dogma in the study of folds since his observations, unlike those of a 
host of others, were not clouded by the interpretations and generaliza-
tions associated with Biot’s results. Although Ramsay (1967) acknowl-
edges Biot’s work as “stimulating”, except for quoting and accepting 
Biot’s scaling effect of wavelength in terms of layer thickness, he shows 
and discusses a range of fold geometries and processes based on field 
observations and unrelated to Biot’s arguments. In particular, these 
examples involve localized folding, and various processes that lead to 
non-concentric folding; The experimental folds of John Ramsay [27, 
Figures 3.51, 7.29, 7.35] and others (Blay et al., 1977; Cobbold, 1976; 
Hudleston, 1973; Watkinson, 1976) are localized rather than strictly 
periodic. The 3D model introduced in (M ü hlhaus et al., 1998) describes 

basins and valleys as localized folded structures. Biot’s folding theory 
assumes that the buckling layer is thin compared to its deflection; thus, 
we assume sin(θ) = θ with θ being the deflection angle, which, when 
used in Biot’s buckling equation, we describe as a linear combination of 
sines and cosines with a resultant range of wavelengths. Biot proceeded 
to show that just one wavelength grows fastest so that the resulting 
profile is always periodic. Many attempted extensions of the thin layer, 
small deflection theory to thick layers had little success (Fletcher, 1974; 
Schmalholz and Podladchikov, 2000; Smith, 1975, 1977). The issue is 
that the buckling of thick layers involves shear strains parallel to the 
layer, whereas such strains are small and neglected in thin layers. Thus, 
nonlinearity appears when studying the finite buckling of thick layers 
both by the complexity of the strain field and the displacement field 
description. This paper addresses both issues. 

Spatially localized structures and deformations are studied in various 
fields such as reaction-diffusion systems (Lee et al., 1994), liquid crystals 
(Joets and Ribotta, 1988; Kolodner, 1993; Lakes and Lakes, 2009; Lee 
et al., 1994; Love, 2013; M ü hlhaus et al., 1998; Piegl and Tiller, 1987; 
Pirkl et al., 1993), and binary fluid flows (Kolodner, 1993). 
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Subsequently, nonlinear viscoelastic models were proposed as alterna-
tives to the assumption of sinusoidal formations. An explanation for the 
localized folds studies a strut on a nonlinear elastic foundation. The 
results were that the buckling of the strut localizes if the foundation 
softens as it is deformed (Hunt et al., 1989). Such softening behavior 

may originate from the nonlinear nature of the material or the 
multi-physics interactions (Hobbs et al., 2008). In this study, we propose 
a model that captures localized buckling, including the viscoelastic 
behavior of the foundation and the folding layer. We model the 
deforming layer as a plate whose lateral dimensions are much larger 
than its thickness.We embed this plate in a viscoelastic framework with 
softening-stiffening behavior. Then, following the pattern formation 
discussion in (Thompson and Stewart, 2002), we perform linear stability 
analysis to derive the dispersion relations to the thickness and me-
chanical properties of the plate. Next, we develop an isogeometric 
analysis solver with higher regularity [8, 9] to simulate the resulting 
system of higher-order partial differential equations and solve the 
resulting discrete the first-order time derivatives in time using the 
generalized-α method (Jansen et al., 2000). The time marching method 
delivers second-order accuracy as well as unconditional stability. 

We organize the paper as follows. Section 2 describes the theory that 
supports our model and from this foundation, we derive our model in 
Section 3. Section 4 presents numerical results and compares the effects 
of viscosity. Concluding remarks are given in Section 5. Mathematical 
symbols are defined as they are introduced and are collated in Table 1. 
Table 2 provides the description of the mathematical techniques 
exploited in this paper. 

2. Theoretical formulation 

In this section, we describe our folding models for geomaterials. We 
consider an inextensible viscoelastic layer embedded in a viscoelastic 
framework. We consider a Kelvin–Voigt model in Section 2.1 and a 
Maxwell model in Section 2.2 to describe the viscoelastic behavior of the 
foundation and the plate. We model the effect of the structure’s sur-
rounding as a reaction from its foundation. For this, we utilize Winkler’s 
idealization to represent the medium as a system of independent, closely 
spaced, discrete, and nonlinear elastic springs and nonlinear viscous 
dashpots (for more details, see (Het é nyi and Hetbenyi, 1946; Timo-
shenko and Woinowsky -Krieger, 1959)). Figs. 1 and 2 sketch our model 
in 1D and 2D. 

2.1. Kelvin–Voigt viscoelastic model 

We start with the Kelvin–Voigt framework to model the viscoelastic 
response of the medium. Since the springs and dashpots representing the 
elastic and viscous behaviors, respectively, are arranged in parallel, the 
Kelvin–Voigt model states that the strains in each component are equal: 

εtotal = εe = εv, (2.1)  

where ε denotes the strain and subscripts e and v indicate the elastic and 
viscous parts, respectively. Accordingly, for the stress σ, we have: 

σtotal = σe + σv, (2.2) 

which allows us to first derive the governing equations without the 
viscous behavior and later add it to the model. Thus, we define the 
domain Ω as: 

Ω :=
{(

x1, x2, x3) ∈ R3 : x1, x2 ∈ Ω0, x3 ∈ [− h / 2, h / 2]
}
, (2.3) 

with Ω0:=(0, L1) × (0, L2) being the surface in the middle of the plate 
and h denoting the plate thickness. Then, we consider compressive 
forces P1 and P2 along x1 and x2 directions, respectively, applied on Ω0. 
Fig. 2 sketches our model. We include the in-plane and the transverse 
displacements to introduce the displacement field by considering the 
bending and shear components. The bending parts of the in-plane dis-
placements are similar to those given by the classical plate theory (Love, 
2013). We model the effects of shear on the in-plane displacements using 
higher-order shear deformation theories, which results in the parabolic 
variations of shear strains through the thickness and vanishing on the 
top and bottom surfaces of the plate (Hebali et al., 2014). Thus, we 

Table 1 
Symbols used in this paper, units and typical values.  

