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Abstract Fitting stochastic kinetic models represented by
Markov jump processes within the Bayesian paradigm is
complicated by the intractability of the observed-data likeli-
hood. There has therefore been considerable attention given
to the design of pseudo-marginal Markov chain Monte Carlo
algorithms for suchmodels. However, thesemethods are typ-
ically computationally intensive, often require careful tuning
and must be restarted from scratch upon receipt of new
observations. Sequential Monte Carlo (SMC) methods on
the other hand aim to efficiently reuse posterior samples at
each time point. Despite their appeal, applying SMCschemes
in scenarios with both dynamic states and static parameters
is made difficult by the problem of particle degeneracy. A
principled approach for overcoming this problem is to move
each parameter particle through a Metropolis-Hastings ker-
nel that leaves the target invariant. This rejuvenation step is
key to a recently proposed SMC2 algorithm, which can be
seen as the pseudo-marginal analogue of an idealised scheme
known as iterated batch importance sampling.Computing the
parameter weights in SMC2 requires running a particle filter
over dynamic states to unbiasedly estimate the intractable
observed-data likelihood up to the current time point. In this
paper, we propose to use an auxiliary particle filter inside
the SMC2 scheme. Our method uses two recently proposed
constructs for sampling conditioned jump processes, and we
find that the resulting inference schemes typically require
fewer state particles than when using a simple bootstrap fil-
ter. Using two applications, we compare the performance
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of the proposed approach with various competing methods,
including two global MCMC schemes.

Keywords Auxiliary particle filter (APF) · Bayesian
inference · Markov jump process (MJP) · Sequential Monte
Carlo (SMC) · Stochastic kinetic model (SKM)

1 Introduction

Markov jumpprocesses (MJPs) are routinely used to describe
the dynamics of discrete-valued processes evolving continu-
ously in time. Application areas include (but are not limited
to) systems biology (Golightly andWilkinson 2005; Wilkin-
son 2012), predator–prey interaction (Ferm et al. 2008; Boys
et al. 2008) and epidemiology (Lin and Ludkovski 2013;
McKinley et al. 2014).Here,we focus on theMJP representa-
tion of a stochastic kineticmodel (SKM),whereby transitions
of species in a reaction network are described probabilis-
tically via an instantaneous reaction rate or hazard, which
depends on the current system state and a set of rate con-
stants, with the latter typically the object of inference.

Owing to the intractability of the observed-data likelihood,
Bayesian inference for SKMs is typically performed via
Markov chain Monte Carlo (MCMC). Early attempts based
on data augmentation were used by Gibson and Renshaw
(1998) (see also O’Neill and Roberts (1999)) in the context
of epidemiology, and by Boys et al. (2008) for more general
reaction networks. Unfortunately, such methods can suffer
from poormixing due to dependence between the parameters
and latent states to be imputed. Recently proposed pseudo-
marginal MCMC schemes, e.g. particle MCMC (pMCMC)
(Andrieu et al. 2010), offer a promising alternative and have
been successfully applied in both the epidemiology (McKin-
ley et al. 2014) and systemsbiology (Golightly andWilkinson
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2015) literature. However, these ‘global’ inference schemes
require careful selection and tuning of proposal mechanisms
andmust be restarted from scratch upon receipt of new obser-
vations or when assimilating information from multiple data
sets.Moreover, the efficiency of such schemes depends heav-
ily on the mechanism used to update the latent jump process.

We therefore consider sequential Monte Carlo (SMC)
schemes which recycle posterior samples from one time
point to the next through simple reweighting and resam-
pling steps (see e.g. Doucet et al. (2001) for an introduction
and Jacob (2015) for a recent review). The main drawback
of SMC in scenarios with both dynamic states and static
parameters is particle degeneracy: that is, when the number
of distinct particles decreases over time. Ad-hoc approaches
for overcoming this problem include the use of jittering each
static parameter particle before propagation to the next time
point (Gordon et al. 1993; Liu and West 2001). In special
cases when the distribution of parameters given all latent
states is tractable, this structure can be exploited to give a
particle filter that uses conditional sufficient statistics to reju-
venate parameter samples (Storvik 2002; Fearnhead 2002).
A related approach is the particle learning (PL) method of
(Carvalho et al. 2010) which combines the use of condi-
tional sufficient statistics with an auxiliary particle filter (Pitt
and Shephard 1999). As discussed in Chopin et al. (2010)
however, PL does not completely overcome the degeneracy
issue. Chopin (2002) proposed a particle filter for static mod-
els (the so-called iterated batch importance sampling (IBIS)
algorithm) that weights parameter particles by the observed-
data likelihood contributions at each time point. Particle
degeneracy is mitigated via a resample-move step (Gilks
and Berzuini 2001), which ‘moves’ each parameter particle
through a Metropolis-Hastings kernel that leaves the target
invariant. This step can be executed subject to the fulfilment
of some degeneracy criterion e.g. small effective sample size.
Unfortunately, intractability of the observed-data likelihood
precludes the use of IBIS for the class of models considered
here.

The focus of this paper, therefore, is on the pseudo-
marginal analogue of IBIS, which replaces the idealised
particle weights with estimates obtained by running an SMC
scheme over dynamic states for each parameter particle. The
nested use of particle filters in this way results in an algorithm
known as SMC2 (Chopin et al. 2013). The resample-move
step is accomplished by moving each parameter particle
through a pMCMC kernel. The algorithm allows for choos-
ing the number of state particles dynamically, by monitoring
the acceptance rate of the resample-move step. Furthermore,
the output of the algorithm can be used to estimate the model
evidence at virtually no additional computational cost. This
feature is particularly useful in the context ofmodel selection,
for example,when choosingbetween competing reaction net-
works based on a given data set.

The simplest implementation of SMC2 uses a bootstrap
filter over dynamic states in both the reweighting and move
steps. However, this is likely to be particularly inefficient
unless the noise in the measurement error process dominates
the intrinsic stochasticity in theMJP. In this case, highly vari-
able estimates of the observed-data likelihood will lead to
small effective sample sizes, increasing the rate at which the
resample-move step is triggered.Moreover, use of a bootstrap
filter-driven pMCMC kernel is also likely to be highly ineffi-
cient, requiring many state particles to maintain a reasonable
acceptance rate. In the special case of no measurement error,
Drovandi and McCutchan (2016) use the alive particle filter
of Del Moral et al. (2015) to drive an SMC2 scheme.

Our contribution is the development of an auxiliary parti-
cle filter for use inside the SMC2 scheme. Our method uses
two recently proposed constructs for sampling conditioned
jump processes and can be applied in scenarios when only
observations on a subset of system components are available.
Moreover, observations may be subject to additive Gaussian
error. We find that the proposed approach typically requires
fewer state particles than when using a simple bootstrap fil-
ter. Using two applications and both real and synthetic data,
we compare the performance of the proposed approach with
various competing methods, including alive SMC2.

The remainder of this paper is organised as follows. In
Sect. 2, a brief review of the Markov process representa-
tion of a reaction network is presented. Section 3 outlines
the structure of the problem before presenting details of the
auxiliary particle filter and its use inside SMC2. Themethod-
ology is used in a number of applications in Sect. 4 before
conclusions are drawn in Sect. 5.

2 Stochastic kinetic models

We give here a brief introduction to stochastic kinetic mod-
els and refer the reader to Wilkinson (2012) for an in-depth
treatment.

