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Abstract. A class of structure based on PT -symmetric Bragg gratings in the pres-
ence of both gain and loss is studied. The basic concepts and properties of parity and
time reversal in one-dimensional structures that possess idealised material proper-
ties are given. The impact of realistic material properties on the behaviour of these
devices is then investigated. Further extension to include material non-linearity is
used to study an innovative all-optical memory device.

6.1 Introduction of Parity and Time-Reversal (PT )
Symmetry

Studies of Parity-Time (PT ) symmetric structures are motivated by a sem-
inal paper by Bender and Boetcher [1] in 1998. In the paper Bender and
Boetcher introduced the concept of a PT -symmetric Hamiltonian for Quan-
tum Mechanical problems, in which it is established that a complex Quantum
Mechanical Hamiltonian which satisfies a combined Parity and Time-reversal
symmetry may have a completely real spectrum, i.e. it is a stable system.
Further studies [2,3] showed that a simple coupled source and drain problem
with the following Hamiltonian

H =

[
−jα κ
κ jα

]
(6.1)
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Fig. 6.1. Illustration of source-drain system. An isolated system with (a) source,
(b) drain and (c) the coupled source-drain system.

is in fact a subset of the large class of PT -symmetric Hamiltonians. The
eigenvalue problem matrix of the source and drain problem in Eq. (6.1) has
α to represent the source (+) and drain (−) which are coupled by a coupling
mechanism represented by κ. As such, in the simplest form, the concept of
PT -symmetry can be depicted as a source-drain system which is schematically
illustrated in Fig. 6.1. It can be seen from Fig. 6.1(a) that a system with a
source is unstable, in the same way as for a system with a drain, portrayed
in Fig. 6.1(b); the system with a source has a growing (unbounded) state
while the system with a drain has a decaying state. It is, however, by coupling
these systems together that a system with growing energy can be tamed by a
dissipating system which yields a stable system, as illustrated in Fig. 6.1(c).

Based on this simple concept, different physical systems have been em-
ployed to study the new class of PT -symmetric physics, such as cold atom
systems [4–6], electronics [7–9], mechanical oscillators [10], acoustics [11, 12],
microwave electromagnetics [13, 14] and optics-photonics [15–42]. Within the
area of optics-photonics the concept of PT -symmetry has been considered in
the context of gratings [15–23], lattices [24–26], waveguides [27–33], plasmon-
ics [33–36] and resonant cavities [37–43].

This chapter will introduce the concept of Parity and Time structures in
photonics and their Quantum Mechanics equivalences, and then summarise
recent research studies of PT -symmetric photonics with emphasis mainly on
a PT -symmetric Bragg grating structure. The following section presents a
study of a PT -symmetric Bragg grating structure, in which unique scattering
phenomena, such as unidirectional invisibility and Coherent-Perfect-Absorber
and Lasing (CPAL) operations, have been discovered. This is followed by an
investigation of the impact of realistic gain/loss material on the features and
properties of a PT -Bragg grating. “Realistic”, here, means that we consider
a simple three-level energy system with an homogeneously broadened dis-
persion profile, which is typically used to illustrate erbium-doped amplifier
based material. A dispersive and saturable gain model, implemented within a
time-domain Transmission-Line Modelling (TLM) method is then introduced
in detail. This enables the impact of realistic material properties on the be-
haviour of these device to be investigated. The TLM model is then further
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extended to include material non-linearity and used to study the behaviour
of non-linear PT -Bragg gratings as innovative all-optical memory device.

Chapter 7 will present a summary of recent studies in PT coupled mi-
croresonators, such as the concept of lowering laser threshold by increasing
loss. The emphasis of both of these book chapters is to model such structures
(PT -symmetric Bragg gratings and coupled microresonators) in the context
of a realistic gain/loss material model which is non-linear and dispersive. Each
chapter will presents conclusions and future perspectives for the development
of PT -symmetric photonics.

6.2 Parity-Time (PT ) Symmetric Scatterers in 1-D

This section reviews the concept of PT symmetry within the context of a
Quantum Mechanical (QM) system. It is shown that a QM system with a PT -
symmetric Hamiltonian has a complex conjugated energy potential. By ex-
ploiting the isomorphism between the Schrödinger equation and the Helmholtz
equation for a scattering system, an analogous PT -symmetric photonic sys-
tem is constructed by a judicious choice of complex dielectric parameters.

6.2.1 Parity and Time-Reversal (PT ) Symmetry

In order to understand the concept of Parity and Time (PT ) symmetric struc-
tures in photonics, it is only natural to review some fundamental theorems and
postulates in Quantum Mechanics (QM) in which the PT -symmetric problem
was firstly defined. In QM, it is well-known that the behaviour of a particle is
described by the so-called Schrödinger equation, the time-independent form
of which is given by [44,45],

Ĥψ = Eψ (6.2)

where ψ denotes the scalar time-independent wavefunction which is a function
of position, i.e. ψ(x, y, z) in the Cartesian coordinate system, E refers to the
eigenstates of the problem Eq. (6.2) and Ĥ denotes the Hamiltonian operator
and has important roles as summarised below [1,46,47]:

1. To determine the energy eigenstates E which essentially are the solutions
of Eq. (6.2). It implies that the energy eigenstates E are the result of the
action described by Ĥ applied on the state vector ψ. Moreover, consider-
ing that E is a physically measurable quantity, it is essential for E to be
real.

2. Within the context of the time-domain Schrödinger equation,

Ĥψ(x, y, z; t) = i}
∂

∂t
ψ(x, y, z; t) (6.3)
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the Hamiltonian has a role to describe the time evolution of the state
vector ψ which is the time-domain solution of Eq. (6.3). It is emphasised
that the complex number notation (i = −j) is used as is customary in
Quantum Mechanics textbooks [44,45].

3. The Hamiltonian incorporates symmetry properties into the theory. In
QM the Hamiltonian may exhibit continuous symmetries, such as time
and spatial translation, and discrete symmetries, such as parity inversion
and time-reversal invariance [1, 46, 47]. For example if the Hamiltonian
commutes with the parity inversion symmetry, the Hamiltonian is said to
be parity inversion invariant.

The Hamiltonian Ĥ is expressed in terms of the position x and momentum
p̂ operator as,

Ĥ = p̂2 + V (x) (6.4)

where, p̂ and V (x) denote the linear momentum operator and potential en-
ergy function of a particle, respectively. The linear momentum operator is
imaginary and anti-symmetric, defined as p̂ = −i∇. It follows that p̂2 = −∇2

is real and symmetric (Hermitian) and therefore that if the potential function
V (x) is a real function in space, it can be guaranteed that all the energy states
E are also real with the Hamiltonian Ĥ satisfying,

Ĥ = Ĥ† (6.5)

where † denotes a Hermitian adjoint operation which in matrix form denotes
a combined transpose and complex conjugation operation

As suggested by Bender and Boettcher [1], although the Hermitian condi-
tion Eq. (6.5) is sufficient to ensure all possible energy states to be completely
real, it is not necessary. In [1,46,47], it is further shown that a weaker symme-
try than Hermiticity Eq. (6.5) may lead to real eigenvalues E, and this weaker
symmetry is denoted as a Parity (P) and Time (T ) symmetric Hamiltonian.
As such the Hamiltonian Ĥ is invariant under the PT transformation,

PT ĤPT = Ĥ (6.6)

where the parity operator P is defined as a linear operator which inverts
space and momentum, and the time-reversal operator T is an operator which
reverses time, i.e. t → −t. The transformations performed by the parity and
time-reversal operators are defined as [1, 46–50],

P : x→ −x ; p̂→ −p̂ (6.7)

T : j → −j ; x→ x ; p̂→ −p̂ (6.8)

As such, it can be shown that a PT -symmetric Hamiltonian in Quantum
Mechanics is achieved when the potential function satisfies [1, 46–50],
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PT V (x)PT = V ∗(−x) = V (x) (6.9)

where ∗ denotes the conjugation operation. The PT -symmetric condition Eq.
(6.9) implies that the energy potential V (x) is a complex function where the
real part is an even function and the imaginary part is an odd function in
space.

6.2.2 Photonics System Analogue of Quantum Mechanics
PT -Symmetric Hamiltonian

In contrast to the Schrödinger equation in Quantum Mechanics, in optics-
photonics the dynamics of an electromagnetic field are defined by the Helmholtz
equation which for the electric field, the Helmholtz equation is given as,

∇2E +
ω2

c20
ε̄(x)E = 0 (6.10)

where ε̄(x) is the relative permittivity of the material and is a function of
space x, such that it can be expressed in the form of,

ε̄(x) = ε̄b +∆ε̄(x) (6.11)

In Eq. (6.11), ε̄b denotes the homogeneous background material relative per-
mittivity on which the spatial modulation ∆ε(x) occurs. By substituting the
permittivity profile function Eq. (6.11) to Eq. (6.10), the Helmholtz equation
can also be formulated as [25],{

∇2 +
ω2

c20
∆ε̄(x)

}
E = −ω

2

c20
ε̄bE (6.12)

By comparing Eq. (6.12) and Eq. (6.2), it can be seen that the time-
harmonic Helmholtz equation of wave dynamics, albeit multicomponent, is
isomorphic with the time-independent Schrödinger Eq. (6.2). The comparison
of the Schrödinger and Helmholtz equations is summarised in Table 6.1. Based
on this analogy, it can be shown that PT -symmetric photonic structure has
a dielectric profile that satisfies,

ε̄(x) = ε̄∗(−x) or n(x) = n∗(−x) (6.13)

Table 6.1. Comparison of the Helmholtz and Schrödinger equations.

Quantum Mechanics Electromagnetics

Field Ψ(x, t) = ψ(x)ejEt/} E(x; t) = Re
[
E(x)ejωt

]
Eigenvalue problem Ĥψ = Eψ Θ̂E = −( ω

c0
)2εbE

Hamiltonian Ĥ = p̂2 + V (x) Θ̂ = ∇2 + ( ω
c0

)2∆ε̄(x)
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Fig. 6.2. Schematic illustration of a one-dimensional scattering system.

so that the real part of permittivity (or refractive index) is an even function
and the imaginary part of the permittivity (or refractive index) is an odd
function of space,

ε′(−x) = ε′(x) (6.14)

ε′′(−x) = −ε′′(x) (6.15)

As such Eq. (6.15) implies that a PT -symmetric structure in photonics re-
quires the presence of both gain and loss in the system.