Quantity Description Units, typical 
values 

E Young’s modulus for layer 4.5 × 109 Pa 
h Thickness of layer m 
t time s 
u Displacement field (m, m, m) 
εij Strain tensor Dimensionless 
η Viscosity of embedding layer Pa s 
δw deflection Perturbation m 
k vector of modes Dimensionless 
τc Viscosity of layer Pa s 
c factor: 

4
3 h2 

m− 2 

λ Nondimensional viscosity Dimensionless 
λ̂ Nondimensional viscosity of Maxwell material Dimensionless 
P axial force N 
ν Poisson’s ratio 0.3 Dimensionless 
k1, k2, k3 Stiffness of the framework N/m 
μ viscoelastic response N/m 
κ Curvature m− 1 

γij Transverse strain Dimensionless 
Ω 3D domain Geometry 
Ω0 2D middle surface Geometry 
σ dispersion relation Dimensionless 
ζ Rotation of the normal vector Degrees 
D Bending stiffness Pa m3 

w Vertical deflection m 
wb Vertical deflection due to bending m 
ws Vertical deflection due to transverse shear 

strains 
m 

Δ Laplacian Operator 
subscript e Elastic contribution – 
subscript v Viscous contribution – 
x Spatial coordinate Dimensionless 
L Plate’s horizontal dimension m 
fe(u) Resistive elastic force applied by framework N 
fv(u) Resistive viscous force applied by framework N 
Π(w) Energy functional of the system function 
Ψ(w) Evolution functional of the system function  

Table 2 
Applied mathematical procedures in this paper.  

Term Description 

Isogeometric analysis (IGA) 
discretization 

A finite element method using NURBS as basis 
functions  
and delivers elements with higher global 
continuity [8, 9]. 

Non-uniform rational B-spline 
(NURBS) 

Mathematical model using basis splines (B- 
splines) for  
representing curves and surfaces (Piegl and Tiller, 
1987). 

Galerkin method It converts a continuous weak formulation 
problem  
to a discrete problem by applying linear 
constraints  
determined by finite sets of basis functions ( 
Hughes, 2012). 

Newton’s method An iterative algorithm for finding the roots  
of a differentiable function (Atkinson, 2008). 

Dirichlet boundary condition It specifies the values that a solution needs to  
take along the boundary of the domain (Hughes, 
2012). 

Generalized-α method A time marching method to approximate  
time derivatives with an arbitrary precision ( 
Behnoudfar et al., 2020b).  
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Fig. 1. Beam surrounded by viscoelastic medium (e.g., Kelvin-Voigt & Maxwell model).  

Fig. 2. A 2D plate embedded in a viscoelastic framework.  

Fig. 3. Normal vector rotation of the middle surface. The blue dotted line represents the mid-surface position. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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define the displacement field u = (u1, u2, u3) as: 

u1(x1, x2, x3) = − x3
∂wb(x1, x2)

∂x1
−

4x3
3

3h2
∂ws(x1, x2)

∂x1

u2(x1, x2, x3) = − x3
∂wb(x1, x2)

∂x2
−

4x3
3

3h2
∂ws(x1, x2)

∂x2

u3(x1, x2, x3) = wb(x1, x2) + ws(x1, x2)

(2.4) 

with wb and ws being the vertical deformations due to the bending 
and shear components, respectively. 

Remark 1. In our model, to simulate a 3D fold, we solve for two 2D 
unknowns (wb and ws) on the middle surface to obtain the vertical 
deflection w = wb + ws. Next, we update the displacement field using 
(2.4) explicitly. In the numerical examples presented in Section 4, we 
show the vertical deflections w for different scenarios. 

Using the von–Kármán strain–displacement relations, the strain 
components at an arbitrary point of the plate are related to the 
displacement field of the middle surface (2.4), the changes in the cur-
vatures κ1 and κ2, and torsion κ12 of the middle surface as (Cerda and 
Mahadevan, 2003): 

ε1 = x3 κ1, ε2 = x3 κ2, γ12 = x3 κ12. (2.5) 

Following closely the Kirchhoff-Love theory of plates, the rotation of 
the normal to the mid-surface reads (Love, 2013): 

ζ1 =
∂w(x1, x2)

∂x1
, ζ2 =

∂w(x1, x2)

∂x2
, (2.6)  

where ζ1 and ζ2 are the rotation with respect to the directions x1 and x2, 
respectively (see, Fig. 3). 

