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Abstract 11 

The accuracy of the computational fluid dynamics (CFD) to model the airflow around the 12 

buildings in the atmospheric boundary layer (ABL) is directly linked to the utilized turbulence model. 13 

Despite the popularity and their low computational cost, the current Reynolds Averaged Navier-Stokes 14 

(RANS) models cannot accurately resolve the wake regions behind the buildings. The default values 15 

of the RANS models’ closure coefficients in CFD tools such as ANSYS CFX, ANSYS FLUENT, 16 

PHOENIX, and STAR CCM+ are mainly adapted from other fields and physical problems, which are 17 

not perfectly suitable for ABL flow modeling. This study embarks on proposing a systematic approach 18 

to find the optimum values for the closure coefficients of RANS models in order to significantly 19 

improve the accuracy of CFD simulations for urban studies. The methodology is based on stochastic 20 

optimization and Monte Carlo Sampling technique. To show the capability of the method, a test case 21 

of airflow around an isolated building placed in a non-isothermal unstable ABL was considered. The 22 

recommended values for this case study in accordance with the optimization method were thus found 23 

to be 1.45 ≤ 𝐶𝜀1 ≤ 1.5, of 2.7 ≤ 𝐶𝜀2 ≤ 3, and 0.12 ≤ 𝐶𝜇 ≤ 0.15. The default value of 𝜎𝑘 = 1 is 24 

suggested to be acceptable while the value of 𝜎𝜀 is obtained through a correlation. The error of the 25 

estimated reattachment length behind the building decreased form 170% for the default values to 28% 26 

for the modified values.    27 
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Nomenclature  36 

𝜌 Density 𝑈𝐻 Inflow mean streamwise velocity at 

building height 𝐻 

𝑡 Time 𝐻 Building height 

𝑥𝑖 Component of space coordinate 𝛼 Power-law exponent 

𝑈𝑖 Component of  the mean velocity vector 𝑞 Hit rate 

𝜏𝑖𝑗 Viscous stress tensor 𝑁 Number of data points (48) 

𝑆𝑀𝑖 Body forces 𝑂𝑖 Observed value 

𝜇𝑡 Turbulent viscosity 𝑃𝑖 Predicted value 

𝛿𝑖𝑗 Kronecker Delta function 𝐹𝐴𝐶2 The fraction of the predictions within a 

factor of 2 of the observations 

𝑘 Turbulent kinetic energy 𝑿𝒇 Reattachment length behind the building 

𝑔𝑖 Gravity vector 𝑿𝒓 Reattachment length on the roof 

𝐶𝜇 𝑘 − 𝜀 model constant 𝑢𝑖 Fluctuating velocity component in the 

turbulent flow 

𝜇 Molecular viscosity 𝜎𝑘 𝑘 − 𝜀 model constant 

𝜀 Turbulent dissipation rate 𝜎𝜀 𝑘 − 𝜀 model constant 

𝑃𝑘 Shear production term in 𝑘-equation 𝐶𝜀2 𝑘 − 𝜀 model constant 

𝑃𝑘𝑏 Buoyant production term in 𝑘-equation 𝜃𝐻 Temperature at building height (11℃) 

𝐶𝜀1 𝑘 − 𝜀 model constant ∆𝜃 𝜃𝑓 − 𝜃𝐻 

𝜃𝑓 Floor temperature (45 ℃)   

 37 

1. Introduction and literature review 38 

Airflow modeling in built environment has a significant potential to help urban planners, 39 

architects and engineers in the design stages of buildings and cities (Capeluto et al, 2003; Murakami, 40 

2006; Wong et al, 2011). In particular, an accurate modeling can bring about desired outcomes such as 41 

the improvement of the pedestrian-level wind comfort (Haghighat and Mirzaei, 2011; Mirzaei and 42 

Haghighat, 2012; Richards et al, 2002; Tsang et al, 2012), reduction of the pollution dispersion 43 

(Mirzaei and Haghighat, 2010, 2011; Yamada, 2004), minimizing the building energy consumption 44 

(Allegrini et al, 2015; Evins et al, 2014; Yi and Feng, 2013), utilizing wind energy for modern 45 

applications (Mirzaei and Rad, 2013), and mitigation of the urban heat island (Magli et al, 2015; 46 

Mirzaei, 2015). Among different techniques for analyzing airflow in outdoor climates such as wind 47 

tunnel experiments and on-site measurements, Computational Fluid Dynamics (CFD) emerged as a 48 

reliable and cost effective method to simulate the wind condition around buildings. Atmospheric 49 

boundary layer airflow around the buildings, as displayed in Fig.1(a), includes complex phenomena, 50 

such as separation, reattachment, large-scale turbulence and unsteady vortex shedding (Rodi, 1997); 51 

hence turbulence modeling has a significant impact on the accuracy of the CFD models. Despite many 52 

years of researches, CFD modeling of turbulent flow around buildings still remains a challenging issue 53 

(Lateb et al, 2016). Even for a simple cubic form of an isolated building, there is a noticeable 54 

disagreement between the experimental results and CFD predictions (see Fig.1(b) and Fig.1(c)).  55 
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Figure 1 (a) Flow visualization around an isolated building (Hunt et al, 1978). Streamwise velocity 56 
distribution around an isolated building for (b) experiment by Yoshie et al (2011), (c) RANS turbulence mode 57 

Early works presented in (Lakehal and Rodi, 1997; Murakami, 1993; Murakami et al, 1990; 58 

Tamura et al, 1997) examined different turbulence models to predict the airflow around a generic bluff 59 

body via focusing on the pressure distribution and separation of flow over the roof. In an attempt to 60 

investigate the problem of the airflow modeling in urban areas, a working group for CFD modeling of 61 

the wind environment around a building was organized by the Architectural Institute of Japan 62 

(Shirasawa et al, 2003). Tominaga et al (2004) presented the result of a cross comparison of the 63 

airflow around a single high-rise building in the lower part of the atmospheric boundary layer (ABL). 64 

Also, they performed numerical simulation of a building complex in an actual urban region. Different 65 

software and turbulence models were examined in their study for two test cases of 2:1:1 and 4:4:1 66 

shaped building models based on the experiments from Yan and Kazuki (1998). Their results showed 67 

that the standard k − ε model mainly fails to produce the reverse flow over the roof, but revised 68 

models (e.g. LK k − ε (Kato, 1993), RNG k − ε (Yakhot and Orszag, 1986),  MMK k − ε (Tsuchiya et 69 

al, 1997) could more accurately predict the flow pattern. However, the standard k − ε model and all 70 

revised models overestimated the reattachment length behind the building. 71 

A similar finding was presented by Yoshie et al (2007), Tominaga and Stathopoulos (2010), 72 

Vardoulakis et al (2011), and Gousseau et al (2011) which emphasized the inaccuracy of the Reynolds 73 

Averaged Navier Stokes (RANS) turbulence models in reproducing the weak wind regions behind 74 

buildings and also in overestimating the reattachment length behind the building. In another study by 75 

Köse and Dick (2010), it was shown that the poor accuracy of the RANS turbulence models for 76 

prediction of the airflow around the buildings in ABL is accompanied with a low accuracy in 77 

estimating the mean surface pressure over the building in comparison with LES models. 78 

In a recent study by Tominaga (2015), the accuracy of the unsteady Reynolds-averaged Navier–79 

Stokes (URANS) turbulence modeling for an isolated building was investigated. He concluded that the 80 