6.2.3 Generalised Conservation Relations

For definiteness, consider a 1D PT -symmetric structure schematically illus-
trated in Fig. 6.2. The structure has a length L with a refractive index pro-
file satisfying the PT -symmetric condition in the longitudinal direction, i.e.
n∗(x) = n(−x), and is embedded in a lossless background material of refrac-
tive index nb. In Fig. 6.2, the incoming a and outgoing b wave amplitudes are
denoted for both the left and right sides. The longitudinal-components of the
electric field on each port can be expanded as,

ET (x) =

{
a1ejβx + b1e−jβx for : x < −L2
a2ejβx + b2e−jβx for : x > L

2

(6.16)

As such the wave-scattering can be modelled by the S-matrix as,[
b1
b2

]
= S

[
a1
a2

]
where, S =

[
rL tR
tL rR

]
(6.17)

and the quantities in the S-matrix are defined as,

tL : transmission coefficient for left incidence,

tR : transmission coefficient for right incidence,

rL : reflection coefficient for left incidence,

rR : reflection coefficient for right incidence.

If linear and non-magnetic materials are considered, Lorentz reciprocity
holds, i.e. S = ST ; the S-matrix can be simplified based on the reciprocality
of left and right transmission coefficients, tL = tR ≡ t, as,
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Fig. 6.3. PT -transformed scattering system. The original system before PT -
symmetry transformation is illustrated in Fig. 6.2.

S =

[
rL t
t rR

]
(6.18)

From Eq. (6.17) and Eq. (6.18), the transfer matrix M-matrix associated with
Fig. 6.2, which relates the left and right wave amplitudes, could be constructed
as: [

a1
b1

]
= M

[
b2
a2

]
where, M ≡

[
1
t − rRt
rL
t t− rLrR

t

]
(6.19)

Moreover since the structure is PT -symmetric, the PT -transformed solutions
should also be solutions of the Helmholtz equation. As such, Fig. 6.3 depicts
the PT transformed solution of the original problem in Fig. 6.2. The PT -
transformed solutions are expressed as,

PT {ET (x)} =

{
b∗2e

jβx + a∗2e
−jβx for : x < −L2

b∗1e
jβx + a∗1e

−jβx for : x > L
2

(6.20)

The corresponding M-matrix formulation is now given by,[
b∗2
a∗2

]
= M(PT )

[
a∗1
b∗1

]
(6.21)

By a direct comparison of Eq. (6.19) and Eq. (6.21), the corresponding PT -
transformed matrix M is [49–52],

M
PT−−→M(PT ) ≡M−1∗ (6.22)

Since the structure is PT -symmetric invariant, it can be deduced that,

M = M−1∗ (6.23)

Exploiting the fact that det(M) = 1, it can be shown that,

M11 = M∗22 and Re[M12] = Re[M21] ≡ 0

Using these relations, the M-matrix can be parameterised as,

M =

[
A −jB
jC A∗

]
where {B,C} ∈ R (6.24)
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Here, each entry of the M-matrix is defined as,

A =
1

t
= t∗ − r∗Lr

∗
R

t∗
(6.25a)

B = −j rR
t

= j
r∗R
t∗

(6.25b)

C = −j rL
t

= j
r∗L
t∗

(6.25c)

By further exploitation of det(M) = 1 on Eq. (6.24), the generalised conser-
vation relation is formulated as [49–52],

1− |t|2 = rLr
∗
R = r∗LrR (6.26)

From Eq. (6.26) the generalised conservation relation can also be expressed in
terms of the transmittance T = |t|2 and reflectance RL,R = |rL,R|2 coefficients
as [49–52],

|1− T | =
√
RLRR (6.27)

Generally, the conservation relation Eq. (6.27) implies that one the following
cases may occur:

1. For the case of T < 1, Eq. (6.27) reduces to T +
√
RLRR = 1. It can be

seen that
√
RLRR replaces the conventional R in the case of an orthogonal

system. It follows that when T < 1 the scattering of a single incident
wave from one side of the structure yields to a loss of power flux [49]. This
operation is referred to throughout as sub-unitary transmission operation.
Moreover, from Eq. (6.26) one can evaluate the phase relation between the
left and right reflected light. Consider that the reflected signal from left
side is of the form of rL = |rL|ejφL and from the right side is of the form
rR = |rR|ejφR . From Eq. (6.26) it can be found that the phase for the left
and right reflected signal is related by φL = φR.

2. For the case of T > 1, Eq. (6.27) reduces to T −
√
RLRR = 1. In this

case, a single incident beam yields to a super-unitary transmission with
the phase relation between left and right reflected waves as φL − φR = π.

3. For the case of T = 1, Eq. (6.27) reduces to
√
RLRR = 0 which implies

that the product of the left and right reflectances must be zero. Such an
operation is typically accomplished by having no reflection from one side
of the structure. This particular operation case is referred to as unidirec-
tionally invisible operation.

6.2.4 Phases in a PT Scattering System

The relationship between the incoming and outgoing waves in an optical net-
work is well-described by using the scattering matrix S. This section will focus
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on investigating the spectral properties of the S-matrix associated with the
PT -symmetric scattering system depicted in Fig. 6.2.

It is well-understood that for any linear passive structure, i.e. no gain and
loss, the S-matrix is unitary [53–57],

S† = S−1 (6.28)

where † denotes the transpose and conjugation operation. The unitary relation
Eq. (6.28) puts a strict condition that the eigenvalues sn of the S-matrix have
to be unimodular, i.e.

|sn| = 1

Hence, for a passive structure, power is conserved with no net amplification
or dissipation.

However, in the case when a gain or/and lossy element is present, as is
the case in PT -symmetric structures, the spectral behaviour of the S-matrix
is non-trivial. It will be shown shortly that the PT -symmetric structure may
undergo a phase transition from a power conserving operation, with no net-
amplification or dissipation, to a non-conserving system. Hence, consider the
scattering matrix formulation associated with Fig. 6.2 expressed as,[

b1
b2

]
= S

[
a1
a2

]
where, S =

[
rL t
t rR

]
(6.29)

where the ingoing and outgoing field amplitudes (a and b) for each individual
port can also be expressed compactly as,

ET (x) =

2∑
n=1

[ane−jβnx + bnejβnx] (6.30)

Following similar reasoning to that employed in Section 6.2.3, a PT -symmetric
scattering system should support the PT -transformed solution on each port,
which is

PT {ET (x)} =

2∑
n=1

[(PT an)ejβnx + (PT bn)e−jβnx]. (6.31)

As such the following scattering formulation is also valid,

PT
[
a1
a2

]
= SPT

[
b1
b2

]
(6.32)

where in the matrix formulation the operators P and T are defined as

P =

[
0 1
1 0

]
and T = K (6.33)
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where K is the conjugation operation . By comparing Eq. (6.29) and Eq.
(6.32), it can be found that the scattering matrix S obeys the following PT -
symmetric transformation,

PT SPT = S−1 (6.34)

For convenience, consider the parameterised S-matrix using Eq. (6.25) as,

S =
1

A

[
jC 1
1 jB

]
where, {B,C} ∈ R (6.35)

By direct calculation, the eigenvalues sn, with n ∈ {1, 2}, can be expressed
as [49],

s1, s2 =
j

2A

[
(B + C)±

√
(B − C)2 − 4

]
where, {B,C} ∈ R (6.36)

Since the parameters B and C are real numbers, it can be deduced that one
of the following cases may happen,

1. For the case of (B − C)2 < 4, the eigenvalues are

s1, s2 =
j

2A

[
(B + C)± j

√
4− (B − C)2

]
, {B,C} ∈ R (6.37)

and the corresponding eigenvectors are,

ψ1,ψ2 =

2 + j
[
(C −B)± j

√
4− (B − C)2

]
2 + j

[
(B − C)± j

√
4− (B − C)2

] for: s1, s2 (6.38)

From Eq. (6.37), it can be found by direct calculation that the eigenvalues
are unimodular, i.e. |sn| = 1. This implies that, for this case, power is
conserved thus there is no net-amplification nor dissipation. Note that,
in this case, the eigenvectors themselves are PT -symmetric as the PT -
operation transforms the eigenvectors back to themselves,

ψ1,ψ2
PT−−→ ψ1,ψ2 (6.39)

This particular operation case is referred to as the PT -symmetric phase .

2. For the case of (B − C)2 > 4, the eigenvalues are

s1, s2 =
j

2A

[
(B + C)±

√
(B − C)2 − 4

]
, {B,C} ∈ R (6.40)

with the corresponding eigenvectors as,

ψ1,ψ2 =

2 + j
[
(C −B)±

√
(B − C)2 − 4

]
2 + j

[
(B − C)±

√
(B − C)2 − 4

] for: s1, s2 (6.41)
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and the transformed solution is

PT {ψ1,ψ2} =

2 + j
[
(C −B)∓

√
(B − C)2 − 4

]
2 + j

[
(B − C)∓

√
(B − C)2 − 4

] for: s1, s2

Hence, it can be seen that, in this case, the eigenvectors are not PT -
symmetric but the pair satisfies the PT -transformation, by transforming
to each other,

ψ1,ψ2
PT−−→ ψ2,ψ1 (6.42)

Exploiting the symmetry properties of the PT -symmetric S-matrix Eq.
(6.34), it can be deduced that the pair of eigenvalues are reciprocally
conjugate, i.e.

s∗1,2s2,1 = 1 (6.43)

which implies in general that if |s1| > 1 then |s2| < 1. Operation in this
case is denoted as the PT -broken symmetry phase .

3. The case of (B − C)2 = 4, is the case when both of the above cases are
true. In this case, one can find that the eigenvalues are degenerate, as

s1 = s2 ≡
j

2A
(B + C) = ±j |A|

A
where, {B,C} ∈ R (6.44)

with the associated eigenvectors,

ψ1 = ψ2 ≡
(

1± j
1∓ j

)
for: s1, s2 (6.45)

This particular point is referred to as the PT -breaking point .

