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ABSTRACT
Pain estimation from face video is a hard problem in automatic
behaviour understanding. One major obstacle is the difficulty of
collecting sufficient amounts of data, with balanced amounts of data
for all pain intensity levels. To overcome this, we propose to adopt
Cumulative Attributes, which assume that attributes for high pain
levels with few examples are a superset of all attributes of lower pain
levels. Experimental results show a consistent relative performance
increase in the order of 20% regardless of features used. Our final
system significantly outperforms the state of the art on the UNBC
McMaster Shoulder Pain database by using cumulative attributes
with Relevance Vector Regression on a combination of features,
including appearance, geometric, and deep learned features.
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1 INTRODUCTION
Pain assessment is an important part of clinical diagnosis. In clinical
practice, a patient’s pain level is routinely measured using standard
pain assessment tools e.g. the Visual Analogue scale (VAS, [26])
and the Numeric Rating scale [39]. The VAS is mostly used for
children and consists of describing faces ranging from ‘no pain’ to
‘extreme pain’. Similarly, the numerical scale consists of a scale of
numbers with the least and highest number signifying ‘no pain’
and ‘maximum pain’, respectively. Though useful, these tools rely
on the patient being able to answer questions and are not applicable
in cases where the patient is incapable of self-report e.g. newborns
and unconscious patients. In such cases, pain assessment is done by
proxy via observation of behavioural and physiological changes in
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the patient. However, the judgement made by the observer on the
pain state of the patient can be influenced by a number of external
factors e.g. training, experience, fatigue etc. Manual pain assess-
ments also do not allow for continuous monitoring of the patient.
This places enormous demands on the medical staff, especially for
critically ill patients who need to be monitored more frequently.

Due to the limitations of the current clinical assessment pro-
cess, machine learning techniques for automatic human behaviour
understanding have been explored in order to introduce an objec-
tive, continuous-time and continuous-value pain estimate. This has
mostly focused on the analysis of audio-visual recordings and phys-
iological signals, both individually and in combination. Automatic
pain recognition started from binary pain recognition i.e. detecting
pain or no pain and progressed to continuous value pain estimation
which is more useful for clinical assessment. Even though consid-
erable advances have been made in this field, the performance of
pain recognition systems is still limited.

For a large part, this is due to the relatively small datasets avail-
able for training. Due to privacy and ethical concerns, pain data is
particularly difficult to obtain and where this is available there is
the additional problem of sparse representation of the higher pain
levels. For example, the McMaster database which is popular in pain
expression analysis exhibits a high data imbalance with only 17.29%
of ‘pain’ frames and 87.21% of ‘no pain’ frames (See Fig. 2). More
so, only 0.85% of the data corresponds to pain levels 7 and higher.
This imbalance negatively impacts on the ability of pain recogni-
tion systems to predict high pain levels accurately. Consequently,
there is a need to harness the information from the abundant lower
pain examples to generate useful data characteristics that can be
exploited to make more accurate predictions of the higher pain
levels, which have limited or no sample representation.

To address the data sparsity problem, we introduce Cumulative
Attributes (CA) for Pain Estimation. CA models were originally
developed to tackle the problem of data sparsity in age estimation
by leveraging the shared characteristics between different classes.
Cumulative Attributes have been used in age and crowd density esti-
mation [6] but to the best of our knowledge, no study has considered
its application to pain estimation or facial expression recognition
in general. We propose here that automatic pain estimation is sim-
ilarly an excellent target domain for Cumulative Attributes, and
show this through a system attaining state of the art performance.

As in ageing, high levels of pain usually include all the signs of
lower levels of pain, plus some extra features. This is particularly
evident if one uses the well-known PSPI score [30], which is a sum-
mation of the intensities of the facial action units (FACS AUs, [9])
associated with pain i.e. the pain score increases as more AU ele-
ments are added or activated. Thus we formulate binary attributes
corresponding to each pain level such that the attributes are both
discriminative and capture the similarities between neighbouring
pain levels. Specifically, for our 16-point PSPI scale, we formulate a
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15-dimensional attribute vector such that for a pain level of 3, all the
bits from 1 to the 3rd bit are set to 1 while all others are set to 0. For
the special case of pain level zero, all the binary attributes are set
to zero. Similar to [6], after generating the Cumulative Attributes
from the target pain levels of the training set, we perform pain
estimation using a two-level regression approach. First, we map
the low-level appearance and shape features to the intermediate
attribute space using multi output ridge regression. In the second
stage, we map the learned attribute representation to the discrete
pain values using a single output regression model. An advantage
of this approach is that it implicitly performs feature dimensionality
reduction i.e. it maps the high dimensional low-level features to a
much lower dimensional attribute space.

