
Convolutional neural networks for robust

classification of multiple fingerprint captures

Daniel Peralta1,2, Isaac Triguero3, Salvador Garćıa4, Yvan Saeys1,2,
Jose M. Benitez4, and Francisco Herrera4,5

1Department of Applied Mathematics, Computer Science and Statistics, Ghent
University, Ghent, Belgium

2Data Mining and Modelling for Biomedicine group, VIB Center for Inflammation
Research, Ghent, Belgium

3School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton
Road, Nottingham NG8 1BB, United Kingdom

4Department of Computer Science and Artificial Intelligence of the University of
Granada, 18071 Granada, Spain

5Faculty of Computing and Information Technology, King Abdulaziz University,
Jeddah, Saudi Arabia

e-mails: daniel.peralta@irc.vib-ugent.be, Isaac.Triguero@nottingham.ac.uk,
salvagl@decsai.ugr.es, yvan.saeys@ugent.be, J.M.Benitez@decsai.ugr.es,

herrera@decsai.ugr.es

Abstract

Fingerprint classification is one of the most common approaches to ac-
celerate the identification in large databases of fingerprints. Fingerprints
are grouped into disjoint classes, so that an input fingerprint is compared
only with those belonging to the predicted class, reducing the penetra-
tion rate of the search. The classification procedure usually starts by the
extraction of features from the fingerprint image, frequently based on vi-
sual characteristics. In this work, we propose an approach to fingerprint
classification using convolutional neural networks, which avoid the neces-
sity of an explicit feature extraction process by incorporating the image
processing within the training of the classifier. Furthermore, such an ap-
proach is able to predict a class even for low-quality fingerprints that are
rejected by commonly used algorithms, such as FingerCode. The study
gives special importance to the robustness of the classification for different
impressions of the same fingerprint, aiming to minimize the penetration in
the database. In our experiments, convolutional neural networks yielded
better accuracy and penetration rate than state-of-the-art classifiers based
on explicit feature extraction. The tested networks also improved on the
runtime, as a result of the joint optimization of both feature extraction
and classification.

Index terms— Convolutional neural networks (CNN), fingerprint
classification, deep learning, deep neural networks (DNN).

1



1 Introduction

Fingerprint identification has become the most widespread manner to implement
biometric authentication [1], by virtue of the desirable properties of fingerprints
including uniqueness, universality and invariability. Given a database of tem-
plate fingerprints, the identification consists of finding the template that corre-
sponds to the identity of an input fingerprint. Multiple fingerprint matching and
identification algorithms have been published along the last two decades [2, 3, 4].
Each of them has different properties, which in turn yield different trade-offs be-
tween efficiency and accuracy [5]. However, in a basic identification framework
the input fingerprint must be compared with every template in the database,
a procedure that becomes prohibitively time-consuming when dealing with ex-
tremely large databases. Therefore, it is necessary to combine these approaches
with additional processing steps aimed at reducing the so-called database pen-
etration rate.

Fingerprint classification is one of the most popular ways to achieve this
goal [6]. Several classes of fingerprints are established, and the input fingerprint
is classified prior its identification. Then, it is compared only to the templates
belonging to the predicted class [1].

Traditionally, an expert manually labels every template fingerprint in the
database. Then, the classifier is trained on the obtained labeled dataset, with
the aim of assigning to each input fingerprint the same label that was manually
established for the corresponding template. This is a laborious and human-
dependent process. Therefore, although in this paper we still consider this
evaluation procedure to allow for comparison with other works on the topic, we
also focus on the classification robustness, which we define as the capacity of
assigning the same class to different impressions of the same fingerprint, inde-
pendently of the manual label. This enables the possibility of further increasing
the performance for fingerprints that fall close to the frontier between classes.

The overall fingerprint classification process is composed of two main steps [6]:
feature extraction and the classification itself. First, the captured image of the
fingerprint is processed to extract meaningful features that can lead to a high
discernibility between the classes. These features are frequently represented in
the form of a numeric vector [6]. Second, the feature vector is used to per-
form the classification, either by a set of fixed rules or by training a model in a
supervised manner.

Various fingerprint classification approaches have been proposed so far, based
on different features such as orientation maps [7], singular points [8, 9], ridge
structure [10, 7] and filter-based response [11, 8], and different ways to extract
them. Most methods apply general purpose classification algorithms such as k
nearest-neighbors (k-NN) [12] or Support Vector Machines (SVMs) [13]. Others
provide fixed classification rules that do not require a training procedure [14, 15].

The main benefit of this two-step structure is the possibility of using highly
accurate machine learning classifiers. However, the manually designed feature
extraction process focuses on specific features of the fingerprint pattern, which
can lead to some information loss due to the discarding of subtler shapes. Due

2



to the visual definition of the classes, the extraction of a numerical feature
vector is a complex task for which many aspects of the image can be considered.
In this context, some feature extraction algorithms reject fingerprints when
the image does not comply with certain quality requirements, such as being
properly centered in the image. The rejection of a fingerprint aims to increase
the reliability of the classification, but also hinders the database penetration
rate reduction [1].

Deep neural networks (DNNs) [16, 17] have attracted a lot of attention from
the scientific community along the last few years due to their high capability for
complex pattern recognition. They have been applied over multiple problems,
such as image classification [18], digit recognition [19], feature extraction [20] or
gas recognition [21], among others. One of the advantages of DNNs is that the
neuron layers implicitly extract the information from the raw input patterns.
This allows for a generic learning process that does not depend on explicitly
chosen nor previously extracted features. Another advantage is the possibility
of applying the networks directly on the input images, usually by Convolutional
Neural Networks (CNNs). Finally, the function computed by neural networks is
defined for any input pattern, which in a fingerprint classification context allows
for the elimination of the rejection rate.

All these properties highlight DNNs and CNNs as potentially promising
models for fingerprint classification. Some authors have published proposals
in this direction, such as a succession of an autoencoder and a neural network
classifier [22] or a succession of 1-layer autoencoders followed by a DNN that
performs the classification [23]. However, there is a lack of a complete and
systematic study over the capabilities of DNNs for the fingerprint classification
problem.

In this paper, we propose to use convolutional neural networks on the fin-
gerprint classification problem with the following aims:

• To evaluate the accuracy of CNNs against that of state-of-the-art classifiers
based on feature extraction.