It has been shown that the eigenvalues of the S-matrix characterise the op-
erational phase of a PT -symmetric system. As such when the eigenvalues are
unimodular, the system is in the PT -symmetric phase whilst if the eigenval-
ues are reciprocal conjugate the system is in the PT -broken symmetry phase.
A simpler criterion can be obtained by evaluating the value of (B−C)2 using
the identities given in Eq. (6.25). The criterion of PT -symmetry phases can
be expressed in terms of the transmittance and reflectance coefficients as [49],

RL +RR
2

− T


< 1, for : PT -symmetric phase

= 1, for : PT -symmetry breaking point

> 1, for : PT -broken symmetric phase

(6.46)

where, T = |t|2 denotes the transmittance and RL,R = |rL,R|2 denotes the
reflectance coefficients for the incident wave arriving from the left or the right
of the structure respectively.
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6.2.5 Simultaneous Coherent Perfect Absorber and Lasing

A simultaneous lasing and absorbing action in a PT -symmetric scatterer was
noted in [49–52]. In order to understand the properties of this operation, first
consider a laser system. In a laser system, the structure emits light even in the
absence of an injected signal beam hence a1 = a2 = 0 whilst {b1, b2} → ∞.
Imposing this solution upon the M-matrix Eq. (6.19) means that the entry
M11 = 0. On the other hand, if a structure behaves as a coherent perfect
absorber (CPA), there is no scattered wave b1 = b2 = 0 whilst {a1, a2} 6= 0,
and this requires the entry M22 = 0. In practice, the conditions M11 = 0 and
M22 = 0 do not coincide at the same frequency, hence the system is either
lasing or absorbing, but not both.

However, in a PT -symmetric structure the condition Eq. (6.23) does allow
this to happen as M11 = M22 = 0 can occur generically at the same frequency.
Moreover, since det(M) = 1, it can be further shown that,

M11 = M22 = 0 and M12,M21 6= 0 (6.47)

which implies that transmission and reflection from the both sides are such
that,

|t| → ∞ and |rL|, |rR| → ∞ (6.48)

and their phase can be calculated from Eq. (6.19) as,

φR + φL = 2φt (6.49)

where φL and φR denote the phase for the reflected wave for the signal incident
from left and right side for the structure respectively whilst φt is the phase of
the transmitted wave.

The scenario of Eq. (6.48) can only occur in the PT -broken symmetry
phase, i.e. operation case 2 described in Section 6.2.4. This implies that
one of the eigenvalues of the S-matrix is |s1| → 0 whilst the other one
is |s2| → ∞, noting that the product of them should remain unity Eq.
(6.43). This physically means that the structure has both lasing and coher-
ent perfect absorber(CPA) states simultaneously. Such operation is referred
to as simultaneous coherent perfect absorber-lasing(CPAL) operation. Since
|det(S)| = |s1s2|, one can also interpret that CPAL occurs when the poles
and zeros of the S-matrix coalesce in the real frequency axis.

6.2.6 Bragg Grating with a PT -Symmetric Refractive Index
Modulation

In this section, let us consider a PT -symmetric Bragg grating (PTBG) , i.e.
a Bragg grating structure with a PT -symmetric refractive index modulation
profile. This section will focus on the study of the effect of the PT -symmetric
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Fig. 6.4. Schematic of a PT -Bragg grating structure. (a) Grating composed of N
unit cell in a background material nB , (b) single unit cell of the grating with 2
slightly different refractive indices navg +∆n′ and navg−∆n′. Red coloured sections
denote gain while the lossy sections are coloured blue.

phase transition and the spectral singularity on the operation of the PTBG.
Special attention will be given to different kinds of transmission, i.e. the sub-
unitary, super-unitary and unitary transmissions which were described in Sub-
section 6.2.3.

The PT -symmetric refractive index modulation requires that the real part
of the refractive index is an even function of position and the imaginary part
of the refractive index, which represents gain and loss, is an odd function of
position. The PT -symmetric Bragg grating (PTBG) considered has piecewise
constant layers of refractive index n = (navg ±∆n′)± jn′′, where navg is the
average refractive index, and ∆n′ and n′′ are the modulations of the real and
imaginary parts of the refractive index respectively. The grating is surrounded
by a background material of average refractive index nb = navg and has total
length of NΛ, where Λ is the length of one unit cell and N is the number of
unit cells. This is schematically illustrated in Fig. 6.4.

For definiteness, consider a PTBG with a depth of real part modulation
of ∆n′ = 0.02 that is designed with a Bragg frequency fB = 336.845 THz
(λB = 0.89 µm) and that the number of periods of N = 200. Moreover,
the background material and the average refractive index of the structure
are taken as nb = navg = 3.5, a value typical of a semiconductor mate-
rial. The pitch length of a single unit cell of the grating is calculated as
Λ = λB/(2navg) = 0.127 µm. The transmittance and reflectance for both left
and right incident waves are plotted in Fig. 6.5 for an increasing value of
gain/loss parameter, i.e. n′′ = 0, 0.0041, 0.015, 0.02, 0.022 and 0.02429. They
are calculated by the analytical Transfer matrix (T-matrix) method, We are
not describing the T-matrix method in this chapter; for detail on the method
readers are referred to [55,57].

The Lorentz reciprocity theorem states that the S-matrix of a linear, non-
magnetic and time-independent system is symmetric [58]. It implies that the
linear PT -symmetric Bragg grating (PTBG), studied in this subsection, has
the same transmittance for left and right incidence. As such the transmittances
are denoted only as transmittance T and are shown in the top panel of Fig.
6.5. The reflectances, however, are different for left and right incidence and
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are denoted by RL and RR, respectively, and displayed in the middle and
bottom row of Fig. 6.5.

The transmittance and reflectance of a passive grating has a pronounced
gap around the Bragg frequency fB as a result of collective scattering be-
tween high and low refractive index layers. As the gain/loss parameter n′′ is
introduced to the system, the reflectance for left incidence differs from the re-
flectance for right incidence. Looking at the transmittance spectra, in the top
panel of Fig. 6.5, it can be seen that as the gain/loss parameter n′′ increases
the transmission band-gap reduces and almost unitary transmission (T = 1)
occurs at n′′ = 0.02, with a further increase of n′′ from this point leading to
super-unitary transmission (T > 1) spectra.

The reflectance for the left incident wave RL is shown in the middle panel
of Fig. 6.5. It can be seen that as the gain/loss parameter n′′ increases, the
reflectance from the left side RL also increases. Meanwhile, the reflectance
for the right incident wave RR behaves differently in that as the gain/loss
parameter increases the right reflectance decreases, and it reaches almost no
reflection RR = 0 for all frequencies at n′′ = 0.02. Operation for gain/loss
parameters above this point leads to RR > 0.

It is important to note that for the particular gain/loss parameter of
n′′ = ∆n′ = 0.02, the transmittance is unity (T = 1) for all frequencies,
and the grating is almost reflectionless for the right incident wave (RR = 0)
whilst the left incident wave experiences amplified reflection (RL > 1). This
particular operation at n′′ = ∆n′ [15, 17] is also known as unidirectional in-
visible operation, since the PTBG is invisible when it is excited from one side
(right) but not the other (left).

Finally, consider the transmittance T and reflectances (RL and RR) for
the case when the gain/loss parameter n′′ = 0.02429, shown in Fig. 6.5(f).
For this particular value of gain/loss parameter, the value of T , RL and RR
approach infinity at the Bragg frequency f = fB . This particular singularity
at f = fB is associated with the simultaneous coherent perfect absorber-lasing
(CPAL) operation point. Once the PTBG enters a lasing state, operating at
or above the CPAL point, the system is in an unstable regime since the power
inside the structure is increasing exponentially.

In Subsection 6.2.3, it has been shown that in a PT -symmetric scattering
system a more general conservation relationship, see Eq. (6.27), which relates
both asymmetric left and right responses is applied. This is reproduced again
here:

|1− T | =
√
RLRR (6.50)

In order to show the validity of Eq. (6.50), the top row of Fig. 6.6 depicts
the difference between the left and the right hand side of Eq. (6.50). It can
be seen from the top panel of Fig. 6.6 that the difference is zero throughout
the spectra for an increasing value of gain/loss parameter n′′ which implies
that the general conservation relation is satisfied in a PT -symmetric Bragg
grating structure.
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Fig. 6.5. Transmittance and reflectance spectra of a PTBG. The transmittance
T , reflectance for the left and right incident waves (RL and RR respectively) are
displayed in the top, middle and bottom panels respectively. Six different values of
gain/loss parameter n′′ = 0, 0.0041, 0.015, 0.02, 0.022 and 0.02429 are considered.
The insets show amplified details of spectra.
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Fig. 6.6. Spectral behaviour of PT -symmetric Bragg grating. (Top panel) the
difference between the left and right terms of the general conservation relations.
(Middle panel) The magnitude of the eigenvalue of the S-matrix. (Bottom panel)
the PT -phase transition criterion.

Moreover, it is also discussed in Subsection 6.2.4 that a PT -symmetric
scattering system may undergo a spontaneous symmetry breaking which could
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be observed by the magnitude of the eigenvalues of the S-matrix or by a
simpler condition defined by the PT -symmetry transition criterion, given in
Eq. (6.46). Consider the middle panel of Fig. 6.6. This part of the figure
shows the magnitude of the eigenvalue of the S-matrix, denoted by |sn| where
n ∈ {1, 2}, and bottom panel depicts the PT -symmetry transition criterion
of Eq. (6.46) as a function of frequency for different gain/loss parameter n′′.

