
P a g e  1 | 16 

 

Thermal Management of Electronics Devices with PCMs filled Pin-fin Heat Sinks: A 

Comparison 

Adeel Arshad1, Hafiz Muhammad Ali2*, Mark Jabbal1, P.G. Verdin3 

1Fluids & Thermal Engineering (FLUTE) Research Group, Faculty of Engineering, University of 

Nottingham, Nottingham NG7 2RD, UK  

2Department of Mechanical Engineering, University of Engineering and Technology, Taxila, Pakistan 

3Energy & Power Theme, Cranfield University, Cranfield MK43 0AL, UK 

*h.m.ali@uettaxila.edu.pk  

Abstract 

The present paper covers the comparison of two different configurations (square and circular) pin-

fin heat sinks embedded with two different phase change materials (PCMs) namely paraffin wax 

and n-eicosane having different thermo-physical properties were carried out for passive cooling of 

electronic devices. The pin-fins, acting as thermal conductivity enhancers (TCEs), of 2𝑚𝑚 square 

and 3𝑚𝑚 circular fin thickness of constant volume fraction of 9% are chosen and input heat fluxes 

from 1.2𝑘𝑊/𝑚2 to 3.2𝑘𝑊/𝑚2 with an increment of 0.4𝑘𝑊/𝑚2 are provided. Two different 

critical set point temperatures (SPTs) 45℃ and 65℃ are chosen to explore the thermal 

performance in terms of enhancement ratios, enhancement in operation time, latent heating phase 

duration, thermal capacity and conductance. The results show that 3𝑚𝑚 diameter of circular pin-

fins has the best thermal performance in passive thermal management of electronic devices.  
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SPT   Set Point Temperature 

TCE  Thermal Conductivity Enhancer 

PCMs  Phase Change Materials 

LHSU   latent heat storage unit  

𝐺  Thermal conductance (W/K) 

𝑇𝑚  Melting Temperature (℃) 

Greek Symbols 

𝛾  Volume fraction of the TCE 

𝑘𝑃𝐶𝑀               Thermal Conductivity of PCMs (W/mK) 

𝐶PCM             Specific Heat of PCMs (kJ/kgK) 

𝜌𝑃𝐶𝑀   Density of PCMs (kg/m3) 

𝑞  Heat Flux (kW/m2) 

𝜆𝑃𝐶𝑀   Latent Heat of PCMs (kJ/kg) 

β  Thermal Capacity (kJ/K) 
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1-Introduction 

So far, several technologies, active and passive, have been introduced for thermal management 

(TM) of portable electronic devices [1-4]. Previously, active TM techniques had limitations of 

bulky volume, noisy, more power consuming, more maintenance cost and time which eventually 

leads towards the inefficiency and unreliability of operation of electronic devices [5, 6]. In last few 

years, invention of passive cooling technologies introduced a new direction of TM of electronics 

using phase change materials (PCMs) and various thermal conductivity enhancers (TCEs) [1, 7-

9]. Currently, Li et, al. [10] carried out the numerical study of a PCM filled double glazing to 

determine the thermophysical properties of PCM for the application of thermal energy storage.  

These passive cooling techniques although have taken a remarkable interest in the sight of 

researcher and as well as industrialist which have the tendency to compensate of all the limitations 

of active cooling technologies with increase in operation duration of electronic devices under user 

comfortable operating conditions [11-13]. However, there is the need of an optimum passive 

cooling device which will operate on critical design limits and enhance the operation time. In 

continuation of this, several studies of latent heat storage unit (LHSU) comprises of  finned heat 

sinks as TCEs and PCMs have been reported yet [14-16]. Till yet, various configuration of fins 

such as square, circular, rectangular, plate, elliptical, triangular have been investigated both 

experimentally and numerically, however, the mostly commonly investigated pin-fin configuration 

was square [17-21]. 