Consider a reaction network involving u species X1,X2,

. . . ,Xu and v reactionsR1,R2, . . . ,Rv , with each reaction
denoted by Ri and written as

Ri : pi1X1 + pi2X2 + · · · + piuXu

−→ qi1X1 + qi2X2 + · · · + qiuXu

where stoichiometric coefficients pi j and qi j are non-
negative integers. When a type i reaction does occur, the
system state changes discretely, via the i th row of the so-
called net effect matrix A, a v × u matrix with (i, j)th
element given by qi j − pi j . In what follows, for nota-
tional convenience, we work with the stoichiometry matrix
defined as S = A′. Let X j,t denote the (discrete) num-
ber of species X j at time t , and let Xt be the u-vector
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Xt = (X1,t , X2,t , . . . , Xu,t )
′. The time evolution of Xt can

be described by a vector of rates (or hazards) of the reactions
together with the stoichiometry matrix which describes the
effect of each reaction on the state. We therefore define a
rate function hi (Xt , ci ), giving the overall hazard of a type i
reaction occurring, and we let this depend explicitly on the
reaction rate constant ci , as well as the state of the system
at time t . We model the system with a Markov jump process
(MJP), so that for an infinitesimal time increment dt , the
probability of a type i reaction occurring in the time interval
(t, t + dt] is hi (Xt , ci )dt . Under the standard assumption
of mass action kinetics, the hazard function for a particular
reaction of type i takes the form of the rate constant mul-
tiplied by a product of binomial coefficients expressing the
number of ways in which the reaction can occur, that is

hi (Xt , ci ) = ci

u∏

j=1

(
X j,t

pi j

)
.

Values for c = (c1, c2, . . . , cv)
′ and the initial system state

X0 = x0 complete specification of the Markov process.
Although the transition probability associated with this pro-
cess is rarely analytically tractable (except in some simple
cases) generating exact realisations of the MJP is straight-
forward. This is due to the fact that if the current time and
state of the system are t and Xt respectively, then the time to
the next event will be exponential with rate parameter

h0(Xt , c) =
v∑

i=1

hi (Xt , ci ),

and the event will be a reaction of type Ri with probability
hi (Xt , ci )/h0(Xt , c) independently of the inter-event time.
This simulation method is typically referred to asGillespie’s
direct method in the stochastic kinetics literature, after Gille-
spie (1977).

2.1 Example 1: a stochastic epidemic model

The Susceptible–Infected–Removed (SIR) epidemic model
(see e.g. Andersson and Britton 2000) describes the evolu-
tion of two species (susceptibles X1 and infectives X2) via
two reaction channels which correspond to an infection of a
susceptible individual and a removal of an infective individ-
ual:

R1 : X1 + X2 −→ 2X2

R2 : X2 −→ ∅.

The stoichiometry matrix is given by

S =
(−1 0

1 −1

)

and the associated hazard function is

h(Xt , c) = (c1X1,t X2,t , c2X2,t )
′.

2.2 Example 2: prokaryotic autoregulation

A commonly used mechanism for autoregulation in prokary-
otes which has been well-studied and modelled is a negative
feedback mechanism whereby dimers of a protein repress its
own transcription (e.g. Arkin et al. 1998). A simplifiedmodel
for such a prokaryotic autoregulation, based on this mecha-
nism of dimers of a protein coded for by a gene repressing its
own transcription, can be found in Golightly and Wilkinson
(2005) (see also Golightly and Wilkinson (2011)). The full
set of reactions in this simplified model are

R1 : DNA + P2 −→ DNA · P2

R2 : DNA · P2 −→ DNA + P2

R3 : DNA −→ DNA + RNA

R4 : RNA −→ RNA + P

R5 : 2P −→ P2

R6 : P2 −→ 2P

R7 : RNA −→ ∅
R8 : P −→ ∅.

Note that this model contains a conservation law, so that the
total number k of DNA · P2 and DNA is fixed for all time.
Denoting the number of molecules of RNA, P, P2 and DNA
as X1, X2, X3 and X4 respectively, gives the stoichiometry
matrix

S =

⎛

⎜⎜⎝

0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1

−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0

⎞

⎟⎟⎠ ,

and associated hazard function

h(X, c) = (c1X4X3, c2(k − X4), c3X4, c4X1,

c5X2(X2 − 1)/2, c6X3, c7X1, c8X2)
′.

where we have dropped t to ease the notation.

3 Sequential Bayesian inference

3.1 Setup

Suppose that the Markov jump process is not observed
directly, but observations (on a regular grid) yt , t = 1, 2, . . .
are available and assumed conditionally independent (given
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the latent jump process) with conditional probability distri-
bution obtained via the observation equation

Yt = P ′Xt + εt , εt ∼ N (0,Σ) , t = 1, 2, . . . (1)

Here, Yt is taken to be a length-p vector, P is a constant
matrix of dimension u × p and εt is a length-p Gaussian
random vector. The density p(yt |xt ) linking the observed
and latent processes satisfies

p(yt |y1:t−1, x[1,t], c) = p(yt |xt , c)

where x[1,t−1] denotes the MJP over an interval [1, t − 1].
We assume that primary interest lies in the recursive explo-

ration of the marginal posteriors p(c|y1:t ), t = 1, . . . , T .
Upon ascribing a prior density p(c) to the parameters, Bayes
theorem gives

p(c|y1:t ) ∝ p(c)p(y1:t |c) (2)

∝ p(c|y1:t−1)p(yt |y1:t−1, c) (3)

which immediately suggests a sequential importance sam-
pling scheme that repeatedly reweights a set of Nc param-
eter samples (known as ‘particles’ in this context) by
the observed-data (or ‘marginal’) likelihood contributions
p(yt |y1:t−1, c). This approach is used in the iterated batch
importance sampling (IBIS) algorithm of Chopin (2002),
together with MCMC steps for rejuvenating parameter sam-
ples in order to circumvent particle degeneracy. Although
each observed-data likelihood contribution is typically
intractable, progress can be made by substituting a non-
negative estimate of p(yt |y1:t−1, c). In order for the resulting
algorithm to target the correct posterior, these estimates
should be constructed so that the observed-data likelihood
up to the current time point, p(y1:t |c), can be unbiasedly
estimated. This task can be achieved by running a particle
filter with Nx particles targeting p(xt |y1:t , c) for each c-
particle. Particle MCMC steps are then occasionally used
to rejuvenate the sample. This approach was proposed and
theoretically justified by Chopin et al. (2013) who term the
resulting algorithm SMC2 due to the use of nested filters. The
simplest implementation of the algorithm runs a bootstrap
particle filter (e.g. Gordon et al. 1993) for each c-particle,
which only requires the ability to forward-simulate the MJP
and evaluate p(yt |xt , c). Despite the appeal of this sim-
ple approach, the resulting estimates of the observed-data
likelihood contributions can have high variance, unless the
observations are not particularly informative, limiting the
efficiency of the SMC2 scheme. This is due to the collapse
of the bootstrap particle filter, which results from very few
state trajectories having reasonable weight. The problem is
exacerbated in the case of no measurement error, where
only state trajectories that ‘hit’ observations are assigned

a non-zero weight. Drovandi and McCutchan (2016) use
the alive particle filter of Del Moral et al. (2015) (see also
Appendix A.1) to avoid this problem. Unfortunately, this
approach can be extremely computationally expensive, since
it repeatedly generates simulations of the jump process until
a predetermined number of hits are obtained. In what fol-
lows, therefore, we use an auxiliary particle filter (for which
the bootstrap filter can viewed as a special case) to efficiently
estimate each p(yt |y1:t−1, c). We describe the auxiliary par-
ticle filter in the next section before describing its use inside
an SMC2 scheme.