Now consider the middle panel of Fig. 6.6 which shows the magnitude
of the eigenvalues of the S-matrix, i.e. |sn| on a semi-log scale for differ-
ent gain/loss parameters n′′. It can be seen from the middle panel of Fig.
6.6(a) that the eigenvalues of the passive grating are unimodular |s1,2| = 1
throughout the frequency spectrum, implying that the S-matrix is orthogo-
nal. However, as the gain/loss is introduced into the system the S-matrix is
no longer Hermitian but will be in either the PT -symmetry or PT -broken-
symmetry phase. As such, in the PT -symmetry phase the eigenvalue is uni-
modular |s1,2| = 1 whilst in the PT -broken-symmetry phase the product of
the eigenvalues is unimodular, i.e. s∗1,2s2,1 = 1. Therefore it can be seen from
Fig. 6.6(b) that for a gain/loss parameter value of n′′ = 0.004108, the PTBG
operates in the PT -symmetric phase throughout the frequency range consid-
ered. However from Fig. 6.6(c-f) it can be observed that for larger values of
n′′, the PTBG could operate under the PT -symmetry phase and PT -broken-
symmetry phase , depending on the operational frequency f . It is important
to note that since the coupling between the forward and backward propagat-
ing waves is strongest at the Bragg frequency fB , the PT -symmetry will be
firstly broken at the Bragg frequency and then spread within the band-gap of
the grating.

The transition from the PT -symmetric phase to the PT -broken-symmetry
can be clearly observed by studying the PT -transition criterion of Eq. (6.46).
For the operation in the PT -symmetric phase the criterion is 1

2 (RL+RR)−T <
1 whilst for operation in the broken-symmetry phase the criterion is 1

2 (RL +
RR)−T > 1. It is noted that operation at the criterion of 1

2 (RL+RR)−T = 1
is denoted by the PT -symmetric breaking point operation.

The bottom panel of Fig. 6.6 plots the criterion 1
2 (RL + RR) − T for

different values of gain/loss parameter n′′; the insets depict the detail of the
criterion value with the dashed line denoting the 1

2 (RL +RR)− T = 1 value.
It can be seen that for the passive grating structure, the criterion value is
below 1 throughout the frequency spectrum. As the gain/loss parameter value
increases, the criterion value also increases. It is noted that at the particular
value of n′′ = 0.004108, the criterion value at the Bragg frequency fB is just
touching the dashed line. It implies that the value of gain/loss parameter
n′′ = 0.004108 indicates the initial PT -symmetry breaking which occurs at
the Bragg frequency and which is followed by other frequencies within the
band-gap region proximity.

It is important to inspect the operation at the gain/loss parameter value
of n′′ = 0.02429, depicted by Fig. 6.6(f). Although the PTBG exhibits CPAL
operation, the PT -system satisfies the general conservation relationship. Fur-
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Fig. 6.7. Magnitude of the eigenvalues of the S-matrix. Plotted on a semi-log scale
as a function of frequency and for different gain/loss parameter n′′

thermore, the eigenvalues of the S-matrix show a strong singularity at the
Bragg frequency fB with one of the eigenvalues approaching infinity whilst
the other approaches zero. This implies that the structure supports both lasing
and coherent-perfect-absorber operation simultaneously at the same operating
frequency and at the same gain/loss parameter value. The singularity signa-
tures are also observed in Fig. 6.6(f, bottom panel) where the criterion at the
Bragg frequency is also approaching infinity.

In order to study the PT -symmetry phase transition process, Fig. 6.7
depicts the magnitude of the eigenvalues of the S-matrix on a semi-log scale
as a function of both gain/loss parameter and the operating frequency f . For
this figure, the PTBG considered is the same as that presented in Fig. 6.5
and Fig. 6.6. As a passive grating, i.e. with no gain/loss, the eigenvalues are
uni-modular (see Fig. 6.7 for n′′ = 0). However, as the gain/loss increases, the
PT -symmetry starts to break which initially happens at fB for the gain/loss
parameter value of n′′ = 0.004108. For a further increase of gain/loss in the
system, more PT -symmetry breaking is observed. The black dashed line in
this figure denotes the value of 1

2 (RL + RR) − T = 1, i.e. the PT -symmetry
breaking point . Furthermore this figure demonstrates that PT -symmetry
breaking occurs at a frequency located within the band-gap region of the
grating. It can be explained since propagation of a wave at a frequency outside
of the band-gap experiences almost no dispersion, and the interaction between
the forward and the backward propagation wave is negligible. Moreover, this
figure also shows the singularity point of the eigenvalues of the S-matrix,
with one eigenvalue approaching infinity whilst the other approaches zero.
Operation at this singular point is associated with the CPAL point which is
depicted in more detail in Fig. 6.6(f). It is important to note that in practice
as the structure reaches the CPAL point the system becomes unstable as it
is now operating as a laser cavity, hence operation beyond the CPAL point
leads to unstable operation.
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6.3 Modelling Parity-Time (PT ) Symmetric Bragg
Grating with a Realistic Gain/loss Material Model

The PT -symmetric Bragg grating (PTBG) studied so far has been considering
a simple non-dispersive gain/loss material model. This section demonstrates
the impact of a realistic gain properties, dispersive and saturable, on the
performance of a PTBG. For that reason, this section will first describe the
dispersive and saturable gain model used and the implementation of such a
model within the time-domain Transmission-Line Modelling (TLM) method.

6.3.1 Time-Domain Modelling of Dispersive and Saturable Gain

Light amplification phenomena can be explained using the concept of energy
levels and the transitions of electrons between the energy levels [45, 59]. To
elaborate the concept of gain by the mechanism of electron transition between
different energy levels consider a three-energy-level model. The three-energy-
level model is a simplified model which is typically used to described light
amplification phenomena in an erbium-doped based optical amplifier [59–61].
In such a configuration, there are three energy levels denoted by E1, E2 and
E3, with E1 being the lowest energy level. Light amplification occurs by a
stimulated emission process of electron transition from E2 to E1.

For the case when the electron transition between E2 and E1 is considered
to be homogeneous, the electron response to the incoming light is characterised
by the same atomic transitional angular frequency ωσ and the same time
relaxation parameter, τ . In such an homogeneous system, the time relaxation
parameter τ models the time required by the electrons to rest after transition.
The finite material response introduces a broadening in the spectrum of the
emitted light in the shape of Lorentzian lineshape function. A macroscopic
model of the homogeneously broadened gain medium can conveniently be
modelled through the electrical conductance of the medium as [62],

σe(I, ω) = S(I)
σ0
2

[
1

1 + j(ω − ωσ)τ
+

1

1 + j(ω + ωσ)τ

]
(6.51)

where, ωσ denotes the atomic transitional angular frequency, τ is the atomic
relaxation time parameter, and σ0 is related to the conductivity peak value
that is set by the pumping level at ωσ. The saturation coefficient S is non-
linear in nature as a consequence of the finite number of electrons available
in the case of large incident signal and is conveniently described as [61–63],

S(I) =
1

1 + (I/Isat)
(6.52)

In the case of a small incident signal the saturation coefficient is typically
negligible. Note that value of the saturation intensity Isat is dependent on the
details of structure and treatment of the material [64].
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Overall, the frequency domain relative dielectric permittivity is given by,

εr(ω, I) = 1 + χe(ω)− jS(I)
σ0

2ε0ω

[
1

1 + j(ω − ωσ)τ
+

1

1 + j(ω + ωσ)τ

]
(6.53)

It is important to note that the material model given by Eq. (6.53) satisfies
the Kramers-Kronig relations by the fact that a change in the imaginary part
causes the real part of the dielectric constant to be dispersive and it meets the
analytic condition of the Fourier transform, i.e. all singularities of the model
are located in the upper half-plane of the complex frequency plane [65,66].

In order to associate the conductivity model given in Eq. (6.53) with the
resulting gain, assume that the dielectric susceptibility is constant and real,
i.e. χe(ω) = χe and consider small signal gain. The relative permittivity can
be simplified as,

εr(ω) = 1 + χe +
σ′′e (ω)

ε0ω
− j σ

′
e(ω)

ε0ω
(6.54)

where the frequency domain (small signal) conductivity has been considered
in the form of σe(ω) = σ′e(ω) + jσ′′e (ω), so that the real and imaginary parts
of the conductivity are given by,

σ′e(ω) = σ0
1 + (ω2

σ + ω2)τ2

{1 + (ω2
σ − ω2)τ2}2 + 4ω2τ2

σ′′e (ω) = σ0
(ωτ){−1 + (ω2

σ − ω2)τ2}
{1 + (ω2

σ − ω2)τ2}2 + 4ω2τ2

(6.55)

In the refractive index formalism, the propagation constant can also be
expressed as,

γ = α+ jβ = j
ω

c0
n(ω) (6.56)

where the complex frequency-domain refractive index is defined as,

n(ω) ≡n′(ω) + jn′′(ω) =
√
εr(ω) (6.57)

Consequently, the phase constant (β) and gain (α) depend only on the real
and imaginary parts of the refractive index respectively as,

α = − ω
c0
n′′(ω) (6.58)

β =
ω

c0
n′(ω) (6.59)

By assuming propagation in the +z direction as e−γz, it can be seen from Eq.
(6.55), Eq. (6.56) and Eq. (6.58) that gain is achieved by having σ0 < 0.
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It is also important to note that the three-level system also describes light
absorption phenomena since, in the absence of external pumping, most of the
electrons are at E1 and the incoming light signal induces an upward tran-
sition from E1 to E2. The upward transition induces loss at the frequency
corresponding to the appropriate energy, E2 − E1. Mathematically, this in-
duced absorption loss can be modelled by Eq. (6.53) by having σ0 > 0.

The realistic gain/loss material model Eq. (6.53) is now implemented
within the time-domain Transmission-Line modelling (TLM) method in one-
dimension. The TLM method is a flexible time-stepping numerical technique
that has been extensively characterised and used over many years [67, 68].
The TLM method is based upon the analogy between the propagating elec-
tromagnetic fields and voltages impulses travelling in an interconnected mesh
of transmission-lines. Successive repetitions of a scatter-propagate procedure
provide an explicit and stable time-stepping algorithm that mimics electro-
magnetic field behaviour to second-order accuracy in both time and space
[67, 68]. In this chapter, we do not attempt to describe the basic of TLM
method itself and readers are referred to some excellent references [68, 69].
However, in this chapter, an alternative TLM formulation using a bilinear
Z-transformation of Maxwell’s equations approach is employed [69–71]. In
this approach, the TLM is formulated using less of an electical analogy and
more of transmission-line characteristics and a Z-transformation of Maxwell’s
equations [69–71]. In particular, this approach offers flexibility in the imple-
mentation of dispersive and non-linear material properties [69–73].