 Soodphakdee et, al. [17] conducted numerical study of inline and staggered circular, inline and 

staggered square, staggered elliptical, staggered and parallel plate-fins heat sinks. Authors 

concluded that staggered plate-fin showed the best heat transfer performance for provided pressure 

gradient and air flow rate. Nayak et, al. [22] presented the numerical model of matrix -type, plate-

type, rod-type thermal storage unit and found that rod-type fins performed better than in the rest 

of all. Jaworski [23] performed numerical study of a heat spreader made of pipes for electronics 

cooling. Author concluded that heat spreader had the capability to keep the temperature below 

50℃ of the microchips and protected the microprocessor from overheating while overloading of 

input power. Further, inclusion of heat spreader with PCM showed the excellent distribution of 

heat transfer in phase transition of PCM. Saha et, al. [24] carried out an optimum study for plate-

fins and pin-fins TCEs of varying volume fractions of 0%, 2%, 8%, 18% and 27%. The authors 

concluded that 8% pin-fin heat sink with n-eicosane has the best thermal performance. Tan and his 
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co-authors [25-28] conducted the experimental studies of plate-fin PCM filled heat sinks of no fin, 

three number and six number of fins under power input of 3W to 5W and found that six numbers 

of plate-fin heat sink had efficient heat transfer performance from heat sink base. Baby and Balaji 

[29] firstly conducted experimental study between plate fin and square fin PCM based heat sinks 

and found square pin-fin heat sink dominated than plate-fin, further the same author in [30], they 

conducted an optimization study using GA-ANN and concluded that a 9% of square pin-fin 

configuration performed better in the rest of 4% and 15%.  

Baby and Balaji [31] then carried out experimental optimization study of varying volume fraction 

of plate-fins PCM filled heat sinks. The authors concluded a fin thickness of 1.42mm having 15% 

volume fraction of plate-fin had the best thermal performance.  

Suresh et, al.[32] conducted experimentally the comparison of four different configurations of heat 

sinks (empty, rectangular, square and circular) filled with paraffin wax. It was found that circular 

pin-fins performed better heat transfer characteristics. Similarly, Mahmoud et, al.[33] carried out 

experimental study of parallel and cross plate-fin of six different cavities and compared with honey 

comb structure heat sink and found honey comb structure gave more efficient thermal 

performance. Gharbi et, al. [34] conducted experimental comparison of four configuration of pure 

PCM, PCM in silicon matrix, PCM in graphite and PCM with plate-fins. It was found that graphite 

matrix with PCM had more heat transfer capability than the silicon matrix with PCM, moreover, 

long copper plate-fins showed the better enhancement of heat transfer from the heat sink base 

resulting lowering the heat sink temperature for a longer duration. Pakrouh et, al. [35, 36] 

performed a numerical parametric study PCM based square configuration pin-fin heat sinks. 

Taguchi method was adopted and parameters of number of fins, fins height, fin thickness and base 

thickness. Currently, the parametric investigations of square pin-fins and circular pin-fins heat 

sinks were presented by Arshad et, al. [37] and Ali and Arshad [38] respectively. The authors 

concluded that 2 × 2𝑚𝑚2 and 3𝑚𝑚 diameter had the best thermal performance individually.  

From above aforementioned studies, present experimental study presents a combined comparison 

between 2𝑚𝑚 square and 3𝑚𝑚 circular configurations pin-fins, acting as a TCEs, heat sinks of 

volume fraction of 9% resulting different number of fins, filled with two different PCMs namely 

n-eicosane and paraffin wax having different thermo-physical properties under a range of input 

heat fluxes to quantify the thermal performance of passive cooling LHSU. This comparison will 
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ultimately provide the better picture to the industrialist for the selection of manufacturing process 

and cost estimation for the mass production of novel passive technology for electronic gadgets. 

2-Experimental Facility 

The schematic and line diagram of experimental facility, used for current study makes up of 

different components, are shown in Figure 1a and 1b, respectively. There are four major parts 

include DC power supply [39] (Keysight Technologies 6675A, 120V/18A) with voltage and 

current accuracy of 0.04% + 120 mV and of 0.1% + 12 mA respectively, latent heat storage unit 

(LHSU) containing high thermal conductive finned heat sinks filled with PCMs having pin-fins 

configuration of square and circular, Data Acquisition System (Agilent 34972A, USA) and laptop 

to get analog data through data acquisition system software copy righted by Agilent Technologies, 

Inc. Pin-fins which are acting as TCEs, have fin size of 2 × 2𝑚𝑚2 (square cross-section) and 

3𝑚𝑚 diameter (circular cross-section) are used having constant volume fraction of 𝛾 = 9% to the 

overall dimension of heat sink. The volume of TCE is denoted by 𝛾, which is the ratio of volume 

of fins to the total employed volume of the heat sink. Earlier, Baby and Balaji [30]  carried out the 

optimization and found that a pin-fin heat sink of 𝛾 = 9% has the best thermal performance. 

