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Abstract51

Biodiversity includes multiscalar and multitemporal structures and52

processes, with different levels of functional organization, from genetic53

to ecosystemic levels. One of the mostly used methods to infer bio-54

diversity is based on taxonomic approaches and community ecology55

theories. However, gathering extensive data in the field is difficult due56

to logistic problems, overall when aiming at modelling biodiversity57

changes in space and time, which assumes statistically sound sam-58

pling schemes. In this view, airborne or satellite remote sensing allow59

to gather information over wide areas in a reasonable time.60

Most of the biodiversity maps obtained from remote sensing have61

been based on the inference of species richness by regression analy-62

sis. On the contrary, estimating compositional turnover (β-diversity)63
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might add crucial information related to relative abundance of dif-64

ferent species instead of just richness. Presently, few studies have65

addressed the measurement of species compositional turnover from66

space.67

Extending on previous work, in this manuscript we propose novel68

techniques to measure β-diversity from airborne or satellite remote69

sensing, mainly based on: i) multivariate statistical analysis, ii) the70

spectral species concept, iii) self-organizing feature maps, iv) multi-71

dimensional distance matrices, and the v) Rao’s Q diversity. Each of72

these measures allow to solve one or several issues related to turnover73

measurement. This manuscript is the first methodological example74

encompassing (and enhancing) most of the available methods for es-75

timating β-diversity from remotely sensed imagery and potentially76

relate them to species diversity in the field.77

Keywords: β-diversity, Kohonen self-organising feature maps, Rao’s Q78

diversity index, remote sensing, satellite imagery, Sparse Generalized Dis-79

similarity Model, spectral species concept.80

1 Introduction81

Biodiversity cannot be fully investigated without considering the spatial com-82

ponent of its variation. In fact, it is known that the dispersal of species over83

wide areas is driven by spatial constraints directly related to the distance84

among sites. A negative exponential dispersal kernel is usually adopted to85

mathematically describe the occupancy of new sites by species, as:86

F =
N∑

K=1

e
−dik

a (1)

where dik = distance between two locations i and k and a is a parameter87

regulating the dispersal from localized areas (low values of a) to widespread88

ones (high values of a, Meentemeyer et al. (2008)).89

In this sense, distance acquires a significant role in ecology to estimate bio-90

diversity change. Hence, spatially explicit methods have been acknowledged91

in ecology for providing robust estimates of diversity at different hierarchical92

levels: from individuals (Tyre et al., 2001), to populations (Vernesi et al.,93

2012), to communities (Rocchini et al., 2005).94

When dealing with spatial explicit methods, remote sensing images rep-95

resent a powerful tool, overall when coupling information on compositional96

properties of the landscape with its structure (Figure 1). Remote sensing has97
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widely been used for conservation practices including very different types of98

data such as nighlights data (Mazor et al., 2013), Land Surface Temperature99

estimated from MODIS data (Metz et al., 2014), spectral indices (Gillespie,100

2005).101

Most of the remote sensing applications for biodiversity estimate have102

relied on the estimate of local diversity hotspots, considering land use diver-103

sity (Wegmann et al., 2017) or continuous spatial variability of the spectral104

signal (Rocchini et al., 2010). This is mainly grounded on the assumption105

that a higher landscape heterogeneity is strictly related to a higher amount106

of species occupying different niches. However, given two sites s1 and s2,107

the final diversity is not only related to the species / spectral richness of s1108

and s2, but overall to the amount of shared species / spectral values. In109

other terms the lower their intersection s1 ∩ s2, the higher will be the total110

diversity, while a low total diversity will be reached when s1 ∩ s2 = s1 ∪ s2.111

