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Abstract: We have previously demonstrated a novel interferometric multispeckle Fourier
domain diffuse correlation spectroscopy system that makes use of holographic camera-based
detection, and which is capable of making in vivo pulsatile flow measurements. In this work,
we report on a systematic characterisation of the signal-to-noise ratio performance of our
system. This includes demonstration and elimination of laser mode hopping, and correction
for the instrument’s modulation transfer function to ensure faithful reconstruction of measured
intensity profiles. We also demonstrate a singular value decomposition approach to ensure that
spatiotemporally correlated experimental noise sources do not limit optimal signal-to-noise
ratio performance. Finally, we present a novel multispeckle denoising algorithm that allows our
instrument to achieve a signal-to-noise ratio gain that is equal to the square root of the number of
detected speckles, whilst detecting up to ∼1290 speckles in parallel. The signal-to-noise ratio
gain of 36 that we report is a significant step toward mitigating the trade-off that exists between
signal-to-noise ratio and imaging depth in diffuse correlation spectroscopy.
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1. Introduction

Diffuse correlation spectroscopy (DCS) is a non-invasive optical imaging modality that can
be used to measure cerebral blood flow (CBF) in real-time [1]. It has important potential
applications in clinical monitoring [2], as well as in neuroscience and the development of a
noninvasive brain-computer interface [3]. However, one of the limitations of DCS is that a
trade-off exists between the signal-to-noise ratio (SNR) and imaging depth, and thus brain
specificity, of this technique [4]. This is because an increase in imaging depth requires the use
of larger source-detector separation (SDS) distances, which result in more photon losses due to
absorption and scattering, and a subsequent decrease in SNR. An increase in imaging depth also
results in the accumulation of more phase shifts due to dynamic scattering events, which results
in a loss of coherence and SNR. Additionally, as DCS is a diffuse optical technique, it is limited
by a lack of inherent depth discrimination within the illuminated region of each source-detector
pair, and the CBF signal is therefore also prone to contamination by the extracerebral tissues
which the light traverses [5].

The investigation of novel approaches to improve the sensitivity of DCS to CBF has therefore
recently attracted interest from several research groups. Techniques including multispeckle
detection strategies [3,6,7], time-domain DCS [8], DCS in the short-wave infrared region [9,10],
interferometric approaches [4,11,12], and acousto-optic modulation [13] have all been proposed.
Placing a particular emphasis on scalability, affordability, and robustness to ambient light, we
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have previously demonstrated a novel Fourier domain DCS (FD-DCS) instrument that makes
use of heterodyne holographic camera-based detection, and which is capable of making in vivo
pulsatile flow measurements [14,15]. The potential benefits of FD-DCS compared to conventional
DCS are multiple: SNR that scales linearly with the square root of the number of camera pixels
used, order of magnitude reduction in detector cost, robustness to the effects of ambient light,
shot noise limited detection using off-axis holography [16], potential for detector scalability and
sensor partitioning (which could facilitate tomographic and depth discrimination techniques
[2,17]), and suitability to a range of design wavelengths (which could confer a further SNR
advantage [9]).

Whilst our previous proof-of-concept work validated FD-DCS, we were unable to demonstrate
the increase in SNR that the theory of multispeckle detection predicts. Therefore in this work,
we report on a systematic characterisation of the SNR performance of our holographic FD-DCS
system. We account for the effect of laser mode hopping on our coherent multiple camera
frame technique, and also experimentally validate the inclusion of a model of our system’s
modulation transfer function (MTF) into the measured data. By using spatiotemporal filtering as
a validation tool, we can assess whether any given experimental setup produces limiting noise
sources that compromise maximal SNR performance. The final contribution of this paper is a
novel multispeckle denoising algorithm, the development of which has allowed us to remove
spatiotemporally uncorrelated noise from the measured data, and which has also allowed us to
demonstrate a linear relationship between SNR and the square root of the number of speckles
detected. By bringing together the above four strategies, we achieve an SNR gain of 36 for our
phantom experiments, for a flow parameter output rate of 8.2 Hz, when detecting over ∼1290
heterodyne speckles for our inexpensive camera-based detection system.

2. Theory and methods

The theoretical framework and experimental setup of our holographic FD-DCS method are fully
described in our previous publication [14]. Briefly, the technique employs a Mach-Zehnder
interferometer where light from the sample arm interferes with frequency shifted light from the
reference arm. A schematic representation of our experimental setup is shown in Fig. 1. Detecting
the result of interference between the sample and the reference arms, for different reference light
detuning frequencies, ∆f , removes the need to detect very rapid intensity changes when frequency
shifting is not used, as is required in conventional DCS experiments. This allows for a slower
detector to be used, such as a relatively inexpensive camera. Thus, FD-DCS, which is inherently
an interferometric technique, also lends itself well to multispeckle detection. Additionally, the
interferometric measurement interrogates the electric field directly, rather than intensity, and
therefore the Siegert relation, and the assumptions therein, do not constrain FD-DCS [18].