Additionally, Arshad et, al. [37] and Ali and Arshad [38] carried the experimental studies and 

concluded that a pin-fin heat sink with 𝛾 = 9% has the best heat transfer characteristics filled with 

PCMs. The current study is the next step of previous experimental studies [37, 38], which further 

focuses on the comparison of obtained optimum configuration of square and circular pin-fins heat 

sink. The PCMs used in current study are n-eicosane [40] and paraffin wax [41], having melting 

temperatures of 36.5℃ and 56 − 58℃ respectively. The material of pin-fins is Aluminum (Al-T6-

6061) and overall dimensions of heat sink are 114 × 114 × 25𝑚𝑚3. To record the temperature 

variations at different points on the heat sinks, highly precision K-type (Omega, 0.5𝑚𝑚 wire 

diameter) thermocouples are used and discrepancy error is obtained ±1℃. Calibration is carried 

out using ASTM standard [42] from a range of 0 − 100℃. To mimic the heat generation, a silicon 

rubber plate heater of dimension 100 × 100 × 1.14𝑚𝑚3 by OMEGALUX (SRFG-404/10-P-230) 

is adhered to the heat sinks base. A range of input constant heat densities from 1.2𝑘𝑊/𝑚2 to 

3.2𝑘𝑊/𝑚2 with an increment of 0.4𝑘𝑊/𝑚2 is supplied through plate heater. A details description 
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of experimental facilities, thermos-physical properties of PCMs, see Table 1, TCEs and date 

reduction can been found from the previous studies of same authors [37, 38].  

  

 

 

 

Table 1-Material Properties used in present study. 

Material 
𝑘𝑃𝐶𝑀 

(W/mK) 

𝐶𝑃𝐶𝑀 

(kJ/kgK) 

𝜆𝑃𝐶𝑀 

(kJ/kg) 

𝑇𝑚 

(℃) 

𝜌𝑃𝐶𝑀 

(kg/m3) 

Paraffin Wax 
0.167 (Liquid) 

2.8 173.6 56-58 
790(Liquid) 

0.212(Solid) 880(Solid) 

n-Eicosane 
0.160 (Liquid) 2.2(Liquid) 

237.4 36.5 
780(Liquid) 

0.40(Solid) 1.9(Solid) 820(Solid) 

Aluminum 202.37 0.871  660.37 2719 

Rubber Pad 0.043 1.23  - 2500 

 

 

 

 

Figure 1a-Shematic diagram of experimental setup. 
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3-Results and Discussions 

The results are incorporating the geometrical and thermally comparison of 2𝑚𝑚 and 3𝑚𝑚 pin-

fins heat sink embedded with PCMs paraffin wax and n-eicosane. The details are following in 

different sections to explore the thermal characteristics of both pin-fins geometries heat sinks.  

3.1-Comparison of Heat Sinks base temperatures 

The comparison of heat sinks base temperatures (recorded by the thermocouples H1, H2 and H3) 

for input heat fluxes of 2.0𝑘𝑊/𝑚2 and 2.8𝑘𝑊/𝑚2 are shown in Figure 2a-2b for PCMs paraffin 

wax and n-eicosane. In both figures, it can be seen ultimately that the 3𝑚𝑚 circular configuration 

pin-fin heat sink leads to lower the base temperature significantly in comparison of 2𝑚𝑚 square 

configuration pin-fin heat sink particularly in case of paraffin wax but closely for n-eicosane. 

However, the closer look at the peak temperatures reveals that 3𝑚𝑚 pin-fin heat sink has 

maximum and best thermal performance for passive cooling of electronics embedded with PCMs. 

The temperature curves are overlapping initially for both PCMs, in both figures, however for 

Figure 1b-Line flow of experimental facility. 
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paraffin wax, 3𝑚𝑚 thick round pin-fin clearly manifests better heat transfer than 2𝑚𝑚 fin 

thickness square pin-fin. The uniform temperature distribution from heat sink base to PCMs 

through fins is solely depends on number of fins and pitch of fins (the fin spacing in stream-wise, 

span-wise and diagonal directions).  