Significant performance gains in facial expression analysis have
been reported by the fusion of shape and appearance features, and
recently it has been shown that adding Deep Learned features to
hand-crafted features outperforms systemswith only Deep-Learned
features, in situations where the amount of training data is relatively
small [8]. Thus we also implement a late fusion of the hand-crafted
shape and appearance CA features with Deep Learned CA features.
Pain expression involves multi-modal cues e.g. facial expressions,
body movements, audible cues and changes in physiological signals.
The proposed CA framework can readily be extended to include
cues from multi-modalities as indicated by the shaded portion in
Figure 1. We evaluate the proposed CA features on the UNBC
McMaster database and show that CA performs significantly better
than the base features. In addition, we compare with the state of
the art and again show a significant improvement.

In summary, the contribution of this paper are threefold:

• We propose a Cumulative Attribute model for pain esti-
mation where the attributes both discriminate and capture
the common characteristics among neighbouring classes.

• We show that it consistently outperforms models trained
on low level features.

• We attain results improving on the state of the art.

The rest of the article is structured as follows: Section 2 discusses
the previous work on automatic pain recognition and also provides
an overview of the concept of attribute learning in relation to ob-
ject description and recognition. Section 3 presents our proposed
Cumulative Attribute learning for pain estimation. It describes the
process flow from low-level feature extraction to Cumulative At-
tribute learning and then pain estimation. In section 4, we describe
the evaluation database in terms of its sparsity and data imbalance.
We show the results on the learned Cumulative Attribute features in
comparison to the low-level features and also provide a comparison
with state-of-the-art methods.

2 RELATEDWORK
The method proposed in this work merges the concept of attribute
learning with automatic pain recognition. Thus, this section dis-
cusses the evolution of visual attributes with respect to object recog-
nition and then extends to historical and current achievements on
automatic pain recognition.

2.1 Automatic pain recognition
Automatic pain recognition has received growing attention in the
past few years. Pain recognition is generally based on the analysis of
pain indicators such as cry characteristics [5, 16], facial expressions
[2, 4, 21, 23], body posture, [3] physiological signals [13, 28] or
in combination [38]. Depending on the pain indicators and pain
metric employed, previous work on automatic pain recognition can
be classified into two categories: PSPI based and non-PSPI based
pain recognition. We now discuss related work on pain estimation
based on this classification.

PSPI based Pain recognition: Pain recognition from facial expres-
sions is mostly based on the Prkachin and Solomon Pain Intensity
(PSPI)[30] metric which measures pain as a linear combination of
facial action units as shown in Eq. (1):

PSPI =AU 4 +max(AU 6;AU 7)+
max(AU 9;AU 10) +AU 43

(1)

Facial action units in this context refer to the contraction or
expansion of specific facial muscles involved in a facial expression.
Pioneering work [2, 23] on face based pain recognition assumed a
binary classification problem i.e. pain and no pain. Attempts have
also been made to recognize posed pain expressions from real pain
[4, 21]. Attention quickly shifted to continuous pain estimation as
this was more useful in clinical practice.

The problem of continuous pain estimation has been addressed
in [17, 18, 24, 29, 32, 42]. Kaltwang et al. proposed a three step
approach to pain estimation. First, frame-wise low-level features
of shape and appearance are extracted. Then Relevance vector ma-
chines are trained on each feature type for pain estimation which is
then followed by a late fusion of the shape and appearance features.
Zafar and Khan [42] learn a KNN classifier on geometric features
extracted from 22 facial points. However, their method requires a
prior annotation of the neutral face for each subject. A supervised
descent method (SDM) combined with SIFT features is proposed in
[29] for both continuous and binary classification.