• To increase the classification consistency when dealing with different im-
pressions of the same fingerprints.

• To minimize the penetration rate that is expected after the application of
the classifier, along with the identification time.

Several fingerprint databases with different qualities and characteristics are used
in the analysis, replicating the baseline study proposed in [24]. Some of these
databases were synthetically generated with the SFinGe software with realistic
parameters and different quality settings. The publicly available NIST-DB4
database is also used.

The remainder of this paper is structured as follows. Section 2 presents some
background knowledge on fingerprint classification and deep learning. Section 3
describes the different classification approaches taken into consideration in this
study. The analysis of the accuracy of the proposed neural network is carried

3



out in Section 4. Section 5 describes the robustness of the classification on differ-
ent fingerprint impressions and the penetration rate obtained when performing
identifications. Finally, the conclusions of the study are shown in Section 6.

2 Background

This section provides background information about the fingerprint classifica-
tion problem (Section 2.1), detailing the state-of-the-art approaches that will be
considered in the analysis (Section 2.2). Section 2.3 describes the deep learning
paradigm, and Section 2.4 presents previous work on applying deep learning
models to fingerprint recognition and other biometric problems.

2.1 Fingerprint classification

Fingerprint classification is the most common approach to reduce the database
penetration rate of a fingerprint identification system [6]. The five-class system
proposed by Henry [25] is still applied by most authors. These classes present
different visual patterns and are unequally distributed, as shown in Fig. 1.

Arch
(3.7%)

Left Loop
(33.8%)

Right Loop
(31.7%)

Tented Arch
(2.9%)

Whorl
(27.9%)

Figure 1: Five fingerprint classes defined by Henry [25] and their frequencies.

(a) Orientation map (b) Singular points (c) Ridge tracing

Figure 2: Main types of global fingerprint features [1].

Fingerprint classification algorithms are based on the global-level features of
the fingerprint images [1]: orientation maps, ridge structure and singular points,
shown in Fig. 2. There are many methods that extract these features, each of

4



which provides different nuances or follows a different extraction approach. For
instance, singular points are most commonly detected by the Poincaré method.
Some feature extractors that apply this method are described in [10, 26, 27].
Complex filters are also widely used for this purpose [28, 9, 29]. Orientation
maps are usually extracted by gradient-based methods [11, 30, 27], although
there are other proposals such as slits-based [7] or skeleton tracing [31] ap-
proaches.

Some of these extraction methods require the fingerprint to meet certain
quality conditions for the extraction to be performed. This behavior ensures a
meaningful feature extraction, as well as a higher classification accuracy rate for
the fingerprints that are not rejected [1]. However, in an automatic fingerprint
identification system the rejection can lead to a performance loss, as the re-
duction of the search space cannot be performed for fingerprints whose features
cannot be extracted. Therefore, it is important to find extraction methods that
lead to a high accuracy, while minimizing or eliminating the rejection rate.

Once the features have been extracted, they are used to carry out the classi-
fication itself. In many cases, the features are encoded into a numeric vector so
that general purpose classifiers, such as SVMs [32, 33], neural networks [7, 34] or
k-NN [35, 36], can be directly trained and applied over them. Other approaches
follow a more specific classification procedure. Fixed classification implements
a set of fixed criteria to determine the class of a fingerprint without any train-
ing procedure [10, 14, 15]. Structural models rely on decision trees and hidden
Markov models [37, 38]. In general, however, many fingerprint classification
proposals in the literature combine several of the previous systems to achieve
better results.

The penetration rate of the identification search that is carried out after
the classification can be estimated from the class distribution and the confusion
matrix of the classifier. The estimated average penetration rate for an input
fingerprint of class i, within a setting with m classes, is shown in Eq. 1, where
pi is the proportion of fingerprints belonging to class i and qi is the accuracy
rate for that class. In the best possible scenario, qi = 1 and r̄i = pi, that is, the
classifier never misclassifies inputs of class i and therefore the penetration rate
for that class is always pi. Eq. 2 shows the formula for the estimated penetration
rate, averaged throughout all possible classes.

r̄i = 1 + qi(1− pi) i ∈ {1, ...,m} (1)

r̄ =

m∑
i=1

pir̄i (2)

2.2 Feature extractors and classifiers compared in the study

In order to meaningfully evaluate the performance of the deep learning ap-
proaches studied in this paper, several other fingerprint classification techniques
from the state-of-the-art will be tested. In particular, we selected the classifiers

5



and feature extractors that obtained the best results in [24], selecting algorithms
with a variety of different characteristics. Three different feature extractors have
been considered, which will henceforth be referred to with the name of the first
author and the year of publication. Cappelli et al. [39] propose a method based
on the orientation map, which is registered using the core point detected by the
Poincaré method [10]. A dynamic mask is applied for each class, producing a
vector of size five. The orientations are also stored into the feature vector. Hong
et al. [8] extend the FingerCode feature vector [11] (based on Gabor filters) with
the pseudo-ridges traced from the center of the fingerprint, the number of singu-
lar points (cores and deltas) and the distance and location between them. Liu’s
approach [9] extracts the singular points and builds a feature vector based on
relative measures among them.

Three general purpose classifiers will be applied to the vectors produced by
the aforementioned feature extractors. Again, we selected classifiers with very
different learning procedures so as to carry out a generic study:

• SVM [13]: the original feature space is mapped to a higher dimensional
space by means of a kernel function, in order to make it linearly separable.
The separating hyperplane is computed by maximizing the margin to the
training instances in the target space.

• Decision tree (C4.5) [40]: classification rules are extracted by building a
decision tree from the training set, which is built in a top-down manner.
At each node of the tree, the attribute with maximum difference in entropy
is used to split the data. C4.5 also involves a pruning procedure.

• k-NN [12]: the k nearest neighbors of a test instance are computed. Then,
the most frequent class among these neighbors is returned for the test
instance. Therefore, the distance metric and the value of k strongly de-
termine the behavior of this classifier.