Thus, from (2.4), we define the in-plane strains as: 

ε1 = − x3
∂2wb(x1, x2)

∂x2
1

−
4x3

3

3h2
∂2ws(x1, x2)

∂x2
1

, (2.7)  

ε2 = − x3
∂2wb(x1, x2)

∂x2
2

−
4x3

3

3h2
∂2ws(x1, x2)

∂x2
2

, (2.8)  

ε12 = − 2x3
∂2wb(x1, x2)

∂x1∂x2
−

8x3
3

3h2

∂2ws(x1, x2)

∂x1∂x2
. (2.9) 

We include the transverse shear strains using the following 
representation: 

ε13 =

(

1 −
4x2

3

h2

)
∂ws(x1, x2)

∂x1
, (2.10)  

ε23 =

(

1 −
4x2

3

h2

)
∂ws(x1, x2)

∂x2
, (2.11) 

which implies that the transverse shear strains become zero at the 
top (z = h/2) and bottom (z = − h/2) surfaces of the plate. Next, using 
the Kelvin-Voigt viscoelastic model for the plate, the constitutive law 
reads (Lakes and Lakes, 2009): 

σ(t) = Eε(t) + τcE
∂ε(t)

∂t
, (2.12)  

where τc is the viscoelastic relaxation parameter and E is the elastic 
tensor. Thus, we have: 

σ1(t) =
E

1 − ν2 (ε1 + νε2) + τc
E

1 − ν2

(
∂ε1

∂t
+ ν ∂ε2

∂t

)

, (2.13)  

σ2(t) =
E

1 − ν2 (ε2 + νε1) + τc
E

1 − ν2

(
∂ε2

∂t
+ ν ∂ε1

∂t

)

, (2.14)  

σ12(t) =
E

2(1 + ν)ε12 + τc
E

2(1 + ν)
∂ε12

∂t
, (2.15)  

σ13(t) =
E

2(1 + ν)ε13 + τc
E

2(1 + ν)
∂ε13

∂t
, (2.16)  

σ23(t) =
E

2(1 + ν)ε23 + τc
E

2(1 + ν)
∂ε23

∂t
. (2.17) 

We apply compressive loads Pi, i = 1, 2 on the plate such that the 
edge of the plate at the direction i is shifted horizontally by a distance δi 
which we approximate as: 

δ1(w) = L1 × h −

∫

Ω0

∫ h/2

− h/2
1 −

1
2

(
∂w
∂x1

)2

+ℴ

((
∂w
∂x1

)4
)

,

δ2(w) = L2 × h −

∫

Ω0

∫ h/2

− h/2
1 −

1
2

(
∂w
∂x2

)2

+ℴ

((
∂w
∂x2

)4
)

.

(2.18) 

Finally, we add the support of the framework as a resistive vertical 
force applied locally to the plate as: 

f (wb+ws) = fe(wb+ws)+fv(wb+ws)

=k1(wb+ws)− k2(wb+ws)
3
+k3(wb+ws)

5
+η(ẇb+ẇs), ki,η>0,

(2.19)  

where fe(u) and fv(u) are elastic and viscoelastic effects, respectively. ẇ 
denotes the time-derivative of w. From (2.13), (2.18), and (2.19), we can 
derive our model as: 

DΔ2wb + 2τcDΔ2ẇb + cFΔ2ws + 2τccFΔ2ẇs
+P1Δ1wb + P2Δ2wb + f (wb + ws) = 0.

cFΔ2wb + 2τccFΔ2ẇb + c2HΔ2ws + 2τcc2HΔ2ẇs − AsΔws − 2τcAsΔẇs
+P1Δ1ws + P2Δ2ws + f (wb + ws) = 0,

(2.20)  

where Δ is the Laplacian operator defined as Δw = ∂2w
∂x2

1
+ ∂2w

∂x2
2 

and Δiw =

∂2w
∂x2

i
. Also, we have that: 

D =
Eh3

12(1 − ν2)
, F =

Eh5

80(1 − ν2)
,

H =
Eh7

448(1 − ν2)
, As =

4Eh
15(1 + ν).

(2.21) 

The dimensional analysis allows us to state the dimensionless model 
as: 

Δ2wb + λΔ2ẇb +
1
5
Δ2ws +

1
5

λΔ2ẇs + PΔwb + wb + ws − (wb + ws)
3

+μ(wb + ws)
5
+ ẇb + ẇs = 0,

1
5
Δ2wb +

1
5

λΔ2ẇb +
1
21

Δ2ws +
1
21

λΔ2ẇb − As
DΔws − λAs

DΔẇs + PΔws

+wb + ws − (wb + ws)
3
+ μ(wb + ws)

5
+ ẇb + ẇs = 0.

(2.22)  

where we set P1 = P2, and define the following scaling coefficients: 

x1 →
(

D
k1

)1/4

x1, x2 →
(

D
k1

)1/4

x2, wb →
̅̅̅̅̅
k1

k2

√

wb,

ws →
̅̅̅̅̅
k1

k2

√

ws, P →
P
̅̅̅̅̅̅̅̅
Dk1

√ , μ →
k1k3

k2
2
,

As
D →

As

̅̅̅̅̅̅̅̅
Dk1

√ , t →
η
k1

t, λ →
2τck1

ηt
.