Such intersection has been widely studied in ecology, after the development112

of β-diversity theory (Whittaker, 1960).113

Tuomisto et al. (2003) demonstrated the power of substituting distance114

in Eq. 1 by spectral distance to directly account for the distance among sites115

in an environmental space, instead of a merely spatial one. However, while116

spectral distance examples exist when measuring the β-diversity among pairs117

of sites (e.g. Rocchini et al. (2015)), few studies have tested the possibility of118

measuring β-diversity over wide areas considering several sites at the same119

time (however see Alahuhta et al. (2017); Harris et al. (2015)). This is120

overall true considering the development of remote sensing tools for diversity121

estimate in which the concept of β-diversity is still pioneering.122

The aim of this paper is to present the most novel methods to measure123

β-diversity from remotely sensed imagery based on the the most recently124

published ecological models. In particular we will deal with: i) multivariate125

statistical techniques, ii) the applicability of the spectral species concept,126

iii) multidimensional distance matrices, iv) metrics coupling abundance and127

distance-based measures.128

This manuscript is the first methodological example encompassing (and129

enhancing) most of the available methods for estimating β-diversity from130

remotely sensed imagery and potentially relate them to species diversity in131

the field.132
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2 Multivariate statistical analysis for species133

diversity estimate from remote sensing134

Univariate statistics have been used to directly find relations between spectral135

and species diversity. However, the amount of variability explained by single136

bands / vegetation indices versus species diversity is generally relatively low,137

due to the fact that different aspects related to the complexity of habitats138

might act in shaping diversity, from disturbance and land use at local scales139

to climate and element fluxes at global scales.140

Ordination techniques are designed to quantitatively describe multivari-141

ate gradual transitions in the species composition of sampled sites. Measuring142

the distance between two sampling sites in the multi-dimensional ordination143

space is a good proxy of the change in species composition. When this mea-144

sure is related to the geographical distance between the considered sites, the145

beta diversity at this particular scale can be assessed.146

Of the various available ordination techniques, Detrended Correspon-147

dence Analysis (DCA, Hill and Gauch (1980)) is particularly suitable for148

such analyses. The axes (i.e. gradients) of the DCA ordination space are149

scaled in standard deviation (SD) units, where a distance of 4 SD is related150

to a full species turnover. This enables a versatile analysis that easily reveals151

whether two sampled sites still have species in common.152

Several studies have mapped the ordination space using remote sensing153

data (e.g., Schmidtlein and Sassin (2004); Schmidtlein et al. (2007); Feil-154

hauer et al. (2009, 2011, 2014); Gu et al. (2015); Harris et al. (2015); Leitao155

et al. (2015); Neumann et al. (2015)). For this purpose, the axes scores of156

the sampled sites are regressed against the corresponding canopy reflectance157

values extracted from air- or spaceborne image data. The resulting multi-158

variate regression models, one per ordination axis and most often generated159

with machine learning regression techniques, are subsequently applied on the160

image data for a spatial prediction of ordination scores. Each pixel of the161

image data is assigned to a specific position in the ordination space that in-162

dicates its species composition. The resulting gradient maps are a powerful163

tool for analyses of beta diversity across different spatial scales (Feilhauer et164

al., 2009; Hernandez-Stefanoni et al., 2012).165

A simple analysis of the variability of the DCA scores in a defined pixel166

neighborhood (i.e. a moving window) results in a efficient beta diversity167

assessment. The spatial scale of this assessment can be varied by either re-168

sampling the gradient map to a coarser spatial resolution (i.e. pixel size) or169

by changing the kernel size of the considered pixel neighborhood. Such tech-170

niques has been further developed e.g. for spatial conservation priorization171
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programmes such as zonation (Moilanen et al., 2005, 2009).172