2.3 Classification with deep neural networks

Neural networks have been used for decades to model all kinds of problems,
due to their interesting properties, the main of which is that they are universal
approximators [41]. Although there are multiple types of neural networks, in
this paper we focus on feed-forward networks for supervised classification, as
they adapt naturally to the fingerprint classification problem. A feed-forward
neural network is formed by a set of layers or neurons, each of which is connected
to the neurons of the previous layer by a vector of weights, so that the value
of a neuron is computed as a weighted sum of the values of the neurons in
the previous layer. Additionally, neurons can apply an activation function to
introduce a non-linearity. In a classification context, the instance that must be
classified is used to set the values of the first layer of the network (input layer).
The values are propagated along the network through one or more hidden layers
until the final layer (output layer) contains the predicted class.

6



A DNN is a network with many hidden layers, each of which extracts—
broadly speaking—a certain level of abstraction from the input pattern. There-
fore, a higher number of layers allows the DNN to learn more complex and
generic patterns [42]. There are different types of neuron layers for DNN [19, 42]:

• Fully connected layers: each neuron is connected with weights to all the
neurons in the previous layer.

• Convolutional layers: each neuron is connected to a patch of neurons in
the previous layer. The weights are shared among all the neurons of the
same layer, reducing the search space of the learning process.

• Pooling layers: usually located after a convolutional layer. As in these,
each neuron is connected to a patch of the previous layer, and computes
the maximum or average of those values.

In practice, networks that combine all three types of layers are called Con-
volutional Neural Networks (CNNs). They are well adapted to the processing of
images and structures with some spatial relation, as shown by the good results
obtained in different competitions [18, 43].

When a network is used as a classifier for a problem with classes c1, ..., cm,
the output layer contains one neuron per class, forming a vector a = (a1, ..., am).
The SoftMax function (Eq. 3) is used to convert these values into probabilities,
where SoftMax(ai) is the probability of the input to belong to class ci. There-
fore, for each instance we intend all the output neurons to produce values close
to zero, except the neuron of the correct class, which should be close to one.

SoftMax(ai) =
eai

m∑
j=1

eaj

, i = 1, ...,m (3)

The activation function used to model non-linearity is usually the Rectified
Linear Unit (ReLU), which can be computed faster than the traditionally used
sigmoid or hyperbolic tangent functions, and also offers interesting convergence
properties [44].

The training of a network consists of optimizing the weights of each neuron
so as to obtain the desired output for each input. Therefore, the dimensionality
of the search space is as high as the total number of weights. The reference
algorithm for the training is back propagation with gradient descent (GD) [45].

However, GD becomes computationally expensive when applied to a DNN,
due to the high dimensionality of the search space. Stochastic Gradient Descent
(SGD) can reduce this limitation by using only a subset (or batch) of the training
instances in each iteration, so that the computing of the error is biased with
respect to the optimum but can be performed much faster. Each iteration over
the entire training set (epoch) requires multiple iterations over the small batches.
This algorithm, along with the recent advances on Graphical Processing Units
(GPUs) and the availability of large datasets, has allowed for the implementation
and training of DNN with very good results [42].

7



2.4 Fingerprint classification with deep neural networks

Despite the power that deep learning approaches offer for many classification
problems, they have been scarcely applied so far to the fingerprint classification
problem.

In [22], two single hidden layer perceptrons are used to classify the finger-
prints into the five usual classes. The input images are cropped to 16x16 pixels,
so that only a small neighborhood of the reference point of the fingerprint is
taken into account. The first perceptron is an autoencoder, whose hidden layer
is used as the input of the second perceptron, which performs the classification.
The authors report a test accuracy of 92%, although they do not specify the
database used. In [23], a set of stacked 1-hidden layer autoencoders is used to
learn an approximation of the identity function, so as to enhance the orientation
field of the fingerprint images. Then, a 3-hidden layer neural network is applied
to carry out the classification. The reported accuracy over NIST-DB4 is 93.1%,
with a 1.8% rejection. Other authors focus on the feature extraction step. For
instance, in [46] good quality fingerprint images are manually selected so as to
train a DNN that extracts orientations and frequencies. In [47], the authors de-
compose and add noise to rolled fingerprints to train a DNN aimed to perform
the orientation field estimation. A regularization of an already extracted orien-
tation field is carried out in [48] by using autoencoders. Finally, [49] describes
a deep de-convolutional neural network to enhance the quality of fingerprint
images before minutiae extraction.

Several proposals apply DNNs over the fingerprint images for the liveness
detection problem [50, 51, 52, 53]. In these proposals, the fingerprint images are
divided into smaller patches that are processed independently, so as to increase
the number of training examples and to simplify the processing. However, this
strategy cannot be used for classification, as the class is derived from the global
pattern shape of the fingerprint.

DNNs have also been applied for the recognition of other biometric charac-
teristics, such as signature [54], finger vein [55, 56] or electrocardiography [57].
However, to the best of our knowledge there is no complete study of the pos-
sibilities offered by deep learning when applied to the fingerprint classification
problem. This paper aims to provide a first systematic study on the field, to
analyze strengths and weaknesses of DNNs in this context.

3 Fingerprint classification strategies with deep
learning

The study carried out on this paper involved several deep neural network ar-
chitectures, described in Section 3.1. The experimental setup is detailed in
Section 3.2.

8



3.1 Deep and convolutional neural networks

DNN architectures are usually divided into two categories: fully connected
DNNs and CNNs. Although the former are in theory able to learn much more
complex functions, their search space can become very large, especially when
working with images, due to the enormous number of weights when the size
of the neuron layers is increased. On the other hand, CNNs are very suited to
work with images, limiting the computing requirements and reducing the search
space of the training process of the neural network.

In the context of fingerprint classification, we have started from images fitted
to a size of 227x227 pixels. This size provides sufficient quality to determine the
class, without being excessively large. Therefore, the neural networks considered
in the remainder of this paper involve a total of 51 529 input neurons.

Preliminary studies carried out allowed us to discard fully connected net-
works for this problem, as the number of connections that have to be optimized
becomes enormous even for a low number of layers. The training of such net-
works cannot be tackled within a single machine and would require a high-cost
hardware support. Therefore, in this paper we focus on CNNs, which are much
better suited to image processing.

Small CNNs such as the well-known LeNet [19] are not powerful enough
to tackle the fingerprint classification problem. This network was designed to
recognize 28x28 handwritten digits and obtains a great performance on them;
however, their abstraction capacity is not enough to extract the more complex
patterns present in 227x227 fingerprint images.