URANS simulation based on the 𝑘 − 𝜔 𝑆𝑆𝑇 turbulence model is able to simulate the unsteady 81 

fluctuations behind the building and providing a better velocity field in this region as well; however, 82 

the model generally overestimates the separation in the corners. 83 

𝐸𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 

𝑅𝐴𝑁𝑆  (𝑘 − 𝜀) 

Reattachment 

length 

Reattachment 

length 
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The previous literature clearly demonstrates that the linear two-equation RANS turbulence models 84 

provide poor results for the airflow prediction around an isolated building, compared with the URANS 85 

and LES models. However, high complexity of the URANS and LES models in specifying accurate 86 

boundary condition, proper mesh size and time scale, in addition to their inherent high computational 87 

cost keep their potential application as a reliable and fast solution for many realistic engineering 88 

problems very limited. Despite the development of several methods for improving the RANS 89 

turbulence models, e.g. 𝑅𝑁𝐺 𝑘 − 𝜀 (Yakhot et al, 1992) and Realizable k − ε (Shih et al, 1995), their 90 

application for the airflow modeling around buildings in ABL is limited due to their poor accuracy in 91 

resolving the flow in the weak wind regions.  92 

Moreover, another limitation of the current RANS family models refers to their semi-empirical 93 

coefficients, which are mainly adapted from the fundamental and classical flow problems, e.g. 94 

homogenous decaying turbulence, free sheer flow, and fully developed channel flow. The value of 95 

these coefficients collected in the work carried out by Launder and Spalding (1974) are shown in 96 

Table 1. These values are used in most CFD tools such as ANSYS CFX, ANSYS FLUENT, 97 

PHOENIX, and STAR CCM+ as default parameters. However, experimental measurements performed 98 

in different studies show a slight difference in values for these coefficients. For instance, Mohamed 99 

and LaRue (1990) suggested a value of 𝐶𝜀2 = 1.77 which is lower than the default value of 1.92. 100 

Experimental and numerical analyses by Kim et al (1987) demonstrate that the variation of 𝐶𝜇 for a 101 

channel flow in areas far from the wall (𝑦+ > 50) is between 0.06 to 0.095, resulting in an average 102 

value of 𝐶𝜇 = 0.09. The value of 𝐶𝜇 for a temporal-mixing layer was reported between 0.07 and 0.11 103 

(Pope, 2001). In an experimental work by Tavoularis and Karnik (1989), different values for the ratio 104 
𝐶𝜀2−1

𝐶𝜀1−1
, ranging from 1.33 to 1.75, were observed for different shear flows. Once default values of 𝐶𝜀1 105 

and 𝐶𝜀2 are used, the ratio gets 2.09, which is noticeably different from the reported experimental 106 

values (Edeling et al, 2014a). All these studies imply that there is a noticeable uncertainty in these 107 

coefficients and as demonstrated in (Edeling et al, 2014b), best flow-independent values for these 108 

coefficients are unlikely to exist. As described in (Pope, 2001), the default values of the closure 109 

coefficients in the standard 𝑘 − 𝜀 model are obtained from a compromise so as to enable the model to 110 

perform for a variety of the airflow problems.  111 

In Table 1, a number of studies associated with the effect of the closure coefficients for different 112 

physical problems are summarized. In an early work conducted by Duynkerke (1988), a set of 113 

modified closure coefficients for the standard 𝑘 − 𝜀 model was suggested based on a comparison 114 

between the RANS model and a measurement study and LES model over a flat terrain for neutral and 115 

stable atmospheric boundary layer conditions. He used Panofsky and Dutton (1984) data and 116 

calculated 𝐶𝜇 = 0.033, which is lower than its default value of 0. 09. He also proposed values of 117 

𝐶𝜀1 = 1.46 and 𝐶𝜀2 = 1.85, which are close to their default values of 1.44 and 1.92, respectively. For 118 

Von Karman constant equal to 0.4, he has also obtained 𝜎𝜀 = 2.38, which is greater than its default 119 

value of 1.3 used in most of the CFD solvers. For 𝜎𝑘, the default value of 1 was assumed. In a similar 120 

work by Detering and Etling (1985), a modification on the 𝜀 equation constants of the 𝑘 − 𝜀 model 121 

was adapted for mesoscale atmospheric boundary layer modeling above a flat and complex terrain. 122 

 123 
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Table 1 The value of closure coefficients for different flow problems 124 

Ref Physical model Closure coefficients 

Launder and 

Spalding (1974) 
Free turbulent flows 

𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝐶𝜇 = 0.09, 

𝜎𝜀 = 1.3, 𝜎𝑘 = 1 
Mohamed and 

LaRue (1990) 
Grid-generated turbulence 𝐶𝜀2 = 1.77 

Kim et al 

(1987) 
Fully developed channel flow 0.06 ≤ 𝐶𝜇 ≤ 0.095 

Pope (2001) 
Fully developed channel flow in log-

law region 
𝜎𝜀 =

𝜅2

𝐶𝜇
1/2(𝐶𝜀2 − 𝐶𝜀1)

 

Duynkerke 

(1988) 
Neutral and Stable ABL  

𝐶𝜀1 = 1.46, 𝐶𝜀2 = 1.83, 𝐶𝜇 = 0.033, 

𝜎𝜀 = 2.38, 𝜎𝑘 = 1 
Detering and 

Etling (1985) 
Neutral and Stable ABL  

𝐶𝜀1 = 1.13, 𝐶𝜀2 = 1.9, 𝜎𝜀 = 1.29, 𝜎𝑘 =
0.74 

Glover et al 

(2011) 
Idealized street canyon 

𝐶𝜀1 = 1, 𝐶𝜀2 = 2.2, 𝐶𝜇 = 0.12, 𝜎𝜀 =

0.42, 𝜎𝑘 = 0.462 
Edeling et al 

(2014b) 

Wall-bounded flow with different 

favorite and adverse pressure gradient 
Case dependent 

Guillas et al 

(2014) 
Idealized street canyon 

𝐶𝜀1 = 1, 𝐶𝜀2 = 2.2, 𝐶𝜇 = 0.12, 𝜎𝜀 =

0.42, 𝜎𝑘 = 0.462 

Zahid Iqbal and 

Chan (2016) 
High-raised cross-shaped buildings 

𝐶𝜀1 = 1, 𝐶𝜀2 = 1.92, 𝐶𝜇 = 0.12, 

𝜎𝜀 = 0.5, 𝜎𝑘 = 0.53 

 125 

Due to the inherent uncertainty in the value of the closure coefficients (Mohamed and LaRue, 126 

1990; Tavoularis and Karnik, 1989), some studies, therefore, considered these coefficients as uncertain 127 

variables; investigated the sensitivity of the RANS model outputs to the variability of the closure 128 

coefficients. For example, Dunn et al (2011),  Glover et al (2011), Todd and Robert (2011), Cheung et 129 

al (2011), Edeling et al (2014b) and Guillas et al (2014) investigated the uncertainty in relation to the 130 

closure coefficients of the 𝜀 equation, and discussed the applicability of statistical analysis for 131 

improving the accuracy of RANS models. Dunn et al (2011) studied the uncertainty in relation to the 132 

𝑘 − 𝜀 coefficients using the Latin Hypercube Sampling (LHS) method through considering different 133 

forms of probability density function (PDF) for the closure coefficients. They demonstrated that the 134 

highest uncertainty of the flow parameters occurs in the recirculating region and near the reattachment 135 

point. Furthermore, a Bayesian calibration approach was introduced in (Cheung et al, 2011) in which 136 

coefficients of Spalart–Allmaras model (Spalart and Allmaras, 1992) were calibrated for a set of 137 

incompressible CFD models over a flat plate. Experimental data for the velocity profile and wall shear 138 

stress were used in the calibration process. In a similar work, Edeling et al (2014b) performed 13 139 

separate Bayesian calibrations using the experimental velocity profile for 13 different pressure 140 

gradients. They used a two-dimensional compressible boundary layer program instead of a full RANS 141 

code in order to reduce the runtime and avoid surrogate model. Their results showed a noticeable 142 

variation of coefficient posteriors for the considered range of the flow for 𝐶𝜀2 and 𝐶𝜇.  143 