Figure 2 shows an example of a DCA-based assessment of beta diversity173

on a very local scale (10 m) following the approach described in Feilhauer et174

al. (2009). The analyzed landscape is a mosaic of raised bogs, fens, transition175

mires and Molinia meadows. For a detailed description of the data and site176

please refer to Feilhauer et al. (2014, 2016).177

Analyses like this require two different data sets: (1) a sample of field178

data that is representative for the vegetation in the studied area and is used179

to generate the ordination space; (2) image data with a sufficient spectral180

resolution to discriminate the vegetation types within the ordination space181

and with a spatial resolution that is in line with the sampling design of the182

field data (Feilhauer et al., 2013).183

Using these data, the continuous spatial variability of the spectral signal184

in the image pixels is translated into a spatially continuous measure of species185

composition. The advantages of this approach are obvious: since the diversity186

analyses are conducted in the floristic gradient space, the resulting measures187

resemble field studies and are thus easier to interpret than spectral proxies188

and closer to the point of view of many end-users. Furthermore, the analysis189

of ordination scores in defined pixel neighborhoods is not restricted to a190

single spatial scale but offers the opportunity to implement assessments of191

beta diversity on multiple scales.192

3 The spectral species concept193

The spectral species concept has been proposed by Féret and Asner (2014a)194

to map both α and β component of the biodiversity using a unique frame-195

work. It is rooted in the convergence between two other concepts, the spec-196

tral variation hypothesis (SVH) proposed by Palmer et al. (2002), and the197

plant optical types proposed by Ustin and Gamon (2010), sustained by the198

technological advances in the domain of high spatial resolution imaging spec-199

troscopy. The SVH states that the spatial variability in the remotely sensed200

signal, that is the spectral heterogeneity, is related to environmental hetero-201

geneity and could therefore be used as a powerful proxy of species diversity.202

SVH has been tested in different situations (Rocchini et al., 2010) and con-203

clusions show that the performances of this approach are very dependent on204

several factors, including the instrumental characteristics (spectral, spatial205

and temporal resolution), the type of vegetation investigated, and the metrics206

derived from remotely sensed information to estimate spectral heterogeneity.207

Plant optical types refer to the capacity of sensors to measure signal aggre-208

gating information about vegetation structure, phenology, biochemistry and209
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physiology. Therefore, this concept is also tightly linked to the performances210

of the sensor and finds particular echo with the increasing use of high spa-211

tial resolution imaging spectroscopy for the estimation and identification of212

multiple vegetation properties.213

The details provided by high spatial resolution imaging spectroscopy are214

sufficient to perform analyzes of plant optical traits at the individual tree215

scale in order to differentiate tree species, obtain information about leaf chem-216

ical traits and estimate the α component of biodiversity (Asner et al., 2008,217

2015; Chadwick and Asner , 2016; Clark et al., 2005; Clark and Roberts ,218

2012; Féret and Asner, 2013; Vaglio Laurin et al., 2014). These results il-219

lustrate that spectral information can be related to taxonomic or functional220

information of the vegetation, which supports the SVH under the hypothesis221

that the metrics used to compute spectral heterogeneity and a given com-222

ponent of vegetation diversity are properly defined. However these applica-223

tions are currently limited by the important amount of field data required224

to train regression or classification models, which is also directly linked to225

their low generalization ability in time and space. Unsupervised approaches226

then appear as valuable alternatives for the analysis of ecosystem heterogene-227

ity (Baldeck and Asner , 2013; Baldeck et al., 2014; Feilhauer et al., 2011;228

Baldeck and Asner , 2013; Féret and Asner, 2014b), as ecological indicators229

of α and β diversity at landscape scale usually require one or several levels230

of abstraction beyond the correct taxonomic identification (Tuomisto et al.,231

2006).232

Clustering (properly pre-processed) spectral information should result in233

pixels from the same species naturally grouping together rather than dis-234

tributing randomly among clusters, Féret and Asner (2014a) proposed a235

grouping method aiming at assigning labels to pixels based on multiple clus-236

tering of spectroscopic data acquired at landscape scale. These pixels labeled237

with a set of so-called spectral species can then be used straightforwardly in238

order to compute various diversity metrics such as Shannon index for α diver-239

sity, and Bray-Curtis dissimilarity for β diversity. The pre-processing stage240

is divided into several stages. After masking all non-vegetated pixels, a nor-241

