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We present explicit expressions for Fock-space projection operators that correspond to realistic final 
states in scattering experiments. Our operators automatically sum over unobserved quanta and account 
for non-emission into sub-regions of momentum space.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

When calculating matrix elements for scattering processes, it is 
necessary to sum over all final states that contribute to an observ-
able, which often necessitates summing over unmeasured quanta. 
The classic example is the computation of the cross-section for 
e+e− → hadrons, in which infra-red singularities cancel between 
the virtual gluon corrections and corresponding zero-energy real 
gluon emissions (at the level of the squared matrix element) by the 
Kinoshita–Lee–Nauenberg theorem [1,2] (see also Refs. [3,4]). Infra-
red divergences can in fact be avoided at the amplitude level (see 
e.g. Refs. [5–8]), by absorbing unobserved emissions into a re-
definition of the asymptotic states. In this paper, we instead pursue 
the direct calculation of probabilities and focus on effect operators 
that correspond to the measurement of general semi-inclusive fi-
nal states. These effect operators have the virtue that unobserved 
emissions simply do not enter the calculation.

The probability P that a system, described by some density 
operator ρ , will register an outcome, described by some effect op-
erator E , is

P = Tr(Eρ) . (1)
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Furthermore, if the measurement is performed at time t f and the 
system is known to be described at time ti by the density operator 
ρi then, in the Interaction Picture,

ρ f = U f i ρi U †
f i , (2)

where

U f i = T exp

(
1
i

t f∫
ti

dt H int(t)

)
(3)

is the unitary time-evolution operator and H int is the interaction 
Hamiltonian. If the initial state is a pure state, i.e. ρi = |i〉〈i|, the 
probability takes the form

P = 〈i| (U †
f i E U f i) |i〉 . (4)

Of course, if the measurement also corresponds to a pure state, 
i.e. E = | f 〉〈 f |, we obtain the usual squared matrix element

P = | 〈 f | U f i |i〉 |2 . (5)

However, we may compute Eq. (4) directly by treating E as an op-
erator. We then view Eq. (4) as an “in-in” expectation value, which 
can be written in the form [9]

P =
∑
j = 0

t f∫
ti

dt1 dt2 . . . dt j �12... j 〈i|F j|i〉 , (6)
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F0 = E , (7a)

F j = 1
i

[
F j−1, H int(t j)

]
, (7b)

and �i jk... ≡ 1 if ti > t j > tk . . . and zero otherwise.
Whilst the explicit consideration of effect operators is ubiqui-

tous in the description of measurement processes in quantum me-
chanics, they have, to our knowledge, been ignored in the context 
of particle physics. In what follows, we will present expressions for 
effect operators corresponding to general semi-inclusive measure-
ments.

Our operators will be projection operators in Fock space and 
they all have the feature that unobserved quanta do not appear 
explicitly. For example, the effect operator corresponding to the 
inclusive cross-section for e+e− → one q ̄q pair + anything is sim-
ply

E = |q, q̄〉〈q, q̄| ⊗ Ie+ ⊗ Ie− ⊗ Iγ ⊗ Ig , (8)

where the sums over unobserved final-state electrons, positrons, 
photons and gluons appear as unit operators in their respective 
Fock spaces, which trivially commute through the structure in 
Eq. (6). These implicit summations over unobserved quanta are not 
present at the amplitude level, and this motivates further develop-
ment of techniques along the lines of Ref. [9] aimed at directly 
computing probabilities in quantum field theory.

2. Projection operators in Fock space: bosonic case

It is a well-known result in quantum optics that the vacuum 
projection operator can be written as the exponential of the pho-
ton number operator (see e.g. Refs. [10–12]):

E(0)

R3 ≡ I +
∞∑

j = 1

(−1) j

j! : (NR3

) j :

= : e−N
R3 :

= |0〉 〈0| , (9)

where the number operator

NR ≡
∑
λ

∫
R

d3k

(2π)32E
a†
λ(k)aλ(k) (10)

counts the number of quanta in a region R of momentum space, 
i.e.