Facial expression recognition models have been shown to per-
form better when temporal information is included in the learning
process. Thus, Kaltwang et al.[18] used temporal features in combi-
nation with part based feature extraction. The face is first divided
into a uniform grid of cells, from which Local binary patterns are
extracted over a specified time window. Florea et al. [12] proposed a
histogram of topographical features for pain estimation in a transfer
learning framework. Exploiting the temporal progression of pain
expression from neutral through the apex and then back to neutral,
Zhong et al. [45] propose ordinal information for pain estimation.

Deep learning has widely been used for various computer vi-
sion problem but only very recently has it been explored for pain
estimation due to the limited pain data available for training. Simi-
lar to [18], a recurrent convolutional network is presented in [46]
which uses a time windowed flattened 1D frame features as input
to the network. Egede et al.[8] implemented a fusion of handcrafted
and deep learned features with an additional person-specific nor-
malisation of predictions. Temporal information is encoded within
the deep learned features and they show that this complementary
information improves the recognition model.
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Figure 1: Block diagram of our proposed methodology. The grey blocks denote potential extension of the system with addi-
tional multimodal cues.

To deal with the problem of sparse data, previous works [33, 45]
have resorted to clustering the pain levels for better performance i.e.
the 16-point PSPI scale is reduced to a 5-point problem where levels
4-5 are merged while levels 6+ are grouped into one class. Doing
this does not only simplify the task but also creates a more uniform
dataset. The disadvantage of this approach is that the original goal
of the PSPI is lost.

Non PSPI based Pain Recognition: Despite the achievements with
video signals, there are still open challenges that limit its use in
clinical settings. Recognition models can be adversely affected by
factors such as poor illumination, out of plane head movements
and face occlusion by medical devices. Consequently physiological
[13, 28] and audio signals [5, 16] have been explored for pain esti-
mation. Commonly used physiological signal includes respiration
changes, galvanic skin response (GSR), electrocardiogram (ECG),
photoplethysmogram and skin conductivity. An argument for this
approach is that it is more reliable as these are directly controlled
by the nervous system and cannot be easily faked unlike facial
expressions. However, capturing these signals commonly involves
invasive procedures where sensors have to be directly connected to
the patient’s body. Werner et al. [38] combine bio and visual signals
for pain estimation. Evaluating on the BioVid database, they show
that the combination performs better than the individual features.

2.2 Attribute learning
Attribute learning is a concept that has been extensively researched
for object recognition. This is based on the notion that objects can
be identified if the properties or attributes specific to that object are
known. Visual attributes in this context are mid-level representa-
tions of objects such as shape, color, patterns, texture etc. However,
manually annotating objects attribute can be time consuming and
error prone. Secondly, annotations do not cover the true data space
exhaustively as they only cover the available data. Problems arise
when atypical examples are present in the test data, where ’atypi-
cal’ is with respect to the training data. To deal with this problem,
attributes that are learned from data were introduced.

A number of studies [10, 11, 36, 37] have focused on instance-
level attribute prediction from data and shown that these attributes
boost the performance of object classification models. Others [6,
20, 31, 41] have used class-level attributes in the sense that the
attributes are crafted for each object class rather than for each
training example. Class crafted attributes are much easier as in
most cases classes are finite whereas instance-level attributes are
more varied. Qin et al. [31] proposed a class-wise discrete descent
algorithm that directly learns binary class level attributes which
encode the between-class correlation and discriminative factors. In
Yu et al. [41], a method is proposed for automatically constructing
class-level attribute vectors where each element corresponds to a
semantic label of the class.

One major advantage of learned attributes is their ability to gen-
eralise to unseen data. An example is the zero-shot learning concept
which allows the identification of classes not present at training
time. This is achieved in two steps: first, we learn the relationship
between the attributes and the object features and then the learned
attributes are used to map the objects to the target classes. This
ability of data-learned attributes have been harnessed to address
the problem of data sparsity and imbalance in challenging data
sets where some of the classes have little or no data representation.
Chen et al. [6] proposed a Cumulative Attribute model for age and
crowd density estimation based on a two level regression learning.
First, the attributes are learned simultaneously from the low-level
features using a multi-output regression model. In the second level,
the attributes are fed to single output regression model to predict
the target scalar class i.e age or crowd count.