According to the model (2.22), the deflection wb and ws depend on 
the parameters λ, μ, As

D and the applied force P. We discussed the effect 
of 0 < μ ≤ 1 in the response of the framework in details. Here, we pick μ 
= 0.25 and μ = 0.3. In numerical examples, we choose the viscosity of 
the plate τc = 0 for an elastic fold and τc = 50 η2

k2
1 

for viscoelastic folds 
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which results in λ = 100. The layer thickness enters through (2.21). 
Remark 2. We can include the overburden pressure in the model as 

an additional term to the forcing (2.19); a constant negative term added 
to the model that favors downward deformations. Adding this term does 
not change the approach behind our analysis and numerical simulations. 

2.2. Maxwell viscoelastic model 

Here, we modify (2.20) to allow the folding layers to be a Maxwell 
material. Considering the effect of a constant strain rate in a maxwell 
material, the constitutive model (2.12) rewritten as (Roylance, 2001): 

σ(t) = φ(t) E
∂ε(t)

∂t
, (2.23)  

where φ(t) = τc

(
1 − e−

t
τc

)
. The derivation follows the steps of the pre-

vious section where we derive a model using the Kelvin-Voigt response. 
Then, following a similar logic, the conventional dimensional analysis 
allows us to state the dimensionless model as: 

λ̂(t)Δ2ẇb +
1
5

λ̂(t)Δ2ẇs + PΔwb + wb + ws − (wb + ws)
3

+μ(wb + ws)
5
+ ẇb + ẇs = 0,

1
5

λ̂(t)Δ2ẇb +
1
21

λ̂(t)Δ2ẇs − λ̂(t)As
DΔẇs + PΔws

+wb + ws − (wb + ws)
3
+ μ(wb + ws)

5
+ ẇb + ẇs = 0.

(2.24)  

where we set P1 = P2, and define the following scaling coefficients: 

x1 →
(

D
k1

)1/4

x1, x2 →
(

D
k1

)1/4

x2, wb →
̅̅̅̅̅
k1

k2

√

wb,

ws →
̅̅̅̅̅
k1

k2

√

ws, P →
P
̅̅̅̅̅̅̅̅
Dk1

√ , μ →
k1k3

k2
2
,

As
D →

As

̅̅̅̅̅̅̅̅
Dk1

√ , t →
η
k1

t λ̂(t) →
2φ(t)k1

ηt
.

Remark 3. In (2.24), we can write the time-dependent parameter ̂λ(t)
as: 

λ̂(t) =
φ(t)
τc

λ =
(
1 − e− t

τc
)
λ; (2.25) 

thus, after starting the simulations, ̂λ(t) approaches to λ very fast due 

-2 -1 0 1 2
w

-4

-2

0

2

4

f e(w
)

=0.1
=0.15

=0.25

=0.2
=0.3

=1

=0.5

=0.4

-2 -1 0 1 2
w

-1

-0.5

0

0.5

1

1.5

f e(w
)

=0.1

=0.2

=0.15

=0.25

=0.4 =0.5

=0.3 =1

Fig. 4. The softening and re-stiffening behavior of 
elastic force fe (upper pane), and the evolution of its 
corresponding energy functional imposed by the 
foundation (lower pane). Considering the elastic 
contribution of the embedding framework fe(w) = w 
− w3 + μw5, we take μ = 0.2 (red line). In figure (a), 
for small downward vertical deflections (negative w), 
the elastic force (fe(w) < 0) favours of the deformation 
(softening). Further deformation gently stiffens the 
embedding framework as the elastic force decreases 
and becomes positive. The framework depicts a 
similar behavior for upward vertical deflections w >
0. That is, the elastic force is positive and afterward 
becomes negative. Figure (b) shows the evolution of 
the corresponding energy functional Πfe , showing 
symmetrical behavior across w = 0 with the functional 
increasing as |w| tends to 1 for low μ, and decreasing 
as |w| tends to 0 for large μ. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the Web version of this article.)   
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to the exponential in its definition. We show this evolution in Figure 7. 

3. Linear-stability analysis 

3.1. Kelvin-Voigt viscoelastic model 

We analyse the model’s behavior by rewriting (2.22) as: 

ẇ := Ψ(w), (3.1)  

where w = wb + ws. We first find the fixed points of the models in (2.22). 
For this, we require to find the stationary point of the energy functional, 
which is equivalent to the zeros of the resistive force fe(w) = w − w3 +

μw5. Thus, we have: 

w0 = 0,

w±1 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4 μ

√

2μ

√

,

w±2 = ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4 μ

√

2μ

√

.

(3.2) 

Here, the elastic behavior couples other processes to the elastic 
behavior as deformation proceeds. Softening results from the opening of 
fractures and pores as well as from the formation of elastically soft 
minerals. Hardening results from the closing of fractures and pores as 
well as from the formation of elastically hard minerals (Hobbs et al., 
2008; Hunt et al., 1989). 

In our model, the elastic response of the foundation initially softens 
under loading; once the displacements become large enough, its 
response stiffens due to the cubic–quintic non-linear terms. Increasing 
the vertical displacement leads to softening the foundation due to the 
cubic term energetically favorable to buckle the beam further. As this 
deflection progresses, the quintic term increases, and eventually, this 
quintic term dominates and stiffens the foundation. We show this 
behavior in Fig. 4. In the upper pane of this figure, for initial deflections 
of the plate, the signs of fe and w are similar. That is, fe helps the plate to 
deflect more. This also increases the corresponding energy Πfe (see, the 
lower pane of Fig. 4). Next, for 0 < μ ≤ 0.25, increasing the vertical 
deflection of the plate w, the elastic force fe becomes zero and then in-
creases its resistivity to the deformation. The evolution of Πfe also val-
idates this behavior as the energy decreases and is not in favour of the 
deflection anymore. From (3.2), we conclude that to have softening and 
re-stiffening behavior in the framework, one requires to choose 0 < μ ≤
0.25, as Fig. 4 shows. 