NR |k1 . . . kN〉 = n |k1 . . . kN〉 , (11)

where

n =
N∑

a = 1

1R(ka) (12)

and 1A(x) denotes the indicator function of set A, which is 1 if 
x ∈ A and 0 otherwise. The colons indicate normal ordering. The 
sum is over all physical polarizations λ, if the projection is to be 
independent of polarization, or it could be over some subset of all 
allowed polarizations. Moreover, the region of momentum space 
need not be common to all polarizations, i.e. R →Rλ . For ease of 
notation, we suppress the polarization indices that are needed to 
fully specify Fock states.

Whilst E(0)

R3 is the projection operator corresponding to zero 
quanta (anywhere in configuration space), we can show that

E(0) ≡ : e−NR : (13)
R
is the projection operator corresponding to zero quanta in the re-
gion R, i.e.

E(0)
R |k1 . . . kN〉 =

{
|k1 . . . kN〉 if zero quanta in R ,

0 otherwise .
(14)

The proof of this result, and of those that follow, is contained in 
the appendix. For R = R

3, we project out the vacuum state, as in 
Eq. (9). For the opposite extreme R = ∅ (the empty set), the effect 
operator is just the unit operator, i.e. E(0)

∅ = I, and the measure-
ment is inclusive over all final states [cf. Eq. (4)]. Everywhere in 
between, we automatically sum over states with zero quanta in-
side R and any number of quanta outside R.

These non-emission operators are specific cases of a more gen-
eral projection operator:

E{ ja}
{Ra⊆R} ≡ :

[∏
a

1

ja!
(
NRa

) ja

]
e−NR : . (15)

This operator projects onto the subspace of states in which exactly ∑
a ja quanta have momenta in R, distributed so that exactly ja

quanta have momenta in each disjoint subset Ra ⊆R. Again, there 
is no restriction on quanta lying outside of R. The special case of

E( j)
R ≡ : 1

j!
(
NR

) j
e−NR : (16)

projects onto exactly j particles in R and resembles the operator 
form of the photon counting distribution in quantum optics (see 
e.g. Ref. [13]).

To illustrate Eq. (15), we might consider the simple case where 
one quantum has momentum in the range k → k + d3k and there 
are no other quanta anywhere, i.e. R = R

3. In this case, the pro-
jection operator is

E(1)

R1⊂R3 = : NR1 e−N
R3 :

= d3k

(2π)32E
: a†(k)a(k) |0〉 〈0| :

= d3k

(2π)32E
|k〉 〈k| . (17)

With ja = 1 ∀ a, Eq. (15) could be employed in situations where 
the observable final state has the form of n particles with given 
momenta ka → ka + d3ka , accompanied by any number of unde-
tectable particles below a given energy and/or transverse momen-
tum threshold.

Since these projection operators share a common eigenbasis — 
the Fock basis — they mutually commute and can be combined 
straightforwardly. For example, E( j)

R1
E(k)

R2
projects onto states with 

exactly j quanta in R1 and exactly k quanta in R2, regardless of 
whether R1 and R2 are disjoint.

We may now construct a projection operator dER,vn (V ) for 
an n-particle final state satisfying a constraint of the form V ≤
vn(k1, . . . , kn) ≤ V + dV , which is symmetric under interchange of 
any two momenta, and inclusive of particles outside region R. In 
the low-density regime in which Fock state occupation numbers 
rarely exceed unity, this is

dER,vn

dV
=

[
n∏

i = 1

∫
R

d3ki

(2π)32Ei

]
1

n! δ(vn({ki}) − V )

× :
[

n∏
i = 1

a†(ki)a(ki)

]
e−NR : . (18)
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Where a single choice of particle number n is not appropriate, 
we may bring the particle number into the constraint function 
v
({ki}; n

) = vn(k1, . . . , kn) ∀ n, and define

dER,v

dV
=

∑
n

dER,vn

dV
. (19)

3. Projection operators in Fock space: fermionic case

The projection operators for fermions are analogous to the 
bosonic case. We may regard the sum over λ in Eq. (10) to be in-
clusive of particle (b†

s(k)bs(k)), anti-particle (d†
s(k)ds(k)) and spin 

states (indexed by s), i.e. NR → NR + N̄R̄ , where

NR =
∑

s

∫
R

d3k

(2π)32E
b†

s(k)bs(k) , (20a)

N̄R̄ =
∑

s

∫
R̄

d3k

(2π)32E
d†

s(k)ds(k) . (20b)