3.2 Auxiliary particle filter

The aim of the particle filter is to recursively approxi-
mate the sequence of filtering densities p(xt |y1:t , c). To
this end, suppose that at time t − 1, a weighted sample
{xit−1, w

i
t−1,c}Nx

i=1 is available, and is approximately dis-
tributed according to p(xt−1|y1:t−1, c). Note that although
the predictive p(x(t−1,t]|y1:t−1, c) is typically intractable,
the weighted sample from the previous time point can
be used to give the approximation p̂(x(t−1,t]|y1:t−1, c) ∝∑Nx

i=1 p(x(t−1,t]|xit−1, c)w
i
t−1,c. Hence, upon receipt of a

new datum yt , the particle filter constructs the approximate
posterior

p̂(x(t−1,t]|y1:t , c) ∝ p(yt |xt , c)
Nx∑

i=1

p
(
x(t−1,t]|xit−1, c

)
wi
t−1,c

(4)

from which draws can be generated using (for exam-
ple) importance resampling. A simple strategy is to use
p̂(x(t−1,t]|y1:t−1, c) as a proposal mechanism, which is
straightforward to sample from by picking a particle xit−1
with probability wi

t−1,c and simulating according to

p(x(t−1,t]|xit−1, c) using Gillespie’s direct method (see
Sect. 2). The state xit can be stored along with the new
(unnormalised)weight w̃i

t,c = p(yt |xit , c). Resampling (with
replacement) amongst the particles using theweights as prob-
abilities gives a sample approximately distributed according
to (4). Repeating this procedure for each time point gives the
bootstrap particle filter of Gordon et al. (1993).

The auxiliary particle filter (APF) of Pitt and Shephard
(1999) (see also Pitt et al. 2012) can be seen as a generalisa-
tion of the bootstrap filter. The APF is constructed by noting
that

p(yt |xt , c)p(x(t−1,t]|xt−1, c)

= p(yt |xt−1, c)p(x(t−1,t]|xt−1, yt , c)

which immediately suggests an importance resampling
strategy that initially preweights each xit−1 particle by
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w̃t−1|t,c = p(yt |xit−1, c)w
i
t−1,c and propagates according

to p(x(t−1,t]|xit−1, yt , c). The new (unnormalised) weight
is w̃i

t,c = 1, giving the fully adapted form of the APF
(Pitt and Shephard 2001). In practice, p(yt |xt−1, c) and
p(x(t−1,t]|xt−1, yt , c) are intractable and approximations
g(yt |xt−1, c) and g(x(t−1,t]|xt−1, yt , c) must be sought, giv-
ing the APF described in Algorithm 1. Note that taking
g(yt |xt−1, c) = 1 and g(x(t−1,t]|xt−1, yt , c) = p(x(t−1,t]|
xt−1, c) admits the bootstrap particle filter as a special case.

Following Pitt et al. (2012), we use the output of the APF
to estimate p(yt |y1:t−1, c) with the quantity

p̂(yt |y1:t−1, c) =
( Nx∑

i=1

w̃i
t,c

Nx

) ( Nx∑

i=1

w̃t−1|t,c

)
.

Crucially, Pitt et al. (2012) (see also Del Moral 2004) show
that

p̂(y1:T |c) = p̂(y1|c)
T∏

t=2

p̂(yt |y1:t−1, c)

is an unbiased estimator of p(y1:T |c). Justification of the use
of p̂(yt |y1:t−1, c), as given above, in an SMC2 scheme then
follows directly from Chopin et al. (2013).

3.2.1 Propagation: method 1

It remains that we can find suitable densities g(yt |xt−1, c)
and g(x(t−1,t]|xt−1, yt , c). Focusing first on the latter, we use
an approximation to the conditioned jump process proposed
by Golightly and Wilkinson (2015). The method works by
approximating the expected number of reaction events over
an interval of interest conditional on the next observation.The
resulting conditioned hazard is used in place of the uncondi-
tioned hazard in Gillespie’s direct method.

Consider an interval [t − 1, t] and suppose that we have
simulated as far as time s ∈ [t − 1, t]. Let ΔRs denote the
number of reaction events over the time t − s = Δs. We
approximate ΔRs by assuming a constant reaction hazard
over Δs. A Gaussian approximation to the corresponding
Poisson distribution then gives

ΔRs ∼ N (h(xs, c)Δs , H(xs, c)Δs)

where H(xs, c) = diag{h(xs, c)}. Under the Gaussian obser-
vation regime (1) we have that

Yt |Xs = xs ∼ N
(
P ′ (xs + S h(xs, c)Δs) ,

P ′S H(xs, c)S
′PΔs + Σ

)
. (5)

Hence, the joint distribution of ΔRs and Yt (conditional on
xs) can then be obtained approximately as

Algorithm 1 Auxiliary particle filter
1. Initialisation (t = 1). For i = 1, 2, . . . , Nx :

(a) Sample xi1 ∼ p(·).
(b) Compute the weights w̃i

1,c = p(y1|xi1, c), wi
1,c = w̃i

1,c∑Nx
j=1 w̃

j
1,c

.

(c) Compute the current estimate of observed-data likelihood
p̂(y1|c) = ∑Nx

i=1 w̃i
1,c/Nx .

2. For times t = 2, 3, . . . , T and i = 1, 2, . . . , Nx :

(a) Compute the preweights w̃i
t−1|t,c = g(yt |xit−1, c)w

i
t−1,c,

wi
t−1|t,c = w̃i

t−1|t,c∑Nx
i=1 w̃i

t−1|t,c
.

(b) Sample the index ait−1 ∼ M(
w

1:Nx
t−1|t,c

)
of the ancestor of par-

ticle i , where M(p1:n) denotes the multinomial distribution
that assigns a probability pi to outcome i ∈ {1, . . . , n}.

(c) Propagate. Sample xi(t−1,t] ∼ g
( · |xa

i
t−1

t−1 , yt , c
)
.

(d) Compute the weights

w̃i
t,c = p(yt |xit , c)p

(
xi(t−1,t]|x

ait−1
t−1 , c

)

g
(
yt |xa

i
t−1

t−1 , c
)
g
(
xi(t−1,t]|x

ait−1
t−1 , yt , c

) ,

wi
t,c = w̃i

t,c
∑Nx

j=1 w̃
j
t,c

(e) Compute the current estimate of observed-data likelihood
p̂(y1:t |c) = p̂(y1:t−1|c) p̂(yt |y1:t−1, c) where

p̂(yt |y1:t−1, c) =
( Nx∑

i=1

w̃i
t,c

Nx

) ( Nx∑

i=1

w̃t−1|t,c

)
.

(
ΔRs

Yt

)
∼ N

{(
h(xs, c)Δs

P ′ (xs + S h(xs, c)Δs)

)
,

(
H(xs, c)Δs H(xs, c)S′PΔs

P ′S H(xs, c)Δs P ′S H(xs, c)S′PΔs + Σ

)}
.

Taking the expectation of ΔRs |Yt = yt and dividing the
resulting expression byΔs gives an approximate conditioned
hazard as

h∗(xs, c|yt ) = h(xs, c)

+ H(xs, c)S
′P

(
P ′S H(xs, c)S

′PΔs + Σ
)−1

× (
yt − P ′ [xs + S h(xs, c)Δs]

)
. (6)

Although the conditioned hazard in (6) depends on the cur-
rent time s in a nonlinear way, a simple implementation
ignores this time dependence, giving exponential waiting
times between reaction events. Hence, the construct can be
used to generate realisations from an approximation to the
true (but intractable) conditioned jump process by apply-
ing Gillespie’s direct method with h(xs, c) replaced by
h∗(xs, c|yt ).