Without losing generality in this chapter, the implementation for a one-
dimensional problem is considered, implementation for two-and three-dimensions
follows similarly and the two-dimensional implementation is presented in the
following chapter. For that reason, we shall consider Maxwell’s equations for a
one-dimensional problem with the electric field polarisation in the y-direction
as,

− ∂

∂x

[
Hz

Ey

]
=

[
σe ∗ Ey

0

]
+
∂

∂t

[
ε0(Ey + χe ∗ Ey)

µ0Hz

]
(6.60)

In Eq. (6.60), the curl Maxwell’s equations are displayed in a compact matrix
notation, where ∗ denotes the time-domain convolution operator. Maxwell’s
equation Eq. (6.60) can be expressed in circuit format by utilising the field-
circuit equivalences [68, 71], which are summarised in Table 6.2. The circuit
form of Eq. (6.60) is given as,

− ∂

∂x
∆x

[
Iz
Vy

]
=

[
Ge ∗ Vy

0

]
+
∂

∂t

[
C0 (Vy + χe ∗ Vy)

L0Iz

]
(6.61)

By introducing the following normalisation transformation,

x→ X∆x | ∂x→ ∆x∂X

t→ T∆t | ∂t→ ∆t∂T
(6.62)
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Table 6.2. Equivalences of the field and transmission-line quantities [68, 69].

Field theory Transmission line theory

Quantity Symbol unit Quantity Symbol unit Transformations

Electric field E [V/m] Voltage V [V] E ↔ − V
∆x

Magnetic field H [A/m] Current I [A] H ↔ − I
∆x

Permittivity ε [F/m] Capacitance C [F] ε↔ C
∆x

Permeability µ0 [H/m] Inductance L [H] µ0 ↔ L
∆x

Conductivity σ [S/m] Conductivity Ge [S] σ ↔ Ge
∆x

where X and T are dimensionless variables and ∆x and ∆t are discretisation
length and the time-stepping parameter, equation Eq. (6.61) can be simplified
further as a single unit operation (volt) as,

− ∂

∂X

[
iz
Vy

]
=

[
ge ∗ Vy

0

]
+

∂

∂T

[
Vy
iz

]
+

∂

∂T

[
χe ∗ Vy

0

]
(6.63)

Here, the normalised conductivity and current parameters are defined as ge =
GeZTL and iz = IzZTL, where ZTL denotes the characteristic impedance of
the transmission-line and has been adopted to correspond to the properties
in free-space, hence ZTL =

√
L0/C0 and ∆x = c0∆t where c0 = 1/

√
ε0µ0.

By utilising the travelling-wave format [69–71],

− ∂iz
∂X
− ∂Vy
∂T

= 2V i4 + 2V i5 − 2Vy (6.64)

−∂Vy
∂X
− ∂iz
∂T

= 2V i4 − 2V i5 − 2iy (6.65)

where V i4 and V i5 denote the incident impulses coming from the left and right
respectively. The travelling-wave form of Eq. (6.63) in the Laplace-domain is
given as,

2

[
V ry
irz

]
≡ 2

[
V i4 + V i5
V i4 − V i5

]
= 2

[
Vy
iz

]
+

[
geVy

0

]
+ s̄

[
pey
0

]
(6.66)

In Eq. (6.66), the convolution operator ∗, which appeared in Eq. (6.63), has
been transformed to a simple multiplication in the frequency domain and
pey = χeVy denotes the normalised dielectric polarisation. Note that the nor-
malised Laplacian operator is s̄ = ∂/∂T . Performing a bilinear Z-transform
of the normalised Laplacian operation [69–71],

s̄
Z−→ 2

(
1− z−1

1 + z−1

)
(6.67)

equation (6.66) becomes, in the Z-domain,
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2

[
V ry
irz

]
= 2

[
Vy
iz

]
+

[
geVy

0

]
+ 2

(
1− z−1

1 + z−1

)[
pey
0

]
(6.68)

Equation (6.68) is suited for material modelling with dispersive and non-linear
properties, which are modelled through the dielectric polarisation pey and the
conductivity ge. Right after obtaining the voltage Vy and current iz quantities,
the new scattered voltage impulses can obtained by [68–71],

V r4 = Vy − V i4
V r5 = Vy − V i5

(6.69)

and communicated to the neighbouring nodes during the connection process.
Now, a digital filter based on the material model Eq. (6.53) is developed.

The purpose of designing a digital filter of the material model is to facilitate
the implementation of the frequency-domain material model within the time-
domain TLM method Eq. (6.66). The gain (or loss) material model given in
Eq. (6.51) can be conveniently expressed in the Laplace domain as,

σe(I, s) = S(I)σ0

[
K1s+ (K1)2

s2 + 2K1s+ (K2)2

]
(6.70)

where the constants K1 and K2 are defined as,

K1 =
1

τ
and K2 =

1 + (ωστ)2

τ2

Using the normalisation procedure introduced previously, the material model
of Eq. (6.70) in the TLM form can be expressed as,

ge(I, s) = S(I)g0

[
K1s+ (K1)2

s2 + 2K1s+ (K2)2

]
(6.71)

and by performing the bilinear Z-transformation on the Laplacian operator
as,

ge(I, z) = S(I)g0

[
K3 + z−1(K4) + z−2(K5)

K6 + +z−1(K7) + +z−2(K8)

]
(6.72)

where, the constants in Eq. (6.72) are given by,

K3 = 2K1∆t+ (K1∆t)
2 ; K4 = 2(K1∆t)

2 (6.73)

K5 = −2K1∆t+ (K1∆t)
2 ; K6 = 4 + 4K1∆t+K2(∆t)2 (6.74)

K7 = −8 + 2K2(∆t)2 ; K8 = 4− 4K1∆t+K2(∆t)2 (6.75)

Furthermore, any system with a causal response can always be described as
a feedback system whose current response depends on a past event. Hence it
can be shown that [71] ,
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(1 + z−1)ge = ge0 + z−1(ge1 + ḡe(z)) (6.76)

where the constants ge0 and ge1 and the causal response ḡe(z) are given by,

ge0 = gs

(
K3

K6

)
, ge1 = 0, ḡe(z) =

b0 + z−1b1 + z−2b2
1− z−1(−a1)− z−2(−a2)

(6.77)

with the corresponding constants defined as,

gs = g0

(
1

1 + (I/Isat)

)
; b0 = gs

(
K3

K6

)(
K3 +K4

K3
− K7

K6

)
b1 = gs

(
K3

K6

)(
K4 +K5

K3
− K8

K6

)
; b2 = gs

(
K3

K6

)(
K5

K3

)
a1 =

K7

K6
; a2 =

K8

K6
.

(6.78)

We are now ready to implement the digital filter for gain (or loss) material
Eq. (6.76) within the 1D-TLM method. For convenience, the first row of Eq.
(6.68) is reproduced here,

2V ry = 2Vy + geVy + 2

(
1− z−1

1 + z−1

)
pey (6.79)

After multiplying both sides by (1+z−1) and rearranging, Eq. (6.79) can also
be expressed as,

(2V ry − 2Vy) + z−1(2V ry − 2Vy) = (1 + z−1)geVy + 2(1− z−1)pey (6.80)

Substituting the digital filter for the conductivity given in Eq. (6.76), and by
further assuming the case of linear and dispersionless dielectric polarisation
pey = χe∞Vy, Eq. (6.80) reduces to

2V ry + z−1(Sey) = Ke2Vy (6.81)

where the accumulative past response is given by,

Sey = 2V ry +Ke1Vy + Sec (6.82a)

Sec = −ḡeVy (6.82b)

with the constants Ke1 and Ke2 defined as,

Ke1 = −(2 + ge1 − 2χe∞) (6.83a)

Ke2 = 2 + ge0 − 2χe∞ (6.83b)

and ge0, ge1 and ḡe are as in Eq. (6.77).
The signal flow diagram of system Eq. (6.81) is illustrated in Fig. 6.8(a),

the subsystem defining the conductivity digital filter system (within the
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Fig. 6.8. Signal flow diagram modelling gain material in TLM algorithm. (a) Overall
signal flow diagram from the incoming voltage impulses V ry to the resulting nodes
voltage Vy. (b) Detail field updating scheme of conductivity model of gain material
which is marked in the dashed box in (a).

dashed line box) is detailed in Fig. 6.8(b). It is also noted here that, for
the case of a saturable gain (or loss) model, the saturation coefficient S(I) is
updated as follows: if |Vy| at the time-step T is greater than |Vy| at T − 1
at the same location in space, then S(I) is updated using the last value of
|Vy|. However, if |Vy| has decreased from its previous value, it is not updated;
hence S(I) remains based on the most recent peak value. In this manner, in-
tensity feedback in the time-domain retains, as much as possible, its frequency
domain meaning [62]. Thus the time-averaged intensity I can be calculated
as,

I =
1

2

E2
y

η
=

1

2

V 2
y

η∆x2
, where η =

η0
n′

(6.84)

where η0 =
√
µ0/ε0 is the free-space impedance of a normally incident wave

and n′ is the real-part of the refractive index.

6.3.2 Impact of Dispersion on the Properties of a PT -Bragg
Grating

Now, consider the PTBG similar to that illustrated in Fig. 6.4 with the ex-
ception that the gain and loss are defined by the realistic dispersive gain/loss



26 S. Phang, et al.

model developed in previous subsection. As such the relative permittivity dis-
tribution in a single unit cell, ε̄(x), along the propagation direction x can be
expressed as,

ε̄(x, ω) =



ε̄b +∆ε̄′ − j σe(ω)

ε0ω
, x <

Λ

4

ε̄b −∆ε̄′ − j
σe(ω)

ε0ω
,

Λ

4
< x <

Λ

2

ε̄b −∆ε̄′ + j
σe(ω)

ε0ω
,

Λ

2
< x <

3Λ

4

ε̄b +∆ε̄′ + j
σe(ω)

ε0ω
,

3Λ

4
< x < Λ

(6.85)

where ∆ε̄′ denotes the constant modulation of the real part of the dielectric
permittivity and ε0 denotes the free-space permittivity. The material conduc-
tivity σe is a function of frequency as was given in Eq. (6.51). From Eq. (6.85),
it can be seen that the first two sections of the PTBG have gain while the other
two sections are lossy. Moreover, it is a common practice in optics to denote
dielectric material properties using the complex refractive index, n = n′+jn′′

which is related to the complex dielectric permittivity by n =
√
ε̄(ω). In this

subsection, we will investigate the impact of dispersion; for that reason a small
incident signal is considered, hence the saturation coefficient is negligible and
S = 1. Operation with a strong signal will be discussed in the next subsection
which will also include the non-linear Kerr effect .

