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Abstract

We present a study of NGC 4993, the host galaxy of the GW170817 gravitational-wave event, the GRB 170817A
short gamma-ray burst (sGRB), and the AT 2017gfo kilonova. We use Dark Energy Camera imaging, AAT
spectra, and publicly available data, relating our findings to binary neutron star (BNS) formation scenarios and
merger delay timescales. NGC 4993 is a nearby early-type galaxy, with an i-band Sérsic index n=4.0 and low
asymmetry (A= 0.04± 0.01). These properties are unusual for sGRB hosts. However, NGC 4993 presents
shell-like structures and dust lanes indicative of a recent galaxy merger, with the optical transient located close
to a shell. We constrain the star formation history (SFH) of the galaxy assuming that the galaxy merger produced a
star formation burst, but find little to no ongoing star formation in either spatially resolved broadband SED
or spectral fitting. We use the best-fit SFH to estimate the BNS merger rate in this type of galaxy, as

= ´-
+ - -R 5.7 10 yrNSM

gal
3.3
0.57 6 1. If star formation is the only considered BNS formation scenario, the expected

number of BNS mergers from early-type galaxies detectable with LIGO during its first two observing seasons is
-
+0.038 0.022

0.004, as opposed to ∼0.5 from all galaxy types. Hypothesizing that the binary formed due to dynamical
interactions during the galaxy merger, the subsequent time elapsed can constrain the delay time of the BNS
coalescence. By using velocity dispersion estimates and the position of the shells, we find that the galaxy merger
occurred tmer200Myr prior to the BNS coalescence.

Key words: galaxies: individual (NGC 4993) – galaxies: evolution – galaxies: structure – gravitational waves

1. Introduction

The first identification of the optical counterpart (Abbott
et al. 2017a) of a gravitational-wave (GW) signal (Abbott
et al. 2017b) marks the beginning of a new era for multi-
messenger astronomy. The coalescence of neutron stars is
expected to have strong optical and near-infrared signatures in
the form of a kilonova, the ejecta from which are heated by the
decay of heavy nuclei produced via rapid neutron-capture
processes (r-processes). Short gamma-ray bursts (sGRBs) are
likely to be related to the same coalescence events (Eichler
et al. 1989), but the formation of the binary and the physics
involved in merging are still a matter of debate (Lipunov
et al. 1997; Faber & Rasio 2012).

The optical counterpart to the binary neutron star (BNS)
coalescence signal GW170817 was discovered independently
by several collaborations using optical telescopes, including the
Dark Energy Camera (DECam; Flaugher et al. 2015) GW team
(Soares-Santos et al. 2017). In this work, we use this DECam
data and supplement it with Hubble Space Telescope, Anglo-
Australian Telescope (AAT) spectroscopic data and with
publicly available data sets to understand the source in the
context of its host galaxy and the local environment.

In particular, we relate the BNS formation to the dynamics
and stellar evolution of the host over time, asking whether the
binary system was born as such, or whether dynamical
interactions caused its formation. Dynamically driven binary
formation has been proposed for binary black holes (e.g.,
Rodriguez et al. 2016).

Previous studies (Carter et al. 1988) classified this galaxy as
an atypical elliptical galaxy with faint concentric shells and
spectral features suggesting that the galaxy has undergone a
merging event. Shells are visible as arcs of enhanced surface
brightness corresponding to higher stellar densities around a
galaxy center, and they are thought to be the relics of the
infalling stars and interstellar matter from a galaxy merger.
Several analytical and numerical studies support the galaxy
merger scenario for the formation of shells in galaxies
(e.g., Quinn 1984; Pop et al. 2017) and show that the
distribution of shells can constrain the time of the merger

event. We study the evolution of this galaxy to discern
between different BNS formation scenarios and estimate the
rate of BNS formation in early-type galaxies, using Dark
Energy Survey (DES) data to place NGC4993 in the context
of the galaxy population.