malization based on continuum removal is applied to each pixel and over the242

full spectral domain, then a principal component analysis is performed on243

the continuum removed spectral data. The normalization allows reducing244

effects due to changes in illumination, canopy geometry and other factors245

unrelated to vegetation, while enhancing the signal corresponding to veg-246

etation. The components including individual-specific information are the247

components of interest. They can be identified after visual inspection or au-248

tomated routines, if initial data show sufficient signal to noise ratio. Once249

a limited number of components have been selected, k-means clustering is250
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then applied to a certain number of subsets, and for each of these subsets,251

centroids are computed and each pixel in the image is labeled based on the252

closest centroid. The repetition of clustering based on various subsets of the253

image tends to minimize the risk of assigning centroids to irrelevant groups254

of pixels. Experimental results showed that the averaging of diversity indices255

computed from multiple centroid maps can be seen as an analogous to signal256

averaging, which consists in increasing signal to noise ratio by replicating257

measurements. For each repetition, the closest centroid corresponds to the258

spectral species, and for each spatial unit of a given size, the spectral species259

distribution is derived in order to compute any diversity metric requiring260

either information at the local scale, or comparison of information across261

spatially distant plots.262

The concepts of spectral species and spectral species distribution have263

been tested successfully on a limited number of situations and types of ecosys-264

tems (see (Rocchini et al., 2016) for a review, and (Lausch et al., 2016) for265

an application to similar concepts). As an example, Féret and Asner (2014a)266

showed ability to properly estimate landscape heterogeneity at moderate spa-267

tial scale, up to few dozen square kilometers over tropical forests, based on268

high spatial resolution imaging spectroscopy (Figure 3). A generic parame-269

terization of the method showed robust performances for α diversity mapping270

across space and time, but mapping β diversity across large spatial scales us-271

ing images acquired during different airborne campaign remains challenging,272

which leads to unsolved problem when considering operational regional map-273

ping. In the perspective of global monitoring of biodiversity, and based on the274

unprecedented remote sensing capacity allowed by the Copernicus program,275

including the Sentinel-2 multispectral satellites, several other challenges are276

foreseen and currently investigated. The influence of decreased spatial and277

spectral resolution on the ability to properly differentiate ecologically mean-278

ingful spectral species across landscapes and over regions will need to be279

investigated. The application of this concept beyond tropical forests and280

savanna ecosystems should also be investigated, as it may not hold when281

applied on moderately diverse ecosystems or systems with individuals with282

lower than metric dimensions.283

4 Self organizing feature maps284

The Kohonen self-organising feature map (SOFM, Kohonen (1982)) is a neu-285

ral network that may be used to undertake unsupervised clustering of data.286

Critically, the input to a SOFM can be a large multi-variate data set such as287

may be acquired on species from quadrat based field surveys and summarise288
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the data in a low, typically two, dimensional output (Figure 4). In this out-289

put space the data for individual quadrats are topologically ordered – with290

sites that are similar close together while those of highly different species291

composition more distant. Because the data sites in the output space are ar-292

ranged by relative similarity the output space may also be used to aggregate293

or classify a data set. As such the SOFM is attractive as a non-parametric294

clustering analysis and as a means to undertake an ordination (Chon et al.,295

1996).296

A SOFM is, unlike some of the approaches used commonly in community297

ecology, not constrained by assumptions such as those relating the statistical298

distribution of the data used. The SOFM uses unsupervised learning to pro-299

duce a topologically ordered output space in which the samples are arranged300

spatially in relation to their relative similarity in species composition. The301