Most attribute learning techniques [10, 11, 20, 41] use a super-
vised learning approach where independent binary classifiers are
learned for each attribute but then information on relationships
between the attributes is lost. To preserve this information, models
which implement a joint learning of the attributes have been pro-
posed [1, 6, 27]. These supervised learning approaches require prior
class or instance level attribute labels, but this might not always be
available for real world data. To this end, Huang et al. [14] used an
unsupervised deep learning framework to first identify ‘classes’ or
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groups within an unlabelled data set. Then these learned classes are
used as labels in a soft supervised approach to learn the shared at-
tributes among the groups while maximizing the distance between
the groups.

With the increased interest in deep learning for computer vision
problems, deep neural networks have also been explored for gener-
ating attributes from data. A few studies [19, 22, 25, 35] have used
Convolutional Neural Networks (CNNs) for facial attribute learning
e.g. race, hair colour, eye glasses, smiling, facial make-up etc. In con-
trast to classifying faces based on learned attribute features, Sun et
al. [35] first implement an identity recognition problem and then use
the identity related features for attribute prediction. More recently,
Zhang et al. [44] proposed a Tasks-Contrained Deep Convolutional
Network (TCDCN) that optimizes facial landmark detection using
shared representations learned from auxiliary attributes and show
that this method performs better than CNN models learned directly
from the image features.

To date, attribute learning has not been explored for pain expres-
sion analysis or facial expression recognition in general. Research
in pain expression analysis is limited due to the difficulty associated
with obtaining pain data. There is also the additional problem of
data sparsity and high imbalance in the publicly available data sets.
For example, in the McMaster shoulder pain database, which is
annotated on the 16-point scale, only 0.05% of this belong to pain
levels 7 and above. Due to the high imbalance and small data repre-
sentation for higher pain levels, recognition models are unable to
accurately predict high pain levels.

To deal with this problem of imbalance and data sparsity, we
propose a Cumulative Attribute model for pain estimation from
facial expressions. Cumulative Attributes were originally proposed
for age and pain estimation due to the shared properties between
the target classes, e.g. age. We argue that similar to age, neigh-
bouring pain intensity levels share common characteristic which
aggregate as one moves up the pain scale. This is particularly true
for the PSPI which measures pain as a summation of facial action
unit intensities. Thus, more Action Unit elements are added as the
pain level increases. By leveraging on the shared characteristics
between the pain levels, we can improve the model performance
for pain levels which have low representation. An advantage of
this approach is its simplicity in the sense that our attributes are
class-based rather than instance-based. Hence, crafting the original
attributes for learning is cost effective since our pain classes in this
context are finite.

3 METHODOLOGY
In this section, we describe our Cumulative Attribute learning
approach for pain estimation as shown in Figure 1. First, we con-
struct Cumulative Attributes representations for each of the pain
levels. Next, we extract low-level features from the face images
and learn the relationship that maps these features to the attribute
space using a multi-output regression framework. Using the learned
multi-output regression function, we generate a new set of attribute
features for all instances. Finally, we use this new attribute feature
set to learn a linear regression function for continuous pain estima-
tion.

3.1 Cumulative attributes learning for pain
estimation

Consider the problem of predicting for every moment in time t , a
label yt ∈ [0, 1, ...,k] and a set of features xt to be extracted from
the corresponding image. We construct a k − 1 dimensional mid
level attribute at such that:

a
j
t =

{
1, when j ≤ yt
0, when j > yt .

Where j = 1, 2, ...,k and k is the highest pain level. This implies
that the first yt elements in at are all ones while the last k − yt
elements are zeros. In our case, k = 15 which corresponds to the
highest pain level.

The motivation behind CA is that for some ordinal regression
problem R, most observations of low values rl of T are a subset of
most higher values rh > rl . In addition, for many of these problems
the number of examples nl for low values is much greater than
for high values of R, i.e. nl >> nh . It is therefore useful to have
separate feature sets describing incrementally larger values of R.
Age estimation, for which CA was originally proposed, is a prime
example of this, as many features of ageing are permanent and
are only added to when someone grows older (think of permanent
wrinkles or the growing ears of men). Similarly, facial expressions
of pain based on PSPI can be said to have a cumulative property,
i.e. an expression of pain labelled as pain level k can be said to
have all of the properties of pain level k-1 and below. Evidently, our
Cumulative Attributes capture this incremental feature relationship
while maintaining the distinction between the classes.