 

 

3.2-Comparsion of Latent Heating Phase duration 

The comparison of latent heat phase completion time is shown in Figure 3. The range of input heat 

fluxes are provided from 1.2𝑘𝑊/𝑚2 to 2.8𝑘𝑊/𝑚2 with an interval of 0.4𝑘𝑊/𝑚2. The 

comparison of 3𝑚𝑚 circular and 2𝑚𝑚 square cross-sectional thick pin-fin heat sinks clearly 

evidences that the 3𝑚𝑚 thick circular pin-fin heat sink leads from the 2𝑚𝑚 thick square pin-fin 

configuration heat sink to enhancing the latent heat phase duration. The two extreme, maxima and 

minima, latent heating phase completion times of 141mins and 36mins are obtained at 1.2𝑘𝑊/𝑚2 

and 2.8𝑘𝑊/𝑚2 input heat densities for 3𝑚𝑚 thick circular pin-fin heat sink. The enhanced latent 

heating phase duration is because of optimum fins distribution which transfer the internal 

generated heat more uniformly through fins without causing local overheating the heat sink base.  

 

 

 Figure 2-(a) Figure 2-(b) 

Figure 2-Comparison of heat sinks base temperature for paraffin wax and n-eicosane. (a) 𝑞 = 2.0𝑘𝑊/𝑚2 (b) 𝑞 = 2.8𝑘𝑊/𝑚2 
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3.3-Comparion of Enhancement in Operation time  

The thermal performance of both tested pin-fin heat sinks is terms of enhancement in operation 

times is presented in Figure 4a-4b for employed PCMs, paraffin wax and n-eicosane respectively. 

Operation time, actually is the maximum operating duration at which the cooling device can 

sustain its work operation under reliable conditions without causing any harm and losing its 

efficiency. In current experimentation, two SPTs 65℃ and 45℃ are chosen as per melting 

temperatures of paraffin wax and n-eicosane, given in Table 1, to compare the time taken by 3𝑚𝑚 

circular and 2𝑚𝑚 square fin thickness heat sinks to reach at these SPTs. The results shown in both 

Figures it can be clearly evidenced that the 3𝑚𝑚 thick pin-fin heat sink of circular cross-section 

takes more time to reach for either of SPT = 65℃ or SPT = 45℃. This shows that a pin-fin heat 

sink of 3𝑚𝑚 fin diameter has maximum tendency to store heat, generated inside the electronic 

device, and transfer it atmosphere which eventually leads to cool down the electronic device 

temperature in comfortable zone for end users.  

 

Figure 3-comparison of latent heating phase completion time. 
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3.4-Comparion of Thermal Capacity and Thermal Conductance 

The comparisons of thermal properties (i.e. thermal capacity and thermal conductance) of 3𝑚𝑚 

and 2𝑚𝑚, circular and square configuration respectively, pin-fin heat sinks are presented in 

Figures 5a-5b and Figure 6. A higher thermal capacity reflects that the system needs higher thermal 

energy to rise its temperature which eventually enhance the cooler time in operation mode. The 

maximum thermal capacities of 2.24𝑘𝐽/𝐾 and 2.90𝑘𝐽/𝐾 are obtained for 3𝑚𝑚 thick circular pin-

fin heat sink for n-eicosane as a PCM at input heat flux of 2.0𝑘𝑊/𝑚2. However, for paraffin wax 

at 2.0𝑘𝑊/𝑚2, a thermal capacity of 3.08𝑘𝐽/𝐾 is found for 3𝑚𝑚 thick circular pin-fin heat sink. 

Similarly, from Figure 6, the thermal conductance of 6.95 × 10−1𝑊/𝐾 and 5.69 × 10−1 are 

obtained for paraffin wax and n-eicosane respectively in case of 3𝑚𝑚 thick circular pin-fin heat 

sink. Thermal conductance which is heat transfer rate per unit temperature difference from the 

surface of PCM filled heat sink to the ambient conditions. From figures 5a-5ba and 6, it is revealed 

that the best thermal performance of 3𝑚𝑚 circular pin-fin heat sink is because of optimum number 

of fins, fin thickness, fins pitch.  

 

Figure 4-Comparison of enhancement in operation time. (a) 𝑆𝑃𝑇 = 65℃ (b) 𝑆𝑃𝑇 = 45℃.   