SOFM thus performs a non-parametric ordination analysis (Foody, 1999).302

The production of a classification by a SOFM comprises two main stages303

(Giraudel and Lek, 2001). An iterative analysis, in which time-decaying pa-304

rameters that control network learning and the size of local neighbourhoods305

located around output units, is used. For this, the user must specify a num-306

ber of key parameters such as the size and shape of the network, number307

of iterations of the algorithm, the learning rate and its rate of decline and308

a neighbourhood parameter. The need for such parameters can add some309

uncertainty to the analysis. While there are no formal rules to follow in the310

design of a SOFM there are recommendations for the determination of SOFM311

parameter settings (Giraudel and Lek, 2001). A further concern is that as312

an unsupervised classifier the classes defined may not always be the most313

useful for an investigation. In addition, the nature of the analysis means the314

direction of the gradients cannot be controlled (Fritzke, 1995) but the anal-315

ysis performs well in comparison to popular ordination techniques such as316

PCA and DCA (Foody and Cutler, 2003). The SOFM may also use a variety317

of different data types such as presence/absence, abundance or importance318

values and can solve complex non-linear problems (Giraudel and Lek, 2001).319

5 Multidimensional distance matrices: GDMs320

and SGDMs321

One of the most widespread methods for assessing -diversity is using distance322

matrices (Legendre et al., 2005). Indeed, early work by Whittaker (1960) sug-323

gested that β−diversity could be quantified by dissimilarity matrices among324

(pairs of) sites. Furthermore, the Mantel test (Mantel and Valand, 2017),325
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designed to estimate the association between two independent dissimilarity326

matrices, has been widely used to correlate a community composition dissim-327

ilarity matrix with an environment dissimilarity one, thus providing useful328

insights into community composition and turnover (Legendre et al., 2005;329

Tahvanainen et al., 2011).330

Generalized Dissimilarity Modelling (GDM; Ferrier (2007) can be con-331

sidered as an extension of the Mantel test, which is able to accommodate332

multidimensional environmental data, to be compared with the composi-333

tional data. GDMs also allow for the prediction of compositional turnover334

as well as for, e.g. environmental classification constrained to the compo-335

sitional dissimilarity (Ferrier, 2007; Leathwick et al., 2011). In GDM, the336

compositional dissimilarities between all pairs of samples are modelled as a337

function of their respective environmental distances. This is done through a338

linear combination of monotonic I-spline basis functions, under the assump-339

tion that increasing environmental dissimilarity (e.g. along a gradient) can340

only result in increasing compositional dissimilarity. This method is thus well341

suited for measuring and mapping β−diversity, and is thus becoming widely342

used in conservation science and macroecology, and recently been subject to343

several developments as we describe below.344

One such development is the phylogenetic GDM (phylo-GDM; Rosauer345

et al. (2014)), which incorporates phylogenetic dissimilarities into GDM and346

allows for analysing and predicting phylogenetic β−diversity, thus linking347

ecological and evolutionary processes. This method can provide novel in-348

sights into the mechanisms underlying current patterns of biological diversity349

(Graham et al., 2008). Another recent development of GDM is the multi-350

site GDM (MS-GDM; Latombe et al. (2017)), which extends GDMs from351

pairwise to multi-site dissimilarity modelling. In such paper, the authors352

tested MS-GDM by means of both constrained (monotonical) additive mod-353

els and I-splines, although with no conclusive results relating to the best354

method overall. They concluded, however, that when applying MS-GDM to355

a high number of samples, they could better explain the drivers of species356

turnover. Also, an important development of GDM is the Bayesian bootstrap357

GDM (BBGDM; Woolley et al. (2017)) designed to characterize uncertainty358

in generalized dissimilarity models. This approach allows better represent-359

ing the underlying uncertainty in the data, by estimating the variance in360

parameters based on the available data.361

Finally, an implementation of GDM, which was created particularly for362

dealing with high-dimensional (and potentially high-collinear) remote sensing363

data as input in GDM is the Sparse Generalized Dissimilarity Model (SGDM,364

Figure 5, Leitao et al. (2015)). This method is a two-stage approach that365

consists of initially reducing the environmental space (e.g. reflectance data)366
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by means of a Sparse Canonical Correlation Analysis (SCCA, Figure 5; Wit-367