For definiteness, consider a PTBG with the following material parameters:
the background dielectric constant ε̄b = (3.625)2 and modulation of the real-
part of dielectric constant ∆ε̄′ = (0.02)2 as used in [20]. The parameter related
to the gain/loss material used is similar to that reported in [62], in which
the atomic transition angular frequency ωσ = 2π(336.85) rad/ps, and time
relaxation parameter τ = 0.1 ps. The PTBG is designed as follows: the grating
has N = 200 and the Bragg frequency is centred at the atomic transitional
frequency fB = 336.85 THz. It follows that the physical length of a unit cell
is Λ = 112.7 nm.

It is emphasised here that the gain/loss considered in this chapter is dif-
ferent to that in Subsection 6.2.6. In Subsection 6.2.6 the gain/loss parameter
n′′ is non-dispersive. In this section the gain/loss parameter is dispersive and
causal , as such the gain/loss is a function of frequency and the gain/loss
causes the real part of the dielectric constant to be dispersive. To quantify
the amount of gain/loss, the gain/loss parameter used is the imaginary part
of the refractive index at the atomic transitional frequency which in this case
has been associated with the Bragg frequency so that n′′(ωσ/(2π)) = n′′(fB).
The value of n′′(fB) can be calculated directly by substituting ω → (2πfB)
to Eq. (6.55) and (6.54).

The performance of the PTBG is depicted in Fig. 6.9 for different values
of gain/loss. Figure 6.9 considers the transmittance, T , and reflectance for the
left, RL, and right, RR, incidence for increasing values of gain/loss parame-
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Fig. 6.9. The impact of dispersive gain/loss parameter on the performance of
PTBG. The transmittance T , reflectance for the left RL and right incident RR
are displayed at the top, middle and bottom panel respectively. Six different value
of gain/loss parameter: passive structure, n′′(fB) = 0.0045, 0.015, 0.02, 0.022 and
0.0245 are considered. The inset shows the magnified spectra.
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ter for (a) a passive structure, (b-f) n′′(fB) = 0.0045, 0.015, 0.02, 0.022 and
0.0245. The transmittance, reflectance left and reflectance right are depicted
on the top, middle and bottom panels respectively. It is noted that the trans-
mission for both left and right incidence is the same as for a reciprocal system,
and is shown here as T . In contrast to the non-dispersive PTBG structure,
depicted in Fig. 6.5, it can be seen from the top panel of Fig. 6.9(d) that
for a dispersive PTBG system the unidirectional operation occurs only at a
single point. Moreover, the reflectance for left incidence RL, increases as the
gain/loss parameter increases, although in the dispersive case most amplifica-
tion of RL occurs at fB . A further look at the first five panels on the bottom
row of Fig. 6.9, reveals that in general RR decreases as the gain/loss parameter
n′′(fB) increases. In addition, Fig. 6.9(f) shows that for n′′(fB) = 0.0245 both
transmittance and reflectance approach infinity regardless of the direction of
incidence; operation at this point is related to the CPAL operation case where
the spectral singularity occurs.

To further analyse the impact of dispersion upon the spectral perfor-
mance of the PTBG, Fig. 6.10 plots the conservation relations Eq. (6.50)
and the magnitude of the eigenvalue of the scattering matrix S for different
gain/loss parameters as in Fig. 6.9. It was discussed in Section 6.2.6 that a
PT -symmetric scattering system has to satisfy the generalised conservation
relation Eq. (6.50) so that the difference between the left and right hand-sides
of the equation remains zero. In the dispersive PTBG system, the top panel
of Fig. 6.10 shows that the generalised conservation relation is only valid at a
single frequency fB .

The bottom panels of Fig. 6.10 show the magnitude of the eigenvalues of
the scattering matrix |sn| where n = {1, 2}. As a reminder, it was discussed in
more detail in Sections 6.2.4 and 6.2.6 that a PT -symmetric scattering system
may undergo a spontaneous symmetry breaking as the gain/loss parameter
increases. These different symmetry phases are determined by the magnitude
of the eigenvalues of the S-matrix, so that in the symmetric phase the eigen-
values are unimodular (|sn| = 1) while in the broken-symmetry phase the
eigenvalue is not-unimodular. In the non-dispersive PTBG structure, it was
shown that the eigenvalues of the S-matrix are unimodular until a certain
value of gain/loss parameter, with operation beyond this point leading to a
splitting in the value of |s| which is depicted as an “egg-shaped” spectrum. In
the dispersive PTBG system, it can be seen from the bottom panels of Fig.
6.10 that the eigenvalues are in general not-unimodular even with a small
gain/loss parameter; it can however be seen in detail from the inset of Fig.
6.10(b, bottom) that at a frequency fB the eigenvalues are still unimodular
for n′′ = 0.045. It implies that even with a small amount of gain/loss, the PT -
symmetry can occur only at a single frequency fB . From Fig. 6.10(f, bottom),
it can be seen that there exists a spectral singularity, which is related to the
CPAL point operation, that also appeared in Fig. 6.9 as the transmittance
and reflectance coefficients approach infinity.
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Fig. 6.10. The spectral behaviour of a dispersive PTBG. The top panels show the
difference between the left and right terms of generalised conservation relation and
the bottom panels show the magnitude of the eigenvalues of the scattering matrix
S. Six different value of gain/loss parameters are considered (a) passive structure,
(b-f) n′′(fB) = 0.0045, 0.015, 0.02, 0.022 and 0.0245. The insets show the magnified
spectra.
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In order to understand the reason why the PT -symmetric behaviour is
only observed at a single isolated frequency in the PTBG structure with a
dispersive causal gain/loss medium, recall that a PT -symmetric structure
requires a spatially modulated dielectric constant ε̄(x) = ε̄′(x) + jε̄′′(x) as,

ε̄′(−x) = ε̄′(x) (6.86)

ε̄′′(−x) = −ε̄′′(x) (6.87)

That is, the real part of permittivity has to be an even function in space
while the imaginary part is an odd function in space and both condition
occur independently of frequency. Moreover, one also needs to consider that
the material permittivity has to satisfy the Kramers-Kronig relation [65, 66],
so that the modified Kramers-Kronig relations is now given by:

ε′(ω, x) = ε0 +
1

π
p.v.

ˆ ∞
−∞

ε′′(Ω, x)

Ω − ω
dΩ (6.88)

ε′′(ω, x) = − 1

π
p.v.

ˆ ∞
−∞

ε′(Ω, x)

Ω − ω
dΩ (6.89)

Considering operation at a real frequency ω and substituting x → −x, Eq.
(6.88) becomes,

ε′(ω,−x) = ε0 +
1

π
p.v.

ˆ ∞
−∞

ε′′(Ω,−x)

Ω − ω
dΩ (6.90)

Further, substituting the condition Eq. (6.87) into Eq. (6.90), it can be shown
that

ε′(ω,−x) = ε0 −
1

π
p.v.

ˆ ∞
−∞

ε′′(Ω,−x)

Ω − ω
dΩ (6.91)

from which follows the condition of

p.v.

ˆ ∞
−∞

ε′′(Ω,−x)

Ω − ω
dΩ = 0 (6.92)

Equation (6.92) means that the PT -symmetric condition Eq. (6.86) and Eq.
(6.87) can not be satisfied for an infinite frequency interval except for the
case of ε′(ω, x) = ε0(ω, x) and ε′′(ω, x) = 0, hence a continuous medium. The
conditions Eq. (6.86) and Eq. (6.87) can, however, be satisfied at a single
frequency associated with the resonant behaviour of the medium.

6.3.3 Time-domain Modelling of a PTBG Using the TLM Method

This section demonstrates the application of the Transmission-Line Modelling
(TLM) method to model the dispersive PTBG structure in the time-domain.
In order to demonstrate the dependence between the accuracy of the TLM
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a

f - fB / THz

b

f - fB / THz

c

f - fB / THz

Fig. 6.11. The accuracy of the TLM to model PTBG structure. The (a) transmit-
tance, (b) reflectance left RL and (c) reflectance right RR of PTBG with dispersive
gain/loss. For reference results from the analytic T-matrix method is also included.

method when modelling a PTBG structure upon the discretisation parameter,
the spectral performance of a PTBG under unidirectional invisibility opera-
tion is shown in Fig. 6.11. The unidirectional operation point here refers to
the operation when the real part modulation of the refractive index is equal to
the gain/loss parameter. The analytical calculation using the Transfer-matrix
(T-matrix) method [57] at this operation point is displayed in Fig. 6.9(d).

Figure 6.11(a-c) shows the transmittance T , reflectance left RL and re-
flectance right RR of PTBG operating at the unidirectional invisibility point.
The PTBG structure for the TLM simulation is designed and made using the
material parameters described in Subsection 6.3.2 and is set to operate at
the unidirectional invisibility point, i.e. the peak conductivity |σ0| = 211.65
S/m is used. The TLM simulation is excited using a single Gaussian pulse
function modulated at f = fB with FWHM 20. Different mesh discretisation
parameters are used, i.e. ∆x = λ/24 and λ/96 where λ is the wavelength in
the medium λ = λ0/nb, to demonstrate the impact of discretisation on the
spectra of the scattered light. The TLM simulation is run for 9 ps, which
ensures that all of the signal has passed through the structure and provides
a sufficient frequency-domain resolution. The frequency domain response is
obtained by Fourier transformation of the time-domain signal. For reference,
results from the analytic T-matrix method are included in the figure.