2. Data

2.1. Photometric Data: DECam, VHS, and HST

The DECam images used in this work were taken as part of
the DECam–GW follow-up program between the nights of
2017 August 17 and September 1, using ugrizY filters. We also
use public ugrizY DECam data from 2015 June to avoid
contamination in the transient region. In addition, we extract
YJK data from the VISTA Hemisphere Survey (VHS;
McMahon et al. 2013), covering the host galaxy. The images
are coadded and registered to a common pixel scale (0 2636)
using SWARP (Bertin et al. 2002) with 3.5σ clipping to remove
cosmic-ray artifacts. An RGB coadded image of the galaxy is
presented in Figure 1. We build a χ2-detection image from the
r-, i-, and z-band data and run SEXTRACTOR (Bertin &
Arnouts 1996) in dual mode on the coadded images without
performing template subtraction.
The photometry is corrected for galactic extinction. In order

to compare the galaxy properties to a broader sample, we also
use DES data from the first year of observations (Y1; Drlica-
Wagner et al. 2017). We use MAG_AUTO magnitudes unless
otherwise stated.
NGC 4993 was also observed during Hubble Space

Telescope (HST) Cycle 24 (PropID 14840, PI: Bellini) using
ACS in F606W. The data were publicly released in 2017 April
and were accessed via the Hubble Source Catalog (HSC;
Whitmore et al. 2016).

2.2. Spectroscopic Data: 6dF and AAT

The 6dF Galaxy Survey (Jones et al. 2004) final release (Jones
et al. 2009) includes an optical spectrum of the center of NGC
4993 with an estimated redshift (z= 0.009680± 0.000150).
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Spectra of 14 galaxies with ~ -v 3000 km shelio
1 and within

a 1° radius of NGC 4993 were obtained in one target of
opportunity exposure of the AAOmega spectrograph at the
Anglo-Australian Telescope (AAT) on 2017 August 27. Of
those, 10 spectral fits passed quality cuts. All the spectra used
here are centered on their galaxy nucleus with a 2″ aperture.

3. Host Morphology

3.1. CAS and GALFIT

We begin our study of NGC4993 with an analysis of its
morphological properties, employing the CAS non-parametric
light quantification (Conselice 2003) and parametric Sérsic
light profile fitting with GALFIT (Peng et al. 2010). Both
methods utilize a mask to exclude other sources in the image
and the location of the kilonova event. The CAS system is able
to pick out the salient features of galaxy morphology, allowing
galaxy types to be assigned and identifying objects that are
likely to have undergone a recent major merger (see
Conselice 2003 for details). Meanwhile, fitting the light profile
additionally provides us with an alternative estimate of the total
magnitude and can reveal more subtle aspects of galaxy
morphology within the residuals of the model-subtracted
image.

GALFIT is run on the DES and VHS images in two ways:
band-by-band and simultaneously across all bands using a
modified version, GALFIT-M (Vika et al. 2013). In the second
case the Sérsic fitting parameters are allowed to vary with
wavelength as a second-order polynomial. We extract the
point-spread function (PSF) model required by GALFIT from
the coadded images with PSFEX (Bertin 2011) and initialize
the fitting parameters based on measurements of the galaxy
from SEXTRACTOR. All parameters are left free without
constraints, except for the central position in the single-band
fits. This is allowed to vary by only ±1 pixel as it is already
well constrained by SEXTRACTOR.

In order to assess the stability of GALFIT and obtain an
estimate of the uncertainties on the measurements, each single-
band run is performed 10,560 times, varying the inputs around
their nominal values. We take the median as our final
measurement and the standard deviation as the uncertainty.