We have considered two different CNNs for the experiments in this paper:

• CaffeNet: it is a variant of the famous AlexNet [18], which obtained a very
good performance on the ImageNet dataset [58]. Note that we adapted
the original CaffeNet so as to better fit the image sizes and number of
classes of the fingerprint classification problem. The resulting topology is
shown in Table 1.

• Proposal: we also developed a network with the topology shown in Ta-
ble 2. The number of units is smaller than that of CaffeNet, which is
intended at simplifying the search space of the neural network training
and to accelerate the training and its convergence.

Both networks are trained with the SGD algorithm. The input images are
grayscale values between 0 and 256. The global average value of the images of
the training set is first computed, and then subtracted from the images that
are passed as input to the network, so that the input has a zero average, which
facilitates the convergence of the learning process.

3.2 Experimental setup

The classification algorithms described in Sections 2.2 and 3.1 have been ap-
plied to five different fingerprint databases, replicating the experimental setup

9



Table 1: Topology of the used CaffeNet variant

Layer type Size Stride Grouping Activation
Convolutional 11× 11× 96 4 – ReLU
Pooling 3× 3 2 – –
Convolutional 5× 5× 256 1 2 ReLU
Pooling 3× 3 2 – –
Convolutional 3× 3× 384 1 – ReLU
Convolutional 3× 3× 384 1 2 ReLU
Convolutional 3× 3× 256 1 2 ReLU
Pooling 3× 3 2 – –
Fully connected 4096 – – ReLU+Dropout
Fully connected 512 – – ReLU+Dropout
Fully connected 5 – – SoftMax

Table 2: Topology of the proposed network

Layer type Size Stride Grouping Activation
Convolutional 11× 11× 48 4 – ReLU
Pooling 3× 3 2 – –
Convolutional 5× 5× 128 1 2 ReLU
Pooling 3× 3 2 – –
Convolutional 3× 3× 192 1 – ReLU
Convolutional 3× 3× 128 1 2 ReLU
Pooling 3× 3 2 – –
Fully connected 2096 – – ReLU+Dropout
Fully connected 256 – – ReLU+Dropout
Fully connected 5 – – SoftMax

presented in [24]. The parameters used for the experiments are listed in Table 3.
The publicly available KEEL software [59] was used in the experiments for the
SVM, decision trees and k-NN. The CNNs were implemented using the Caffe
library [60]. All the experiments were carried out in a single computer with an
Intel Core i7-3820 processor (3.60GHz) and 24GB RAM. The CNNs were run
on a single Nvidia GeForce GTX TITAN GPU (2688 cores, 6144 MB GDDR5
RAM).

Table 3: Parameters of the classifiers

Algorithm Parameters

SGD (CaffeNet)
Batch size = 256, Iterations = 2000,
Learning rate = 0.01, Momentum = 0.9, γ = 0.1,
Step size = 500, Weight decay = 0.001

SGD (Proposal)

Batch size = 128, Learning rate = 0.01,
Momentum = 0.9, γ = 0.1, Weight decay = 0.0005,
Iterations = 4000 (1300 for NIST-DB4),
Step size = 1000 (220 for NIST-DB4)

C4.5
Prune = True, Confidence level = 0.25,
Minimum number of item-sets per leaf = 2

SVM
Kernel = Polynomial/RBF, C = 1.0,
Tolerance parameter = 0.001, ε = 10−12

Polynomial Degree = 1, Fit Logistic Models = True
k-NN Distance metric = Euclidean, k = 5

10



These are the databases used for the study:

• SFinGe: in order to replicate the experiments carried out in [24], we used
the SFinGe software [1, 61] to generate three different databases of syn-
thetic fingerprints with different qualities following the natural class dis-
tribution. This approach enables a meaningful comparison of the tested
classifiers according to a common measure of quality of the fingerprints.
All the fingerprints of the three databases were generated using the param-
eters shown in Table 4, the only difference between them is the quality of
the generated images (see Fig. 3): High Quality with no Perturbations
(HQNoPert), Default or Varying Quality and Perturbations (VQAnd-
Pert). Each of the three generated databases contains four captures of
10 000 different fingerprints.

Table 4: Parameter specification used with the SFinGe tool.

Scanner parameters Generation parameters
Acquisition area: 14.6mm x 19.6mm. Impressions per finger: 4.
Resolution: 500 dpi. Class distribution: Natural.
Image size: 288 x 384. Save ISO templates: enabled.
Background type: Optical. Generate pores: enabled.
Background noise: Default. Output file type: WSQ.
Crop borders: 0 x 0.

(a) HQNoPert (b) Default (c) VQAndPert

Figure 3: Example of the quality of the three SFinGe databases.

• NIST-DB4: this publicly available database [62] has been extensively used
by other authors to test fingerprint classification approaches. It is com-
posed of two impressions of 2000 rolled fingerprints, manually labeled and
evenly distributed among the five classes. Among them, 350 fingerprints
have two labels because the visual discernibility between the classes is
not absolute. Different authors treat this special case differently, so we
followed the approach in [24] and removed these fingerprints from the
database. Therefore, the resulting database is composed by two impres-
sions of 1650 fingerprints (with the class distribution shown in Table 5),
for a total of 3300 images.

11



Table 5: Class distribution of NIST-DB4 after removing the fingerprints with
two labels.

Class Number of fingerprints
Arch 380
Left 378
Right 373
Tented 123
Whorl 396

4 Analysis of the classification accuracy

This section evaluates the performance obtained with the CNNs developed in
this work. The experimental study carried out in [24] has been replicated, to
enable a fair comparison between the tested CNNs and the state-of-the-art fin-
gerprint classification methods. The feature extractors and classifiers described
in previous sections, which obtained the best results in the aforementioned study,
have been applied to the described databases for a comparison of their accuracy.
For this study, a single impression of each fingerprint in the SFinGe databases
was used. Likewise, NIST-DB4 was split into two different databases, one for
each impression. This makes a total of 5 databases for the experiments: three
SFinGe databases with 10 000 images and two NIST databases with 1650 im-
ages. The results presented in this section have been obtained with a 5-fold
cross-validation scheme (5-fcv) [63], where each database is randomly split into
5 subsets with an identical class distribution. The presented accuracy values
for each database and classifier are therefore averages in test over 5 different
executions.