According to the Wiener-Khinchin theorem, the first-order power spectral density (PSD) of
the field fluctuations due to dynamic scatterers, s1d(ω), is the Fourier transform of the field
autocorrelation function, g1d(τ) [19–22],

s1d(ω) =

∫ +∞

−∞

g1d(τ) exp−iωτ dτ, (1)

and thus an FD-DCS measurement and a conventional DCS measurement contain entirely
equivalent information [23]. We sample the unnormalised first-order PSD, S1(ω), at a given
reference arm detuning frequency, by first forming a camera plane hologram, HC, an example of
which is shown in Fig. 2(a). For our lensless digital Fourier holography instrument [24,25], an
intensity hologram, HR, is then reconstructed in the image plane by performing a 2D discrete
Fourier transform (DFT) of HC [26,27]

HR = |F2D(HC)|
2, (2)
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Fig. 1. Schematic representation of the holographic FD-DCS system that is described in
this paper. A continuous wave (CW) laser source is split into a reference arm and a sample
arm in a fibre-coupled beamsplitter (BS). The reference arm is frequency shifted by a pair
of acousto-optic modulators (AOM1 and AOM2). Light is collected from the sample in a
reflectance mode geometry through the aperture of a liquid light guide. The two arms are
recombined off-axis in a cube BS.

an example of which is shown in Fig. 2(b). This reveals the twin holographic images of the
heterodyne intensity of the speckle pattern that we wish to measure, which are a conjugate pair.
Due to the off-axis recombination of the reference and sample arms in our instrument, the twin
images are spatially separated in HR. A masking operation can then be implemented to take
the sum over each of the two images and also to take the sum over a shot noise mask, which is
located in one of the two ‘quiet’ corners of HR. The average pixel value in each mask is then
obtained, which we denote by S(±∆ω) for the two heterodyne masks, and N(∆ω) for the shot
noise mask. S1(±∆ω) may then be calculated for each heterodyne term as [19,28]

S1(±∆ω) =
S(±∆ω)
N(∆ω)

− 1. (3)

Having made measurements of S1(±∆ω) at a range of detuning frequencies, we can then
fit these measurements to an appropriate FD-DCS analytical model (taking into account both
the type of motion and the modelled detection geometry) in order to extract a flow parameter
measurement for the sample under consideration. DCS experiments typically report the effective
Brownian diffusion coefficient, Db, as a flow parameter, which has been shown to be an effective
surrogate for blood flow index (BFI) in a variety of tissue types in vivo [29]. For the phantom
studies presented in this paper, the sample consists of a combined intralipid/deionised water
optical phantom (Intralipid 20 %, Fresenius Kabi) with optical properties µ′s = 7.5 cm−1 and
µa = 0.026 cm−1. A liquid light guide (LLG) with a 5.0 mm diameter core (Thorlabs, LLG5-4Z)
is used to collect light from the sample in a reflection mode geometry, with the SDS distance set
to 17.5 mm. Further details of our experimental setup can be found in Section 3 of [14]. The
remainder of Section 2. describes the reconstruction and signal processing techniques that are
used in this paper, the implementation of which is described in Section 3.

2.1. Modulation transfer function

Due to effect of the finite size of the camera pixels (∆x,∆y), the heterodyne detection efficiency
within the space of HR (kx, ky) is given by the MTF of our lensless digital Fourier holography
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Fig. 2. (a) Camera plane hologram, HC. (b) Reconstructed intensity hologram, HR. The
two heterodyne gain terms, S(±∆ω, kx, ky), are masked by the dotted circles (which are a
conjugate pair), the shot noise mask, N(∆ω, kx, ky), is depicted by the dashed circle.

instrument [24,25,30]. Here (kx, ky) refers to spatial frequency, which is a function of the rate of
sampling and the number of samples in the spatial domain [25]. For example, kx = (N∆x)−1,
where N is the number of camera pixels in the x dimension. The MTF is the Fourier transform
pair of the spatial distribution of a single pixel in the camera plane

MTF(kx, ky) =
|︁|︁sinc(

√
α∆xkx)sinc(

√
α∆yky)

|︁|︁2 , (4)

where α is the camera pixel fill factor, and

sinc(t) =
sin(πt)
πt

(5)

is the normalised sinc function. We note that the each of the terms ∆xkx and ∆yky in Eq. (4) is
evaluated between ±0.5 across each of the two dimensions of the camera sensor [30]. An example
of the MTF for α = 0.72 is shown in Fig. 4(b). The MTF, which has rotational symmetry of order
four, is centred on the reference beam (i.e., kx = ky = 0) and results in increasing attenuation for
increasing heterodyne spatial frequencies over the holographic twin images, but which does not
affect the homodyne shot noise component [31]. We therefore update Eq. (3) to become

S1(±∆ω, kx, ky) =

S(±∆ω,kx,ky)

N(∆ω)
− 1

MTF(kx, ky)
, (6)

and we then proceed to take the average value within each heterodyne mask to make a measurement
of S1(±∆ω), which, as both of the heterodyne terms are identical for the holographic detection
schemes described in this paper, we abbreviate to S1(∆ω). We validate the inclusion of the MTF
into the holographic reconstruction in Section 3.2. To the best of our knowledge, this is the first
time that this inclusion has been validated in a digital holography experiment.