Following the procedure described in [6], we perform attribute
learning in two stages. First, we learn the relationship that maps
the low level features x to the attribute space a. To preserve the
conditional dependence among the attributes, we jointly learn the
attribute features using a multi-output regression model with a qua-
dratic loss function. We find the parameters W and b that minimize
the objective function:

arдw,bmin(1
2
| |W | |2F +C

N∑
i=1

| |aTi − (xTi W + b)| |
2
F

where | |.| |2F is the frobenius norm, ai = [a1i ,a
2
i , ...,a

k
i ] is the

training attribute vector, b = [b1,b2, ...,bk ] is the bias term, W =
[w1,w2, ...,wj , ...,wk ] is the weight matrix and N is the total num-
ber of samples in the training set.

W and b are computed with a closed form solution as follows:[
W
b

]
= −(QTQ)−1QT ,

where Q and P are semi-definite matrices estimated as:

Q =

[
2C

∑N
i=1 xix

T
i 2C

∑N
i=1 xi

2C
∑N
i=1 x

T
i 2CN

]
P =

[
−2C∑N

i=1 xia
T
i

−2C∑N
i=1 a

T
i

]
We determine the trade off parameter C by an inner loop cross

validation on the training set. Finally, we learn the relationship
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between the Cumulative Attribute space a and the output y using
a single output regression function.

For this work, we have used two-modalities (i.e. changes in face
shape and appearance) to estimate pain intensity. However, where
multiple pain cues are available e.g. limb movement and audio, our
CA architecture can be extended to accommodate new modalities.
As shown in Figure 1, this can be achieved by extracting low-level
features from the new modality and then learning the cumulative
attributes.

3.2 Pain intensity estimation
To evaluate the performance of our attribute features for continu-
ous pain estimation, we use Relevance Vector Machines to learn a
regression function. RVM is a bayesian sparse kernel introduced
to overcome the limitation of Support Vector Machines (SVM). Un-
like SVMs, RVMs are capable of outputting posterior probabilities
rather than just hard class decisions and have much sparser models.
Similar to SVM, they are useful for both classification and regres-
sion problems. RVMS have been used in previous works [17, 18] on
continuous pain estimation and have been shown to perform well.
In [8], it was also shown that RVMs have a much lower minimum
descriptor length with up to 28% reduction in the the number of
decision vectors required across all features used in the experiment.
To further support this, experiments by [40] show that RVMs are
less susceptible to over fitting when compared to SVM. This is a
desirable characteristic as we want our pain recognition model to
generalize well to real world data.

To evaluate our method, we first learn an RVM regressor on
each of the low-level shape, appearance and deep learned features.
Good facial expression analysis requires a combination of shape
and appearance features. Consequently, we do a late RVR feature
fusion of the appearance and shape features such that the output
of the single-feature RVMs are used as input to a second level RVR
as seen in [17]. The same two-stage learning approach is used for
pain estimation on the cumulative attribute features.

3.3 Fusion of Shape, Appearance and Deep
learned features

Appearance and shape features have served as building blocks for
facial expression analysis. Different variants of these have been
used extensively both individually and in combination. It has been
established that combining both features yields improved perfor-
mance as they both capture intrinsic facial characteristics which are
complementary. Appearance features capture facial deformations
such as texture, furrows and wrinkles. Shape features, on the other
hand, are built from the geometry of facial components such as the
eyes, nose, mouth. In this work we use Histogram of Oriented Gra-
dient (HOG) [7] descriptors in combination with distance metrics
computed from the location and displacement of facial components
in reaction to pain.

First, we obtain 66 facial points for each face image using the
publicly available iCCR landmark tracker [34]. This is in contrast to
previous work [8, 12, 17, 18, 33] which use the manually annotated
facial points provided with the database. Facial points obtained
from the tracker are used for face registration. The registered face
images are then aligned to a mean shape based on a Procrustes

transformation. Next, we extract features from the aligned face
images. To extract the HOG features, we isolate a 24x24 pixel patch
around each facial point. Each patch is further split into a 2x2 cell.
9 bins of oriented gradients are extracted from each cell resulting
in 2376D feature representation for the input face image. Similar
to [8], the shape features comprise of the aligned facial points and
a number of distance metrics computed from the facial points. A
detailed description of the distance metrics can be found in [8].