Figure 4-(a) Figure 4-(b) 
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Figure 5-Comparison of thermal capacity of heat sinks (a) n-eicosane (b) paraffin wax 

Figure 5-(b) Figure 5-(a) 

Figure 6-Comparison of thermal conductance of heat sinks for paraffin wax and n-eicosane. 
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Conclusion 

A comparison of two different configurations (square and circular) pin-fin heat sinks embedded 

with two different PCMs namely paraffin wax and n-eicosane having different thermo-physical 

properties were carried out for passive cooling of electronic devices. The pin-fins, acting as TCEs, 

of 2𝑚𝑚 square and 3𝑚𝑚 circular fin thickness of constant volume fraction of 9% are chosen and 

input heat fluxes from 1.2𝑘𝑊/𝑚2 to 3.2𝑘𝑊/𝑚2 with an increment of 0.4𝑘𝑊/𝑚2 are provided. 

The results found the following conclusions; 

1. The comparison of heat sinks base temperature proves that 3𝑚𝑚 diameter of pin-fin heat 

sink better than 2𝑚𝑚 square pin-fin heat sink.  

2. An enhancement in operation times of 210mins for paraffin wax and 150mins for n-

eicosane are found at input heat flux of 2.0𝑘𝑊/𝑚2 and 1.6𝑘𝑊/𝑚2 respectively. Similarly, 

higher operations times to reach SPTs of 65℃ and 45℃ are found for 3𝑚𝑚 circular 

configuration pin-fin heat sink in comparison of 2𝑚𝑚 square configuration fin thickness 

pin-fin heat sink. 

3. In continuation, of comparing both configurations pin-fin heat sinks filled with n-eicosane 

the maximum latent heat phase completion time are found for 3𝑚𝑚 thick circular pin-fin 

heat sink for all provided input heat fluxes. The maximum and minimum latent heat phase 

completion duration are found of 141mins and 36mins at 1.2𝑘𝑊/𝑚2 and 2.8𝑘𝑊/𝑚2 input 

heat densities for 3𝑚𝑚 diameter pin-fin heat sink. 

4. The comparison of thermal capacities and thermal conductance further proves that 3𝑚𝑚 

diameter fin thickness pin-fin heat sink has maximum potential to absorb thermal energy 

and to transfer heat from the electronic devices.  

To sum up, the above findings reveals that a 3𝑚𝑚 fin diameter circular pin-fin heat sink filled 

with PCMs namely paraffin wax or n-eicosane has maximum tendency of an efficient and reliable 

passive thermal management technology for electronic devices.  

 

 

 

 



P a g e  13 | 16 

 

List of Figures 

Figure 1-Line flow of experimental facility. 

Figure 2-Comparison of heat sinks base temperature for paraffin wax and n-eicosane. (a) 𝑞 = 2.0𝑘𝑊/𝑚2 (b) 𝑞 =
2.8𝑘𝑊/𝑚2 

Figure 3-comparison of latent heating phase completion time. 

Figure 4-Comparison of enhancement in operation time. (a) 𝑆𝑃𝑇 = 65℃ (b) 𝑆𝑃𝑇 = 45℃.   

Figure 5-Comparison of thermal capacity of heat sinks (a) n-eicosane (b) paraffin wax 

Figure 6-Comparison of thermal conductance of heat sinks for paraffin wax and n-eicosane. 

 

List of Tables 

Table 1-Material Properties used in present study. 

 

 

 

 

 

 

 

 

 

 

 

 

 



P a g e  14 | 16 

 

References: 

1. Sahoo, S.K., M.K. Das, and P. Rath, Application of TCE-PCM based heat sinks for cooling 

of electronic components: A review. Renewable and Sustainable Energy Reviews, 2016. 

59: p. 550-582. 

2. Zhang, H., et al., Free cooling of data centers: A review. Renewable and Sustainable 

Energy Reviews, 2014. 35: p. 171-182. 

3. Walsh, E., et al., Thermal management of low profile electronic equipment using radial 

fans and heat sinks. Journal of heat transfer, 2008. 130(12): p. 125001. 

4. Walsh, E. and R. Grimes, Low profile fan and heat sink thermal management solution for 

portable applications. International Journal of Thermal Sciences, 2007. 46(11): p. 1182-

1190. 

5. Ali, H.M. and W. Arshad, Thermal performance investigation of staggered and inline pin 

fin heat sinks using water based rutile and anatase TiO2 nanofluids. Energy Conversion 

and Management, 2015. 106: p. 793-803. 