Table 6: Average cross validation test accuracy (in percentage) of different
classifiers, feature extractors and ensembles. Only the best combinations are
shown. In due case, the rejection rate is shown between brackets.

Feature extraction + classifier Ensembles Deep Neural Networks
Cappelli02 Hong08 Liu10 HLZC-Cons HLC-Maj CaffeNet Proposed network
SVM-RBF SVM-Poly C4.5

HQNoPert 93.87 97.32 (1.44) 94.75 99.47 (17.49) 97.53 (2.27) 98.94 99.07
Default 92.10 96.29 (5.38) 93.96 99.53 (27.78) 97.29 (6.56) 98.06 98.58
VQAndPert 86.21 92.92 (15.90) 90.15 99.10 (43.34) 95.38 (17.89) 97.08 97.54
NIST-DB4 F 87.45 89.49 (1.45) 82.67 98.69 (30.24) 92.84 (4.36) 85.09 90.73
NIST-DB4 S 87.03 85.29 (1.94) 80.61 98.45 (34.97) 91.61 (5.45) 85.52 88.91

Table 6 presents the accuracy obtained for the different classification meth-
ods, split into three groups of columns. The first group shows the feature extrac-
tion methods published in the literature in combination with the classifier that
obtained the best result in each case in [24]. Note that for the sake of simplicity,
only the best performing classifier is included in the table. The second group
includes two ensembles presented in [24], which obtained the best accuracy and

12



the best rejection, respectively. Finally, the third group includes the two deep
neural networks designed in this study. The columns corresponding to Hong’s
feature extractor and the ensembles also show the rejection rate in brackets,
that is, the proportion of fingerprints whose features could not be extracted by
Hong’s algorithm. The main conclusions from the table are:

• The accuracy obtained by the proposed network is better than that of
the larger CaffeNet, despite its smaller number of layers and neurons. Al-
though a larger network can offer better learning potential for complex
problems, in this case the smaller search space provided by the proposed
architecture allows for a better convergence of the learning process, yield-
ing a very good accuracy which is far above any of those obtained by the
individual classifiers with feature extraction. This result highlights the
capabilities of the intrinsic feature extraction process of the deep neural
network, which outperforms those manually designed independently of the
subsequent classification step.

• The proposed network also overcomes the accuracy obtained by the en-
semble HLC-Maj for the SFinGe databases, despite the fact that it does
not reject any fingerprint. In opposite, the ensemble HLZC-Cons, with a
very large rejection rate, and HLC-Maj for NIST-DB4, are able to obtain
accuracies larger than those yielded by the tested deep neural network.
Nevertheless, in a practical environment it is usually preferable to elim-
inate such a high rejection rate at the cost of a slight reduction of the
accuracy.

5 Robust classification of different fingerprint
impressions and penetration rate reduction

The previous section highlighted CNNs as a powerful approach from a classic
machine learning perspective. However, the biometric identification problem
presents some particularities that should be taken into account when new tech-
niques are evaluated. In practice, the template fingerprints that are stored after
the enrollment of the users are grouped according to their class and used to
train the classifier. When an input fingerprint is received, the goal of the fin-
gerprint classifier is to determine the group in which the template of the same
fingerprint is stored. There exists the possibility that when a template is mis-
classified, a corresponding input might be misclassified in the same way. In
these cases, a natural way to improve the penetration is to establish the tem-
plate groups not according to the manually established label of the fingerprints,
but to the class that is predicted by the classifier trained upon them. Thus,
if the template and input impressions of a same fingerprint are both wrongly
assigned the same class, the searched would still be carried out in the group of
its corresponding template. The aim of this section is to evaluate the compared
classification methods from this point of view, which we refer to as robustness
of the classification. The runtime of the different methods is also discussed.

13



For this purpose, we used the three SFinGe databases of different qualities
described in Section 3.2, each of them composed by 4 impressions of the same
10 000 fingerprints, and the NIST-DB4 database, composed by 2 impressions
of 1650 fingerprints. For each of these databases, the first impression of each
fingerprint was used as training set (templates), while the remaining impressions
were stripped of their manually established labels and conformed the test set
(inputs). After the classifier is trained, every fingerprint was relabeled according
to the class assigned by the classifier to the impression in the training set. In
this manner, the accuracy reported throughout this section corresponds to the
percentage of impressions that are classified into the same class as the template
impression, independently of the manually established label. For the methods
that reject fingerprints, only the fingerprints with no rejected impressions were
considered.

Table 7: Accuracy and penetration rate of the reference methods.

SVM-Poly C4.5 KNN Rejection
Training Test Penet. rate Training Test Penet. rate Training Test Penet. rate

Cappelli02 HQNoPert 99.71 92.11 36.63% 99.27 94.97 33.85% 88.46 86.03 41.89% –
Default 98.93 90.38 38.09% 99.14 93.27 35.56% 86.79 82.14 46.78% –
VQAndPert 94.69 83.83 46.35% 98.70 89.80 40.77% 86.95 79.76 51.51% –
NISTDB4 100.00 86.42 34.61% 98.48 88.24 34.17% 84.06 83.70 37.11% –

Hong08 HQNoPert 98.41 98.07 35.49% 99.23 96.19 37.27% 96.48 97.59 36.29% 6.71%
Default 97.67 96.90 43.97% 99.01 94.54 46.01% 96.54 96.58 44.87% 18.15%
VQAndPert 95.44 91.95 61.55% 98.48 91.30 62.38% 94.32 92.37 61.94% 40.11%
NISTDB4 98.00 89.65 35.63% 97.76 86.78 39.41% 91.08 87.72 39.49% 2.79%

Liu10 HQNoPert 94.61 96.72 32.40% 98.06 95.14 33.75% 94.64 95.78 33.28% –
Default 93.84 93.96 34.17% 97.52 93.67 35.04% 94.23 93.48 34.74% –
VQAndPert 91.84 88.16 39.38% 96.53 90.49 38.05% 92.08 88.37 39.03% –
NISTDB4 90.36 85.03 37.79% 93.03 86.55 37.00% 87.76 81.09 41.63% –

The results obtained with the reference feature extractors using several clas-
sifiers are presented in Table 7. The estimated penetration rates were calculated
following Eq. 2. The best result obtained for each database is bold-stressed.
Clearly, Hong’s extractor obtains a better accuracy than the rest, especially in
combination with the SVM classifier, at the cost of rejecting some fingerprints.
Although C4.5 can obtain a very good training accuracy, the difference with
respect to the test values are larger than those obtained by other classifiers,
denoting overfitting. However, the penetration rate yielded by Hong’s method
is higher than with other extractors at the cost of a non-negligible rejection rate.