2.2. Singular value decomposition of holograms

The spatiotemporal filtering of holograms using a singular value decomposition (SVD) approach
has recently been presented in the field of laser Doppler holography (LDH) in order to discriminate
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between the spatiotemporal characteristics of blood flow, and unwanted clutter such as bulk tissue
motion, camera jitter, parasitic reflections, and other physical flaws in the recording channel
[32,33]. The authors of the LDH technique achieved this by reconstructing holograms, having
first performed an SVD of the holograms and setting the first nc singular values to zero.

Within the context of multispeckle interferometric DCS, a similar approach has also recently
been presented by Robinson et al. [34]. These authors suggested that the largest singular values
are also associated with movement artefacts and fluctuations in laser power, although the precise
identity of the noise source is less important than the removal of a component of the measured
data that is overly represented across the camera sensor, and which is therefore not due to the
signal of an individual speckle.

The spatiotemporal filtering of holograms works by reshaping a series of nt consecutive
holograms, of spatial dimensions nx × ny, into a 2D space-time matrix Q, which has dimensions
nxny × nt. An SVD allows the matrix Q to be described as the sum of nt independent terms

Q =
nt∑︂

i=1
λiUiV∗

i , (7)

where λi are the singular values (ordered by decreasing value), Ui are the left singular vectors
(which correspond to space), Vi are the right singular vectors (which correspond to time), and ∗

denotes the complex conjugate transpose. The basis of the spatiotemporal filtering approach
is that the highest magnitude singular values correspond to variations in Q with the strongest
spatiotemporal correlations. Since speckle is expected to have weak spatiotemporal correlation,
we can assume that strong spatiotemporal correlations in Q will be due to artefacts. In this work
we propose to remove spatiotemporal clutter owing to channel noise in our experimental setup,
that may be caused by laser instability and reflections at optical interfaces, for example. We
do this by setting the first nc singular values to zero, and reconstructing Q using this updated
vector of singular values. We use spatiotemporal filtering as a validation tool against which to
benchmark the SNR performance of any given experimental setup, and we demonstrate this in
Section 3.3.

2.3. Multispeckle detection noise in digital holography

Noise due to detector nonidealities will have an impact on the SNR performance of a multispeckle
detection system [35], and in this paper we demonstrate a novel algorithm to effectively remove
this noise from the measured data. In principle, we do this by first implementing a spatial sorting
of the S1 data within each reconstructed hologram, each of which is one in a series of independent
and identically distributed random variables. This means that any temporal variation that exists
between sorted holograms is due to both sampling noise, which is inherent to the speckle pattern
that we wish to measure, and also detection noise. We can then apply a temporal filter to the
sorted data to remove this noise. As detector noise occurs as white noise in each camera plane
hologram, its DFT is effectively a random walk and can be assumed to have speckle-like statistics,
and therefore it can be treated as an additional speckle-like noise in each reconstructed hologram
[36]. Thus we propose that speckle reduction techniques can be adapted to remove detector noise
from the sorted S1 data. In this paper we propose median filtering, which has previously been
employed to remove speckle noise from reconstructed holograms of static objects [37]. Having
median filtered the sorted data, the initial sorting can then be reversed in order to restore the
random nature of spatial speckle sampling. This algorithm is completely described in Section
3.4, where we also demonstrate and validate its inclusion into our signal processing pipeline.



Research Article Vol. 13, No. 7 / 1 Jul 2022 / Biomedical Optics Express 3841

3. Experiments and results

3.1. Mode hopping

Interferometric techniques inherently rely on splitting a light source into sample and reference
arms. In our experimental setup, we use a 75:25 fibre-coupled beamsplitter (Thorlabs, 1x2
75:25 narrowband coupler, TN785R3A1) to form a sample arm and a reference arm, with an
insertion loss of 1.28 dB and 6.09 dB, respectively (a further insertion loss of 3.09 dB is incurred
on the reference arm due to the AOMs). However, we have found that back reflections from
this beamsplitter into the laser cavity induce mode hopping that has deleterious effects on our
temporal filtering strategy, as is confirmed later in this section. These effects are visible as
negative going outliers in reconstructed S1 data [Fig. 3(a)], and occur at a rate of one in every
250 data points in this figure. Even though these outliers occur infrequently in this validation
dataset, and could therefore easily be ignored, this would not be possible when detecting at the
fast Db parameter output rates that are required to resolve pulsatile flow in vivo, which limit the
number of S1 values used to fit per Db measurement.
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Fig. 3. (a) Negative going outliers in S1 data (highlighted by the red squares). (b) Using an
alternative temporal filtering strategy reveals discontinuities in intensity, which suggests that
these outliers could be correlated with mode hopping (highlighted by the red rectangles).