3.2. Results

Following the definitions given in Conselice (2003), we find
concentration C=3.348±0.035, asymmetry A=0.04±0.01,
and clumpiness S=0.05±0.05. These values are typical for an
early-type galaxy. In Figure 2, we compare these values to field
galaxies of similar masses (within 0.2 dex of NGC 4993) and
redshifts (z< 0.2) from the GAMA survey and to a sample of
sGRB hosts (C. Conselice et al. 2017, in preparation) taken in
F814W imaging from HST. NGC 4993 stands out as peculiar with
respect to other GRB hosts: such objects tend to lie on the more
highly asymmetric side of late-type galaxies.
The results from the single-Sérsic fit across all bands are

summarized in Table 1 (the band-by-band fits give broadly

Figure 1. Left panel: DECam coadded image of NCG 4993 in gri. Shell structures indicative of a recent galaxy merger are clearly visible. Middle panel: r-band
residuals from GALFIT after subtraction of the best-fitting single-Sérsic light profile. Right panel: F606W-band HST ACS image with a 3-component galaxy model
subtracted. Dust lanes crossing the center of the galaxy are evident. The green lines show the position of the transient. The BNS counterpart is only present in the
middle panel.

Figure 2. Concentration vs. asymmetry for NGC 4993 (in blue), compared to
an sGRB hosts sample (C. Conselice et al. 2017, in preparation) in red, and
field galaxies (black dots) with stellar mass within ±0.2 dex of NGC 4993
value and redshift z<0.2. The lines separate different Hubble types as shown
in Conselice (2003).
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consistent results). We find an increase in Sérsic index toward
redder bands and a rotation in the position angle. This rotation
of bluer versus redder bands suggests there could be two
superimposed stellar populations with differing orientations.
This may have arisen during the course of the galaxy’s secular
evolution but could also be caused by a minor galaxy merger,
as indicated by the presence of shells.

The middle panel of Figure 1 shows DECam r-band
residuals from GALFIT and the position of the transient. At
least four shell structures are clearly visible. The surface
brightness radial profile from the residual image shows an
excess at the shell positions of ~ -25 mag arcsec 2 . Closer
inspection with HST data (right panel of Figure 1) reveals a
possible further broad inner shell, on which the transient seems
to lie, and obvious dust lanes (visible also as a negative residual
in the DECam version). In summary, these results provide
compelling evidence for a recent minor galaxy merger in
NCG 4993, and the location of the kilonova event with respect
to the shells leads us naturally to ask whether there is a causal
connection between the two, for instance via dynamical
interaction.

The r-band absolute magnitude from a 4 arcsec2 region
around the transient location in the galaxy-subtracted template
image is −10.65. This luminosity implies a rather high stellar
density in the locale of the BNS coalescence, implying that
dynamical interactions between stars are more probable in this
region compared to typical galaxy stellar densities.

From Figure 2 we see that clear major galaxy mergers are
unusual among sGRB hosts. Furthermore, the other sGRBs are
at cosmological distances and thus are mostly undergoing
extensive galaxy formation through star formation or merging.
If the hosts have to be related by some common features, this is
an indication that NGC 4993 has undergone some merging
activity, but a minor merger such that the bulk morphology is
still elliptical. We thus explore the possibility that the kilonova
was a result of a recent galaxy merger in NGC 4993.

4. Photometric and Spectroscopic SED

4.1. SED Fitting Methods

We use pPXF (Cappellari & Emsellem 2004;
Cappellari 2017) for the spectral fitting. It enables extraction
of the stellar kinematics and stellar population from absorption
line spectra of galaxies, using a maximum penalized likelihood
approach. We use the Miles stellar libraries and fit over the

wavelengths 4000–7409Å, excluding the range 5500–5600Å
of the 6dF spectrum, where a strong sky line contaminates
the flux.
We use LEPHARE (Arnouts et al. 1999; Ilbert et al. 2006) for

the broadband spectral energy distribution (SED) fitting. We
add a 0.05 systematic uncertainty in quadrature to the
magnitudes. The simple stellar population (SSP) templates
used are Bruzual & Charlot (2003), with two metallicities ( Z
and Z2.5 ), a Chabrier (2003) initial mass function (IMF), and
a Milky Way (Allen 1976) extinction law. The SFH chosen is
lognormal:

t
pt

Y = -
t

-

( ) ( )
( )

t t
t

e, ,
1

2
, 10

2

t tln ln 0 2

2 2

as it is the most representative family of models with only two
parameters (Gladders et al. 2013). Here, t0 and τ are the half-
mass time and width.
Motivated by our morphological analysis, we allow for an

additional burst of recent SF. This is modeled as a Gaussian
centered at tburst with a width of 10Myr and peaking at a
fraction 0.4–0.1 of the peak of the lognormal SFH (as no
evidence for strong late SF is found).
The same templates are used to perform spatially resolved SED

fitting across DES+VHS coadded images within 10×10 pixels,
including the galaxy dust extinction. The other sources in the
field are masked out using the segmentation map output by
SEXTRACTOR.

4.2. SED Fitting Results

Figure 3 shows the best-fit model of the 6dF spectrum,
which results in a reduced χ2 of 1.22. An analysis of the mass
fraction in age shows that part of the core galaxy stellar
population has a supersolar metallicity, but the weighted mean
value á ñ = - [ ]M H 0.012 0.010 is marginally consistent
with solar metallicity. The mean age is 11.298±0.054 Gyr,
and the mass-to-light ratio is 5.23±0.15 in the r band.
The stellar model fit reveals the existence of weak ionized

gas emission lines. However, the line ratios from the fit
suggests they are produced by a harder ionizing source than
star formation, formally lying in the AGN region of the
Baldwin, Phillips, and Telervich (BPT; Baldwin et al. 1981)
diagram. Blanchard et al. (2017) argue that there is a weak
AGN present in the core of the galaxy on the basis of radio and
X-ray emission, and so we conclude that there is no evidence of

Table 1
Outputs from GALFIT Parametric Sérsic Fits Performed on the ugrizY DECam Coadded Images and YJKs VHS Data

Filter MAG_AUTO Mag re n ò θ

u 14.24 14.15 61.8 3.2 0.15 −13.9
g 12.95 12.80 62.5 3.4 0.15 −12.8
r 12.08 11.90 63.5 3.7 0.16 −11.2
i 11.65 11.45 64.4 4.0 0.16 −9.9
z 11.34 11.13 65.3 4.3 0.16 −8.4
Y 11.13 10.96 65.7 4.4 0.16 −7.7
YVHS 11.27 11.00 65.9 4.5 0.16 −7.5
J 11.00 10.77 67.3 5.0 0.17 −5.2
Ks 11.08 10.68 72.9 6.7 0.19 +3.5

±5×10−4 ±0.07 ±3×10−3 ±4×10−5 ±5×10−3

Note.The fit was joint across bands, allowing the effective radius, re (in pixels), Sérsic index, n, ellipticity, ò=1−b/a, and position angle, θ, to vary with
wavelength. One pixel corresponds to 0 2636. The final row lists indicative errors based on the single-band analysis.
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recent star formation from the 6dF spectrum, irrespective of the
highly uncertain O III/Hβ ratio. A comparison of galaxies in the
group using AAT spectra and classification by Kewley et al.
(2006) is shown in Figure 3.

Given the evidence of dust presence in the HST study, we
estimate the dust content using the Balmer decrement (Berman
1936) observed from the spectrum. The reddening is
E(B− V )=0.12±0.50 in the case of I(Hα)/I(Hβ)=3.1,
which is expected in the case of AGN activity. We therefore
restrict our dust models to have reddening values 0.1, 0.2, 0.3,
0.4, and 0.5 in the photometric fits.

The photometric best-fitting template has a solar metallicity,
a quickly declining lognormal SFH with t0=3 Gyr, and
τ=0.1. A low reddening E(B− V )=0.1 is preferred, and the
stellar mass is (2.95± 0.65)×1010Me. The inclusion of a late
SFH burst is disfavored by the fitting apart from intermediate
apertures.