In another work performed by Guillas et al (2014), a Bayesian calibration of the 𝑘 − 𝜀 closure 144 

coefficients for a flow in a street canyon was presented. They calibrated a CFD RANS model against a 145 

series of wind tunnel experiments (Kastner-Klein et al, 2001), and considered the turbulent kinetic 146 
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energy distribution between regular street canyons as the quantity of interest. Uniform priors for 147 

closure coefficients, including 𝐶𝜇 , 𝐶𝜀1, 𝐶𝜀2,  and 𝜎𝑘, were considered in their method and it was 148 

concluded that the 𝐶𝜇 values higher than 0.12 have the highest probability to better match the 149 

experimental data. For 𝜎𝑘, values close to 0.5 were reported to be favorable. Solazzo (2008) reported a 150 

similar trend and showed that the lower values for 𝜎𝑘 and 𝜎𝜀 than their default values can result in a 151 

better distribution of 𝑘 inside the street canyon, and thus improve the accuracy of the 𝑘 − 𝜀 model for 152 

such applications. In a recently published work by Zahid Iqbal and Chan (2016), a numerical and 153 

experimental analysis for the pedestrian wind environment around a group of high-rise cross-shaped 154 

buildings was presented. They used the closure coefficients proposed by Guillas et al (2014) and 155 

performed two experimental test cases to modify these coefficients. Their modified values (see Table 156 

1) showed a better agreement with the experimental results relative to the default values for the 157 

standard 𝑘 − 𝜀 model.  158 

This article aims to propose a systematic way to find the optimized values for the closure 159 

coefficients of RANS family turbulence models to improve the accuracy of CFD simulations for 160 

microclimate and urban studies. The methodology is based on a stochastic optimization approach and 161 

the Monte Carlo Sampling (MCS) technique, which is later applied to a case study to demonstrate the 162 

capability of the developed approach. Although the stochastic optimization and MCS method have 163 

been widely used for the reliability-based design and robust optimization of complex systems (Shah et 164 

al, 2015; Tang and Périaux, 2012), their application for calibration of the closure coefficients for ABL 165 

flow modeling is a novel approach. The proposed method in this study requires fewer samples (CFD 166 

simulations) than the previous calibration methods based on the Bayesian approaches. The case study 167 

considered in this article is the airflow around a high-rise building in a non-isothermal ABL in which 168 

optimized closure coefficients for the  𝑘 − 𝜀 model were investigated. A constant value for the 169 

turbulent Prandtl number was taken into consideration during the optimization. The experimental data 170 

of the airflow behind a high-rise building in an unstable non-isothermal turbulent flow by Yoshie et al 171 

(2011) were used in the calibration process to define various validation metrics. Using the MCS 172 

technique and stochastic optimization, a set of new closure coefficients will be obtained and 173 

accordingly they can improve the accuracy of the turbulence model. Numerical data for velocity in the 174 

wake region behind the building will be considered as the objectives of the optimization technique.   175 

2. Methodology 176 

The main objective of this study is to propose a systematic way to improve the accuracy of the 177 

RANS models in microclimate studies; it is achieved through modifying the closure coefficients of 178 

turbulence models using a stochastic optimization approach. To this end, a parametric sensitivity 179 

analysis will be performed at the first step to investigate the impact of the model coefficients on the 180 

accuracy of the CFD model. In the next step, the model coefficients will be inserted into an 181 

optimization module as a set of uncertain variables, and eventually, the best range of the coefficients 182 

will be calculated so accurately that the highest agreement between the experiment and CFD results 183 

can be achieved.  184 

 185 

 186 
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2.1 Optimization procedure 187 

Stochastic optimization approaches can be used in models in which exact data are unknown, but 188 

bounded by a set of realization or scenarios (Goerigk and Schöbel, 2016). This is the case in RANS 189 

turbulence models where the numerical values of the closure coefficients are chosen through 190 

combination of heuristic and empirical decision making (Schaefer et al, 2016). Thus, RANS 191 

coefficients can be considered as epistemic uncertainty variables with a uniform probability density 192 

function (PDF) to provide an equal probability for all the values in the interval to be an optimum 193 

candidate (Guillas et al, 2014). The concept of stochastic optimization used in this study, known as a 194 

robust optimization method, is described in (Van der Velden and Koch, 2010). 195 

The brief description of the formulation of stochastic optimization can be mathematically stated as 196 

finding a set of design variables X that (Koch et al, 2004): 197 

Minimize:         𝑓(𝜇𝑦(𝑋), 𝜎𝑦(𝑋))  

Subject to:         𝑔𝑖(𝜇𝑦(𝑋), 𝜎𝑦(𝑋)) ≤ 0  

𝑋𝐿 ≤ 𝑋 ≤ 𝑋𝑈 (1) 

where 𝑋𝐿and 𝑋𝑈 are the lower and upper limits for input parameter 𝑋. In this formulation, the output 198 

constraint 𝑔𝑖 is expressed in terms of mean value and standard deviation. A weighted sum approach 199 

was used to define the objective function, which includes a term for mean value variation relative to 200 

the target and a term to minimize the response variation (Koch et al, 2004): 201 

𝐹 = ∑ [
𝑤1𝑖

𝑠1𝑖

(𝜇𝑦𝑖
− 𝑀𝑖)

2
+

𝑤2𝑖

𝑠2𝑖

𝜎𝑦𝑖
2 ]

𝑙

𝑖=1

 (2) 

where 𝑤1𝑖
 and 𝑤2𝑖

 are the weighting factors, and 𝑠1𝑖
 and 𝑠2𝑖

 are the scale factors related to each term. 202 

The weighting factors determine the importance of each objective while the scaling factors are used to 203 

normalize the objectives. 𝑀𝑖 stands for the target of the output response 𝑖 and 𝑙 is the total number of 204 

output responses. The statistical variability of output responses (i.e. 𝜇𝑦𝑖
 and 𝜎𝑦𝑖

), which are required 205 

by the stochastic optimization formulation, can be estimated using the Monte Carlo simulation (MCS) 206 

technique. 207 

In Fig. 2, a schematic of the optimization process for calibrating the closure coefficients is shown. 208 

By coupling the Monte Carlo sampling technique and CFD model, input variables (closure 209 

coefficients) randomly vary in accordance with their given PDFs. CFD model will be repeatedly run to 210 

characterize the statistical parameters of the output values (i.e. validation metrics), including their 211 

mean and standard deviation values. By integrating the Monte Carlo sampling into an optimizer, not 212 

only can the best mean value of the desired outputs (validation metrics) be calculated, but it is also 213 

possible to minimize the standard deviation of the output values so as to reduce the effects of 214 

uncertainty of the input variables on the output response. Nonlinear Programing with Non-Monotone 215 

and Distributed Line Search (NLPQLP) optimization method (Schittkowski, 2006), a well suited 216 

method for highly non-linear design spaces, was used for the optimization purpose. A descriptive 217 

sampling technique (Tari and Dahmani, 2006) was used for MCS, which is more efficient than the 218 

conventional simple random sampling method (Koch et al, 2004). 50 samples were considered for the 219 