Table 8: Accuracy and penetration rate of the convolutional neural networks.

CaffeNet Proposed network
Training Test Penet. rate Training Test Penet. rate

HQNoPert 100.00 99.35 29.99% 100.00 99.60 29.79%
Default 100.00 97.22 31.59% 100.00 98.07 31.01%
VQAndPert 100.00 95.73 32.77% 100.00 96.40 32.27%
NISTDB4 100.00 90.24 30.89% 100.00 91.09 30.32%

Table 8 shows the accuracy and penetration rate obtained with the deep
neural networks. Note that the training accuracy was 100% in all cases, so
the original label was kept for all fingerprints. Despite what is seemingly an
extreme case of overfitting, the test results outperform those obtained with any
of the combinations in Table 7, assessing the high robustness of deep learning

14



approaches for this problem. Moreover, these accuracy values were obtained
without rejecting any fingerprint, which gives a very low penetration rate. Even
though both tested networks obtain the maximum training accuracy, The pro-
posed network performs better for the test sets due to its smaller size and the
subsequent better generalization capability.

(a) Arch
(Left)

(b) Left
(Tented)

(c) Left
(Whorl)

(d) Tented
(Right)

(e) Whorl
(Left)

Figure 4: Some examples of fingerprints misclassified by the proposed network.
The true class is shown in brackets.

Table 9: Confusion matrix of the proposed network on HQNoPert

Predicted class
True class A L R T W

A 1110 0 0 0 0
L 0 10 095 0 30 15
R 0 0 9500 10 0
T 0 40 0 830 0

W 0 25 0 0 8345

Note that the proposed network obtains 99.60% accuracy for the HQNoPert
database, which corresponds to only 120 failures among the 30 000 fingerprints of
the test set. The confusion matrix shown in Table 9 reflects clearly the structure
of the fingerprint classes: class Arch is well differentiated from the others—
to the point that the network classifies correctly all 1110 test fingerprints of
this class—whilst Tented is somewhat overlapped with Left and Right Loop.
Some examples of failed fingerprints, along with the classes that were wrongly
assigned, are shown in Figure 4.

Finally, Tables 10 and 11 show the runtime in seconds of the different feature
extractors and classifiers. Liu’s extractor is the fastest, followed by Hong and
Cappelli. The runtime of the classifiers themselves is determined by the size of
the feature vectors, so that again Liu is the fastest approach. As for the deep
neural networks, the simpler proposed architecture allows for a better learning
time despite the fact that it involves a higher number of iterations than CaffeNet.
Note that for the proposal the number of iterations of the learning process was
set lower for NIST-DB4 than for SFinGe due to the smaller size of the database;
this allows to further reduce the time needed for the training of the network while
maintaining a high accuracy. In general, the network is able to learn a better

15



Table 10: Runtime (in seconds) of the feature extractors and the classifiers

Feature Extractor Database Feature Extraction SVM-Poly C4.5 KNN
Cappelli02 HQNoPert 11 275 155 391 375

Default 11 377 88 410 372
VQAndPert 11 358 760 389 373
NISTDB4 1880 12 17 9

Hong08 HQNoPert 3469 12 51 81
Default 3381 16 66 103
VQAndPert 3139 10 29 40
NISTDB4 615 2 4 1

Liu10 HQNoPert 507 13 33 25
Default 499 12 31 26
VQAndPert 519 15 32 26
NISTDB4 70 2 1 1

Table 11: Runtime (in seconds) of the deep neural networks.

CaffeNet Proposed network
HQNoPert 2306 960
Default 2329 957
VQAndPert 2328 960
NISTDB4 2322 487

model than the approaches using Cappelli’s or Hong’s features in a lower time.
Liu’s extractor is however yet faster, although the accuracy gain obtained by
the CNN is high enough so as to make this time consumption acceptable. Note
that an ensemble using several feature extractors would consume at least the
sum of their runtimes, highlighting the power of CNNs. Moreover, the rejection
carried out by some feature extractors can further increase the time as a new
capture of the fingerprint might be needed.

6 Conclusions

Fingerprint classification is a key component in automatic fingerprint identi-
fication systems that deal with very large-scale databases, as it enables the
reduction of the database penetration of the identification process. A good ac-
curacy rate for the classification is critical to maximize this reduction. Although
some feature extractors and classifiers reject fingerprints to increase the accu-
racy rate, this rejection can also have a negative impact on the throughput of
such an identification system.

In this paper, we have presented a study over the performance that can be
expected from deep learning approaches when applied to the fingerprint clas-
sification problem. Several state-of-the-art fingerprint feature extractors and
classifiers have been compared with two different CNN architectures, in an ex-
perimental study involving three artificially generated databases of different
qualities and the well-known NIST-DB4. Also, the experiments have been fo-
cused on both the accuracy of the classification process and the robustness when
dealing with several impressions of the same fingerprints.

16



The obtained results highlighted that DNNs outperformed all the compared
approaches. The classification accuracy reached by CNNs was superior to that
obtained by any of the combinations of feature extractors and classifiers. More-
over, CNNs do not reject any fingerprints, but still obtained better accuracy
than feature extractors with a certain rejection rate. The robustness experi-
ments also showed that the deep learning strategy was able to obtain a very
high test accuracy, assessing that the models learned the underlying structure
of the fingerprints better than state-of-the-art feature extractors and classifiers.
The runtime required by CNNs was also very competitive with respect to that
needed by the combination of explicit feature extraction and classification, out-
performing most approaches, and in particular the most accurate ones.

Acknowledgements

This work was partially supported by the Spanish Ministry of Science and Tech-
nology under the project TIN2014-57251-P, and the Foundation BBVA project
75/2016 BigDaPTOOLS. Y. Saeys is an ISAC Marylou Ingram Scholar.

References

[1] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint
recognition. New York: Springer, 2009.