6. Ali, H.M., M.U. Sajid, and A. Arshad, Heat Transfer Applications of TiO2 Nanofluids, in 

Application of Titanium Dioxide, M. Janus, Editor. 2017, InTech: Rijeka. p. Ch. 09. 

7. Wirtz, R.A., N. Zheng, and D. Chandra, Thermal management using "Dry" phase change 

materials., in Fifteenth IEEE SEMI-THERMSymposium1999. p. 74-82. 

8. Vesligaj, M.J. and C.H. Amon, Transient thermal management of temperature fluctuations 

during time varying workloads on portable electronics. IEEE Transactions on Components 

and Packaging Technologies, 1999. 22(4): p. 541-550. 

9. Thomas, J., et al., Thermal Performance Evaluation of a Phase Change Material Based 

Heat Sink: A Numerical Study. Procedia Technology, 2016. 25: p. 1182-1190. 

10. Li, D., et al., Thermal performance of a PCM-filled double-glazing unit with different 

thermophysical parameters of PCM. Solar Energy, 2016. 133: p. 207-220. 

11. Ahmed, T., et al. Experimental Investigation of Thermal Management of Tablet Computers 

using Phase Change Materials (PCMs). in Proc. of the ASME 2016 Summer Heat Transfer 

Conference. 2016. 

12. Yang, Y.-T. and Y.-H. Wang, Numerical simulation of three-dimensional transient cooling 

application on a portable electronic device using phase change material. International 

Journal of Thermal Sciences, 2012. 51: p. 155-162. 

13. Tomizawa, Y., et al., Experimental and numerical study on phase change material (PCM) 

for thermal management of mobile devices. Applied Thermal Engineering, 2016. 98: p. 

320-329. 

14. Alawadhi, E.M. and C.H. Amon, PCM Thermal Control Unit for Portable Electronic 

Devices: Experimental and Numerical Studies, in IEEE Transactions on components and 

packaging technologies.2003. p. 116-125. 

15. Baby, R. and C. Balaji, Thermal management of electronics using phase change material 

based pin fin heat sinks, in 6th European Thermal Sciences Conference,Journal of Physics 

2012, IOP Publishing. 

16. Baby, R. and C. Balaji, Thermal performance of a PCM heat sink under different heat 

loads: An experimental study. International Journal of Thermal Sciences, 2014. 79: p. 240-

249. 

17. Soodphakdee, D., Behnia, M., & Copeland, D. W., A Comparison of Fin Geometries for 

Heatsinks in Laminar Forced Convection—Part I: Round, Elliptical, and Plate Fins in 



P a g e  15 | 16 

 

Staggered and In-Line Configurations. Int. J. Microcircuits Electron. Packag, , 2001. 24(1): 

p. 68-76. 

18. Wang, Y.-H. and Y.-T. Yang, Three-dimensional transient cooling simulations of a 

portable electronic device using PCM (phase change materials) in multi-fin heat sink. 

Energy, 2011. 36(8): p. 5214-5224. 

19. Wang, X.-Q., C. Yap, and A.S. Mujumdar, A parametric study of phase change material 

(PCM)-based heat sinks. International Journal of Thermal Sciences, 2008. 47(8): p. 1055-

1068. 

20. Shang, B., et al., Passive thermal management system for downhole electronics in harsh 

thermal environments. Applied Thermal Engineering, 2017. 118: p. 593-599. 

21. Ashraf, M.J., et al., Experimental passive electronics cooling: Parametric investigation of 

pin-fin geometries and efficient phase change materials. International Journal of Heat and 

Mass Transfer, 2017. 115, Part B: p. 251-263. 

22. Nayak, K.C., et al., A numerical model for heat sinks with phase change materials and 

thermal conductivity enhancers. International Journal of Heat and Mass Transfer, 2006. 

49(11-12): p. 1833-1844. 

23. Jaworski, M., Thermal performance of heat spreader for electronics cooling with 

incorporated phase change material. Applied Thermal Engineering, 2012. 35: p. 212-219. 

24. Saha, S.K., K. Srinivasan, and P. Dutta, Studies on Optimum Distribution of Fins in Heat 

Sinks Filled With Phase Change Materials. Journal of Heat Transfer, 2008. 130(3): p. 

034505. 

25. Tan, F.L. and C.P. Tso, Cooling of mobile electronic devices using phase change materials. 

Applied Thermal Engineering, 2004. 24(2-3): p. 159-169. 