ten et al. (2013)), and then fitting the resulting components with a GDM368

model. The SCCA is a form of penalized canonical correlation analysis based369

on the L1 (lasso) penalty function, and is thus designed to deal with high-370

dimensional data. The two algorithms are coupled in a way that the SCCA371

penalization is selected through a heuristic grid search manner, in order to372

minimize the cross-validate root mean square error in the dissimilarities pre-373

dicted by the GDM. In this procedure, the high-dimensional environmental374

data (such as coming from time series of multispectral or hyperspectral data)375

are subject to a supervised ordination approach that reduces their dimen-376

sion while capturing the axes of variation that most correlate to those of377

the community compositional matrix. SGDM has been successfully used for378

modelling and mapping the compositional turnover of both animal and plant379

species, using several different sources of remote sensing (and auxiliary) data380

(Leitao et al., 2015; Leitão et al., 2017).381

6 Rao’s Q diversity382

Most of the previously shown metrics are based on the distance among pixel383

values in a multidimensional spectral space. None of them considers the384

relative abundance of such pixel values in a neighbourhood.385

By contrast, abundance-based metrics such as the Shannon entropy could386

output similar results despite a variable distance among pixel values. As an387

example, consider a 3x3 matrix of remotely sensed data:388 x11 x12 x13
x21 x22 x23
xd1 xd2 xd3

 (2)

composed by the following values:389 10 13 15
18 20 23
19 21 22

 (3)

then consider a different matrix:390 10 121 227
1 40 251
7 100 149

 (4)

From a Shannon’s entropy perspective, such matrices are equal in terms of391

heterogeneity. The Shannon’s entropy is indeed based on the relative abun-392

dance (and richness) of a sample, and its value is 2.197 for both the matrices.393
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This value, equalling the natural logarithm of the number of classes (pixel394

values), is also Shannon’s maximum theoretical value given a 3x3 matrix,395

due to the lack of identical numbers in the matrices. This example explicitly396

shows that accounting for the distance among values and their relative abun-397

dance is crucial to discriminate among areas in terms of measured (modeled)398

heterogeneity.399

One of the metrics accounting for both the abundance and the pairwaise400

spectral distance among pixels is the Rao’s Q diversity index, as:401

Q =
∑∑

dij × pi × pj (5)

where dij = spectral distance among pixels i and j and p = proportion of402

occupied area.403

Hence, Rao’s Q is capable to discriminate among the ecological diversity404

of matrices 3 and 4, turning out to be 4.59 and 90.70, respectively. Appendix405

1 provide an example spreadsheet to perform the calculation while the com-406

plete R code is stored in the GitHub repository407

https://github.com/mattmar/spectralrao.408

We decided to make use of a case study to highlight the importance of409

considering the distance among pixel values in remote sense ecological appli-410

cation. The performance of Rao’s Q index in describing landscape diversity411

was tested in a complex agro-forestry landscape located in southern Portu-412

gal. A test site with an area of about 10 x 10 km2 (centroid located at 38o
413

39’ 10.74” N; 8o 12’ 52.30” W) was selected to conduct the analysis. In this414

area, a savanna-like ecosystem called montado occupies about 40% of the test415

site, followed by traditional olive groves, pastures, vineyards, and irrigated416

monocultures (e.g. corn fields). Montado is spatially characterized by the417

variability of its tree density (e.g. Godinho et al. (2016)), and the gradient418