[2] N. Ratha, R. Bolle, V. Pandit, and V. Vaish, “Robust fingerprint authen-
tication using local structural similarity,” in Proceedings of the Fifth IEEE
Workshop on Applications of Computer Vision, pp. 29–34, IEEE Computer
Society, 2000.

[3] X. Jiang and W. Y. Yau, “Fingerprint minutiae matching based on the local
and global structures,” in Proceedings of the 15th International Conference
on Pattern Recognition, pp. 1038–1041, 2000.

[4] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code: A new
representation and matching technique for fingerprint recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 12,
pp. 2128–2141, 2010.

[5] D. Peralta, M. Galar, I. Triguero, D. Paternain, S. Garćıa, E. Barrenechea,
J. M. Benitez, H. Bustince, and F. Herrera, “A survey on fingerprint
minutiae-based local matching for verification and identification: Taxon-
omy and experimental evaluation,” Information Sciences, vol. 315, pp. 67–
87, 2015.

[6] M. Galar, J. Derrac, D. Peralta, I. Triguero, D. Paternain, C. Lopez-Molina,
S. Garćıa, J. M. Benitez, M. Pagola, E. Barrenechea, H. Bustince, and
F. Herrera, “A survey of fingerprint classification Part I: Taxonomies on

17



feature extraction methods and learning models,” Knowledge-Based Sys-
tems, vol. 81, pp. 76–97, 2015.

[7] G. T. Candela, P. J. Grother, C. I. Watson, R. A. Wilkinson, and C. L.
Wilson, “PCASYS- A Pattern-Level Classification Automation System for
Fingerprints,” Tech. Rep. 5647, NIST, 1995.

[8] J. H. Hong, J. K. Min, U. K. Cho, and S.-B. Cho, “Fingerprint classification
using one-vs-all support vector machines dynamically ordered with naive
Bayes classifiers,” Pattern Recognition, vol. 41, no. 2, pp. 662–671, 2008.

[9] M. Liu, “Fingerprint classification based on Adaboost learning from singu-
larity features,” Pattern Recognition, vol. 43, no. 3, pp. 1062–1070, 2010.

[10] M. Kawagoe and A. Tojo, “Fingerprint pattern classification,” Pattern
Recognition, vol. 17, no. 3, pp. 295–303, 1984.

[11] A. K. Jain and S. Prabhakar, “A multichannel approach to fingerprint
classification,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 21, pp. 348–359, apr 1999.

[12] T. M. Cover and P. E. Hart, “Nearest Neighbor Pattern Classification,”
IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[13] M. A. Hearst, S. T. Dumais, E. Osman, J. Platt, and B. Scholkopf, “Sup-
port vector machines,” IEEE Intelligent Systems and their Applications,
vol. 13, no. 4, pp. 18–28, 1998.

[14] Q. Zhang and H. Yan, “Fingerprint classification based on extraction and
analysis of singularities and pseudo ridges,” Pattern Recognition, vol. 37,
no. 11, pp. 2233–2243, 2004.

[15] L. Wang and M. Dai, “Application of a new type of singular points in finger-
print classification,” Pattern Recognition Letters, vol. 28, no. 13, pp. 1640–
1650, 2007.

[16] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[18] A. Krizhevsky, I. Sulskever, and G. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Advances in Neural Information
Processing Systems, pp. 1097–1105, 2012.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

18



[20] A. Sankaran, M. Vatsa, R. Singh, and A. Majumdar, “Group sparse au-
toencoder,” Image and Vision Computing (in press), jan 2017.

[21] Q. Liu, X. Hu, M. Ye, X. Cheng, and F. Li, “Gas Recognition under Sen-
sor Drift by Using Deep Learning,” International Journal of Intelligent
Systems, vol. 30, pp. 907–922, aug 2015.

[22] S. Kulkarni, “Fingerprint feature extraction and classification by learning
the characteristics of fingerprint patterns,” Neural Network World, vol. 21,
no. 3, pp. 219–226, 2011.

[23] R. Wang, C. Han, Y. Wu, and T. Guo, “Fingerprint Classification Based
on Depth Neural Network,” The Computing Research Repository (CoRR),
pp. 1–14, 2014.

[24] M. Galar, J. Derrac, D. Peralta, I. Triguero, D. Paternain, C. Lopez-
Molina, S. Garćıa, J. M. Benitez, M. Pagola, E. Barrenechea, H. Bustince,
and F. Herrera, “A survey of fingerprint classification Part II: Experimen-
tal analysis and ensemble proposal,” Knowledge-Based Systems, vol. 81,
pp. 98–116, 2015.

[25] E. Henry, Classification and Uses of Finger Prints. Broadway, Ludgate
Hill, United Kingdom: George Routledge and Sons, 1900.

[26] K. Karu and A. K. Jain, “Fingerprint classification,” Pattern Recognition,
vol. 29, no. 3, pp. 389–404, 1996.

[27] G. L. Marcialis, F. Roli, and L. Didaci, “Multimodal fingerprint verification
by score-level fusion: An experimental investigation,” Journal of Intelligent
& Fuzzy Systems, vol. 24, pp. 51–60, 2013.

[28] J. Li, W. Y. Yau, and H. Wang, “Combining singular points and orienta-
tion image information for fingerprint classification,” Pattern Recognition,
vol. 41, no. 1, pp. 353–366, 2008.

[29] K. Cao, L. Pang, J. Liang, and J. Tian, “Fingerprint classification by a
hierarchical classifier,” Pattern Recognition, vol. 46, no. 12, pp. 3186–3197,
2013.

[30] L. Hong and A. K. Jain, “Integrating Faces and Fingerprints for Personal
Identification,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 20, pp. 1295–1307, dec 1998.

[31] B. Moayer and K. Fu, “An application of stochastic languages to fingerprint
pattern recognition,” Pattern Recognition, vol. 8, pp. 173–179, jul 1976.

[32] J. K. Min, J. H. Hong, and S. B. Cho, “Effective Fingerprint Classifica-
tion by Localized Models of Support Vector Machines,” in International
Conference on Biometrics, pp. 287–293, Springer Berlin Heidelberg, 2005.

19



[33] Y. Li, J. Yin, and E. Zhu, “Score-based fusion in multi-unit biometric recog-
nition system,” Applied Mechanics and Materials, vol. 48–49, pp. 1010–
1013, 2011.