Previous work found that the presence of dust lanes may bias
the galaxy stellar mass from unresolved galaxy SED fits to
lower values (Sorba & Sawicki 2015). The total stellar mass
from fitting over the SEXTRACTOR segmentation map of NGC
4993 is (3.8± 0.20)×1010 Me, more than 1σ higher than the
unresolved SED fitting. The specific SFR (sSFR) map from our
pixel SED fits is shown in Figure 4, where the shell structure is
clearly visible, suggesting that the sSFR is slightly more
accentuated in the stellar halo compared to the inner parts.
Younger ages (by ∼2 Gyr) are also preferred in the outer
regions, though we still do not find evidence for a star
formation burst at late times and explain our results by the
stripping of stellar populations from the lower-mass galaxy in a
minor dry merger. A dust model with E(B− V )=0.1 is
preferred in the inner few kiloparsecs, while E(B− V )=0 is
found outside. Despite the presence of dust lanes, an analysis of
the HST photometry and a comparison with extinction models
suggests that the effect of dust is not extreme, with reddening
values that are consistent with 0.1 in the core. We therefore
believe that the dust obscuration does not play a significant role
in our SFR estimates.

4.3. Pixel Color Diagrams

In Figure 4, we show a color–magnitude diagram for all the
pixels within the field of view of the DECam data near the

galaxy. The image has been cleaned of stars and other
contamination, thus all points come from the galaxy itself.
The position of the GW source, 10 6 offset from the center, is
the cyan colored pixels, while the center of the galaxy is shown
by the red points. This galaxy is well represented by a pixel
“main sequence” that is bluer at fainter levels, which is typical
of early-type galaxy color gradients (e.g., Lanyon-Foster
et al. 2007). We conclude that there is no significant difference
between the transient position and other outer light, although it
is bluer than the core region. This further supports the scenario
in which the BNS formation is not related to some particular
recent star formation event in this region.

5. Discussion and Conclusions

5.1. BNS Formation and Delay Time under the Hypothesis of
Galaxy Merger

In the most accepted shell formation scenarios, the shells are
stellar debris coming from the less massive, stripped galaxy,
and the arcs form at the apocenter of the orbits of the infalling
material (Quinn 1984).
Based on our results, we believe that NGC 4993 experienced

a dry minor galaxy merger with still visible signs. The shells
are expected to be washed out within a time that depends on the
velocity dispersion at their position. We estimate the shell
survival time in two ways: based on the velocity dispersion of
the galaxy, as well as the velocity dispersion of the shell itself.
From the 6dF spectrum the line-of-sight central velocity
dispersion is s =  -( )160.0 9.1 km sv

1. We estimate its
value at the position of the transient. The velocity dispersion
of early-type galaxies drops from its central peak value at larger
radii, and observations show that the maximum drop to the
outer parts of ellipticals near the effective radius is ∼40% of
the central value (Emsellem et al. 2004). Based on the distance
of the shell from the center, R≈4kpc, we estimate that the
dynamical time at this radius is tdyn≡R/σv≈60Myr (the
line-of-sight velocity is relevant here, given the shell’s
geometry, but, e.g., if we assume a 3D isotropic velocity
dispersion it would reduce the dynamical time by 3 ).
So far, we have no measurement of the shell’s velocity

dispersion, but estimates from the literature suggest for similar
shells in other galaxies s » -20 km sv