To calculate the weights used in step 2(d) of Algorithm 1,
we note that p(x(t−1,t]|xt−1, c) can be written explicitly by
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considering thegenerationof all reaction times and types over
(t−1, t]. To this end, we let r j denote the number of reaction
events of typeR j , j = 1, . . . , v, and define nr = ∑v

j=1 r j as
the total number of reaction events over the interval, which is
obtained deterministically from the trajectory x(t−1,t]. Reac-
tion times (assumed to be in increasing order) and types are
denoted by (τi , νi ), i = 1, . . . , nr , νi ∈ {1, . . . , v} and we
take τ0 = t − 1 and τnr+1 = t . The so-called complete-data
likelihood (Wilkinson 2012) over (t − 1, t] is then given by

p(x(t−1,t]|xt−1, c) =
{

nr∏

i=1

hνi

(
xτi−1 , cνi

)
}

× exp

{
−

nr∑

i=1

h0
(
xτi , c

)
(τi+1 − τi )

}

Anexpression for g(x(t−1,t]|xt−1, yt , c) is obtained similarly.
Hence, the weights we require take the form

w̃t,c = p(yt |xt , c)p(x(t−1,t]|xt−1, c)

g(yt |xt−1, c)g(x(t−1,t]|xt−1, yt , c)

= p(yt |xt , c)
g(yt |xt−1, c)

{
nr∏

i=1

hνi

(
xτi−1 , cνi

)

h∗
νi

(
xτi−1 , cνi |yt

)
}

× exp

{
−

nr∑

i=1

[
h0

(
xτi , c

) − h∗
0

(
xτi , c|yt

)] [
τi+1 − τi

]
}

.

(7)

3.2.2 Propagation: method 2

Fearnhead (2008) derives a conditioned hazard in the case
of complete and noise-free observation of the MJP. Extend-
ing the method to the observation scenario given by (1) is
straightforward. Consider again an interval [t − 1, t] and
suppose that we have simulated as far as time s ∈ [t − 1, t].
For reaction Ri let x ′ = xs + S(i), where S(i) denotes the
i th column of the stoichiometry matrix so that x ′ is the state
of the MJP after a single occurrence ofRi . The conditioned
hazard of Ri satisfies

hi (xs, c|yt ) = lim
Δs→0

Pr(Xs+Δs = x ′|Xs = xs, yt , c)

Δs

= hi (xs, ci ) lim
Δs→0

p(yt |Xs+Δs = x ′, c)
p(yt |Xs = xs, c)

= hi (xs, ci )
p(yt |Xs = x ′, c)
p(yt |Xs = xs, c)

.

Of course, in practice, the transition density p(yt |xs, c) is
intractable and we therefore use the approximation in (5)
to obtain an approximate conditioned hazard h†i (xs, c|yt )
and combined hazard h†0(xs, c|yt ). Note that to calculate this
approximate conditioned hazard, the density associated with

the approximation in (5) must be calculated v + 1 times
(once using xs and for each x ′ obtained after the v pos-
sible transitions of the process). Although h†0(xs, c|yt ) is
time dependent, the simple simulation approach described
in Sect. 3.2.1 that ignores this time dependence can be easily
implemented. The form of the weight required in step 2(d)
of Algorithm 1 is given by Eq. 7 with h∗ replaced by h†.

3.2.3 Preweight

Finally, note that the derivations of the conditioned haz-
ards described above suggest a form for the preweight
g(yt |xt−1, c). Using the approximation in (5) with s = t − 1
and assuming an inter-observation time of Δ gives

g(yt |xt−1, c) = N
(
yt ; P ′ (xt−1 + S h(xt−1, c)Δ) ,

P ′S H(xt−1, c)S
′PΔ + Σ

)
(8)

where N (·;m, V ) denotes the multivariate Gaussian den-
sity with mean vector m and variance matrix V . In some
scenarios, the density in (8) may have lighter tails than
p(yt |xt−1, c). In this case, some particles that are consis-
tent with the next observation are likely to be pruned out.
Although the problem can be alleviated by raising the den-
sity in (8) to a power (say 1/δ where δ > 1), this introduces
an additional tuning parameter. We find that simply taking
g(yt |xt−1, c) = 1 is computationally convenient and works
well in practice.

3.3 SMC2 scheme

In this section, we provide a brief exposition of the SMC2

scheme. The reader is referred to Chopin et al. (2013) for
further details including a formal justification (see also Fulop
and Li (2013) for a related algorithm and Jacob (2015) for a
recent discussion).

Recall the target posterior at time t , p(c|y1:t ) given by (3).
Suppose that a weighted sample {ck, ωk}Nc

k=1 from p(c|y1:t )
is available. The SMC2 algorithm reweights each c-particle
according to a non-negative estimate of p(yt |y1:t−1, ck),
obtained from the output of a particle filter. We propose to
use the auxiliary particle filter of Sect. 3.2. In order to use
the APF in this way, we require storage of the state parti-
cles and associated weights at each time point t and for each
parameter particle ck . We denote the APF output at iteration
t by {x1:Nx

t,ck
, w

1:Nx
t,ck

}. To circumvent particle degeneracy, the

SMC2 scheme uses a resample-move step (see e.g. Gilks and
Berzuini 2001) that firstly resamples parameter particles (and
the associated states, weights and observed-data likelihoods
p(y1:t |ck)) and then moves each parameter sample through a
particle Metropolis-Hastings kernel which leaves the target
posterior invariant (Andrieu et al. 2010). The resample-move
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step is only used if some degeneracy criterion is fulfilled.
Typically, at each time t , the effective sample size (ESS) is
computed as

ESS = 1
/ Nc∑

k=1

(ωk)2

and the resample-move step is triggered if ESS < γ Nc for
γ ∈ (0, 1) and a standard choice is γ = 0.5. A key feature
of the SMC2 scheme is that the current set of c-particles can
be used in the design of the proposal density q(c∗|c). For the
applications in Sect. 4, we use an independent proposal so
that q(c∗|c) = q(c∗). As the rate constants must be strictly
positive, we take

q(c∗) = logN
(
c∗; Ê(log(c)|y1:t ),̂Var(log(c)|y1:t )

)

where logN (·;m, V ) denotes the density associated with the
exponential of a N (m, V ) random variable.

The SMC2 scheme with fixed Nx is given by Algorithm 2.
It remains that the number of state particles is suitably chosen.
Andrieu et al. (2010) show that Nx = O(t) to obtain a rea-
sonable acceptance rate in the particle Metropolis-Hastings
step. Therefore, Chopin et al. (2013) suggest an automatic
method that allows Nx to increase over time. Essentially, the
acceptance rate of the move step is monitored and if this rate
falls below a given threshold, Nx is increased (e.g. by multi-
plying by 2). Suppose that at time t and for each ck , we have
{x1:Nx

t,ck
, w

1:Nx
t,ck

} and observed-data likelihood p̂Nx (y1:t |ck),
where we have explicitly written the observed-data likeli-
hood to depend on Nx . Let Ñx denote the updated number
of state particles. A generalised importance sampling strat-
egy is used to swap the x-particles, their associated weights
and the estimates of observed-data likelihood with new val-
ues obtained by running the APF with Ñx state particles, for
each ck . Chopin et al. (2013) show that the weights asso-
ciated with each parameter particle ck should be multiplied
by p̂Nx (y1:t |ck)/ p̂Ñx

(y1:t |ck). Fortunately, the frequency at
which the potentially expensive resample-move step is exe-
cuted reduces over time and the computational cost of the
algorithm is O(Nct2) (rather than O(Nct3) if the resample-
move step was triggered at every time point).