between low and high tree density over space can lead to different structural419

heterogeneity and habitat diversity.420

Within the test site, polyculture under small farming context (e.g. veg-421

etable gardens, orchards, and cereal crops) is an important feature of this422

landscape by generating a high compositional and configurational spatial423

heterogeneity (Figure 6). The main goal in using this case study is to demon-424

strate the potential and effectiveness of the Rao’s Q index in producing ac-425

curately remote-sensing based maps of spatial diversity over such complex426

landscape. For this study, a cloud-free Sentinel-2A (S2A) image acquired427

on 8 of August 2016 was used to compute the NDVI at a 10 meters spatial428

resolution. The S2A image download, as well as the atmospheric correction429

(DOS method) were performed using the Semi-Automatic Classification plu-430

gin (SCP) implemented in the QGIS software (QGIS Development Team ,431

2016(@).432
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The NDVI was used as input data for Rao’s Q index computation using433

a window size of 3 x 3 pixels. The performance of the Rao’s Q was compared434

to the Shannon Entropy index (Shannon’s H), which is one of the simplest,435

and widely used, remote sensing-based diversity measures for landscape het-436

erogeneity assessment (Rocchini et al., 2016). To investigate whether both437

diversity indices differ between land cover types, one-way ANOVA tests were438

performed. This approach was used for analysing the degree of dissimilarity439

between Rao’s Q and Shannon H index across two high complex land cover440

types; i) montado, and ii) polyculture. To do so, a sample of 60 squares with441

250 x 250 meters size was randomly selected over these two land cover types.442

Each square represents a sample of 625 S2A NDVI pixels, thus corresponding443

to a total of 37,500 pixels over the 60 squares. For the comparison between444

both indices, the coefficient of variation (CV) was calculated for each 250 x445

250 m squares. Regarding the Rao’s Q performance, Figure 6 clearly points446

to the significant improvements shown by Rao’s Q index compared to the447

Shannon H index in describing the spatial diversity. In particular, it can be448

seen through the Figure 6, that Rao’s Q index can highlight different gra-449

dients of spatial diversity of montado areas, which present high tree density450

variability (Figure 6), and thus high spatial heterogeneity. One-way ANOVA451

tests revealed that both indices values were significantly different between452

the two land cover types (montado: F = 503.3, p<0.001; polyculture: F =453

889.8, p<0.001). Overall, the obtained results demonstrate the capability of454

Rao’s Q index in producing accurate landscape diversity maps in a complex455

landscape such as the Mediterranean agro-forestry systems.456

7 Conclusion457

In this paper, we showed several methods based on ecological β-diversity,458

which can be investigated by remote sensing through the calculation of459

ecosystem heterogeneity, to estimate the spatial variability of biodiversity.460

When there is a wide range of heterogeneity, as an example the data include461

homogeneous and heterogeneous zones, no single measure might capture all462

the different aspects of β-diversity (e.g. (Baselga, 2013)). That is why we sug-463

gested in this manuscript multivariate and multidimensional methods (e.g.464

multivariate statistics and multidimensional distance matrices) based on the465

spectral signal and its variability over space to account for different aspects466

of diversity, also including distance- and abundance-based methods (e.g. the467

Rao’s Q).468

Biodiversity measured as species richness is often used for conservation469

purposes, hence the importance of avoiding an under- or over-estimate has470
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been highlighted (Chiarucci et al., 2009). Furthermore, pairwise distance-471

based methods might be profitably used to detect not only diversity hotspots472

in an area but also the variation of biodiversity over space, and potentially473

over time, once multitemporal sets of images are used.474

In this paper we focused on optimising measures of β-diversity based on475

remote sensing data. Such measures might be used to regress species diversity476

against remotely sensed heterogeneity, based on new regression techniques477

which maximise the possibility of predicting the zones in a study area, or at478

larger spatial scales, of peculiar conservation value. As an example, shrink-479

age regression, recently applied in biodiversity conservation (Authier et al.,480