As was true of the polarization sum, the regions R and R̄ need 
not be common to all spin projections, i.e. R → Rs and R̄ → R̄s . 
The anti-commutativity of the fermion creation and annihilation 
operators is accounted for in the definition of normal ordering:

: b†
s(k)bs(k) : = + b†

s(k)bs(k) , (21a)

: bs(k)b†
s(k) : = − b†

s(k)bs(k) , (21b)

with analogous expressions holding for the anti-fermion operators 
d†

s(k) and ds(k).
For a general product of j operators, we find

:
j∏

a = 1

b†
sa(ka)bsa (ka) :

= (−1) j( j−1)/2
j∏

a = 1

b†
sa(ka)

j∏
b = 1

bsb (kb) . (22)

The normal ordering has given rise to an overall factor of
(−1) j( j−1)/2. However, after acting on a given state with the anni-
hilation operators, the order of the creation operators is reversed 
relative to the original state. Using anti-commutation to recover 
the original order, we pick up an additional factor of (−1) j( j−1)/2, 
with the result that there is no overall sign relative to the bosonic 
case. We can account for this directly at the level of Eq. (22) by 
re-ordering the creation operators, picking up the same additional 
factor of (−1) j( j−1)/2:

:
j∏

a = 1

b†
sa (ka)bsa(ka) : =

1∏
a = j

b†
sa (ka)

j∏
b = 1

bsb (kb) . (23)

The behaviour of the normal-ordered products of fermion num-
ber operators is therefore identical to that of the normal-ordered 
boson number operators described previously. This can also be un-
derstood by virtue of the fact that fermionic number operators are 
commutative not anti-commutative.

As an example, the operator projecting onto the subspace of 
states in which there are exactly j fermions (of any spin) and zero 
anti-fermions in R is

E( j,0)
R ≡ : 1

j! (NR) je−NR−N̄R :

= : 1

j! (NR) je−NR : ⊗ : e−N̄R : . (24)
In all cases, the projection operators of a given degree of free-
dom are built from the corresponding number operator. The results 
presented here may therefore be generalized readily to include ad-
ditional gauge structure, multiple flavours or higher-spin represen-
tations, simply by accounting for summations over the additional 
quantum numbers. Since the number operators of different degrees 
of freedom mutually commute — for fermions as well as bosons 
— their projection operators may be combined straightforwardly 
by tensor multiplication. One can then imagine constructing semi-
inclusive projection operators able to deal with final states of any 
content and complexity by combining those of different species 
across various disjoint and/or overlapping regions of momentum 
space.

4. Conclusions

These projection operators have the interesting property that 
unobserved quanta never appear in the calculation. This may have 
a significant impact upon the way in which we deal with infra-
red divergences in gauge theories. In order to take advantage of 
this property, we must compute probabilities directly, bypassing 
amplitude-level calculations altogether. Were we to revert to the 
latter, we would need to break the projection operators apart 
again, reintroducing the explicit sums over unobserved emissions 
that we intend to avoid. It remains to develop technology that 
makes tractable the explicit calculation of these probabilities, per-
haps building on the results of Ref. [9] and the earlier ideas of 
Ref. [14] by exploiting the connection to the path-integral ap-
proach of the in-in (or closed-time-path) formalism.
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Appendix A. Proofs of results quoted in the main text

It is useful to be able to compute the eigenvalues of normal-
ordered products of number operators. The eigenvalue equations 
themselves have identical forms for bosonic and fermionic number 
operators, and we will suppress all but the momentum depen-
dence of states for conciseness. The first non-trivial example is

: NR1 NR2 : |k1 . . . kN〉 = (n1n2 − n12) |k1 . . . kN〉 , (A.1)

where ni counts the number of quanta lying in Ri and n12 counts 
the number of quanta lying in the overlapping region R1 ∩ R2. 
Similarly,

: NR1 NR2 NR3 : |k1 . . . kN〉 = (n1n2n3 − n12n3

− n13n2 − n23n1 + 2n123) |k1 . . . kN〉 . (A.2)

These are the simplest examples of the more general formula:

: NR1 NR2 . . . NRp : |k1 . . . kN〉

=
[ p∏

r = 1

nr

][
1

+
∑
i< j

(−1)nij

nin j

+
∑

i< j<k

(−1)(−2)nijk

nin jnk

+
∑ (−1)(−2)(−3)nijkl

nin jnknl
+ . . .
i< j<k<l
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+
∑

i< j,i<k<l

(−1)nij(−1)nkl

nin jnknl

+
∑

i< j,k<l<m

(−1)(−2)nijk(−1)nlm

nin jnknlnm
+ . . .