[34] H. O. Nyongesa, S. Al-Khayatt, S. M. Mohamed, and M. Mahmoud, “Fast
robust fingerprint feature extraction and classification,” Journal of Intelli-
gent and Robotic Systems, vol. 40, no. 1, pp. 103–112, 2004.

[35] U. Rajanna, A. Erol, and G. Bebis, “A comparative study on feature ex-
traction for fingerprint classification and performance improvements us-
ing rank-level fusion,” Pattern Analysis and Applications, vol. 13, no. 3,
pp. 263–272, 2010.

[36] T. H. Le and H. T. Van, “Fingerprint reference point detection for image
retrieval based on symmetry and variation,” Pattern Recognition, vol. 45,
no. 9, pp. 3360–3372, 2012.

[37] A. Senior, “A hidden Markov model fingerprint classifier,” in Proceedings
of the 31st Asilomar Conference on Signals, Systems & Computers, vol. 1,
(Pacific Grove, CA), pp. 306–310, IEEE Computer Society, 1997.

[38] H. W. Jung and J. H. Lee, “Fingerprint classification using the stochastic
approach of ridge direction information,” in IEEE International Conference
on Fuzzy Systems, pp. 169–174, IEEE, aug 2009.

[39] R. Cappelli, D. Maio, and D. Maltoni, “A multi-classifier approach to fin-
gerprint classification,” Pattern Analysis and Applications, vol. 5, no. 2,
pp. 136–144, 2002.

[40] J. R. Quinlan, C4.5: programs for machine learning. Elsevier, 2014.

[41] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward net-
works are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–
366, 1989.

[42] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press,
2015.

[43] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
geNet Large Scale Visual Recognition Challenge,” International Journal of
Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[44] V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltz-
mann Machines,” in Proceedings of the 27th International Conference on
Machine Learning, pp. 807–814, 2010.

[45] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

20



[46] M. Sahasrabudhe and A. M. Namboodiri, “Fingerprint enhancement using
unsupervised hierarchical feature learning,” in ACM International Confer-
ence Proceeding Series, vol. 2, pp. 2–8, 2014.

[47] K. Cao and A. K. Jain, “Latent orientation field estimation via convolu-
tional neural network,” in Proceedings of the International Conference on
Biometrics, ICB, pp. 349–356, 2015.

[48] L. Lin, E. Liu, L. Wang, and M. Zhang, “Fingerprint orientation field
regularisation via multi-target regression,” Electronics Letters, vol. 52,
pp. 1118–1120, jun 2016.

[49] P. Schuch, S. Schulz, and C. Busch, “De-convolutional auto-encoder for
enhancement of fingerprint samples,” in 2016 Sixth International Confer-
ence on Image Processing Theory, Tools and Applications (IPTA), pp. 1–7,
IEEE, dec 2016.

[50] C. Gottschlich, “Convolution Comparison Pattern: An Efficient Local Im-
age Descriptor for Fingerprint Liveness Detection,” PLoS ONE, vol. 11,
no. 2, pp. 1–12, 2016.

[51] D. Menotti, G. Chiachia, A. Pinto, W. Robson Schwartz, H. Pedrini,
A. Xavier Falcao, and A. Rocha, “Deep Representations for Iris, Face,
and Fingerprint Spoofing Detection,” IEEE Transactions on Information
Forensics and Security, vol. 10, pp. 864–879, apr 2015.

[52] C. Wang, K. Li, Z. Wu, and Q. Zhao, “A DCNN Based Fingerprint Live-
ness Detection Algorithm with Voting Strategy,” in Biometric Recognition:
10th Chinese Conference, CCBR, (Tianjin, China), pp. 241–249, Springer
International Publishing, 2015.

[53] S. Kim, B. Park, B. S. Song, and S. Yang, “Deep belief network based statis-
tical feature learning for fingerprint liveness detection,” Pattern Recognition
Letters, vol. 77, pp. 58–65, 2016.

[54] L. G. Hafemann, R. Sabourin, and L. S. Oliveira, “Writer-independent Fea-
ture Learning for Offline Signature Verification using Deep Convolutional
Neural Networks,” in Proceedings of the International Joint Conference on
Neural Networks, (Vancouver, Canada), pp. 2576–2583, 2016.

[55] H. Qin and M. El-Yacoubi, “Finger-Vein Quality Assessment by Represen-
tation Learning from Binary Images,” in Neural Information Processing,
pp. 421–431, Springer, 2015.

[56] K. S. Itqan, A. R. Syafeeza, F. G. Gong, N. Mustafa, Y. C. Wong, and
M. M. Ibrahim, “User identification system based on finger-vein patterns
using Convolutional Neural Network,” ARPN Journal of Engineering and
Applied Sciences, vol. 11, no. 5, pp. 3316–3319, 2016.

21



[57] A. Page, A. Kulkarni, and T. Mohsenin, “Utilizing deep neural nets for an
embedded ECG-based biometric authentication system,” in IEEE Biomed-
ical Circuits and Systems Conference (BioCAS), pp. 1–4, IEEE, oct 2015.

[58] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in IEEE Conference on Computer
Vision and Pattern Recognition, pp. 248–255, IEEE, jun 2009.

[59] J. Alcalá-Fdez, L. Sánchez, S. Garćıa, M. J. del Jesus, S. Ventura, J. M.
Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández,
and F. Herrera, “KEEL: a software tool to assess evolutionary algorithms
for data mining problems,” Soft Computing, vol. 13, no. 3, pp. 307–318,
2009.

[60] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for
Fast Feature Embedding,” in Proceedings of the 2014 ACM Conference on
Multimedia, (Orlando, United States), pp. 675–678, 2014.

[61] R. Cappelli, D. Maio, and D. Maltoni, “Synthetic fingerprint-database gen-
eration,” in Proceedings of the 16th International Conference on Pattern
Recognition, vol. 3, pp. 744–747, 2002.

[62] C. I. Watson and C. L. Wilson, “NIST Special Database 4,” tech. rep.,
NIST, 1992.

[63] J. G. Moreno-Torres, J. A. Saez, and F. Herrera, “Study on the Impact of
Partition-Induced Dataset Shift on k-Fold Cross-Validation,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 23, pp. 1304–1312,
aug 2012.

22