2017) could allow to directly focus on habitat modelling, which is one of the481

major strengths of remote sensing (Gillespie et al., 2008). Moreover, such482

analysis might be performed in a Bayesian framework allowing to i) model483

multidimensional covariates with non-stationary variation over space (Ran-484

dell et al., 2016), such as the bands of satellite images, and ii) model the485

errors in the output and their variation over space (Rocchini et al., 2017).486

The suggested methods for β-diversity estimate from remote sensing are487

mainly based on distances, but they could be effectively translated to relative488

abundance-based methods. As an example Rocchini et al. (2013) introduced489

the possibility of applying generalized entropy theory to satellite images with490

one single formula representing a countinuum of diversity measures changing491

one parameter. One of the best examples in this framework could be the use492

of Hill numbers, in which diversity is expressed as:493

qD =

(
S∑

i=1

pqi

) 1
1−q

(6)

where S = number of samples / pixels and pi = relative abundance of a494

species / spectral value. varying the parameter q, qD varies accordingly in495

several diversity indices, e.g. for q = 0 qD is the simple number of species,496

for lim(q) = 1 qD equals Shannon’s entropy, etc. (Hsieh et al., 2016).497

Furthermore, connectivity analysis might also be taken into account (Moila-498

nen et al., 2005, 2009). For instance, a remote sensing based connectivity499

network among different sites, based on β-diversity measures, could be ap-500

plied for the estimate of landscape connectivity and consequent genetic flow,501

as demonstrated by Vernesi et al. (2012). It has also been shown that commu-502

nity related biodiversity indicators are often missing from current monitoring503

programmes (Vihervaara et al., 2017); thus methods such as remote sensing504

based Rao’s Q diversity applied for various ecosystems might improve other-505

wise challenging monitoring of biological communities.506
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With this manuscript we hope to stimulate discussion on the available507

methods for estimating β-diversity from remotely sensed imagery by propos-508

ing innovative techniques grounded on ecological theory.509
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Figure 1: An example of how to couple information on compositional proper-
ties of the landscape by optical data together with structural (3D) properties
by laser scanning LiDAR data.
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Figure 2: Beta diversity assessment with a combination of ordination tech-
niques and remote sensing. a) Three dimensional DCA ordination space of
n=100 vegetation plots sampled in raised bogs, fens, transition mires and
Molinia meadows in the alpine foothills of Southern Germany. An inter-plot
distance of 4 SD corresponds to a full species turnover. b) Maps of the ordi-
nation axes resulting from a spatial prediction based on canopy reflectance.
Each pixel has a predicted position in the ordination space that is indicated
by its color. The color scheme corresponds to a). The map has a spatial reso-
lution of 2 m x 2 m, which is in line with the sampled plot size. c) Cumulative
change rates along the three DCA axes in a 5 x 5 pixel neighborhood. A high
change rate indicates a high beta diversity.
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Figure 3: Spectral species can be identified in a hyper- or multi-spectral
image by spatial clustering methood and their distribution can be mapped.
Such maps can further be used to apply local-based heterogeneity measure-
ments (α-diversity) as well as iterative distance based methods to build β-
diversity maps. Reproduced from (Féret and Asner, 2014a).
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Figure 4: A self-organising feature map can be built starting from an input
layer, e.g. the presence absence of a tree species or of a peculiar spectral
value) which is connected to every unit in the output layer by a weighted
connection. The self organising feature map uses unsupervised learning to
map the location of field sites within the output space on the basis of their
relative similarity in species or spectral composition. Redrawn from (Foody
and Cutler, 2003).
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Figure 5: An example of the Sparse Generalized Dissimilarity Model (SGDM)
approach. Remote sensing data and biodiversity data in the field can be cou-
pled by Sparse Canonical Correlation Analysis to produce canonical compo-
nents and a community dissimilarity matrix, which are then used to build a
Generalized Dissimilarity Model to finally derived a β-diversity map.
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Figure 6: Upper panels: Sentinel-2A scene (8 August 2016) and derived
NDVI for the agro-forestry systems test site located in southern Portugal.
Lower panels: results from Shannon’s H and Rao’s Q indices computation.
Shannon index tends to overestimate the landscape diversity when compared
to the Rao’s Q index.
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