1 (Quinn 1984). This

Figure 3. Left panel: spectroscopic fit of the 6dF optical spectrum. The black line is the observed spectrum, the red line is the PPXF fit for the stellar component, and
the orange line is the best fit including ionized gas emission lines. The zoomed-in panels show Hβ, OIII, NII, and Hα lines. The green points at the bottom are the fit
residuals, while the purple line is the gas-only best-fit model spectrum. Right panel: BPT diagram for NGC 4993 (red star) and the other galaxies (black points) in the
galaxy group with AAT spectra available. The dashed lines represent the Kewley et al. (2006) classification method for AGN, star-forming (H II), and composite
(Comp) galaxies. Many of the group galaxies have very weak AGN or LINER-like emission. Error bars represent 1σ error from the propagation of fit errors on line
strengths.
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would give a dynamical timescale of tdyn≈192Myr. Detailed
simulations of shells in other galaxies suggest that survival time
could be even larger that 1 Gyr, depending on the assumed
scenario (Pop et al. 2017).

The survival time of the shell could be used as an upper limit
for the time the minor merger took place, i.e., tdyn�tmerg, so
we estimate tmerg200Myr.

If the BNS was formed as such in a shell, then we would
have expected to see evidence for recent star formation, but we
find no indication of this. In the absence of star formation, it is
plausible that the BNS coalescence was triggered by a
dynamical process, e.g., NS–NS capture or the destabilization
of a pre-existing wide-separation binary. These processes will
be quite sensitive to the stellar density, which, given the Sérsic
index and the luminosity from the residual image found in
Section 3.2, is high in the center of NGC 4993 and around the
transient position. If this dynamical hypothesis is true, then the
delay time ΔtNSM between the BNS formation and coalescence

is 200Myr. On the other hand, Blanchard et al. (2017) find a
median delay time of -

+11 Gyr1.4
0.7 under the assumption that the

binary was formed through secular SF.

5.2. Galaxy Environment

If the binary formation is related to dynamical processes in
galaxy merging, as we are investigating here, then this is most
likely to happen in galaxy groups and low-mass clusters.
According to the 2MASS catalog (Tully 2015), NGC 4993
resides in a group of which we analyze the remaining seven
galaxies. A spectral analysis shows that NGC 4993 is not the
only galaxy showing AGN activity (see Figure 3), but it is
peculiar in terms of age, metallicity, and mass-to-light ratio. It
shows an older stellar population (the mean age of the other 13
galaxies is Log (Age)=9.56±0.17), lower metallicity
(mean: M/H=−0.31± 0.11), and higher M/Lr (mean:
2.41± 0.45) than the average. The group has a projected virial
radius of Rvir=0.36 Mpc and a line-of-sight velocity
dispersion s = -143 km sv

1 (Tully 2015). The crossing time
is therefore s~ ~( )t R 2.5 1.6 Gyrv vcr .
If galaxy mergers are correlated to BNS coalescence, future

GW studies could possibly concentrate on galaxy groups (but
note that these are crowded regions and therefore matching
candidates to a host could be difficult). In order to have precise
measurements of H0, one needs to identify the host galaxy
redshift clearly. When the match is clear, the properties of the
type of host galaxy found could help future studies to select the
right host galaxy or create galaxy catalogs of likely hosts for
GW–EM follow-up and untriggered kilonova searches (Doctor
et al. 2017). In fact, large photometric surveys such as DES,
LSST, or WFIRST are expected to observe kilonova events at
redshifts beyond the sensitivity of GW experiments, where the
angular separation between galaxies decreases (Scolnic
et al. 2017).

5.3. BNS Merging Constraints

We derive a constraint on neutron stars merging rate at time t
by using

a= ¢( ) ( ) ( )R t R t , 2NSM NS

where α is the fraction of neutron stars that are in binaries,
t′=t−ΔtNSM, and the fraction of mass of formed stars that
are NSs is