MCS during each optimization iteration. Different objective functions can be defined for the 220 
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optimization process, including the means and standard deviation of validation metrics, which depend 221 

on the availability of the experimental data for each specific case.  222 

 
Figure 2 Schematic of the stochastic optimization of the closure coefficients 223 

2.2 Mathematical modeling 224 

The 3D steady Reynolds averaged Navier-Stokes (RANS) equations were used to simulate the 225 

airflow around the building. These equations can be derived by substituting mean and fluctuating 226 

components of the airflow variables into the Navier-Stokes equations (CFX, 2011): 227 

𝜕(𝜌𝑈𝑗)

𝜕𝑥𝑗

= 0 (3) 

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑖𝑈𝑗) = −
𝜕𝑃

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

(𝜏𝑖𝑗 − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) + 𝑆𝑀𝑖
 (4) 

where 𝑈𝑖 is the average velocity and 𝑢𝑖 is the fluctuating velocity. 𝜏𝑖𝑗 is the viscous stress tensor 228 

(including both normal and shear components of the stress tensor) and 𝑆𝑀𝑖
 is the sum of body forces. 229 

The Boussinesq model was used in this study. Temperature field was also calculated by solving the 230 

energy equation while eddy diffusivity was used to model turbulent energy fluxes (CFX, 2011): 231 

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑗ℎ𝑡𝑜𝑡𝑎𝑙) =
𝜕

𝜕𝑥𝑗

(𝜆
𝜕𝑇

𝜕𝑥𝑗

+
𝜇𝑡

𝑃𝑟𝑡

𝜕ℎ

𝜕𝑥𝑗

) +
𝜕

𝜕𝑥𝑗

[𝑈𝑖(𝜏𝑖𝑗 − 𝜌𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅)] + 𝑈𝑗𝑆𝑀𝑗
 

 

(5) 

where 𝜆 is the thermal conductivity of air and 𝑃𝑟𝑡 is the turbulent Prandtl number, which has a 232 

constant value of 0.9. 𝑈𝑗𝑆𝑀𝑗 represents the work due to the external momentum source. ℎ𝑡𝑜𝑡𝑎𝑙 is the 233 

total enthalpy and is related to the static enthalpy (ℎ) by: 234 

ℎ𝑡𝑜𝑡𝑎𝑙 = ℎ +
1

2
𝑈2 

(6) 

Air was considered to be incompressible, which is reasonable for atmospheric boundary layer 235 

(ABL) flows (Richards and Norris, 2011); the air density, specific heat capacity at constant pressure, 236 

and thermal expansion coefficient were considered to be 1.185 
𝑘𝑔

𝑚3⁄ , 1004.4 
𝑗

𝑘𝑔 𝐾⁄ , and 237 

0.003356 1
𝐾⁄ . The temperature was calculated from the static enthalpy as follows:  238 

NLPQLP 

Optimizer 

PDF of Closure Coefficients 

Monte Carlo Sampling  

CFD Solver 

CFD Post Processing 

PDF of Validation Metrics 
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ℎ − ℎ𝑟𝑒𝑓 = 𝐶𝑃(𝑇𝑠𝑡𝑎𝑡𝑖𝑐 − 𝑇𝑟𝑒𝑓) (7) 

where 𝑇𝑟𝑒𝑓 = 25℃ is the reference temperature and ℎ𝑟𝑒𝑓 is the reference enthalpy which is zero at the 239 

reference temperature. 240 

In this study the 𝑘 − 𝜀 turbulence model with the Kato-Launder modification (Kato and Launder, 241 

1993) was used, which is based on the eddy viscosity hypothesis in which Reynolds stresses can be 242 

related to the mean velocity gradients and eddy (turbulent) viscosity by the gradient diffusion 243 

hypothesis as follows: 244 

−𝜌𝑈𝑖𝑈𝑗
̅̅ ̅̅ ̅̅ = 𝜇𝑡 (

𝜕𝑈𝑖

𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖

) −
2

3
𝛿𝑖𝑗𝜌𝑘 (8) 

where 𝜇𝑡 is the eddy viscosity or turbulent viscosity, which can be defined as below: 245 

𝜇𝑡 = 𝐶𝜇𝜌
𝑘2

𝜀
 (9) 

For the 𝑘 − 𝜀 model, values of 𝑘 and 𝜀 come directly from their differential transport equations 246 

(Mori et al, 1995): 247 

𝜕𝜌𝑈𝑗𝑘

𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑗

] + 𝑃𝑘 − 𝜌𝜀 + 𝑃𝑘𝑏  
(10) 

𝜕𝜌𝑈𝑗𝜀

𝜕𝑥𝑗

=
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝜀

)
𝜕𝜀

𝜕𝑥𝑗

] +
𝜀

𝑘
(𝐶𝜀1𝑃𝑘 − 𝐶𝜀2𝜌𝜀 + 𝐶𝜀1𝑃𝜀𝑏) 

(11) 

where 𝑃𝑘 is the production of turbulence due to shear, which is modified by Kato and Launder (1993):  248 

𝑃𝑘 = 𝜌𝐶𝜇𝜀𝑆Ω (12) 

where S and Ω are respectively the dimensionless strain and vorticity parameters, which are calculated 249 

as below:  250 

𝑆 =
𝑘

𝜀
√

1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)

2

 (13)  

Ω =
𝑘

𝜀
√

1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗
−

𝜕𝑈𝑗

𝜕𝑥𝑖
)

2

    (14) 

𝑃𝑘𝑏 and 𝑃𝜀𝑏 are buoyancy turbulence production and dissipation terms, respectively: 251 

𝑃𝑘𝑏 =
𝜇𝑡

𝜎𝑝

𝛽𝑔𝑖

𝜕𝑇

𝜕𝑥𝑖

 
(15) 

𝑃𝜀𝑏 = max (0, 𝑃𝑘𝑏) (16) 

where 𝜎𝑝 = 0.9 is the turbulent Schmidt Number and 𝛽 is the thermal expansion coefficient. Values of 252 

the closure coefficients, according to (Launder and Spalding, 1974), are predefined as the default 253 

values for most of the popular CFD tools as below: 254 

𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1, 𝜎𝜀 = 1.3  
 

(17) 



10 
 

   
(a) (b) 

Figure 3 Schematic of  Yoshie et al (2011) experiment: (a) bluff body dimensions, (b) measurement points 255 

3. CFD Simulation 256 

The RANS equations were solved using the commercial software ANSYS CFX, which uses an 257 

element-based finite volume discretization method. 258 

3.1 Description of the wind tunnel experiment for unstable ABL 259 

As seen in Fig.3, the experimental data for the closure coefficients optimization were taken from 260 

Yoshie et al (2011) in which a detailed experimental analysis on airflow and gas dispersion was 261 

conducted around a high-rise building in a non-isothermal ABL. The target building had a dimension 262 

of 𝑊 × 𝐷 × 𝐻 = 0.08(𝑚) × 0.08(𝑚) × 0.16(𝑚), which was placed in an atmospheric wind tunnel at 263 

Tokyo Polytechnic University. The surface of the wind tunnel had a uniform temperature of 45.3°𝐶 264 

while the air velocity and temperature at the inlet were reported 𝑈𝐻 = 1.37 
𝑚

𝑠
 and  265 

𝜃𝐻 = 11°𝐶, respectively. 266 

3.2 Computational domain, grid, and boundary conditions 267 

A rectangular computational domain, as shown in Fig.4, was considered for the isolated building 268 

case based on the recommendations by AIJ guidelines (Tominaga et al, 2008) and similar studies 269 

(Mirzaei and Carmeliet, 2013). The domain width, length, and height were 1.2(𝑚) × 2(𝑚) × 1(𝑚). 270 