The data presented in Fig. 3(a) were acquired using a DC subtraction temporal filtering method
(analogous to the approach recently presented in [4]), in which the camera plane hologram, HC,
is constructed as the difference of two successive images

HC = In − In+1, (8)

which serves as a high pass filter that removes the contribution of what we assume to be a
temporally static contribution from the reference beam [16]. However, we hypothesise that if
the laser were to mode hop between two successive images, then Hc would be formed from two
mutually incoherent images, which would result in an artefactual increase in N, with a subsequent
decrease in S1, according to Eq. (6). In order to test this theory, we used an alternative temporal
filtering strategy

HC = In − I1, (9)

where n ≠ 1, and we thus remove the contribution of the reference beam as it is recorded in the
first camera frame of a measured series. The results of this analysis, shown in Fig. 3(b), reveal
discontinuities in intensity, which suggests that these outliers could be correlated with mode
hopping (this behaviour can also be demonstrated using an SVD approach - see Section 3.3).

The light source in our system is a single mode diode laser operating at 785 nm (Toptica,
iBeam Smart 785-S-WS), which incorporates a ∼35 dB optical isolator fitted at the laser head to
minimise back reflections into the laser cavity, and which has an insertion loss of 1.3 dB. Back
reflections from optical interfaces can cause the laser to mode hop unpredictably [38], and even
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with the use of a single-stage optical isolator it is still possible to encounter back reflections
into the laser. By employing the laser manufacturer’s proprietary feedback induced noise eraser
(FINE) feature, we were able to eliminate the outlying data points demonstrated in Fig. 3(a),
but at the expense of decreasing the measured S1 values and thus introducing noise into the Db
measurement. By trimming the laser head to decrease back reflections into the main laser cavity,
as well as incorporating a second optical isolator (Thorlabs, IO-F-780APC, 1.1 dB insertion
loss) to achieve ∼71 dB of total optical isolation at the laser head, we are able to eliminate these
outlying data points without employing FINE. Therefore, all three of FINE, laser head trimming,
and dual-stage optical isolation were used as diagnostic tools to demonstrate the presence of
mode hopping, but only the latter two were implemented as a solution in our experimental setup.

3.2. MTF correction

As our optical phantom is spatially invariant and has been imaged through the spatially incoherent
core of an LLG of length 1.2 m, we expect to reconstruct a flat profile in Fig. 4(a), which shows
the average intensity of 500 reconstructed S1 images. However, the MTF of our instrument (see
Section 2.1) causes a distortion artefact whereby higher spatial frequencies are more strongly
attenuated. By minimising the variance, σ2, in the reconstructed S1 image, for values of α
in the range [0, 1], we can determine the α value for our experimental setup to be 0.72, as
is shown in Fig. 5. The manufacturer of our camera (FLIR, BFS-U3-16S2M-CS) reports a
camera pixel fill factor of 1.00, due to the microlenses that are used in the sensor array. The
use of a microlens array will increase the light detection efficiency of the sensor; however, this
does not take into account the optical aberrations of the microlenses that are relevant to our
imaging application. Additionally, our camera has a maximum quantum efficiency over visible
wavelengths, and its microlenses will therefore have a wavelength response that is not designed
for the near infrared. By modelling a value of α = 0.72 [Fig. 4(b)], we optimise the flatness of
the average reconstructed S1 image in Fig. 4(c), and thus correct for the distortion artefact caused
by the MTF of the instrument. We note that this optimisation process can be customised to the
features of any particular experimental setup, and that other appropriate optimisation targets for
our experimental design could include radial symmetry, or the gradient of the radial average.
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Fig. 4. (a) Reconstructed average of 500 S1 images without MTF correction. (b) MTF with
α = 0.72, the white dotted circles indicate the location of the twin holographic images, which
lie in a common plane. (c) Reconstructed average of 500 S1 images with MTF correction.

3.3. Spatiotemporal filtering and laser output power

We have previously demonstrated that the SNR of our S1 measurement does not scale linearly
with the square root of the number of speckles detected when using a DC subtraction temporal
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Fig. 5. Choosing a value of α = 0.72 minimises the variance, σ2
min, and thus maximises the

flatness, of the average reconstructed S1 image.

filtering strategy [14,15], as is shown by the red dashed line in Fig. 6(b) for ∆f = 0.1 Hz. Here
we define the SNR in S1 to be the ratio of the mean value, µ, to the standard deviation, σ, of a
sample of S1 values

SNRS1
=
µ(S1)

σ(S1)
, (10)

over N repeats. For this experiment we use 501 camera plane holograms, which yields a value
of N = 500 for DC subtraction temporal filtering, and note that our laser is being driven at
its maximum rated output power of 120 mW. By varying the size of the signal mask in the
holographic reconstruction process, we can effectively control the number of speckles that
contribute to each S1 measurement. In the absence of detector noise, and other experimental
noise sources, the measurement SNR should be given by speckle statistics, i.e., the SNR of a
speckle detection instrument should scale linearly with the square root of the number of detected
speckles [35,39].
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Fig. 6. 120 mW laser output power. (a) Singular values that result from the SVD of
Q. The first 10 singular values (highlighted in red) are elevated and thus correlated with
spatiotemporal noise. (b) Spatiotemporal filtering (plotted in solid black) results in an
improvement in SNR performance compared to DC subtraction temporal filtering alone
(plotted in dashed red).