   ò¢ = F Y Q( ) ( ) ( ) ( ) ( )R t dM M t M , 3NS NS

with F( )M being the IMF, Ψ(tå) is our best-fit SFH, and
ΘNS(Må) is 1 for star mass ranges of 8Me<M<20Me, and
zero otherwise. We drop the metallicity dependence in ΘNS

because we only consider a solar metallicity for the galaxy, as a
result of our spectroscopic fit. tå is the time when the progenitor
of the NS was formed, therefore satisfying t′=tå+tlife, with
tlife being the lifetime of the progenitor before becoming an NS.
We assume a tlife=0.02 Gyr, but our calculation is insensitive
to this choice as the typical lifetime of these massive stars
(∼0.01–0.03 Gyr) is much shorter than the timescale over
which the SFH found for NGC 4993 is changing at late times.
We assume a Chabrier IMF, but this choice is not relevant, as
we are only exploring the high-mass end of the IMF. Assuming
α=0.002 and the distribution of ΔtNSM from Vangioni et al.

Figure 4. Upper panel: sSFR map resulting from the pixel SED fitting of DES
+VHS bands. Other objects have been masked out. One pixel corresponds to
10×10 DECam pixels and to a physical size of 0.526 kpc at the galaxy
redshift. Lower panel: pixel color–magnitude diagram for the pixels covering
NGC 4993 from DECam g and r single epoch exposures taken previously of
the BNS event. The core of the galaxy is shown in red, while the cyan points
represent the 1 5 around the location of the BNS event (10 6 from the center).
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(2016, their Figure 3 for solar metallicity), and our best-fit SFH
from Equation (1) with t0=3 Gyr and τ=0.3, we get an NS
formation rate of = ´-

+ - -R 3.6 10 yrNS
gal

3.6
28 5 1 and a BNS

merger rate of = ´-
+ - -R 5.7 10 yrNSM

gal
3.3
0.57 6 1 for the whole

galaxy. Errors reflect the uncertainty on the SFH, which
dominates our errors: they represent the two central quartiles of
the rates distribution computed with the SFHs of the pixel SED
fitting over the galaxy.

Given the sensitivity of the BNS merger event rate to the
recent SFR of a galaxy, it is somewhat surprising that
GW170817 occurred in an old, early-type galaxy. We therefore
ask what is the probability of observing such an event in any
early-type galaxy within the LIGO-detectable volume. To make
this estimate, we integrate the stellar mass function of early-
type galaxies from Weigel et al. (2016) and scale the per-solar-
mass rate from Equation (2) to the mass contained within the
LIGO-detectable volume (radius 80Mpc). We find

= -
+ - -R 23 yr GpcNSM

early
14
2 1 3 resulting in -

+0.038 0.022
0.004 expected

events. This calculation assumes that the SFH of NGC 4993 is
representative of local early-type galaxies. In fact, much of the
mass will be contained in more massive, and on average older
and less star-forming, galaxies. We contrast this with a similar
calculation for all galaxy types, using the cosmic SFR density
from Gladders et al. (2013), finding » - -R 270 yr GpcNSM

all 1 3

and ∼0.5 expected events.
This result shows that it is unlikely that we observed one

such BNS merger with LIGO over the combined nine months
of operations in an early-type galaxy. The assumptions in the
calculation include the fraction of NS that form in binaries
(α= 0.002) and the delay time distribution, both coming from
binary star models (where the progenitors of the BNS were
already a bound system) and satisfying Milky Way constraints.
If the BNS formation mechanism is via dynamical interaction,
our result could point to a higher value of α or a shorter ΔtNSM
for systems that recently underwent a galaxy merger, more so
for those that have high stellar density (such as early-type
galaxies). It is therefore of interest to know the fraction of
galaxies similar to NGC 4993 that show similar signs of a
galaxy merger in the form of visible shells. We select galaxies
from the first year of DES data with size, surface brightness,
and Sérsic index within 10% of the best-fit values for NGC
4993. We find 1100 such galaxies, and we visually inspect
them to identify shell galaxies. Only 15% of these objects
display shells, and so NGC4993 is unusual among early-type
galaxies. This is far from conclusive evidence for a merger
origin of BNS events. However, the coincidence of evidence
for a recent merger in a galaxy for which a BNS event was
otherwise improbable is compelling.
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