Then, linearizing the nonlinear model in the vicinity of the fixed 
points w⋆ using small perturbations, we obtain: 

w(⋅, t) = w⋆ + δw(⋅, t). (3.3) 

Inserting the perturbation ansatz (3.3) into (3.1), we have 

g(w⋆ + δw(⋅, t)) ≈ g(w⋆) + g
′

(w⋆)δw(⋅, t) = g
′

(w⋆)δw(⋅, t) (3.4) 

Thus, we find that a linear ODE governs the growth of the pertur-
bation δw(⋅, t), that is 

d
dt

δw(⋅, t) = g′

(w⋆)δw(⋅, t) (3.5) 

with the solution of 

δw(⋅, t) = δw(⋅, 0)exp(g′

(w⋆)t). (3.6)  

Therefore, if g′(w⋆) > 0, the perturbation grows in the temporal domain, 
and the fixed point is linearly unstable. Whereas, for g′(w⋆) > 0, the fixed 
point shows stable behavior, and the perturbation decays with the limit 
value of 

limt→∞δw(⋅, t) = 0. (3.7) 

For further analysis, we consider a perturbation function for wb and 
ws in the form: 

δw(⋅, t) = εexp(σt − ik⋅x), (3.8)  

where x:=(x1, x2), and k:=(kx1, kx2) is defined as the vector of modes in 
x1 and x2 directions. That is, kxi denotes the number of waves in direc-
tion xi. Substituting (3.8) into the model (2.20), we solve the obtained 
relation to obtain σ. Thus, the dispersion relations for the model (2.22) 
around the fixed points (3.2) read: 

σ0(k) =
− 1

1 + λ|k|4
(⃒
⃒k|4 − P|k|2 + 1

)
,

σ±1, (k) =
− 1

μ
(

1 + λ|k|4
)
(

μ
(⃒
⃒k|4 − P|k|2 − 4

)
+ d±1

)
,

σ±2(k) =
− 1

μ
(

1 + λ|k|4
)
(

μ
(⃒
⃒k|4 − P|k|2 − 4

)
+ d±2

)
.

(3.9) 

with |k| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
x + k2

y

√

being the magnitude of the vector k. Also, we 
define 

dpm1 = ±(1 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4 μ

√
),

dpm2 = ±(1 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4 μ

√
).

(3.10) 

The dispersion relations (3.9) shows that the model is stable when 
the applied force P is compressive and λ ≥ 0. Around other fixed points 
w±1 and w±2, it is required to have λ ≥ 0 and large modes. 

Remark 4. Relation between the thickness and dispersion We express 
the dispersion relations in (3.9) as a function of the thickness of the plate 
and the mechanical parameters of the plate and framework. For this, we 
substitute the perturbation (3.8) into (2.20) to obtain: 

σ0(k) =
− 12(1 − ν2)

12η(1 − ν2) + 2τcEh3|k|4

(
Eh3

12(1 − ν2)
|k|4 − P|k|2 + k1

)

,

σ±1(k) =
− 12(1 − ν2)

k3

(
12η(1 − ν2) + 2τcEh3|k|4

)

(

k3

(
Eh3

12(1 − ν2)
|k|4 − P|k|2 − 4k1

)

±

(

k2
2 − k2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
2 − 4k1k3

√ ))

,

σ±2(k) =
− 12(1 − ν2)

k3

(
12η(1 − ν2) + 2τcEh3|k|4

)

(

k3

(
Eh3

12(1 − ν2)
|k|4 − P|k|2 − 4k1

)

±

(

k2
2 + k2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
2 − 4k1k3

√ ))

.

(3.11)  

3.2. Maxwell viscoelastic model 

Plugging the perturbation (3.8) into model (2.24), we obtain the 
following time-dependent dispersion relations as: 

σ0(k, t) =
− 1

1 + λ̂(t)|k|4
(
− P|k|2 + 1

)
,

σ±1, (k, t) =
− 1

μ
(

1 + λ̂(t)|k|4
)
(

μ
(
− P|k|2 − 4

)
+ d±1

)
,

σ±2(k, t) =
− 1

μ
(

1 + λ̂(t)|k|4
)
(

μ
(
− P|k|2 − 4

)
++d±2

)
.

(3.12) 

From the dispersion relations (3.12), we conclude that the model is 
stable when the applied force P is compressive and λ̂(t) ≥ 0. Around 
other fixed points w±1 and w±2, it is required to have λ̂(t) ≥ 0, 
compressive P, and large modes such that: 
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P|k|2 ≥

⃒
⃒
⃒
⃒ − 4 ±

1
μ

(
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4 μ

√ )⃒⃒
⃒
⃒, for  points  w±1,

P|k|2 ≥

⃒
⃒
⃒
⃒ − 4 ±

1
μ

(
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − 4 μ

√ )⃒⃒
⃒
⃒, for  points  w±2.