We propose to remove any spatiotemporally correlated experimental noise sources that may
exist within this dataset using the SVD approach [32–34] that was introduced in Section 2.2.
Q is formed from 501 camera plane holograms, each of spatial dimensions 512 × 512 pixels.
Thus, the dimensions of Q are 262144 × 501. We compute all 501 singular values of this matrix,
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the first 100 of which are shown in Fig. 6(a). The first 10 singular values are elevated due to
spatiotemporally correlated noise, and we therefore use a threshold value of nc = 10. Speckle has
inherently weak spatiotemporal correlation, and we make use of this fundamental property by
reconstructing Q having set the first nc singular values equal to zero. As the SVD step has already
implemented temporal filtering, this allows us to form HC using single frame holography, i.e.,

HC = In, (11)

and we then proceed to reconstruct each HR according to Eq. (2). We then repeat the SNRS1
analysis for this spatiotemporally filtered data and find that the SNR performance is closer to the
linear scaling target, as is depicted in Fig. 6(b).

With a view to characterising the source of the noise that has been removed by this SVD step,
we repeated the above analysis on data acquired using a reduced laser output power of 100 mW,
the results of which are shown in Fig. 7. This time, the spatiotemporal filtering approach results
in similar SNR performance to the DC subtraction temporal filtering technique. We can therefore
conclude that by reducing the laser output power, we have removed high frequency clutter from
the measured data that is outside the stopband of a DC subtraction temporal filter. This can also
be appreciated as a reduction in magnitude of some of the first 10 singular values in Fig. 7(a),
compared to Fig. 6(a). Furthermore, as spatiotemporal filtering and DC subtraction temporal
filtering offer similar SNR performance for this dataset, we can conclude that they have similar
efficacy at removing low frequency clutter, which is within the stopband of a DC subtraction
temporal filter.

100 101 102
106

107

108

109

1010

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

Fig. 7. 100 mW laser output power. (a) Singular values that result from the SVD of
Q. The first 10 singular values (highlighted in red) are elevated and thus correlated with
spatiotemporal noise. (b) Spatiotemporal filtering (plotted in solid black) results in a similar
SNR performance to DC subtraction temporal filtering alone (plotted in dashed red).

As was also demonstrated by Puyo et al. [32], we have found that SVD provides a more robust
basis than Fourier space to filter clutter from holograms. This is because high frequency clutter
cannot be effectively removed using high pass temporal filtering alone. As this clutter is removed
by decreasing the laser output power, it may be that the clutter is due to reflections that occur
at optical interfaces within the experimental setup [38,40]. Indeed, inspection of the temporal
singular vectors associated with elevated singular values reveals the presence of mode hopping
(when dual-stage optical isolation is not used) and beat notes (when using a laser output power
of 120 mW). It may also be that when pumping the laser at its maximum rated output power,
phenomena such as increased spontaneous emission and technical noise (e.g., vibrations of the
laser resonator, excess noise from the pump source, or temperature fluctuations) contribute noise
to the measured data [41]. However, we use spatiotemporal filtering as a validation tool, rather
than a final solution to implement in our signal processing pipeline, and therefore the precise
identification of the sources of noise that spatiotemporal filtering removes is not imperative. The
conclusion that DC subtraction temporal filtering, together with a sub-maximal laser output
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power, provides equivalent SNR performance to spatiotemporal filtering is key to validating our
choice of DC subtraction as a temporal filtering strategy.

For these validation datasets, we have the luxury of computing singular values over a time-stack
of nt = 501 camera frames. Using this approach when detecting in vivo pulsatile flow rates places
significant restrictions on the hardware that is used. For example, Puyo et al. [32] used a value of
nt = 1024 for their LDH technique, which was made possible by using a camera operating at a
frame rate of 75 kHz. A DC subtraction temporal filtering strategy requires a minimum of only
two camera frames, and is therefore a more appropriate choice for our experimental setup, which
uses a camera operating at 200 Hz for in vivo experiments.

3.4. Novel multispeckle denoising algorithm

The remaining sources of noise demonstrably have no spatiotemporal correlation, and are therefore
particularly challenging to remove, especially as the signal itself also has no spatiotemporal
correlation. In Fig. 4(d) of [35], Xu et al. observed a similar phenomenon to that which we
present in Fig. 7(b) of this paper. These authors postulated that the experimental SNR does not
reach the predicted theoretical linear relationship with the square root of the number of detected
speckles due to experimental imperfections, such as detector noise. The sources of noise that
exist in a holographic reconstruction in lensless digital Fourier holography have been discussed
in [27,36], and these include detector nonidealities (such as quantisation noise, read noise, and
pixel nonuniformity noise) and noise due to superimposed diffraction patterns caused by dust
particles in the interferometric path.