ICEM CFD meshing package was used to create structured hexahedral mesh applying the blocking 271 

technique. A grid-sensitivity analysis was conducted for three different mesh numbers with 229,401; 272 

396,864; and 686,585 cells as coarse, medium and fine mesh configurations. Results showed a very 273 

negligible difference, less than 1%, between the prediction of the velocity profile in the wake region 274 

for the medium and fine meshes; hence the medium mesh configuration was selected for the study. 275 

Number of the cells around the building block was 30 × 30 × 45. An O-grid block with first-layer 276 

size of 1.3 × 10−4(𝑚) was used around the building, which resulted to an average 𝑦+ ≈ 1 for the 277 

solid surfaces. No-slip boundary condition was considered for all solid walls and a constant 278 

temperature boundary condition was applied to the ground surface. All solid walls were treated as 279 

smooth walls. Symmetric wall boundary condition was considered for the lateral boundaries while a 280 

free-slip wall boundary condition was assumed for the top boundary surface. Zero static pressure was 281 

applied at the outlet plane. Inlet boundary condition for the vertical velocity, temperature and turbulent 282 

Measurement Point 
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kinetic energy profiles were also obtained directly from Yoshie et al (2011) experiment. Turbulent 283 

kinetic energy dissipation rate 𝜀(𝑧) was also approximated from the below equation (Yoshie et al, 284 

2011): 285 

𝜀(𝑧) = 𝑢1𝑢3̅̅ ̅̅ ̅̅
𝜕𝑈1

𝜕𝑥3
− 𝑔3𝛽𝑢3𝜃′̅̅ ̅̅ ̅̅  

(18) 

where 𝑢3𝜃′̅̅ ̅̅ ̅̅  is the turbulent heat flux obtained from the experiment. Vertical distribution of the time 286 

averaged streamwise velocity, turbulent kinetic energy, and temperature are depicted in Fig. 5. 287 

 

 

Figure 4 Computational domain and grid arrangement 288 
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 (a) (b) (c) 

Figure 5 Inflow boundary condition for (Yoshie et al, 2011): (a) velocity, (b) temperature, (c) turbulent 289 
kinetic energy  290 

3.3 Solver setting  291 

Pressure-velocity coupling was based on the Rhie-Chow interpolation proposed by Rhie and 292 

Chow (1983) while a co-located grid layout was further used. The High Resolution Scheme was used 293 

for the discretization of the advection terms while tri-linear shape functions were used to evaluate the 294 
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spatial derivatives for all the diffusion terms. For the near-wall treatment, scalable wall function based 295 

on the modification of the Launder and Spalding (1974) was used. The CFD solver iterations have 296 

been continued until reaching RMS residual of less than 10−5 for continuity, velocity components, 297 

energy, 𝑘 and 𝜀 equations. 298 

4. Results 299 

In this section, results of the proposed systematic approach for a test case of the defined non-300 

isothermal ABL flow around a building based on the 𝑘 − 𝜀 model will be presented. At first, results of 301 

a sensitivity analysis on the CFD model’s response to the closure coefficients variation are presented. 302 

After that, the main outcomes of the optimization methodology are discussed.      303 

4.1 Sensitivity analysis of the CFD model response to the variation of the closure coefficients 304 

In order to find the effect of the closure coefficients variation on the response of the CFD model, a 305 

parametric sensitivity analysis has been initially conducted. Results of the parametric sensitivity 306 

analysis were then used to identify the influential parameters for being later used in the statistical 307 

optimization. As shown in (Dunn et al, 2011; Guillas et al, 2014), the highest uncertainty of flow 308 

parameters occurred in the recirculating region and near the reattachment point after the leeward side 309 

within the street canyon. Hence, in the case study, velocity data at 48 points in the wake region along 310 

four streamwise positions, i.e. 
𝑋1

𝐻
= 0.125 , 

𝑋1

𝐻
= 0.625 , 

𝑋1

𝐻
= 1, and  

𝑋1

𝐻
= 1.5, were selected as the 311 

target points for calculation of the validation metrics (see Fig.3 (b)).  312 

Two validation metrics were adapted in this study to quantify the agreement between the 313 

experimental and numerical results. These metrics are namely the hit rate 𝑞 and the fraction of the 314 

predictions within a factor of two of the observations (𝐹𝐴𝐶2) defined as follows (Tominaga, 2015): 315 

𝑞 =
1

𝑁
∑ 𝑛𝑖

𝑁
𝑖=1             𝑖𝑓  |

𝑃𝑖−𝑄𝑖

𝑃𝑖
| ≤ 𝐷𝑞   𝑜𝑟 |𝑃𝑖 − 𝑄𝑖| ≤ 𝑊𝑞      𝑛𝑖 = 1    𝑒𝑙𝑠𝑒  𝑛𝑖 = 0 (19) 

𝐹𝐴𝐶2 =
1

𝑁
∑ 𝑛𝑖

𝑁
𝑖=1      𝑖𝑓   0.5 ≤

𝑃𝑖

𝑄𝑖
≤ 2     𝑛𝑖 = 1      𝑒𝑙𝑠𝑒      𝑛𝑖 = 0 (20) 

where 𝑄𝑖 and 𝑃𝑖 are the observed (measured) and predicted (computed) values of a given variable, 316 

respectively, and 𝑁 is the number of data points. The thresholds for 𝑞 are recommended 𝐷𝑞 = 0.25 317 

and 𝑊𝑞 = 0.03 for streamwise velocity (Gousseau et al, 2013; Tominaga, 2015). For a complete 318 

agreement between the experimental and numerical results, the value of 𝑞 and 𝐹𝐴𝐶2 should be 1. To 319 

perform the parametric sensitivity study, four coefficients of the 𝑘 − 𝜀 turbulence model, i.e. 𝐶𝜀1, 𝐶𝜀2, 320 

𝐶𝜇, and 𝜎𝑘, were linearly altered while for each variable, a number of 20 uniformly distributed samples 321 

were selected among its interval. The value of 𝜎𝜀 was calculated using the eq. (21) for each set of the 322 

closure coefficients. In regard to the previous studies in literature, a range of closure coefficients was 323 

considered as depicted in Table 2.  324 

𝜎𝜀 =
𝜅2

𝐶𝜇
1/2(𝐶𝜀2 − 𝐶𝜀1)

 (21) 

 325 

 326 
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Table 2 Standard values and range of the closure coefficients for parametric study  327 

 𝐶𝜀1 𝐶𝜀2 𝜎𝑘  𝐶𝜇 

Standard value 

Ranges 

1.44 

1:1.5 

        1.92 

        1.5:3 

  1 

0.8:1.4 

   0.09 

0.05:0.15 

𝑞
 

 

𝐹
𝐴

𝐶
2

 

 
 (a)  (b) 

Figure 6 Variation of the validation metrics for the streamwise velocity component for isolated building case 328 
study: (a) hit rate 𝒒, (b) 𝑭𝑨𝑪𝟐 329 