In addition to the hand-crafted features, we experimented with
deep learned features. Since deep learned models do not work well
with limited data as in our case, we use pre-trained Convolutional
Neural Networks (CNN) for feature extraction. CNNs are feed-
forward artificial neural networks which have been widely used
in many machine learning applications e.g. video analysis, object
detection, gaming and natural language processing. CNNs are not
entirely a new concept but its recent popularity stemmed from
the huge success recorded with CNNs in classification problems
over hand-crafted features. CNNs are able to self-learn features or
data characteristics relevant to the machine learning problem, thus
eliminating the burden of coding these features manually.

63%

26%

6%
3%2%

P1-2

P3-4

P5-6

P7-10

P11-16

Figure 2: Percentage Distribution of non-zero pain levels in
the McMaster database

Specifically, we use the CNN architecture proposed in [15] for Ac-
tion Unit (AU) detection. The CNNs are pre-trained with images
from the BP4D database [43]. A rationale for this is that the PSPI
metric is a combination of action units hence it follows that CNNs
trained for AU detection will produce features relevant for pain
recognition. Two CNNs are separately trained for AUs correspond-
ing to the eye and mouth region respectively. Details of the CNN
input, architecture and training can be found in [15]. We extract
deep learned features from the last 3072D fully connected convo-
lution layers. Merging the features from both CNNs results in a
6144D representation for the face. In addition, the CNN features
encode temporal information which complements our Cumulative
Attributes. The shape, appearance and deep learned features are
used for pain estimation both separately and in combination via a
late feature fusion approach.
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4 EXPERIMENTAL EVALUATION
4.1 Evaluation database
To enable comparison with previous work on continuous pain es-
timation, we evaluate our Cumulative Attributes on the publicly
available McMaster shoulder Database. It consists of 200 video
sequences of 25 subjects performing various arm movements fol-
lowing the instruction of a physiotherapist. The arm movements
are carried out in two variations; the active mode where the patient
move their arms and the passive mode, where the physiothera-
pist moves the arms within bearable pain limits. All video frames
are fully annotated for Action Unit intensities with respect to the
PSPI metric. The database also includes sequence level pain annota-
tions on a 5-point scale making it an excellent setup for evaluating
pain recognition techniques. However, only a small number of
these frames contain pain expressions thus making it a challenging
dataset to work with. Figure 2 shows the PSPI distribution of frames
in the database.

The UNBCMcMaster database is an ideal target for our proposed
approach due to the high data imbalance and data sparsity for high
pain levels. Even though it appears to have a high number of frame
counts, over 80% of these do not have any pain signals. In addition,
a high proportion of the pain signals frames are concentrated on the
lower levels with only 0.85% of these belonging to pain levels 7 and
above. We show that our method is robust to the sparsity problem
and capable of achieving high performance on a continuous scale.

4.2 Experiments and Results
We performed two sets of experiments to evaluate our proposed CA
framework. First, we performed pain estimation using the low-level
features and this serves as our baseline for comparison. In the sec-
ond set, we used the learned CA features. To support comparison
with previous work, we used the Pearson correlation coefficient
(PCC) and Root Mean Square Error (RMSE) for performance evalu-
ation. RMSE is computed as the difference between the predictions
and the ground truth which in this case are the PSPI annotations
for each frame. Similarly, PCC measures how well the predictions
mirrors the temporal progression of pain expression in the video
sequences. A leave-one-out subject independent cross validation
approach is used in all our experiments. The radial basis function
(RBF) is used for the RVM Kernel as this have been shown to per-
form well for pain estimation [8, 17]. The length-scale parameter
of the RVM kernel is determined by an inner-loop cross validation
on the training set. To reduce the imbalance in the training set, we
randomly sample from the zero-pain frames with a ratio of 1:2 cor-
responding to the modal pain signal frames and zero-pain frames
respectively.