Here we present a method that allows us to remove this noise from the measured data. We
start by constructing a 2D space-time matrix, as described in Sections 2.2 and 3.3, but this time
we reshape reconstructed holograms (which have undergone DC subtraction temporal filtering),
and we denote this matrix R. For this example, we use the same dataset that has been analysed in
Fig. 7 (i.e., a laser output power of 100 mW and a detuning frequency of 0.1 Hz). There are
20081 camera pixels within each of the signal masks shown in Fig. 2(b), and we reshape the
values within one of these signal masks into a column vector. This is then repeated for nt = 500
reconstructed holograms, and the resulting 500 column vectors are horizontally concatenated to
form R, which has dimensions 20081 × 500, an example of which is shown in Fig. 8(a). The
formation of R does not alter the S1 values within each reconstructed hologram, and, since this
matrix is yet to be denoised, we refer to it as control data.

In theory, each column of R represents the same distribution of S1 values, but which has
been independently randomised due to the nature of spatial speckle sampling, and which has
also been contaminated with both sampling noise and measurement noise. The next step of the
multispeckle denoising algorithm involves independently sorting the elements of each column of
R into ascending order, as is shown in Fig. 8(b). Having removed the inherently random nature of
the spatial sampling of speckle within each column, we can now proceed to temporal filtering
between columns to remove noise. We do this by filtering the sorted matrix using a [1 × n]
neighbourhood (which refers to the space and time axes of R, respectively) and we choose a
median filter, as was discussed in Section 2.3, with a value of n = 3. We are motivated to use a
low value of n so as not to compromise the temporal resolution of the measurement, and we have
found that n = 3 is the lowest value of n that achieves the linear SNR scaling that multispeckle
detection predicts [Fig. 10]. The results of median filtering the sorted matrix are shown in
Fig. 8(c). We then reverse the sorting of each column, as is shown in Fig. 8(d), and we refer to
this matrix as denoised data.

The distribution of the S1 values of each column of the control data are shown by the red
histogram in Fig. 9(a), which also shows the distribution of the S1 values of each column of the
denoised data by the black histogram. By applying our novel multispeckle denoising algorithm,
we have reduced the variance of the data without disturbing its central tendency. 99.95 % of the
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Fig. 8. Novel multispeckle denoising algorithm. (a) The 2D space-time matrix, R. (b) Each
column of R is sorted into ascending order. (c) R is then median filtered using a [1 × 3]
neighbourhood. (d) The sorting is reversed. N.B. The maximum S1 value in matrices (a)
and (b) is 163, and the maximum S1 value in matrices (c) and (d) is 116; however, we have
used a high threshold of 80 in each subplot of this figure to aid visualisation.

noise that has been removed from this dataset has an absolute value less than the camera read
noise (2.45 photoelectrons), and 99.99 % of the noise that has been removed has an absolute
value less than the camera quantisation interval (5.73 photoelectrons).
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Fig. 9. (a) Red and black histograms show the distribution of 500 S1 values for control and
denoised data (n = 3), respectively. (b) Denoising achieves the theoretical linear scaling
target for SNR performance, as shown by the black solid line. For effective comparison,
SNR performance achieved using 120 mW laser output power and DC subtraction temporal
filtering is shown by the grey dash-dotted line.

We then reorder each of the columns of the denoised data back into the form of the native
signal mask, and repeat the SNRS1

analysis that is described in Section 3.3. The results of this
are shown by the black solid line in Fig. 9(b), which demonstrates that the theoretical linear
scaling target for SNR performance has been achieved. We repeat this validation for all six
detuning frequencies for this dataset, as is shown in Fig. 10. Additionally, in order to verify
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that the denoising process does not corrupt the PSD measurement, we fit Db to both control and
denoised data in Fig. 11, and confirm that the signal is unchanged by the denoising process.
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Fig. 10. Denoising with n = 3 achieves the theoretical linear scaling target for SNR
performance at all six detuning frequencies for this dataset, as shown by the black solid
line in each subplot. Denoising with n = 4 outperforms the linear scaling target at a cost of
decreased temporal resolution.