In Fig. 6, the variation of the validation metrics for the streamwise velocity against the closure 330 

coefficients is plotted. It can be seen that 𝐶𝜀2 and 𝐶𝜇 have a noticeable impact on both validation 331 

metrics, but 𝜎𝑘 shows a lower impact. Considering the variation of 𝐹𝐴𝐶2, it reveals that the lower 332 

values of 𝐶𝜀1, namely values around 1, provide a higher accurate results in terms of streamwise 333 

velocity distribution. In contrast, the higher values of 𝐶𝜀2, namely 𝐶𝜀2 ≈ 3, show a better agreement 334 

with the experiment. Same trend can be seen for 𝐶𝜇 where higher value for 𝐹𝐴𝐶2 is obtained for the 335 

higher values of 𝐶𝜇, ranging between 0.11 and 0.15. Both validation metrics seem to be less sensitive 336 

to 𝜎𝑘 for this data set. Nonlinear variation of 𝑞 and 𝐹𝐴𝐶2 shows the necessity of using an optimization 337 

technique to systematically find optimal coefficients. It can be concluded that the default values for the 338 

closure coefficients, as shown in (Edeling et al, 2014b; Guillas et al, 2014), are not accurate for the 339 

considered test case with a strong wake region. 340 

To demonstrate the effect of the closure coefficients on the turbulent kinetic energy distribution at 341 

the wake region behind the building, contours of 𝑘/𝑈𝐻
2  are depicted in Fig. 7 obtained from the default 342 

value and three other cases of the closure coefficient values in addition to the experimental results by 343 

Yoshie et al (2011). It can be seen that for the reference case, which corresponds to the case with 344 

default value for the closure coefficients, the level of the turbulent kinetic energy inside the wake 345 

region behind the building is considerably low. For default closure coefficients, not only is the large 346 

mixing process behind the building underestimated, but the generation of 𝑘 over the roof is also under-347 

predicted. For the case with 𝐶𝜀1=1, distribution level of 𝑘 inside the wake region is noticeably 348 

increased. Same improvement in the distribution of 𝑘 inside the wake region is observed for the case 349 

specified with 𝐶𝜀2 = 3. A minor improvement can be also seen for the case with 𝐶𝜇 = 0.15. For the 350 

cases with 𝐶𝜀1=1 and 𝐶𝜀2 = 3, the position of the formation of the high turbulent kinetic energy over 351 

the roof has changed in a way that is much closer to the experiment in comparison to the case with 352 

default coefficient values. Over the roof area, the average of 𝑘 is noticeably increased and a more 353 
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agreement with the experiment is found. Improving the prediction accuracy of the 𝑘 distribution both 354 

inside the wake region behind the building and the separation region over the roof leads to a better 355 

estimation of the reattachment lengths in these regions. 356 

   

(a) (b) (c) 

   
(d) (e) (f) 

 
𝑘/𝑈𝐻

2 
Figure 7 Contours of the turbulent kinetic energy: (a) experiments by Yoshie et al (2011),  (b)  𝒌 − 𝜺, (c) 357 

𝑪𝜺𝟏 = 𝟏, (d) 𝑪𝜺𝟐 = 𝟑, (e) 𝑪𝝁 = 𝟎. 𝟏𝟓, (f) optimized coefficients 358 

Predicted values for the roof reattachment length (𝑋𝑟) and the floor reattachment length (𝑋𝑓) are 359 

presented in Table 3. The experimental value for the reattachment length at the floor is estimated to be 360 

𝑋𝑓 = 0.096 (𝑚). This value for the reference case with the default coefficients is 𝑋𝑓 = 0.260(𝑚) 361 

while it is 𝑋𝑓 = 0.138 (𝑚) when 𝐶𝜀2 = 3. In the case of 𝐶𝜇 = 0.15, the 𝑘 distribution increased in 362 

relation to the reference case, but its increase is lower than that of altered 𝐶𝜀1 and 𝐶𝜀2. This resulted in 363 

a longer reattachment length of 𝑋𝑓 = 0.201(𝑚). The shortest roof reattachment length is predicted for 364 

𝐶𝜀1=1 followed by the case for 𝐶𝜀2 = 3. This value is not reported in the experiment, but it can be 365 

estimated to be around 𝑋𝑟 ≈ 0.045 (𝑚). 366 

Table 3 Comparison of the reattachment length on roof (𝑿𝒓) and reattachment length behind the building 367 
(𝑿𝒇) 368 

 
 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 
 𝒌 − 𝜺 𝑪𝜺𝟏 = 𝟏 𝑪𝜺𝟐 = 𝟑 𝑪𝝁 = 𝟎. 𝟏𝟓 𝝈𝒌 = 𝟏. 𝟒 

𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅 
𝒌 − 𝜺 

𝑿𝒓 

𝑿𝒇 
NA 

0.096 

0.061 

0.260 

0.023 

0.159 

0.024 

0.138 

0.029 

0.201 

0.043 

0.228 

0.016 

0.123 

In Fig. 8, contours of the temperature distribution around the building for different closure 369 

coefficients, which proved to have a positive effect on the validation metrics, are displayed and 370 

compared with the experimental data. It is important to note that a fixed turbulent Prandtl number was 371 

considered for all simulations. In the case of default closure coefficients, due to the poor mixing 372 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕  𝒌 − 𝜺 𝑪𝜺𝟏 = 𝟏 

𝑪𝜺𝟐 = 𝟑 𝑪𝝁 = 𝟎. 𝟏𝟓 𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅  𝒌 − 𝜺 
 

0.005 0.115 
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behind the building, the temperature diffusion inside the wake region is noticeably lower than that of 373 

the experimental observation. For the cases with Cε1 = 1 and Cε2 = 3, thanks to the higher diffusion 374 

of the momentum inside the wake region, the temperature distribution becomes more realistic and a 375 

very close agreement with the experimental data can be obtained. For the case with 𝐶𝜇 = 0.15 376 

temperature distribution has insignificant improvement due to the lower diffusion of the momentum 377 

inside the wake region. Results of the parametric sensitivity study show that among the considered 378 

closure coefficients for the considered flow condition, all the coefficients except 𝜎𝑘 have a significant 379 

impact on the accuracy of the 𝑘 − 𝜀 model in terms of velocity, turbulent kinetic energy, and 380 

temperature distribution. Hence, Cε1, Cε2 and 𝐶𝜇 were selected as the input variables for the stochastic 381 

optimization to find a suitable set of closure coefficients. 382 

   

(a) (b) (c) 

   
(d) (e) (f) 

 
(𝛉−𝛉𝐟)

∆𝜽
 

Figure 8 Distribution of the non-dimensional temperature  
(𝛉−𝛉𝐟)

∆𝛉
 : (a) experiments by  Yoshie et al (2011), 383 

   (b)  𝒌 − 𝜺, (c) 𝑪𝜺𝟏 = 𝟏, (d) 𝑪𝜺𝟐 = 𝟑, (e) 𝑪𝝁 = 𝟎. 𝟏𝟓, (f) optimized coefficients 384 

4.2 Optimization results 385 

Based on the results of the parametric study, a stochastic optimization using the Monte Carlo 386 

sampling technique was performed to find out a modified set of closure coefficients, providing CFD 387 

results with a higher agreement with the experimental data in terms of the validation metrics defined in 388 

eq. (19) and eq. (20). In the stochastic optimization process, all input variables, including 𝐶𝜀1, 𝐶𝜀2 and 389 

𝐶𝜇, were treated as the random or uncertainty variables with a uniform PDF ranged in accordance with 390 

the values in Table 2. 𝜎𝑘 was not considered in the optimization as it has a low impact on the 391 

validation metrics according to the sensitivity parametric study (Fig. 6, Fig. 7 and Fig. 8) and it was set 392 

to its default value of 1. Probability density function of 𝜎𝜀 was obtained during the optimization 393 

iterations based on eq. (21). The maximum iteration for the optimization loop was set to 100 while a 394 

termination accuracy of 10−6 was considered for optimization convergence. The objective functions 395 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕  𝒌 − 𝜺 𝑪𝜺𝟏 = 𝟏 