Finally, consider the evidence

p(y1:T ) =
T∏

t=1

p(yt |y1:t−1),

where we adopt the convention that p(y1) = p(y1|y1:0). It
is straightforward to estimate p(y1:T ) using the output of
the SMC2 scheme, at virtually no additional computational
cost. Each factor Lt = p(yt |y1:t−1) in the product above is

Algorithm 2 SMC2 scheme
1. Initialisation. For k = 1, . . . , Nc sample ck ∼ p(·) and set ω̃k = 1.

For t = 1, . . . , T :
2. Sequential importance sampling. For k = 1, . . . , Nc:

(a) Perform iteration t of the auxiliary particle filter to obtain
{x1:Nx

t,ck
, w

1:Nx
t,ck

} and p̂(yt |y1:t−1, ck). Note that p̂(y1|ck) =
p̂(y1|y1:0, ck).

(b) Update and normalise the importance weights via

ω̃k := ω̃k p̂(yt |y1:t−1, c
k), ωk = ω̃k

∑Nc
j=1 ω̃ j

(c) Update observed-data likelihood estimate via

p̂(y1:t |ck) = p̂(y1:t−1|ck) p̂(yt |y1:t−1, c
k).

3. If ESS < γ Nc resample and move. For k = 1, . . . , Nc:

(a) Sample indices ak ∼ M(
ω1:Nc

)
and set {ck , ω̃k} :=

{cak , 1}, {x1:Nx
t,ck

, w
1:Nx
t,ck

} := {x1:Nx
t,cak , w

1:Nx
t,cak } and p̂(y1:t |ck) :=

p̂(y1:t |cak ).
(b) Propose c∗ ∼ q(·|ck). Perform iterations 1, . . . , t of the aux-

iliary particle filter to obtain p̂(y1:t |c∗). With probability

min

{
1,

p(c∗) p̂(y1:t |c∗)
p(ck) p̂(y1:t |ck) × q(ck |c∗)

q(c∗|ck)
}

put ck := c∗, {x1:Nx
t,ck

, w
1:Nx
t,ck

} := {x1:Nx
t,c∗ , w

1:Nx
t,c∗ } and

p̂(y1:t |ck) := p̂(y1:t |c∗).

estimated by

L̂ t =
Nc∑

k=1

ωk p̂(yt |y1:t−1, c
k). (9)

4 Applications

To illustrate the methodology described in the previous sec-
tions, we consider two applications of increasing complexity.
In Sect. 4.1, a Susceptible-Infected-Removed (SIR) epi-
demic model is fitted using real data; namely, the Abakaliki
smallpox data set given in Bailey (1975). We compare the
performance of SMC2 schemes based on auxiliary, bootstrap
and alive particle filters. Using synthetic data, we compare
the best performing SMC2 scheme with its particle MCMC
counterpart and, additionally, a data augmentation scheme.
In Sect. 4.2, we apply SMC2 to infer the parameters gov-
erning a simple prokaryotic autoregulatory network using
synthetic data. All algorithms are coded in C and were run
on a desktop computer with an Intel Core i7-4770 processor
and a 3.40GHz clock speed. The code is available at http://
www.mas.ncl.ac.uk/~nag48/smc2.zip.
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4.1 Abakaliki smallpox data

We first consider the well-studied temporal data set obtained
from a smallpox outbreak that took place in the small Nige-
rian villageAbakaliki in 1967. Bailey (1975, p. 125) provides
a complete set of 29 inter-removal times, measured in days.
Table 1 shows the data here as the days on which the removal
of individuals actually took place, with the first day set to be
time 0. The outbreak resulted in 32 cases, 30 out of which
corresponded to individualswhoweremembers of a religious
organisation whose 120 members refused to be vaccinated.

Numerous authors such as O’Neill and Roberts (1999),
Fearnhead and Meligkotsidou (2004) and Boys and Giles
(2007) amongst others have considered these data by
focussing solely on the 30 cases amongst the population of
120, despite the fact that the original dataset (provided in a
WHO report) contains far more information than the inter-
removal times, such as the physical locations of the cases and
the members of each household. A fully Bayesian analysis of
this full dataset can be found in Stockdale et al. (2017), but
here our purpose is to illustrate our methodology and there-
fore, we only consider the partial data set assuming that there
have been 30 cases in a closed population of size 120.

We assume an SIR model (see Sect. 2.1) for the data
with observations being equivalent to daily measurements of
X1+ X2 (as there is a fixed population size). In addition, and
for simplicity, we assume that a single individual remained
infective just after the first removal occurred. We analyse the
data under the assumption of no measurement error, that is,
P ′ = (1, 1) and Σ = 0 in the observation equation (1).

We followed Fearnhead andMeligkotsidou (2004) by tak-
ing independent Gamma priors so that c1 ∼ Ga(10, 104)
and c2 ∼ Ga(10, 102) a priori, where Ga(a, b) denotes a
Gamma distribution with shape a and rate b. We applied

three different SMC2 schemes based on the bootstrap, alive
and auxiliary (with propagation methods 1 and 2) particle
filters. In each case we took Nc = 5000, an ESS-threshold
of γ = 50% and an initial number of state particles of
Nx = 10, except when using the bootstrap filter which
required Nx = 100 initially, to give output comparable to the
othermethods, in terms of accuracy (—see further discussion
below). The value of Nx was doubled if the acceptance rate
calculated in the resample-move step fell below 20%.

Table 2 and Figs. 1, 2 and 3 summarise the output of each
SMC2 scheme. We compare the accuracy of each scheme
by reporting bias and root-mean-square error (RMSE) of the
estimators of themarginal posteriormeans and standard devi-
ations of log(c1) and log(c2). These quantities are reported
in Table 2 and were obtained by performing 100 independent
runs of each scheme and comparing the aforementioned pos-
terior estimators to reference values, obtained from a long
run (3 × 106 iterations) of particle MCMC (pMCMC). For
the pMCMC run, we used the auxiliary particle filter-driven
scheme of Golightly andWilkinson (2015) which uses Algo-
rithm 1 and propagationmethod 1 at eachMCMC iteration to
compute p̂(y1:T |c∗) for a proposed value c∗. A comparison
of SMC2 and pMCMC is given in Sect. 4.1.1.