Finally, we define the SNR gain of our multispeckle detection system to be the ratio of SNRS1
achieved with multispeckle DCS to SNRS1

achieved with single speckle DCS, using detectors
with the same performance [3] and at the same detuning frequency. The geometry of our
experimental setup has been described in our previous work [14], and for the observation distance
used in the current dataset (z = 76.84 mm), a single speckle occupies 15.6 pixels on the camera
sensor (which has a pixel size of 3.45 µm), according to the relationship [42]

S =
(λz)2

Aaperture
, (12)

where S is the speckle area, λ is the operating wavelength, and Aaperture is the area of the aperture
of the LLG. Figure 12 shows that, at a detuning frequency of 1 kHz and for a value of n = 3,
the experimental SNR gain fits the theoretical prediction that SNR gain is equal to the square
root of the number of detected speckles, and we find that this relationship is validated at all six
measured detuning frequencies for this dataset. We achieve an SNR gain of 36 when detecting
∼1290 speckles in parallel.
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Fig. 11. (a) Denoising does not corrupt the signal contained within the PSD measurement.
The Db values fitted to control and denoised data are within 0.02 %, 0.02 %, and 0.01 %
of each other for a Brownian motion fit, for values of n = 2, 3, and 4, respectively. (b)
The standard deviation of the PSD measurement is decreased by denoising for all detuning
frequencies.
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Fig. 12. Experimental SNR gain for a detuning frequency of 1 kHz. Using a value of n = 3,
the experimental data fit the theoretical prediction that SNR gain is equal to the square root
of the number of detected speckles,

√︁
Nspeckles. Using a value of n = 4 outperforms this

linear prediction by reducing the independence of consecutive holograms.
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4. Outlook and discussion

The current state-of-the-art in SNR performance achieved by a multispeckle DCS system is
described by Sie et al. [3], who reported an SNR gain of 32 in a phantom study when detecting
homodyne speckles using a 1024 pixel single-photon avalanche diode camera, with an SDS
distance of 11.0 mm. We have achieved an SNR gain of 36 in a phantom study when detecting
over ∼1290 heterodyne speckles in parallel, with an SDS distance of 17.5 mm, using a detector
that is two orders of magnitude less expensive. Additionally, compared to homodyne DCS,
heterodyne DCS has been shown to offer an SNR gain of ∼2 for phantom experiments [12].

An in vivo SNR gain of 16 has recently been reported in a DCS system that has a design
wavelength of 1064 nm, and which uses superconducting nanowire single-photon detectors, with
an SDS distance of 25.0 mm on the forehead of human subjects [10]. Although we have not
reported in vivo results in this paper, this, together with optimisation of an in vivo probe, will
form part of our future work. The in vivo data that we have previously presented [14] involved
the capture of three camera frames at each detuning frequency (using a sub-maximal laser output
power of 39 mW), with a subsequent Db frame rate of 10.8 Hz for our current experimental setup.
We note that our multispeckle denoising algorithm requires the capture of four camera frames
at each detuning frequency for n = 3, and doing so slows down the resulting Db frame rate to
8.2 Hz. However, this frame rate is still sufficiently fast to recover pulsatile information, and
validating our denoising algorithm on in vivo data is therefore future work.

The value of n that is used in the denoising algorithm represents a trade-off between temporal
resolution and denoising performance. Indeed, we note that by using a value of n>3 we can
reduce the independence of consecutive holograms further, without perturbing the measured
signal, thereby overcoming the linear SNR scaling limit imposed by sampling noise [Fig. 12],
but at the cost of a decreased temporal resolution. For any given value of n, temporal averaging
without sorting achieves the same magnitude SNR gain as temporal averaging with sorting, when
evaluated at the maximum sampled mask radius. However, without sorting, the SNR gain does
not scale as it should with the square root number of speckles, and therefore leaves noise sources
unaccounted for. In this paper, we have found that median filtering with sorting, for a value of
n = 3, yields the SNR statistics that we expect, and we have shown that this can be achieved by
accounting for both spatiotemporally correlated noise sources and detector noise, which occurs
as white noise in the camera plane.

Previous authors have noted that multispeckle detection introduces extreme sensitivity to
motion artefacts of the multimode detector fibre [12], and it is therefore surprising that we have
not identified noise due to movement artefact of the LLG in this SNR optimisation study. In
addition to the experimental findings described in Section 3, preliminary investigations have
shown that using a free-space propagation setup (i.e., bypassing the LLG) does not improve SNR
performance. Gross described that the spatial filtering step of off-axis holography can be used to
remove technical noise in the reference arm due to vibrations [43], and it is therefore possible
that motion artefacts of the LLG in our experimental setup are removed in this manner, but for
this to be the case the noise would need to be composed of predominantly low spatial frequencies.
Further characterisation of the effects of motion on the transfer matrix of the LLG is therefore
required in order to understand this further.

Although in our previous work we have shown that holographic FD-DCS yields an SNR
advantage over conventional DCS when using an optical phantom with µa = 0.1 cm−1 [14], in the
present study we have used a relatively low-absorption phantom with µa = 0.026 cm−1. This is the
phantom that was used in our previous publication to demonstrate absolute equivalence between
conventional DCS and holographic FD-DCS, as it allows for a greater range of experimental
parameters, and we use it again here to characterise SNR performance. Absolute SNR will
decrease with increasing sample absorption; however, we do not expect any change in the
relationship between SNR gain and the square root of the number of detected speckles (which is
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the focus of this paper) when increasing sample absorption. The extrapolation of the findings
of this paper to higher absorption samples therefore forms part of our future work. Further to
this, investigating the effects of varying photon count rates and reference arm power levels on
absolute SNR would be a useful further study.