It can be seen from Fig. 6.11 that fine discretisation is crucial in mod-
elling a sub-wavelength structure using a standard TLM approach [74, 75].
Inadequate meshing causes the spectral response to be shifted to a lower fre-
quency compared to the analytical results, which is usually referred to as a
red-shifting error . Moreover, it can be seen that when ∆x is not fine enough,
not only is the spectrum red-shifted, but the amplitudes are also modified
significantly. The spectral response for the TLM simulation with ∆x = λ/96
is plotted by the blue coloured circle bullet points. The spectral response for
this mesh discretisation parameter agrees well with the analytical result both
in frequency and in amplitude. It can be seen that modelling a PTBG using
the TLM method requires a fine discretisation parameter ∆x in order to guar-
antee the accuracy of the TLM simulation. For that reason, a discretisation
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parameter of ∆x = λ/96 will be used in the next section to demonstrate a
switching application of a PTBG by using the TLM method.

6.3.4 A Temporal Optical Switch Using the PT -Symmetric Bragg
Grating

This subsection investigates the transient and dynamic behaviour of a PT -
Bragg grating where the gain is suddenly introduced into parts of the system.
The PTBG considered in this subsection is as studied in the previous section.
The structure is excited with a continuous wave (CW) of constant amplitude
at the Bragg frequency f = fB . The choice of input signal amplitude ensures
that the PT -Bragg grating operates in the linear regime, i.e. the effect of gain
saturation is negligible, S = 1.

The scenario that is modelled is as follows: initially, the Bragg grating
is assumed to be uniformly lossy n′′(fB) = −0.02, i.e. the gain pumping is
off for a 5 ps duration, under which conditions the Bragg grating has a stop
band centred at the Bragg frequency fB . After the 5 ps duration, the gain is
introduced as might be achieved practically by turning on the gain pumping
in the gain section while masking the loss sections. After another 5 ps the
same temporal switching pattern is repeated.

Figure 6.12 shows the time-domain response for the input-normalised
transmitted and reflected signal of the PTBG optical switch for the left and
right excitations. Figure 6.12(a) shows the input-normalised incident signal,
(b and c) the transmitted and reflected signal when the grating is excited from
the left and (d and e) the transmitted and reflected signal when the grating
is excited from the right. It can be seen that the transmitted signal switches
from nearly 0 to ≈ 1 over a transient period of less than 1 ps.

Figure 6.12(c and e) show that the reflected signal for left incidence has
increased in the presence of gain but that the reflected signal for the right
incident has sharply reduced to almost zero. The time-domain simulation
results confirm that when the gain pumping beam is turned on, the grating
transforms to a PTBG operating at the unidirectional invisibility point, and
when excited from the right, its response will change from purely reflective to
all transmitting and thus exhibit a switch-like behaviour. It is also emphasised
that this is achieved when the grating is operated at the Bragg frequency fB
with a background medium of nb and is the first demonstration of a temporal
PT -Bragg grating switch using a numerical time-domain code [19]. Moreover,
Fig. 6.12 demonstrates that switching on gain in the grating in the real-time
triggers a switch-like response from the grating.
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Fig. 6.12. Switching application of PTBG in time-domain. Time-domain response
of the (a) incident signal, (b) transmitted signal amplitude, (c) reflected signal am-
plitude for left incidence, (d) transmitted signal amplitude and (e) reflected signal
amplitude for right incidence.

6.4 Non-Linear and Dispersive Parity-Time Bragg
Grating for Optical Signal Processing Applications

This section considers modelling PTBG structures with strong signal exci-
tation. As such there is the interplay between gain/loss saturation and Kerr
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non-linearity. The section starts with the implementation of a Duffing non-
linear model within the time-domain TLM method. A non-linear PTBG con-
figurations is studied which shows potential application as a memory device
.

6.4.1 TLM Model for Non-Linear Medium

Mathematically, non-linear electromagnetic interactions with a material can
be described by the polarisation of the material which behaves in a non-linear
manner in the presence of strong optical electric field [59–61, 63, 76]. As such
one can expand the dielectric polarisation in terms of its linear and non-linear
terms as [63,76],

Pe = χeL|E|︸ ︷︷ ︸
PL

+χ(2)
e |E|2 + χ(3)

e |E|3 + · · ·︸ ︷︷ ︸
PNL

(6.93)

In Eq. (6.93), PL denotes the linear polarisation while PNL represents the non-
linear dielectric polarisation interaction, which may include different orders
of non-linearity. Consider that the non-linear polarisation PNL is modelled
through the Duffing polarisation PD [70, 72,73,77–79],

∂2PD

∂t2
+ 2δ

∂PD

∂t
+ ω2

0DPDfD (Pe) = ε0∆χe0ω
2
0DE (6.94)

where PD and E are the Duffing non-linear polarisation and electric field
vector quantities which are both functions of space and time. The parameters
ω0D and δ are related to the Duffing polarisation angular resonant frequency
and the damping constant,∆χe0 denotes the dielectric susceptibility measured
at zero frequency (DC). The function fD (Pe) denotes the non-linear terms
of the Duffing polarisation which depend on the total dielectric polarisation
Pe. The application of the Duffing equation to model non-linear material
properties has been extensively analysed and shown to be superior to the Kerr
model of a non-linear material [70,72,73,77–80]. This is mainly due to the fact
that the Duffing model incorporates both the non-linear and dispersive nature
of the material response and thus is closer to realistic material properties
[70,72,73,78–80].

For the case of a one-dimensional problem, with the electric field polarised
in the y-direction, the Duffing equation (6.94) can be simplified to,

∂2PDy
∂t2

+ 2δ
∂PDy
∂t

+ ω2
0DPDyfD (Pey) = ε0∆χe0ω

2
0DEy (6.95)

For the particular case of fD (Pey) = 1, the Duffing polarisation is linear and
dispersive with a Lorentzian type of dispersion and, by performing a Fourier
transformation the complex dielectric permittivity can be obtained as,

ε(ω) =
PDy
Ey

=
∆χe0ω

2
0D

2jδω + (ω2
0D − ω2)

ε0, when fD = 1 (6.96)
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In Eq. (6.96) the field quantities PDy and Ey are the Fourier transformed
Duffing polarisation PDy and electric field Ey which are both complex.

For the more general case of a non-linear problem, fD (Pey) 6= 1, different
non-linear functions fD (Pey) have been used and analysed such as in [70,72,
73,78–80],

Exponential non-linearity : fD (Pey) = eα|Pey|2 (6.97)

Polynomial non-linearity : fD (Pey) = 1 + α|Pey|2 (6.98)

where, α denotes the Duffing non-linearity parameter, so that α = 0 defines
the linear case. It is important to note that the polynomial non-linearity
function Eq. (6.98) is an approximation of the exponential non-linear function
Eq. (6.97). The polynomial non-linearity function Eq. (6.98) is only the first
two terms of the Taylor expansion of the exponential non-linearity Eq. (6.97).
This approximation is thus valid only for small values of Pey.

The polynomial approximation of the Duffing non-linear polarisation
shows an association with the Kerr-type non-linearity [73]. To show this, con-
sider the Kerr non-linear effect which is typically expressed as the instanta-
neous perturbation of the real part of the refractive index as

n(t) = nL ± n2I(t), (6.99)

where nL denotes the constant linear refractive index which is the total of
the asymptotic contribution at DC and infinity, nL =

√
χe∞ +∆χe0 + 1. The

Kerr non-linear constant n2 is given in units of m2/Watt. The parameter I is
the instantaneous intensity which is given previously by Eq. (6.84). The total
dielectric polarisation in the presence of instantaneous Kerr non-linearity is,

Pey = ε0(n2(t)− 1)Ey (6.100)

which can be approximated by,

Pey ≈ ε0(n2L − 1)Ey + 2ε0nLn2IEy, as (n2I)2 → 0 (6.101)

Expanding the linear refractive index, the dielectric polarisation can be ex-
pressed as,

Pey = ε0 (χe∞ +∆χe0)Ey + 2ε0nLn2IEy (6.102)

By substituting the intensity I defined in Eq. (6.84) into Eq. (6.102) and
comparing it to Eq. (6.93), the dielectric susceptibility can be obtained as,

χeL = (χe∞ +∆χe0)ε0 (6.103)

χ(3)
e =

(χe∞ +∆χe0 + 1)n2
η0

ε0 (6.104)

where, χ
(3)
e denotes the Kerr non-linear susceptibility constant.
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In order to find the association between the Duffing non-linearity and the
Kerr non-linearity, consider a dispersion-less non-linear Duffing polarisation
by substituting ∂PDy/∂t→ 0 into Eq. (6.95). The dielectric polarisation can
be obtained as,

fD(Pey)PD = ε0∆χe0Ey (6.105)

By substituting the polynomial approximation for non-linear polarisation Eq.
(6.98) into Eq. (6.105) it can be shown that,

Pey + αP 2
ey(Pey − P∞) = ε0(χe∞ +∆χe0)Ey (6.106)

where P∞ = ε0χe∞Ey is the asymptotic polarisation contribution at infinity.
By direct comparison of Eq. (6.106) and Eq. (6.102), the relation between the
Duffing non-linear parameter α and the Kerr non-linear parameter n2 at the
small-signal excitation can be found as,

α = − n2Ln2
ε20η0(χe∞ +∆χe0)2∆χe0

where, n2L = χe∞ +∆χe0 + 1 (6.107)

In order to implement the Dufffing model within the TLM method, a
digital filter representing Duffing non-linear polarisation model Eq. (6.95) is
now developed. The normalised Duffing model is given by (see Subsection
6.3.1),

∂2pDy
∂T 2

+KD1
∂pDy
∂T

+KD2pDyfD (pey) = KD3Vy (6.108)

where, pDy = −PDy∆x
ε0

is the normalised Duffing polarisation. The dimension-
less constants in Eq. (6.108) are defined as,

KD1 = 2δ∆t, KD2 = (ω0D∆t)
2
, KD3 = ∆χe0 (ω0D∆t)

2

where ∆t is the TLM time-step. By an application of the bilinear Z-transform
Eq. (6.67) and after some re-arrangement, the Duffing model in the Z-domain
is given by,

pDyKD4 + pDyKD2fD (pey) + z−1SD1 = KD3Vy, (6.109)

where,

KD4 = (4 + 2KD1) (6.110)

SD1 = [pDy (−8 + 2KD2fD)− 2KD3Vy] + z−1SD2 (6.111)

SD2 = [pDy (4− 2KD1 +KD2fD)−KD3Vy] (6.112)

The normalised non-linear Duffing exponential function is given by,

fD (pey) = eα|pey|
2

(6.113)
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with the Duffing non-linear parameter α as given in Eq. (6.107). Equation
(6.109) is the transcendental non-linear polarisation equation which will be
solved simultaneously with the TLM main equation by an iterative method.