Inspection of Table 2 shows that all schemes give gener-
ally comparable output in terms of bias and RMSE, although
we found that the bootstrap implementation was particularly
sensitive to the initial choice of Nx , with relatively low values
leading to noticeable biases in the marginal posterior mean
estimators. Using 100 initial state particles seemed to alle-
viate this problem. We therefore use CPU cost as a proxy
for overall efficiency. Interestingly, the alive SMC2 scheme
performs poorly in terms of CPU cost, despite requiring the
smallest number of state particles. As can be seen from Fig. 1
(left panel), alive SMC2 maintains a high effective sample

Table 1 Abakaliki smallpox
data Day 1 14 21 23 26 27 31 36 39 41 43 48

No. of removals 1 1 1 1 3 1 1 1 1 2 2 1

Day 51 52 56 57 58 59 61 62 67 72 77

No. of removals 1 1 2 1 1 1 2 1 2 1 1

Table 2 SIR epidemic model (Abakaliki data). Nx at time T , CPU time (in seconds), bias (and RMSE in parentheses) of estimators of the posterior
expectations E(log(c1)|y1:T ), E(log(c2)|y1:T ) and standard deviations SD(log(c1)|y1:T ), SD(log(c2)|y1:T )

Filter Nx CPU (s) Bias (RMSE)

Ê(log(c1)|y1:T ) Ê(log(c2)|y1:T ) ŜD(log(c1)|y1:T ) ŜD(log(c2)|y1:T )

Bootstrap 404 175 0.068 (0.022) 0.017 (0.023) −0.026 (0.012) −0.011 (0.017)

Alive 77 256 0.033 (0.026) −0.006 (0.035) −0.020 (0.014) −0.008 (0.022)

Auxiliary (meth. 1) 81 45 0.041 (0.024) −0.024 (0.028) −0.024 (0.014) −0.010 (0.016)

Auxiliary (meth. 2) 174 162 0.037 (0.028) 0.040 (0.034) −0.022 (0.019) −0.024 (0.020)

All results are obtained by averaging over 100 runs of each SMC2 scheme
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Fig. 1 SIR epidemic model (Abakaliki data). Left panel: Effective
sample size (ESS) against time. Middle panel: Acceptance rate against
time. Right panel: Number of state particles Nx against time. Horizon-
tal lines indicate the thresholds at which resampling and doubling of

Nx take place. All results are based on a single typical run of an SMC2

scheme using the bootstrap (solid line), alive (dashed line) and auxiliary
method 1 (dotted line) particle filters. Auxiliary method 2 is omitted for
ease of exposition
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Fig. 2 SIR epidemic model (Abakaliki data). Marginal posterior mean (solid line) and 95% credible interval (dashed lines) for log(c1) (left),
log(c2) (middle) and log(c1/c2) (right) based on the output of the auxiliary SMC2 scheme
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Fig. 3 SIR epidemic model (Abakaliki data). Left and middle panels:
marginal posterior distributions based on the output of the auxiliary
SMC2 scheme (histograms) and pMCMC scheme (kernel density esti-

mates). Right panel: Contour plot of the joint posterior from the output
of the auxiliary SMC2 scheme (dashed lines) and pMCMC (solid lines)

size (ESS), rarely falling below the threshold that would
trigger the resample-move step. In spite of this desirable
behaviour, the scheme requires repeatedly forward simulat-
ing the process at each time point to obtain Nx matches,

resulting in a CPU cost that is almost 1.5 times larger than
that obtained for the bootstrap driven scheme. Both auxil-
iary schemes outperform the bootstrap implementation, with
method 1 by a factor of 3.9 in terms of CPU cost. Finally,
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we note that the SMC2 scheme allows for sequential learn-
ing of the rate constants as well as the basic reproduction
number R0 = c1/c2—see Fig. 2 showing marginal poste-
rior means and 95% credible intervals against time. Figure 3
compares the output of an SMC2 scheme with the output of
a long run of pMCMC and demonstrates that accurate fully
Bayesian inferences about the parameters are possible, even
when using relatively few parameter particles.

4.1.1 Comparison with MCMC

Here, we assess the utility of the auxiliary particle filter
(method 1) driven SMC2 scheme as an offline inference
scheme by comparing its performance to that of two com-
petingMCMC schemes, namely the particle MCMC scheme
used by Golightly and Wilkinson (2015) and a data augmen-
tation scheme first introduced by O’Neill and Roberts (1999)
and Gibson and Renshaw (1998).

As discussed earlier, the likelihood of the observed data
(i.e. removal times) is challenging to compute. The reason
is that one has to integrate out all the possible configura-
tions of infection times that are consistent with the data; in
other words, those that do not result in the epidemic ceas-
ing before the last removal time. One way to overcome this
issue is to introduce the unobserved infection times as addi-
tional variableswhichwill allowus to compute an augmented
likelihood. Combining the augmented likelihood with prior
distributions on the infection rate (c1) and removal rate (c2),
we can then explore the joint posterior density of the infec-
tion times, c1 and c2 using a data-augmented Markov Chain
Monte Carlo scheme (DA-MCMC).

A vanilla DA-MCMC algorithm consists of updating c1,
c2 and the infection times from their corresponding full
conditional (posterior) densities. It turns out that the full
conditional densities for c1 and c2 have standard forms and
can be updated using a Gibbs step; in fact, both full con-
ditional densities are Gamma densities. The infection times
are less straightforward to deal with because the full condi-
tional distribution of each infection time is not of a standard
form. However, they can be updated by using a Metropolis-
Hastings step. This is done by proposing a new infection
time and accepting that proposed infection times with some
probability determined by the Metropolis-Hastings ratio. In
particular, a new infection time for the j th individual, i∗j , is
proposed by drawing X ∼ Exp(c2) and setting i∗j = r j − X
where r j denotes the corresponding removal time of individ-
ual j .

To provide a challenging scenario, we assumed a fixed
population size of n = 1000, an infection rate of c1 =
0.0013, a removal rate of c2 = 1 and generated a synthetic
data set consisting of 622 inter-removal times, equivalent to
622 measurements of X1 + X2. For simplicity, we assume
that the initial condition x0 = (n − 1, 1)′ is known. We took

vague Exponential Exp(0.001) priors for each rate constant
and performed 50 runs of (auxiliary) SMC2, pMCMC and
MCMC-DA with the following settings.

1. SMC2 We took Nc = 5000, an ESS-threshold of γ =
50% and an initial number of state particles of Nx = 100.
The value of Nx was doubled if the acceptance rate cal-
culated in the resample-move step fell below 20%. Note
that initialising with a sample from the vague prior would
result in very few parameter particles consistent with
the first observation. This problem can be alleviated, for
example, by partitioning the interval [0, 1] into m + 1
equally spaced intermediate time points and targeting the
tempered posteriors p(c)p(y1|c)i/m , i = 0, 1, . . . ,m.
We adopted an alternative solution and performed 10000
pMCMC iterations using the first 10 observations (with
Nx = 100), thinned by a factor of 2 and then ran SMC2

for the remaining 612 observations, having initialised
with the pMCMC output.

2. pMCMC Following the practical advice of Sherlock et al.
(2015), the number of state particles was chosen so that
the variance of the estimator of the log-posterior at the
posterior median (obtained from a pilot run) was around
2. This gave Nx = 1200. A random walk proposal was
used for the log-parameterswith the variance of theGaus-
sian innovations taken to bêVar(log(c)|y1:T ) (estimated
from a pilot run) and scaled to give an acceptance rate
of around 10% − 15%. The same pilot run was used to
obtain the estimate Ê(log(c)|y1:T ), and the main moni-
toring runs were initialised using this value.

3. MCMC-DA It has been illustrated that in practice (Kypraios
2007), if the infection-time update step is repeated sev-
eral times in each iteration of the MCMC algorithm
then mixing can improve substantially. Denote the frac-
tion of infection times to be update in each MCMC
step by δ. After running a number of short pilot runs
with δ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, we found that
δ = 0.5 was optimal in terms of minimising autocorrela-
tion time (defined below). Themainmonitoring runs then
used δ = 0.5 and were initialised with the same values
used for the pMCMC runs.