The autocorrelation of faster blood flow will decorrelate more quickly, and therefore, for a
given acquisition rate, conventional DCS will have an upper limit on the speed of blood flow that
can be resolved. However, when operating in the Fourier domain, faster blood flows will have
broader power spectra, which does not present a challenge to detection for our instrument. This
suggests that FD-DCS may have an advantage over conventional DCS with regard to detecting
faster flows, and further investigation into this hypothesis is warranted. A further potential
advantage of FD-DCS is the ability to select which detuning frequencies to sample at, which
may be beneficial when detecting deeper flow using larger SDS distances (DCS measurements of
CBF require an SDS distance of ≥25 mm [12]). In conventional DCS, shorter time lags are more
representative of photons that have travelled deeper into the sample [12], and techniques such
as fitting early time lags and estimating the zero-lag derivative can enhance depth sensitivity
[4]. Although we have not yet investigated SDS distances greater than 17.5 mm, doing so is
part of our future work, in which we will also explore the preferential fitting of larger detuning
frequencies (which can be specified arbitrarily using our instrument).

The computational processing requirements of holographic FD-DCS are high, especially when
operating in real-time at fast Db frame rates. With a view to reducing the computational demand
of conventional DCS experiments, deep learning techniques have recently been employed [44],
resulting in a 23-fold increase in the speed of blood flow quantification. The application of
deep learning techniques to holographic FD-DCS would be an interesting further study. We
note that the generation of training data could be performed using the algorithms that we have
presented for the generation of wide-field two-dimensional time-integrated dynamic speckle
patterns [45], which would serve as a forward model for that which is detected on the sample arm
of the instrument.

Finally, the SNR gain reported in this paper has the potential to facilitate the measurement of
acousto-optically modulated DCS signals in vivo, which are weak at biologically safe power levels
[46]. By operating in the Fourier domain, we obviate the need for high frame rate detection, thus
making our low frame rate detection strategy suitable for this purpose. Therefore, our future work
will also involve the development of an acousto-optically modulated FD-DCS analytical model,
as well as an exploration of depth-resolved flow measurement strategies using this technique.
An alternative approach to achieving depth discrimination, which facilitates the removal of
extracerebral contamination, would be by extension to a superficial regression technique [2] or
tomographic approach [17]. With further experimental effort it would be possible to measure
multiple source-detector pairs on the same sensor (by using a spatially coherent fibre bundle or
multiple detector fibres, for example), and these investigations also form part of our future work.

5. Summary and conclusions

The use of DC subtraction temporal filtering has been well described in the digital holography
literature: it is a strategy that can achieve shot noise limited detection with only two camera
frames. However, in Section 3.1 we documented the vulnerability of this technique to laser mode
hopping, which, to the best of our knowledge, has not been reported in the literature before.
Whilst the outliers caused by this vulnerability could easily be ignored when analysing validation
datasets, this is not possible when detecting at the high parameter output rates that are necessary
for in vivo detection, and thus it is preferable to eliminate them at source using hardware based
techniques.

Whilst a model for the MTF of a lensless digital Fourier holography instrument is accepted
within the relevant literature, its experimental validation has not, to the best of our knowledge,
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been reported before. In Sections 2.1 and 3.2, we therefore revised the reconstruction of an
unnormalised PSD measurement using digital holography in order to include the MTF of the
instrument. Although the MTF will not vary from camera frame to camera frame, and therefore
does not affect absolute validation experiments, it does increase the variance of the data and
therefore introduce noise. It is therefore important to correct for the MTF when optimising SNR
performance.

In Section 2.2 we describe the removal of spatiotemporally correlated noise sources from
holograms using SVD filtering, and we then implement this approach in Section 3.3. As well
as being a useful tool to eliminate and characterise noise sources, we use this approach as a
validation tool to ensure that source noise does not decrease SNR performance. Specifically, we
find that using a sub-maximal laser source power is necessary to ensure the removal of source
noise.

Having used SVD filtering to remove spatiotemporally correlated noise sources, we then
introduced a novel multispeckle denoising algorithm to remove spatiotemporally uncorrelated
noise sources in Section 2.3. This algorithm is implemented in Section 3.4, where it has yielded
the demonstration of a linear relationship, and beyond, between SNR and the square root of the
number of speckles detected, by allowing for the removal of both detector noise and sampling
noise.

In conclusion, we have presented a systematic characterisation of the SNR performance of
our holographic FD-DCS instrument. By bringing together the four methods detailed in this
paper, we have achieved an SNR gain that it is equal to the square root of the number of measured
speckles, for a flow parameter output rate of 8.2 Hz, using scalable low-cost camera-based
detection. This represents a significant step toward improving the SNR of DCS measurements of
blood flow, as well as improving the affordability of such a system.
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