(3.13) 

Remark 5. Relation between the thickness and dispersion in layer 
with Maxwell’s behavior: We derive the dispersion relations in (3.12) as 
a function of the plate’s thickness and mechanical parameters as: 

σ0(k, t) =
− 12(1 − ν2)

12η(1 − ν2) + 2φ(t)Eh3|k|4
(
− P|k|2 + k1

)
,

σ±1(k, t) =
− 12(1 − ν2)

k3

(
12η(1 − ν2) + 2φ(t)Eh3|k|4

)

(

k3

(
− P|k|2 − 4k1

)
±

(

k2
2 − k2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
2 − 4k1k3

√ ))

,

σ±2(k, t) =
− 12(1 − ν2)

k3

(
12η(1 − ν2) + 2φ(t)Eh3|k|4

)

(

k3

(
− P|k|2 − 4k1

)
±

(

k2
2 + k2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

k2
2 − 4k1k3

√ ))

.

(3.14)  

3.3. Dispersion relations: discussion 

Next, we compare the dispersion relations of the Kelvin-Voigt and 

Maxwell materials against Biot’s predictions (see, e.g. (M ü hlhaus et al., 
1998),). We set λ = λ̂ = 5, P = − 4, μ = 0.25 σb denotes the Biot’s 
dispersion relation. Fig. 5 shows that Biot’s model does not predict the 
folds that appear in the nonlinear model. Besides, the Kelvin-Voigt and 
Maxwell materials predict similar dispersion relations. Fig. 6 shows the 
effect of the layer thickness on the dispersion σ0. By decreasing the 
thickness, σ0 of models (2.20) and (2.24) approaches the dispersion 
predicted by Biot’s model σb. 

3.4. Maximum dispersion relations 

In this way, using (3.9), we obtain the maximum dispersion, km = | 
k|, in a Kelvin-Voigt material. Thus, we have: 

km,0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ2+λ
(
P2 − 2

)
+1

√

+λ − 1

λP

√
√
√
√

→max(σ0)

km,±1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(− 2d±1λ+8λμ+2 μ)2
+4λμ2P2

√

+d±1λ − 4λμ − μ

λμP

√
√
√
√

→max(σ±1)

km,±2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(− 2d±2λ+8λμ+2 μ)2
+4λμ2P2

√

+d±2λ − 4λμ − μ

λμP

√
√
√
√

→max(σ±2)

(3.15)  
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|K|

0

2

4

6

8

|
|

-1, -2

0 b

+1, +2

           Kelvin-Voigt material

-----    Maxwell material

____

Fig. 5. Biot’s relation (σb) predicts one wavelength for each k value. The nonlinear terms in our model capture various waves for each value of k. .  
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Fig. 6. The thickness effect on the dispersion relation σ0 for the Maxwell (left) and Kelvin-Voigt materials (right).  
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where, from (2.20), we obtain: 

max(σ0) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ
(
λ + P2 − 2

)
+ 1

√

− λ − 1

2λ
,

max(σ±1) =
(− d±1λ + (− 1 + 4λ)μ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(− d±1λ + μ + 4λμ)2
+ λμ2P2

√

)

2λμ ,

max(σ±2) =
(− d±2λ + (− 1 + 4λ)μ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(− d±2λ + μ + 4λμ)2
+ λμ2P2

√

)

2λμ .

(3.16) 

Similarly, the maximum dispersion, km = |k|, in a Maxwell material 
is  

where, from (2.24), we obtain: 

max(σ0(t)) =
1
2

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̂(t)
(

λ̂(t) + P2)
√

λ̂(t)
− 1

⎞

⎠,

max(σ±1(t)) =
− d±1 λ̂(t) + 4λ̂(t)μ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̂(t)
(

λ̂(t)(d±1 − 4 μ))2
+ μ2P2 )

√

2λ̂(t)μ
,

max(σ±2(t)) =
− d±2 λ̂(t) + 4λ̂(t)μ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̂(t)
(

λ̂(t)(d±2 − 4 μ))2
+ μ2P2 )

√

2λ̂(t)μ
.

(3.18) 
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m
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t/ c=10
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Fig. 7. Comparison between the Maxwell (time- 
dependent) maximum dispersion values and Biot’s 
prediction. The maximum dispersions become con-
stant when λ is large enough. The horizontal green 
line with constant behavior is Biot’s predicted 
dispersion. The red, blue, and black lines show the 
temporal evaluation of dispersions around their cor-
responding points. (For interpretation of the refer-
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

m
ax

(
)

b

1-, 2-

1+, 2+

0

Fig. 8. Comparison between the Kelvin-Voigt (time-independent) maximum dispersion values and Biot’s prediction. As before, the maximum dispersions become 
constant when λ is large enough. 

km,0(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̂(t)
(

λ̂(t) + P2)
√

+ λ̂(t)

λ̂(t)P

√
√
√
√ →max(σ0(t)),

km,±1(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̂(t)
(
d2
±1 λ̂(t) − 8d±1 λ̂(t)μ + μ2( 16λ̂(t) + P2) )

√

+ d±1 λ̂(t) − 4λ̂(t)μ

λ̂(t)μP

√
√
√
√

→max(σ±1(t)),

km,±2(t) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

λ̂(t)
(
d2
±2 λ̂(t) − 8d±2 λ̂(t)μ + μ2( 16λ̂(t) + P2) )