Upon substituting the linear and non-linear dielectric polarisation into the
the 1D-TLM scattering equation (6.79), and after some algebraic arrangement,
Eq. (6.79) can be expressed as

2
(
V ry − Vy

) (
1 + z−1

)
=
(
1 + z−1

)
geVy + 2

(
1− z−1

)
(χe∞Vy + pDy)

(6.114)

By substituting the dispersive conductivity model Eq. (6.76), Eq. (6.114) be-
comes

2
(
V ry − Vy

) (
1 + z−1

)
={

ge0 + z−1(ge1 + ḡe(z))
}
Vy + 2

(
1− z−1

)
(χe∞Vy + pDy)

(6.115)

By grouping the present and past variables in Eq. (6.115), it can be shown
that

2V ry + z−1
(
2V ry +Ke1Vy − ḡe(z)Vy + 2pDy

)
= Ke2Vy + 2pDy (6.116)

where the constants are defined as,

Ke1 = −(2 + ge1 − 2χe∞) (6.117)

Ke2 = 2 + ge0 + 2χe∞ (6.118)

By further calling the sum of all the past variables in Eq. (6.116) as,

Sey = 2V ry +Ke1Vy + Sec + 2pDy (6.119)

Sec = −ḡe(z)Vy (6.120)

equation (6.116) can be simplified further as,

Ke2Vy + 2pDy = 2V ry + z−1Sey (6.121)

The equations (6.121) and Eq. (6.109) are two coupled equations with two
unknown variables Vy and pDy,{

Ke2Vy + 2pDy = 2V ry + z−1Sey

KD3Vy = pDyKD4 + pDyKD2fD + z−1SD1

(6.122)

which are now ready to be solved simultaneously for pDy by an iterative
method, e.g. either the Newton-Rhapson or Bi-section methods [81]. The nodal
voltage Vy can be subsequently obtained by substituting the solved pDy back
into Eq. (6.121). In this present work, a combined Newton-Rhapson and Bi-
section method is used, capitalising on the fast convergence of the Newton-
Rhapson method and the stability of the Bi-section method; for detail on the
implementation of the method, readers are referred to [81].
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6.4.2 Non-Linear PT -Bragg Grating For a Memory Device

Consider now a non-linear version of the PT -Bragg grating (NPTBG); the
NPTBG is similar to that studied in Subsection 6.3.2 but a uniform Kerr
non-linearity is now added throughout the unit cell. We will use the Duffing
model to model the Kerr non-linearity of the medium. The refractive index in
a single period, nG, along the propagation direction x is now modified as,

nG(x, ω, I, t)



nhi(ω) + n2I(x, t)− j c0
ω
α(ω, I), x <

Λ

4

nlo(ω) + n2I(x, t)− j c0
ω
α(ω, I),

Λ

4
< x <

Λ

2

nlo(ω) + n2I(x, t) + j
c0
ω
α(ω, I),

Λ

2
< x <

3Λ

4

nhi(ω) + n2I(x, t) + j
c0
ω
α(ω, I),

3Λ

4
< x < Λ

(6.123)

where nhi and nlo are frequency dependent complex high and low refractive
indices, whose parameters are summarised in Table 6.3, n2 is the Kerr non-
linearity coefficient, I is the input signal intensity and ±α denotes the gain
(-) and loss (+) in the grating lattices. The gain/loss is modelled using the
realistic gain/loss conductivity model described in Subsection 6.3.1 so using
the relation Eq. (6.58) between the gain/loss α and the dispersive imaginary
part of the refractive index, the peak value of gain/loss parameter α0 can be
defined as

α0 =
ωσ
c0
n′′(ωσ) (6.124)

For modelling purposes, the gain/loss material parameters are set as fol-
lows: the atomic transition frequency of the gain/loss material is set to coincide
with the Bragg frequency , i.e. ωσ = 2πfB with the time relaxation constant
τ = 0.1 ps similar to that used in [20, 62] and the saturation intensity is set

at Isat = 5× 1013 W/m
2
.

Figure 6.13 shows (a) transmittance TL and (c) reflectance RL for the left
incidence case and (b) transmittance TR and (d) reflectance RR for the right
incident signal as a function of input signal intensity and for different gain
and loss parameter α0. For comparison, the response of a passive non-linear

Table 6.3. Material parameters used to model non-linear Bragg grating.

Parameters Low refractive index High refractive index

χe∞ 2.5 2.8
∆χe0 7.5 7.5
δ (rad/ps) 0.0923 0.0923
ω0D (rad/ps) 4614.4 4614.4
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a

c

b

d

Fig. 6.13. Hysteresis of non-linear PTBG with high saturation intensity gain/loss
material. For the passive case and gain/loss parameter of 800 cm−1 and 2000 cm−1.
(a) Transmittance TL, (c) reflectance RL, for the light incident from the left, (b)
transmittance TR, (d) reflectance RR for the light incident from the right of the
grating. Saturation intensity is Isat = 5 × 1013 W/m2. Dashed line represents the
response of the equivalent passive NBG for reference.

Bragg grating (NBG) (i.e. one without gain and loss, α0 = 0 ) is depicted by
dashed lines.

In order to obtain bistable operation the input signal frequency is set to
be at the right flank of the band-gap [20, 82], in which a continuous-wave
(CW) operating at fop = 337.57 THz is chosen. The hysteresis is obtained
by gradually increasing and decreasing the input signal intensity in a single
computation. This is repeated for different gain/loss parameters, namely α0 =
800 cm−1 and 2000 cm−1.

Figure 6.13(a-d) shows that the NPTBG is bistable for both transmit-
tance and reflectance regardless of the side of incidence (left or right). Figure
6.13(a,c) shows that compared to a non-linear Bragg grating (NBG), the bista-
bility of the NPTBG occurs at lower input intensities for the signals incident
from the left of the grating and at higher intensity for signals incident from
the right side of the grating. It is noted that the transmittances for the left
and right incidence are different, TL 6= TR, as shown in Fig. 6.13(a,b), show-
ing that the NPTBG does not satisfy Lorentzian reciprocity. This is due to
the fact that the scattering matrix is no longer a complex-symmetric matrix
, S 6= ST . Furthermore, it is observed that at high intensity, both RL and RR
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Incident signal

Transmitted signal for left incident

a

b

Fig. 6.14. Demonstration of application of NPTBG as a memory device. The elec-
tric field of (a) the input signal and (b) the transmitted signal.

are very low while transmittances are almost unity, implying the behaviour of
a bidirectionally transparent material at high intensity (Fig. 6.13(c,d)).

For an application of the NPTBG as a memory device , consider a gain/loss
material with a high saturation intensity as in the case studied in Fig. 6.13.
The NPTBG is operated at fop = 337.57 THz with gain/loss parameter α0 =

2000 cm−1 and with a saturation intensity Isat = 5 × 1013 W/m
2

as in Fig.
6.13. The TLM modelling was undertaken as follows: a CW light signal was
excited from the left side of the NPTBG at fop, and the intensity of the CW
was varied throughout the simulation to emulate memory reading, writing and
resetting operations of the RAM device. The reading operation is set to be at
Iread = 2.2× 1014 W/m

2
, the memory writing operation occurs by increasing

the input intensity to Iwrite = 2.725×1014 W/m
2

while the resetting operation

is achieved by decreasing the input intensity to Ireset = 1.5 × 1014 W/m
2
.

During the simulation each process happens for a duration of 10 ps and is
patterned as read, write, read and reset; the same pattern is then repeated.

Figure 6.14(a) depicts the input signal (electric field) as a function of
time, each process is labelled within the figure as read, write and reset over
a total simulation time of 120 ps. The transmitted electric field is plotted in
Fig. 6.14(b). It can be seen in this figure that initially the memory is in the
“0” null state. At t = 10 ps a “write” operation occurs by increasing the
input signal intensity to achieve the “on” state in the hysteresis, to fill the
memory storage, denoted by memory “1”. After the writing the information,
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the input signal intensity is reduced to the reading intensity level. It can be
seen from Fig. 6.14(b) that the transmitted signal during the reading process
with memory “1” (20 < t < 30 ps) is higher when compared to when the
memory is null “0”(0 < t < 10 ps). By sending the reset signal (reducing the
input signal intensity), the hysterisis is now at the “off” state; as such the
output during the reading process gives a small transmitted signal (memory
value reset back to null). Furthermore, Fig. 6.14(b) shows that the write, read
and reset operation can be performed many times with reproducible response.
Figure 6.13 shows that by using a NPTBG grating the memory operation is
performed at a lower input power compared to that would be resulted for
passive non-linear Bragg grating.

Another non-linear PT -Bragg grating structure for a logic-gate device has
also been proposed in [21]. The non-linear PT -Bragg grating studied in [21]
was inspired by the grating structure studied by Sargent and Brozozowski [83],
where the grating had alternating layers of negative and positive Kerr non-
linearity, but without the inclusion of gain/loss.

6.5 Concluding remarks

In this chapter the isomorphism between the Helmholtz and Schrödinger equa-
tions has been reviewed. This indicates how, building on Quantum Mechanical
concepts, a wide range of structures with unique and extremely interesting
properties can be realised in photonic systems incorporating balanced gain
and loss profiles. The scattering and transfer matrix analysis of the illustra-
tive example of an ideal Bragg grating with a PT -symmetric refractive index
modulation gives detailed insight to the conditions under which simultane-
ous coherent perfect absorber-lasing operation could be obtained. In reality
material properties are non-ideal. The effect of this can be studied with re-
alistic gain/loss models implemented within a numerical Transmission-Line
Modelling (TLM) method; in the non-ideal case PT -symmetry can only oc-
cur at a single frequency. The TLM method is readily extended to include
the additional effect of non-linearity and the promising use of a non-linear
PT -Bragg grating as a memory device was explored. It is inferred that pho-
tonic structures with thought-provoking functional behaviour exist even when
PT -symmetry condition cannot be met exactly.
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