Note that the number of iterations of pMCMC and MCMC-
DA performed for the 50 runs was determined by the CPU
cost of each run of SMC2. Consequently, all results are
reported for the same computational budget. The results are
summarised in Table 3 and Fig. 4. From the latter, it is clear
that the output of SMC2 is comparable with that of pMCMC.
The two competing MCMC schemes can be directly com-
pared by computing autocorrelation time (ACT), sometimes
referred to as inefficiency and can be interpreted as the factor
by which the number of iterations (niters) should be multi-
plied, to obtain the same level of precision as using niters iid
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Table 3 SIR epidemic model (synthetic data). Nx at time T , maximum autocorrelation time (mACT), bias (and RMSE in parentheses) of estimators
of the posterior expectations E(log(c1)|y1:T ), E(log(c2)|y1:T ) and standard deviations SD(log(c1)|y1:T ), SD(log(c2)|y1:T )

Method Nx mACT Bias (RMSE)

Ê(log(c1)|y1:T ) Ê(log(c2)|y1:T ) ŜD(log(c1)|y1:T ) ŜD(log(c2)|y1:T )

SMC2 1120 − −0.004 (0.017) −0.009 (0.016) −0.009 (0.009) −0.008 (0.009)

pMCMC 1200 29 0.001 (0.006) 0.001 (0.006) −0.003 (0.003) −0.001 (0.003)

MCMC-DA – 232 −0.006 (0.017) −0.002 (0.017) 0.036 (0.014) 0.037 (0.015)

All results are obtained by averaging over 50 runs of each scheme. Note that mACT for MCMC-DA has been scaled to correspond to the average
number of iterations of pMCMC
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Fig. 4 SIR epidemic model (synthetic data). Left and middle panels:
marginal posterior distributions based on the output of the auxiliary
SMC2 scheme (histograms) and pMCMC scheme (kernel density esti-

mates). Right panel: Contour plot of the joint posterior from the output
of the auxiliary SMC2 scheme (dashed lines) and pMCMC (solid lines).
The true values of log(c1) and log(c2) are indicated

posterior draws. The ACT for a particular series of parameter
values is given by

1 + 2
∞∑

k=1

ρk

where ρk is the autocorrelation function for the series at lag
k. The ACT can be estimated using the R package CODA
(Plummer et al. 2006).

TheMCMC-DA scheme is relatively cheap, with the CPU
budget affording runs of around 106 iterations on average.
By comparison, the pMCMC scheme typically used around
2.5 × 104 iterations. However, the mixing of MCMC-DA
is very poor, due to the dependence between the parameter
values and the imputed infection times. For pMCMC, a joint
update of the parameters and latent infection times is used
(thereby side-stepping the issue of high correlation between
the two) and mixing is much improved. Consequently, for
MCMC-DA, themaximum(over each parameter series)ACT
is around 8 times larger than that for pMCMC (after match-
ing iteration numbers). Not surprisingly, estimators of the
marginal posterior means and standard deviations for the log
rate constants based on MCMC-DA exhibit biases and root-
mean-square errors that are significantly larger than those

obtained for pMCMC.Using SMC2 gives output comparable
to that of pMCMC, with all biases within an order of mag-
nitude of those for pMCMC, and all RMSE values within a
factor of 3. Moreover, it should be noted that we are compar-
ing against a pMCMCschemewith (close to) optimal settings
obtained from pilot runs. SMC2 requires minimal tuning by
comparison, yet appears to be an effective offline inference
tool in this example.

4.2 Prokaryotic autoregulation

Using the model of prokaryotic autoregulation described in
Sect. 2.2, we simulated two synthetic data sets (denoted D1

and D2) consisting of 101 observations at integer times on
RNA and total protein counts, P + 2P2, so that DNA, P
and P2 are not observed exactly. Moreover, we corrupt the
observations by adding independent, zero-mean Gaussian
innovations to each count. The components making up the
observation in (1) are

P ′ =
(
1 0 0 0
0 1 2 0

)
, Σ =

(
σ 2
1 0
0 σ 2

2

)
.

To assess the effect of measurement error, we fix σ2 = 1 and
take σ1 = 1 for data set D1 and σ1 = 0.1 for D2. Following
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Fig. 5 Prokaryotic autoregulation (synthetic data set D2). Marginal posterior distributions based on the output of the auxiliary SMC2 scheme
(histograms) and pMCMC scheme (kernel density estimates). The true values of the (log) rate constants are indicated

Golightly and Wilkinson (2005), the rate constants used to
generate the data were

c = (0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1).

We assume that the initial condition x0 = (8, 8, 8, 5)′, the
measurement error variances and the rate constants of the
reversible dimerisation reactions (c5 and c6) are known leav-
ing 6 parameters as the object of inference.

We took independent Gamma Ga(1, 0.5) priors for each
rate constant and applied SMC2 schemes based on the boot-
strap and auxiliary (with propagation method 1) particle
filters. In each case we took Nc = 5000, an ESS-threshold of
γ = 50% and an initial number of state particles of Nx = 50.
The value of Nx was doubled if the acceptance rate calculated
in the resample-move step fell below 20%.

Figure 5 shows marginal posteriors based on the output
of auxiliary SMC2 and a long run of pMCMC. We note
that even with 6 unknown parameters, the SMC2 scheme
gives accurate inferences despite using relatively few param-
eter particles. Table 4 and Fig. 6 summarise the output of
each SMC2 scheme. We again compare the accuracy of each
scheme via bias and RMSE of the estimators of the marginal
posterior means and standard deviations of the (log) rate

constants. Bias and RMSE were computed by comparing
estimators based on 50 runs of each SMC2 scheme with ref-
erence values obtained from a long run of pMCMC (with
5 × 105 iterations). Table 4 displays these quantities for
log(c1) and log(c2) corresponding to the reversible dimer
binding and unbinding reactions. Similar results (not shown)
are obtained for the remaining unknown rate constants. Both
the bootstrap and auxiliary particle filter-driven schemes
give comparable bias and RMSE values, and we therefore
compare their overall performance using CPU cost. Not sur-
prisingly, as the measurement error is reduced, both schemes
require increased numbers of state particles, Nx , although
the relative increase is much smaller when using auxiliary
SMC2. Consequently, for data set D1 (σ1 = 1), auxiliary
SMC2 outperforms bootstrap SMC2 in terms of CPU time
by around a factor of 2. This increases to a factor of around
4 for data set D2 (σ1 = 0.1).

5 Discussion

Performing fully Bayesian inference for the rate constants
governing complex stochastic kineticmodels necessitates the
use of computationally intensive Markov chain Monte Carlo
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Table 4 Prokaryotic autoregulation. Nx at time T , CPU time (inminutes), bias (andRMSE in parentheses) of estimators of the posterior expectations
E(log(c1)|y1:T ), E(log(c2)|y1:T ) and standard deviations SD(log(c1)|y1:T ), SD(log(c2)|y1:T )

Filter Nx CPU (m) Bias (RMSE)

Ê(log(c1)|y1:T ) Ê(log(c2)|y1:T ) ŜD(log(c1)|y1:T ) ŜD(log(c2)|y1:T )

D1 (σ1 = 1, σ2 = 1)

Bootstrap 2688 495 −0.281 (0.051) −0.066 (0.053) −0.094 (0.030) −0.077 (0.036)

Auxiliary 564 242 −0.129 (0.082) −0.027 (0.067) −0.098 (0.064) −0.084 (0.033)

D2 (σ1 = 0.1, σ2 = 1)

Bootstrap 8000 1905 −0.011 (0.082) −0.088 (0.063) −0.063 (0.056) −0.063 (0.046)

Auxiliary 1120 474 −0.047 (0.048) −0.029 (0.047) −0.079 (0.020) −0.058 (0.024)

All results are obtained by averaging over 50 runs of each scheme
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Fig. 6 Prokaryotic autoregulation using synthetic data sets D1 (top
panel) and D2 (bottom panel). Left panel: Effective sample size (ESS)
against time. Middle panel: Acceptance rate against time. Right panel:
Number of state particles Nx against time. Horizontal lines indicate

the thresholds at which resampling and doubling of Nx take place. All
results are based on a single typical run of an SMC2 scheme using the
bootstrap (solid line) and auxiliary (dotted line) particle filters

(MCMC) methods. The intractability of the observed-data
likelihood further complicates matters and is usually dealt
with through the use of data augmentation or by replacing
the intractable likelihood by an unbiased estimate. Careful
implementation of the latter results in a pseudo-marginal
Metropolis-Hastings scheme, and,when using a particle filter
to obtain likelihood estimates, the algorithm may be referred
to as particle MCMC (pMCMC). However, such methods
often require careful tuning and initialisation anddonot allow

for efficient sequential learning of the parameters (and latent
states).