√

+ d±2 λ̂(t) − 4λ̂(t)μ

λ̂(t)μP

√
√
√
√

→max(σ±2(t)),

(3.17)   
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Remark 6. Relation between the maximum dispersion and thickness: 
Here, to complete our discussion, we describe the dependency of the 
maximum dispersion km on the layer thickness. For this, we substitute 
the scaling factors of model (2.20) into (3.15) to obtain the following for 
the Kelvin-Voigt viscoelasticity model: 

km,0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
̅̅̅̅̅̅̅̅̅̅

−
h3 k1 E
ν2 − 1

√ (

ηt

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
h3 E(ηt− 2k1 τc )2 − 24η(ν2 − 1)P2 tτc

η2h3 t2 E

√
− 1

)

+2k1τc

)

k1Pτc

√
√
√
√

2
̅̅̅
34

√ . (3.19) 

Figs. 7 and 8, show how the maximum dispersion changes relative to 
the non-dimensional viscosity λ for the models (2.24) and (2.20). Both 
figures suggest that the maximum predicted dispersion remains constant 
when λ becomes larger than four. Furthermore, the time-dependent 

dispersion relations based on the Maxwell model converge by 
increasing the time. 

4. Numerical results 

We now simulate the temporal evolution of the buckling of a 2D plate 
embedded in a viscoelastic framework. For this, firstly, we derive the 
weak form of the partial differential equation (2.22). Then, we use iso-
geometric analysis for the spatial discretization and derive the semi- 
discrete problem. Isogeometric analysis allows us to have sufficiently 
regular (for example, here, C1) basis functions (see (Cottrell et al., 2009; 
Cottrell et al., 2006)). 

Following standard notation for the Lebesgue and Sobolev spaces, we 
define a functional space 𝒱 = ℋ2 as a Sobolev space of square-integrable 

Fig. 9. The plate’s mid-surface evolution Ω0. The deformation of the elastic layer (top row) depicts a sinusoidal pattern, and the viscoelastic layer (bottom row) 
shows localized deformation during the folding. 
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functions with square-integrable first and second derivatives. Next, we 
multiply (2.22) by test functions v, r ∈ 𝒱. Then, using integration by 
parts, the variational formulation is stated as follow: Find wb, ws ∈ 𝒱, 
such that: 

B(wb, ws, v, r) = 0, ∀ v, r ∈ 𝒱, (4.1)  

where 

B(wb,ws, v, r) :

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Δwb,Δv)+(λΔẇb,Δv)+
1
5
(Δws,Δv)+

1
5
(λΔẇs,Δv)

− (P∇wb,∇v)+(wb+ws − (wb+ws)
3
+μ(wb+ws)

5
,v)

+(ẇb+ẇs,v)=0,
1
5
(Δwb,Δr)+

1
5
(λΔẇb,Δr)+

1
21

(Δws,Δr)+
1
21

(λΔẇs,Δr)

− (As
D∇ws,∇r)− (λAs

D∇ẇs,∇r)− (P∇ws,∇r)

+(ẇb+ẇs+wb+ws − (wb+ws)
3
+μ(wb+ws)

5
,r)=0,

(4.2) 

Then, we use an isogeometric analysis (IGA) discretization and 

define ℘h as a partition of the spatial domain Ω into elements K and 
obtain Ωh :=

⋃
K∈℘h

K. This allows us to discrete (4.1) in space, and use the 
Galerkin method to approximate (4.1) by the following variational 
problems over the finite-dimensional spaces: find wh

b ,wh
s ∈𝒱h⊂𝒱 such 

that: 

B(wh
b,wh

s , v
h, rh) = 0, ∀vh, rh ∈ 𝒱h, (4.3) 

with trial solutions wh
b, wh

s , defined as: 

wh
b =

∑nb

A=1
wb ANA, wh

s =
∑nb

A=1
ws ANA, (4.4) 

and the weighting functions vh, rh as: 

vh =
∑nb

A=1
vANA, rh =

∑nb

A=1
rANA. (4.5) 

Here, NA is the basis function, and nb is the dimension of the discrete 
space. Based on the definition of 𝒱h, we need the discrete space to be at 
least ℋ2-conforming globally. In this work, we satisfy this requirement 
by using a non-uniform rational B-spline (NURBS) basis with C1- 
continuity. 

We derive the fully-discrete problem by partitioning the time inter-
val [0, T] with a time step τ and use the generalized-α method (Beh-
noudfar et al., 2020a, 2021; Jansen et al., 2000). Finally, we denote by 
Wn

b ,W
n
s the approximations to wh

b(tn),w
h
s (tn), respectively. 

Remark 7. 

Fig. 10. The plate’s cross-section evolution at x2 = 4 for the case of elastic layer.  

Fig. 11. The plate’s cross-section evolution at x2 = 4.  
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Fig. 12. Mid-surface deformation of the viscoelastic layer embedded in a viscoelastic framework. Applied horizontal forces P1, P2 are not equal; the folds have a 
sinusoidal behavior at the early stages; later, the deformations localize. This localized behavior is true for all stages when P1 = P2. 
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Fig. 13. The localized behavior of the folded layer’s cross-section for the case P1 = P2 = 40. The cross-sections are plotted along the x2 dimension at point x1 = 15 
and along the x1 dimension at point x2 = 15. 