𝑪𝜺𝟐 = 𝟑 𝑪𝝁 = 𝟎. 𝟏𝟓 𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅  𝒌 − 𝜺 

-1.1 -0.6 
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of the both validation metrics, i.e. 𝐹𝐴𝐶2 and 𝑞, were considered to be maximized to reach an ideal 396 

value of 1, which can be interpreted as the best agreement between the CFD simulations and 397 

experiment. An equal importance was considered for the mean and the standard deviation values of the 398 

validation metrics (𝐹𝐴𝐶2 and 𝑞), hence a weighing factor of 1 was considered for 𝑤1𝑖
 and 𝑤2𝑖

 in eq. 399 

(2). The maximum value for 𝐹𝐴𝐶2 and 𝑞 is 1 and thus the values of the scaling factors 𝑠1𝑖
 and 𝑠2𝑖

 400 

were set to 1 for all objectives in eq. (2). 401 

 

 
  

(a)  (b)  (c)  

   
(d)  (e)  (d)  

Min  Max 
Figure 9 Variation of the mean value of the validation metrics for the streamwise velocity component and 402 

the closure coefficients during the optimization process 403 

Four objective functions were considered for the optimization process, including the mean values 404 

of 𝑞 and 𝐹𝐴𝐶2 and their standard deviations for the streamwise velocity component at 48 405 

measurement points shown in Fig. 3 (b). The optimization process have been executed for 250 CFD 406 

simulations. Variation of the mean value of the validation metrics for the streamwise velocity 407 

component and the closure coefficients during the optimization process is shown in Fig.9. Contours of 408 

hit rate 𝑞 show that the highest agreement between the CFD and the experiment occurs for 𝐶𝜀1 values 409 

in the range of 1.1 ≤ 𝐶𝜀1 ≤ 1.3 and for 𝐶𝜀2 values in the range of 2.6 ≤ 𝐶𝜀2 ≤ 3. The most suitable 410 

value of 𝐶𝜇, which results in high hit rate values, is found for 0.12 ≤ 𝐶𝜇 ≤ 0.15. In terms of the 411 
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second validation metric (𝐹𝐴𝐶2), a quite similar result is obtained. For 1.1 ≤ 𝐶𝜀1 ≤ 1.5 and 2.7 ≤412 

𝐶𝜀2 ≤ 3, 𝐹𝐴𝐶2 has the highest value. The mean value of 𝐹𝐴𝐶2 is acceptable for 𝐶𝜇 ranges between 413 

0.12 and 0.15. In general, it can be concluded that the highest probability of having a very close 414 

agreement between CFD results of the 𝑘 − 𝜀 model with those of the experimental analysis of non-415 

isothermal airflow around a high-rise building in terms of the mean values of 𝑞 and 𝐹𝐴𝐶2 occurs for 416 

the closure coefficients in the ranges of 1.1 ≤ 𝐶𝜀1 ≤ 1.5, 2.7 ≤ 𝐶𝜀2 ≤ 3, and 0.12 ≤ 𝐶𝜇 ≤ 0.15. It is 417 

noteworthy to mention that the value of 𝜎𝑘 is assumed as its default value of 1 while the value of 𝜎𝜀 418 

can be calculated using eq. (21), which results in 0.32 ≤ 𝜎𝜀 ≤ 0.56.  419 

As described earlier, not only were the mean values of the validation metrics considered in the 420 

stochastic optimization process, but their standard deviations were also included in the objective 421 

function to reduce the impact of the uncertainty of the closure coefficients on the validation metrics. 422 

Fig. 10 shows contours of the standard deviation of 𝐹𝐴𝐶2 for the streamwise velocity. It can be seen 423 

that in the specified ranges, where the mean values of the validation metrics are optimum, their 424 

standard deviations are also in their minimum values. Finally, the optimum values of the closure 425 

coefficients, resulted in the highest mean value for the validation metrics with the lowest standard 426 

deviation, can be expressed as follows: 427 

𝐶𝜀1 = 1.489, 𝐶𝜀2 = 2.801, 𝐶𝜇 = 0.146, 𝜎𝜀 = 0.373, 𝜎𝑘 = 1 (22) 

 428 

  

Min  Max 
Figure 10 Plot of the standard deviation of the 𝑭𝑨𝑪𝟐 for streamwise velocity in the optimization process 429 

The mean values of validation metrics 𝑞 and 𝐹𝐴𝐶2 for streamwise velocity increased from 0.31 430 

and 0.54 to 0.47 and 0.91 for default coefficients and optimized coefficients, respectively. The 431 

standard deviation of 𝑞 and 𝐹𝐴𝐶2 were also found to be 0.05 and 0.03 for the optimized coefficients. 432 

In general, using the modified closure coefficients in the 𝑘 − 𝜀 formulation results in a higher 433 

momentum mixing and turbulent kinetic energy inside the wake region behind the building. This was 434 

achieved by altering the production and dissipation terms in 𝑘 and 𝜀 equations. The increase of the 435 

momentum diffusion is related to the value of 𝐶𝜇, rising from 0.09 to 0.14, and increase of the TKE 436 

level inside the wake region. For the case considered in this study, when the modified closure 437 
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coefficients were used, the average values of the momentum diffusion, 𝑘 diffusion, 𝑘 production term, 438 

𝜀 production term, and 𝜀 dissipation term over the measurement points in the wake region grew about 439 

40%, 51%, 52%, 32% and 34%, respectively. 440 

In order to observe the effect of the optimized closure coefficients on the airflow distribution 441 

around the building, results of the CFD simulation with the optimized closure coefficients are 442 

presented and discussed. In Fig. 11 (a) and Fig. 11(b), vertical distribution of the streamwise velocity 443 
𝑈

𝑈𝐻
 at two locations behind the building, i.e. 

𝑋1

𝐻
= 0.625 and 

𝑋1

𝐻
= 1, are depicted for the reference 444 

CFD model with default closure coefficients as well as the optimized CFD model with the new set of 445 

the closure coefficients. The results are also compared to those reported in Yoshie et al (2011). For the 446 

reference case with the default coefficients, the reverse flow in the wake region is overestimated due to 447 

the poor momentum mixing behind the building. For the case with optimized closure coefficients, a 448 

significant improvement in the prediction accuracy of the velocity distribution in the wake region can 449 

be clearly observed, which results from a better momentum mixing. The reattachment length predicted 450 

for the default closure coefficients, as reported in Table 3, is 𝑋𝑓 = 0.260(𝑚), which is much longer 451 

than that of the experiment with the value of 𝑋𝑓 = 0.096(𝑚). The predicted reattachment length 452 

behind the building for the optimized coefficients is 𝑋𝑓 = 0.123(𝑚), appearing closer to the value of 453 

the measurement.  454 
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Figure 11 Vertical distribution of the streamwise velocity 
𝐔

𝐔𝐇
 in the wake region behind the building at: 455 

   (a) 
𝑿𝟏

𝑯
= 𝟎. 𝟔𝟐𝟓 , (b) 

𝑿𝟏

𝑯
= 𝟏 456 

In the case of modified coefficients, distribution of turbulent kinetic energy along with the 457 

diffusion of TKE and its production term inside the wake region behind the building have been 458 

increased noticeably in comparison with the results obtained by the default coefficients (see Fig. 7). 459 