We have therefore focused on a recently proposed SMC2

scheme, which can be seen as the pseudo-marginal ana-
logue of the iterated batch importance sampling (IBIS)
scheme (Chopin 2002), and allows sequential learning of the
parameters of interest. The simplest implementation uses a
bootstrap particle filter both to compute observed-data like-
lihood increments and drive a rejuvenation step (so-called
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resample move) where all parameter particles are mutated
through a pMCMC kernel. This simple implementation is
appealing—for example, only the ability to evaluate the
density associated with the observation equation, and gen-
erate forward realisations from the Markov jump process
is required. However, this ‘likelihood-free’ implementation
is likely to be extremely inefficient when observations are
informative, e.g. when there is relatively little measurement
error compared to intrinsic stochasticity. We eschew the sim-
plest implementation in favour of an SMC2 scheme that is
driven by an auxiliary particle filter (APF). That is, the APF
is used both to estimate the observed-data likelihood con-
tributions and drive the resample-move step. We compared
this approach using two applications: an SIR epidemicmodel
fitted to real data and a simple model of prokaryotic autoreg-
ulation fitted to synthetic data.

Wefind that the proposed approach offers significant gains
in computational efficiency relative to the bootstrap filter-
driven implementation, whilst still maintaining an accurate
particle representation of the full posterior. The compu-
tational gains are amplified when intrinsic stochasticity
dominates external noise (e.g. measurement error). Use of
an appropriate propagation mechanism is crucial in this case,
since the probability of generating an (unconditioned) real-
isation of the latent jump process that is consistent with
the next observation, diminishes as either the observation
variance decreases or the number of observed components
increases.

Using synthetic data and the SIR epidemic model, we
also compared the efficiency of SMC2 with two competing
MCMC schemes, namely the APF driven particle MCMC
scheme of Golightly and Wilkinson (2015) and a ubiqui-
tously applied data augmentation (DA) scheme (O’Neill
and Roberts 1999; Gibson and Renshaw 1998). We find
that the DA scheme suffers intolerably poor mixing due
to dependence between the latent infection times and the
static parameters (see also McKinley et al. (2014)). The
pMCMC scheme, which can be seen as the pseudo-marginal
analogue of an idealised marginal scheme, offers over an
order of magnitude increase in terms of overall efficiency
(as measured by autocorrelation time for a fixed compu-
tational budget) over DA. The APF driven SMC2 scheme
gives comparable output to that of pMCMC in terms of
accuracy (as measured by bias and root-mean-squared error
of key posterior summaries). However, we stress again that
unlike pMCMC, SMC2 is simple to initialise, avoids the
need for tedious pilot runs, performs sequential learning
of the parameters of interest and allows for a computa-
tionally efficient estimator of the model evidence. Although
not pursued here, model selection is an important problem
within the stochastic kinetic framework (see e.g. Drovandi
and McCutchan (2016) and the references therein for recent
discussions).

5.1 Use of other particle filters

The development of an auxiliary particle filter-driven SMC2

scheme as considered in this paper is possible due to the
tractability of the complete data likelihood p(x(t−1,t]|xt−1, c)
for each observation time t . This tractability may permit the
use of other particle filtering strategies. For example, particle
Gibbs with ancestor sampling (Lindsten et al. 2014) allows
for efficient sampling of state trajectories and could be used
in the rejuvenation step in SMC2. Recent work by Guarniero
et al. (2016) combines ideas underpinning the twisted particle
filter ofWhiteley and Lee (2014) and theAPF to give the iter-
ated APF (iAPF). The algorithm approximates an idealised
particle filter where observed-data likelihood estimates have
zero variance.Consequently, use of this approach in anSMC2

requires further attention, although it would appear the iAPF
algorithm is at present limited to a class of state spacemodels
with conjugate latent processes. Its utility within the SKM
framework is therefore less clear.

5.2 Further considerations

This work can be directly extended in a number of ways. In
our application of the APF, we assumed a constant preweight
for each parameter particle. Devising a preweight that is
both computationally cheap and accurate remains of inter-
est. In addition, the best performing propagation method is
derived using a linear Gaussian approximation to the number
of reaction events in an interval of interest, conditional on the
next observation. Improvements to this construct that allow
for a more accurate approximation of the intractable condi-
tioned process are the subject of ongoing work. Although
not considered here, the SMC2 scheme appears to be partic-
ularly amenable to parallelisation over parameter particles,
since observed-data likelihood estimates can be computed
separately for each parameter value. The use of parallel
resampling algorithms (Murray et al. 2016) also merits fur-
ther attention, to allow full use of modern computational
architectures. Finally, we note that the resample-move step
may benefit from recent work on correlated pseudo-marginal
schemes (Dahlin et al. 2015; Deligiannidis et al. 2016).
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Algorithm 3 Alive particle filter

1. Initialisation (t = 1). Set p̂(y1|c) = 1 and xi1 = y1, i = 1, . . . , Nx .
For t = 2, 3, . . . , T :

2. For i = 1, 2, . . . until i = nt is reached such that
∑i

j=1 I (x
i
t , yt ) =

Nx + 1:

(a) Sample ait−1 uniformly from {1, . . . , Nx }.
(b) Sample xi(t−1,t] ∼ p

( · |xa
i
t−1

t−1 , c
)
using Gillespie’s direct

method.
(c) Calculate

I (xit , yt ) =
{
1, xit = yt
0, otherwise

3. Compute the current estimate of observed-data likelihood
p̂(y1:t |c) = p̂(y1:t−1|c) p̂(yt |y1:t−1, c) where

p̂(yt |y1:t−1, c) = Nx

nt − 1
.

A Appendix

A.1 Alive SMC2

Consider the case that Σ = 0 so that (a subset of) the
components of Xt are observed without error. Running a
bootstrap particle filter in this scenario is likely to be prob-
lematic, since only trajectories which match the observation
at each time t will be assigned a non-zero weight. To cir-
cumvent this problem, Drovandi and McCutchan (2016) use
the alive particle filter of Del Moral et al. (2015) inside the
SMC2 scheme. Essentially, at time t , Nx particles from time
t−1 are resampled and propagated forward (usingGillespie’s
direct method) until Nx + 1 matches are obtained (where a
match has xt = yt ). This approach can be repeated for each
time point and an unbiased estimator of the observed-data
likelihood p(y1:t |c) can then be obtained (Del Moral et al.
2015).

The alive particle filter is described in Algorithm 3. Note
that we have assumed for simplicity that x1 is known,
although a more general scenario with uncertain x1 is easily
accommodated by augmenting c to include the unobserved
components of x1. The alive SMC2 algorithm is obtained
by running the alive particle filter in steps 2(a) and 3(b) of
Algorithm 2.
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