Figure 3 shows a comparison of the RVR performance on our
Cumulative Attributes (CA) in relation to the non-Cumulative At-
tributes (NCA). NCA in this context refers to the original low-level
features extracted from the face image. It can be seen that for all
features, the Cumulative Attribute features consistently improve
the performance of the RVM. Specifically, we achieved an average
of 14% increase in Pearson correlation and an 18% reduction in
RMSE across all features. This is particularly more evident with
the single feature RVMs which were directly trained on attribute
features. A possible explanation for the relatively high reduction
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Figure 3: Comparison of RVM performance (PCC & RMSE)
on the cumulative vs low level features

in RMSE is that with Cumulative Attributes, the model is able to
predict relatively higher values for the high pain classes compared
to the models based on low-level features.

In comparing the PCC for the CA and NCA fused-features, we
observe that the performance improvement is not as much as that
obtained with the single features. However, we observe a high
improvement in the RMSE. A possible explanation for this is that the
fused low-level features are able to capture the temporal progression
of pain expression but unlike the CA features, it fails to effectively
capture the magnitude of the pain. As such, the NCA fused features
give higher error values in spite of the relatively good PCC. An

Table 1: Comparison of our Cumulative Attributes approach
with the state-of-the-art

RMSE PCC
Kaltwang et al. [17] 1.18 0.59
Neshov & Manolava [29] 1.13 0.59
Kaltwang et al. [18] 1.69 0.66
Florea et al. [12] 1.10 0.53
Zhou et al. [46] 1.24 0.65
Egede et al. [8] 1.30 0.63
Our method 1.04 0.64



Cumulative Attributes for Pain Intensity Estimation ICMI ’17, November 13–17, 2017, Glasgow, United Kingdom

example of this occurrence can be seen in Figure 4 which shows the
RVM prediction for both CA and NCA features in comparison to
the ground truth on a time series scale. Evidently, the CA features
perform better than the NCA features in predicting high pain levels
and also has a better approximation for the lower pain levels.
To further confirm this, we show the average error rates for the
pain levels in Figure 5. It can be seen that RMSE drops for the
Cumulative Attribute features as we move higher up the pain levels
and this effect is particularly evident for the HOG features.

In comparing the RVM performance on single versus fused fea-
tures, we achieved a better performance with RVM fusion for both
CA and non-CA experiments. This is in line with observations in
[8, 12, 17] where such techniques have been shown to yield perfor-
mance gains. Among the individual features, the HOG descriptor
gives the best performance with the geometric features performing
much worse.

Table 1 shows a comparison of our method with the state-of-the-
art. We only include the performance from previous studies who
have reported their results on a 16-point scale for a fair comparison.
Some previous studies [33, 45] have adopted a simpler approach of
reducing the original PSPI 16-point problem to a 6-point scale. The
original 16 pain levels are discretized in a data balancing manner.
Specifically, levels 4 & 5 are merged and pain levels 6 and above are
categorized as one class. This is a much simpler task because most
of the errors in prediction occur on the higher pain levels due to
the small sample representation. It is not a surprise therefore, that
they record very high performance figures. We do not include their
results in the comparison table as the tasks are not comparable.
Note that in comparing with [8], we report on their unprocessed
results because our proposed approach does not include the ad-
ditional person-specific normalization of the predictions which is
implemented in [8]. Even though our PCC is slightly lower than
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Figure 4: RVM predictions on CA vs low-level features on
video sequences of Subjects with high pain occurrences
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Figure 5: Comparison of average error rates on higher pain
levels for CA vs low level features

[18] and [46] we achieve a 70% reduction in RMSE in comparison to
[18] and 19% in comparison to [46] respectively. Note that, though
a high PCC is desirable, it is also important to have a low prediction
error rate. The two performance measures have to be considered
together rather than individually as they are invariant i.e. a high
PCC does not necessarily guarantee a lower error (RMSE) and vice
versa. Our method not only performs better in terms of RMSE, it
also gives a comparable PCC.

5 CONCLUSION
In this work, we introduced Cumulative Attributes for continuous
pain intensity estimation. We learn Cumulative Attributes which
encodes the shared characteristics between neighbouring pain lev-
els and at the same time are distinct for each level. All attributes
are learned simultaneously which preserves the conditional depen-
dence among the attributes. We show that for all features types, the
RVMs learned on the cumulative attributes performed consistently
better in predicting higher pain levels when compared to those
trained on the corresponding low-level features.
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