However, comparison between the experimentally measured turbulent kinetic energy (Fig. 7(a)) and 460 

those predicted by modified RANS model (Fig. 7(f)), shows that the CFD model significantly under- 461 

predicts the 𝑘 distribution behind the building. It refers to the fact that the steady RANS models are 462 
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inherently incapable of calculating the unsteady nature of the turbulent kinetic energy because of the 463 

large-scale fluctuations behind the building. 464 

In Fig. 12, the horizontal distribution of the streamlines is depicted for the 𝑘 − 𝜀 model using 465 

default and optimized closure values. These streamlines are further compared with the results of the 466 

experimental and LES models presented in Yoshie et al (2011). A long recirculation region can be 467 

seen for the 𝑘 − 𝜀 model with the default coefficients. However, for the case with modified closure 468 

coefficients, the length of the recirculating region considerably decreases. The results hence show 469 

more agreement with the experimental data and LES; namely a more accurate, but computationally 470 

expensive model. 471 

  

(a) (b) 

 

 
 

(c) (d) 

Figure 12 Horizontal distribution of the streamlines near the ground (
𝑿𝟑

𝑯
= 𝟎. 𝟎𝟐𝟓): (a) experiment by 472 

Yoshie et al (2011),  (b) default 𝒌 − 𝜺 closure coefficients, (c) modified 𝒌 − 𝜺 closure coefficients, (d) LES-2 473 
from (Yoshie et al, 2011) 474 

Contours of the temperature distribution on the same position are also illustrated in Fig. 13. For 475 

the case using the default closure coefficients, not only is the level of temperature for the ground 476 

surface predicted to be in a higher range than the experiment, but a different temperature pattern is 477 

further estimated in the wake region behind the building. For the optimized coefficients, however, the 478 

temperature level over the ground surface is closer to the experiment while the temperature 479 

distribution behind the building is spread shorter than that of the case with the default coefficients. The 480 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 𝒌 − 𝜺 

𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅 𝒌 − 𝜺 
𝑳𝑬𝑺𝟐 , 𝒀𝒐𝒔𝒉𝒊𝒆  𝒆𝒕 𝒂𝒍. (𝟐𝟎𝟏𝟏) 
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higher temperature observed in the CFD model around the building surface refers to the implemented 481 

adiabatic boundary condition; whereas seemingly the building is not completely isolated from the 482 

ground surface in the experiment. Even if considering the uncertainty in the near wall measurement, 483 

the CFD results by the modified coefficients are more acceptable than those of the default coefficients. 484 

                   

(a) 

  
(b) (c) 

Figure 13 Contours of the temperature distribution 
(𝛉−𝛉𝐟)

∆𝜽
  near the ground surface: (a) experiment by Yoshie 485 

et al (2011), (b) default 𝒌 − 𝜺 closure coefficients, (c) modified 𝒌 − 𝜺 closure coefficients 486 

As merely those measurement points that are in the wake region behind the building are 487 

considered in the optimization process, it is noteworthy investigating the distribution of flow 488 

properties in a high speed region far from the building. In Fig. 14, vertical profiles of the streamwise 489 

velocity, turbulent kinetic energy, and temperature along a vertical line placed far from the building at 490 
x1

H
= 2.5 and 

x2

H
= 2 are shown. Numerical results obtained by the modified coefficient are compared 491 

with those obtained by default coefficients and experimental data. Also, results of a LES model 492 

presented in (Yoshie et al, 2011) are plotted. It can be seen that the vertical profiles are very similar for 493 

the modified and reference cases as well as the experiment. LES model estimated the turbulent kinetic 494 

energy more accurately, which refers to the higher accuracy of LES in reproducing the unsteady 495 

contribution of turbulent kinetic energy. It is noteworthy to mention that in the current optimization 496 

process solely the mean value of the streamwise velocity component was considered; however the 497 

accuracy of the modified 𝑘 − 𝜀 model in predicting the turbulent kinetic energy can be further 498 

improved by incorporating the experimental value of 𝑘 into the optimization process.  499 

𝑬𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕 

 𝒌 − 𝜺 𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝒅 𝒌 − 𝜺 
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Figure 14 Vertical profiles of flow parameters along a vertical line far from the building in high speed 501 

region at 
𝒙𝟏

𝑯
= 𝟐. 𝟓 and 

𝒙𝟐

𝑯
= 𝟐: (a) streamwise velocity 

𝑼
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 , (b) turbulent kinetic energy 

𝒌

𝑼𝑯
𝟐 ,                                       502 

(c) non-dimensional temperature 
(𝜽−𝜽𝒇)

∆𝜽
, (d) measurement position 503 

 504 

5. Conclusion 505 

Steady RANS models (including the 𝑘 − 𝜀 model with Kato-Launder modification) based on the 506 

two-equation turbulence models underestimate the momentum diffusion behind the building in the 507 

weak wind regions. This results in estimating a large recirculating flow in the wake region and a long 508 

reattachment length on the ground. Also, a poor accuracy for the temperature field around the 509 

building, specifically in the wake region, is predicted with steady RANS models. Application of the 510 
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default closure coefficients of RANS turbulence models in the popular commercial CFD tools proved 511 

to be inaccurate for CFD modeling of the microclimate studies. A systematic approach is therefore 512 

proposed in this study in order to improve the accuracy of the RANS family turbulence models 513 

applying the stochastic optimization and Monte Carlo Sampling technique. In the optimization 514 

process, the closure coefficients were treated as a series of random variables with a given PDF to 515 

achieve the best agreement with the experimental data in accordance with the validation metrics. 516 

Effectiveness of the proposed methodology for the modification of the closure coefficients of the 𝑘 −517 

𝜀 model was shown for simulation scenario of an isolated building placed in a non-isothermal 518 

atmospheric boundary layer. In urban areas, because of both the presence of thermal radiation and low 519 

air velocity due to the sheltering effect, buoyancy effect is of high importance. A sensitivity analysis 520 

was initially conducted to investigate the impact of the 𝑘 − 𝜀 closure coefficients on the accuracy of 521 

the CFD model in comparison with the results of the experimental analysis. The default values of the 522 

closure coefficients for the 𝑘 − 𝜀 model used in the popular CFD tools such as ANSYS CFX, ANSYS 523 

FLUENT, PHOENIX and STAR CCM+ are 𝐶𝜇 = 0.09, 𝐶𝜀1 = 1.44, 𝐶𝜀2 = 1.92, 𝜎𝑘 = 1 and 𝜎𝜀 = 1.3. 524 

However, the recommended values based on the optimization method were found to be 1.45 ≤ 𝐶𝜀1 ≤525 

1.5 and 2.7 ≤ 𝐶𝜀2 ≤ 3 and 0.12 ≤ 𝐶𝜇 ≤ 0.15 while the default value of 𝜎𝑘 was suggested to be 526 

acceptable. Based on the numerical results, the modified closure coefficients showed a significant 527 

improvement in the accuracy of the CFD model in terms of the velocity, turbulent kinetic energy, and 528 

temperature distribution around the building as well as the reattachment length behind the building. 529 

The proposed methodology was applied to an isolated building, which is a classical problem in urban 530 

aerodynamic, but it can certainly be applied to urban models in dense areas with a group of buildings. 531 

Also, it is noteworthy saying, despite the significant improvement in the prediction accuracy achieved 532 

by the optimization method, the RANS turbulence models have inherent shortcomings concerning the 533 

gradient-diffusion hypothesis and also incapability to reproduce the large-scale fluctuations of flow 534 

parameters around the building. Our future work will focus on extending the application of the 535 

proposed systematic approach in this study to other CFD modeling examples for the airflow prediction 536 

in the urban studies in which we also consider the uncertainty of the turbulent Prandtl number in the 537 

energy equation as a calibrating parameter. Through the proposed method, one can find a modified set 538 

of the closure coefficients using the available experiment, and then apply the modified coefficients in 539 

the CFD model for design and analysis purposes.  540 
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