26. Setoh, G., F.L. Tan, and S.C. Fok, Experimental studies on the use of a phase change 

material for cooling mobile phones. International Communications in Heat and Mass 

Transfer, 2010. 37(9): p. 1403-1410. 

27. Fok, S.C., W. Shen, and F.L. Tan, Cooling of portable hand-held electronic devices using 

phase change materials in finned heat sinks. International Journal of Thermal Sciences, 

2010. 49(1): p. 109-117. 

28. Hosseinizadeh, S.F., F.L. Tan, and S.M. Moosania, Experimental and numerical studies 

on performance of PCM-based heat sink with different configurations of internal fins. 

Applied Thermal Engineering, 2011. 31(17-18): p. 3827-3838. 

29. Baby, R. and C. Balaji, Experimental investigations on phase change material based finned 

heat sinks for electronic equipment cooling. International Journal of Heat and Mass 

Transfer, 2012. 55(5-6): p. 1642-1649. 

30. Baby, R. and C. Balaji, Thermal optimization of PCM based pin fin heat sinks: An 

experimental study. Applied Thermal Engineering, 2013. 54(1): p. 65-77. 

31. Baby., R. and C. Balaji., A Neural Network-Based Optimization of Thermal Performance 

of Phase Change Material-Based Finned Heat Sinks—An Experimental Study. 

Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, 

and Conversion, 2013. 26(5): p. 431-452. 

32. Suresh, S., et al., Experimental investigaion of PCM-based heat sink with differnt 

configuratio ns of internal fins., in International Conference on Advance Research in 

Mechanical , Aeronautical And Civi2013: Pattaya. p. 54-59. 



P a g e  16 | 16 

 

33. Mahmoud, S., et al., Experimental investigation of inserts configurations and PCM type 

on the thermal performance of PCM based heat sinks. Applied Energy, 2013. 112: p. 1349-

1356. 

34. Gharbi, S., S. Harmand, and S.B. Jabrallah, Experimental comparison between different 

configurations of PCM based heat sinks for cooling electronic components. Applied 

Thermal Engineering, 2015. 87: p. 454-462. 

35. Pakrouh, R., et al., A numerical method for PCM-based pin fin heat sinks optimization. 

Energy Conversion and Management, 2015. 103: p. 542-552. 

36. Pakrouh, R., M.J. Hosseini, and A.A. Ranjbar, A parametric investigation of a PCM-based 

pin fin heat sink. Mechanical Sciences, 2015. 6(1): p. 65-73. 

37. Arshad, A., et al., Thermal performance of phase change material (PCM) based pin-finned 

heat sinks for electronics devices: Effect of pin thickness and PCM volume fraction. 

Applied Thermal Engineering, 2017. 112: p. 143-155. 

38. Ali, H.M. and A. Arshad, Experimental investigation of n-eicosane based circular pin-fin 

heat sinks for passive cooling of electronic devices. International Journal of Heat and Mass 

Transfer, 2017. 112: p. 649-661. 

39. Keysight Technologies, I.; Available from: http://www.keysight.com/en/pd-839012-pn-

6675A/2000-watt-system-power-supply-120v-18a?cc=PK&lc=eng. 

40. Sigma-Aldrich. Sigma-Aldrich 3050 Spruce St. Louis, MO 63103. . 2016; Available from: 

http://www.sigmaaldrich.com/catalog/product/aldrich/219274?lang=en&region=US. 

41. EMD Millipore is a part of Merck KGaA, D., Germany. 2016; Available from: 

http://www.emdmillipore.com/US/en/product/Histosec-pastilles,MDA_CHEM-111609. 

42. Taylor, B.N. and C.E. Kuyatt, Guidelines for evaluating and expressing the uncertainty of 

NIST measurement results. 1994: US Department of Commerce, Technology 

Administration, National Institute of Standards and Technology Gaithersburg, MD. 

 

 

http://www.keysight.com/en/pd-839012-pn-6675A/2000-watt-system-power-supply-120v-18a?cc=PK&lc=eng
http://www.keysight.com/en/pd-839012-pn-6675A/2000-watt-system-power-supply-120v-18a?cc=PK&lc=eng
http://www.sigmaaldrich.com/catalog/product/aldrich/219274?lang=en&region=US
http://www.emdmillipore.com/US/en/product/Histosec-pastilles,MDA_CHEM-111609