+ (−1)p−1(p − 1)!n12...p

n1n2 . . .np

]
|k1 . . . kN〉 , (A.3)

in which a sum is listed for every integer partition of p.
The eigenvalue of this normal-ordered product of number op-

erators counts the total number of ways to select p quanta from 
the set specified by the state |k1 . . . kN 〉 such that one quantum 
is in each of the regions Ri . If the regions are nested, such that 
R1 ⊆R2 ⊆ . . ., Eq. (A.3) reduces to

:
p∏

i = 1

(NRi ) : |k1 . . . kN〉 =
[ p∏

i = 1

(
ni − (i−1)

)] |k1 . . . kN〉 , (A.4)

and, if all the Ri are identical, this becomes

: (NR)p : |k1 . . . kN〉 =
⎧⎨
⎩

n!
(n − p)! |k1 . . . kN〉 if n ≥ p ,

0 otherwise .
(A.5)

We now consider more than one sequence of nested regions in 
the case that the regions in different sequences are disjoint. If we 
have j1 copies of region R1, j2 copies of region R2 and so on, 
with Ri ∩R j = ∅ ∀ i �= j, then

:
∏

a

(NRa )
ja : |k1 . . . kN〉

=

⎧⎪⎨
⎪⎩

[∏
a

na!
(na − ja)!

]
|k1 . . . kN〉 if na ≥ ja ∀ a ,

0 otherwise .

(A.6)

The product form of the eigenvalues is a consequence of the fact 
that the operator factorizes into mutually commuting operators of 
the form given in Eq. (A.5).

Now we consider a set of disjoint regions within a superset. 
Let us augment the case of the previous paragraph with k copies 
of a region R ⊃ Ri . After selecting ja particles from each disjoint 
region Ra , the number of particles remaining in R is nx ≡ n −∑

a ja . The number of ways of selecting these k particles is then 
nx!/(nx − k)!, and

:
[∏

a

(NRa )
ja

]
(NR)k : |k1 . . . kN〉

=

⎧⎪⎨
⎪⎩

nx!
(nx − k)!

[∏
a

na!
(na − ja)!

]
|k1 . . . kN〉 if na ≥ ja ∀ a

and nx ≥ k ,

0 otherwise .

(A.7)

These results for the action of normal-ordered products of the 
number operator are the key to proving the results quoted in the 
main text.
Specifically, using Eq. (A.5), we can go ahead and prove Eq. (14):

E(0)
R |k1 . . . kN〉 =

n∑
p = 0

(−1)p n!
p!(n − p)! |k1 . . . kN〉

= lim
x → −1

(1 + x)n |k1 . . . kN〉

=
{

|k1 . . . kN〉 if n = 0 ,

0 otherwise .
(A.8)

A proof of Eq. (15), using Eq. (A.7) with nx ≡ n − ∑
a ja , runs as 

follows:

E{ ja}
{Ra⊆R} |k1 . . . kN〉

=
∞∑

k = 0

(−1)k

k! :
[∏

a

1

ja! (NRa )
ja

]
(NR)k : |k1 . . . kN〉

=
nx∑

k = 0

(−1)k

k!
nx!

(nx − k)!

[∏
a

na!
ja!(na − ja)!

]
|k1 . . . kN〉 (A.9)

provided na ≥ ja ∀a, and zero otherwise. The eigenvalue may be 
written[∏

a

(
na

ja

)]
nx∑

k = 0

(
nx

k

)
(−1)k =

[∏
a

(
na

ja

)]
lim

x → −1
(1 + x)nx ,

(A.10)

which vanishes unless nx = 0. Since n ≥ ∑
a na ≥ ∑

a ja = n − nx , 
this implies na = ja ∀ a. Hence,

E{ ja}
{Ra⊆R} |k1 . . . kN〉

=
{

|k1 . . . kN〉 if na = ja ∀ a and n = ∑
a ja ,

0 otherwise .
(A.11)
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