P. Behnoudfar et al.                                                                                                                                                                                                                            



Journal of Structural Geology 161 (2022) 104669

13

To complete our methodology for implementing the fully discrete 
problem, we use Newton’s method to solve the resulting nonlinear 
equation. The iterative procedure can be summarized as computing the 
residual R(i), using W(i)

n+1 with i denoting the i-th iteration. Next, 
computing the Jacobian j(i), we solve 

j(i)δW(i+1) = Ri. (4.6) 

Then, we update W(i+1)
n+1 = W(i)

n+1 − δW(i+1). We repeat these steps until 
the norm of the global residual vector is below a tolerance (e.g., here, 
10− 8) of their initial value. We usually achieve convergence in 3–5 
nonlinear iterations per time step. For more details, we refer the reader 
to (G ó mez et al., 2008; Vignal et al., 2015). The following results show 
the vertical deflections w on the domain. The horizontal deformations 
are updated based on the displacement field (2.4). 

We consider a 2D domain [ − 40, 40] × [ − 40, 40] and set μ = 0.3 
with a compressive force P = 4. We also use quadratic elements with C1 

continuity and time step τ = 0.1. The Dirichlet conditions impose the 
deflection w and the curvature ∂2w

∂x2
i 

on the boundaries (here, they are 

equal to zero). The initial condition is set to 

wb =
0.0001

(1 + x2)(1 + y2)
, ws = 0. (4.7) 

We also study the effects of viscosity on the layer’s displacement 
response and its localized buckling by comparing two cases of λ =
0 (elastic layer) and λ = 100 (viscoelastic layer). Fig. 9 presents the 
results. In Figs. 10 and 11 we show the cross-sections of the plate with 
thickness of h = 0.5 for elastic and viscoelastic plates, respectively. The 
viscous contribution in the layer delays the deformation. Compared with 

Fig. 14. Folded layer’s cross-section evolution for the case P1 = 40, P2 = 20.  
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a folded elastic layer, the evolution shows a localized behavior. 
Next, we show the effect of the applied lateral forces. For this, we 

consider a viscoelastic layer and use our model (2.19) with λ = 100 and 
μ = 0.2 with similar domain, boundary and initial conditions. Fig. 12 
shows the evolution of folding when P1 = P2 and P1 = 2P2. We also show 
the evolution of the cross-section of the simulated folds for both cases of 
equal and non-equal lateral forces in Figs. 13 and 14, respectively. 
Lastly, we consider a larger domain [ − 60, 60] × [ − 60, 60]. We apply 
compressive forces of P1 = P2 = 4, and P1 = 2P2 = 4 with λ = 1. Fig. 15 
shows how the localized behavior still can be observed in both examples, 
showing domes and basins in (a) and more linear ridges and valleys in 
(b). 

5. Conclusions 

We derive a model that captures localized buckling, including the 
viscoelastic behavior of the foundation and the folding layer. Using plate 
theory with nonlinear softening-stiffening behavior, we embed a plate in 
a viscoelastic framework. Then, we use the high-order shear deforma-
tion theory to incorporate shear strains in the thick layer parallel to the 
layering during folding. This shearing adds a nonlinearity that results in 
localized folding. We perform a linear stability analysis to derive the 
dispersion relations to the thickness and mechanical properties of the 
plate. We use an isogeometric solver with high regularity to simulate the 

resulting system of high-order partial differential equations (e.g., our 
model has fourth-order spatial derivatives) and solve the resulting semi- 
discrete problem using the generalized-α method. This time marching 
method delivers second-order accuracy as well as unconditional stabil-
ity. We show in the numerical examples how the viscoelastic layers 
deflect locally. Also, we provide numerical evidence on how the hori-
zontal applied forces impact the folding. The horizontal loading helps us 
describe how dome and basin and linear ridges and valleys form ac-
cording to the relative magnitudes of the applied forces. 

The physical model we introduce also shows the following:  

● Increasing the layer thickness increases the importance of layer 
parallel shearing, which results in localized folding for situations 
where the Biot analysis predicts strictly periodic folding.  

● The dispersion relationships are a function of strain (time), whereas 
Biot’s dispersion relation is time independent.  

● For thick layers, more than one wavelength may amplify, as Fig. 5 
shows, as opposed to Biot’s result where only one wavelength 
amplifies.  

● The relation between layer thickness and amplification is highly 
nonlinear, as Section 3.2 indicates. The wavelength increases as the 
layer thickness grows, as Fig. 6 shows, and is always larger than 
Biot’s wavelength, as Fig. 5 indicates. 

Fig. 15. Folded layer’s cross-section evolution. In (a), P1 = P2 = 4 and the structure resembles domes and basins. In (b), P1 = 2, P2 = 4 and the structure resembles 
ridges and valleys. 
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● The buckling behavior of both Kelvin-Voigt and Maxwell materials is 
similar. Hence, from a geological point of view, their response may 
not be discernible from the available data.  

● Lastly, we introduce a relation to describe the maximum dispersion 
as a function of layer thickness as 

lim
h3→0

km =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ηk2
2 t

̅̅̅̅̅̅̅
k1 E

1− ν2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
96k2

1 k32(1− ν2)P2τc

ηk4
2 tE

√

2(k2
1k3Pτc)

√
√
√
√
√

2 × 31/4 (5.1)  
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