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Abstract: Non-Singleton Fuzzy Logic Systems (NSFLSs) have the potential to tackle uncertainty within the design of
fuzzy systems. The inference process has a major role in determining results, being partly based on the in-
teraction of input and antecedent fuzzy sets (in generating firing levels). Recent studies have shown that the
standard technique for determining firing strengths risks substantial information loss in terms of the interac-
tion of the input and antecedents. To address this issue, alternative approaches, which employ the centroid of
intersections (cen-NS) and similarity measures (sim-NS), have been developed. More recently, a novel simi-
larity measure for fuzzy sets has been introduced, but as yet this has not been used for NSFLSs. This paper
focuses on exploring the potential of this new similarity measure in combination with the sim-NS approach
to generate a more suitable firing level for non-singleton input. Experiments are presented for fuzzy systems
trained using both noisy and noise-free time series. The prediction results of NSFLSs for the novel similarity
measure and the current approaches are compared. Analysis of the results shows that the novel similarity
measure, used within the sim-NS approach, can be a more stable and suitable method suitable to be used in
real world applications.

1 INTRODUCTION

Most real world applications contain a variety of
sources of uncertainty that depend on different cir-
cumstances, and hence the ability to handle uncertain-
ties becomes an indispensable component in decision
making applications. Fuzzy logic systems (FLSs) are
considered as a robust systems for handling decision
making under uncertainty (Zadeh, 1965). FLSs have
been successfully utilised in a variety of areas, includ-
ing data mining, pattern recognitions and time series
predictions (Mendel, 2001)

FLSs processes are completed in three essential
steps; fuzzification, inferencing and defuzzification.
In fuzzification, crisp input values are transformed
into fuzzy sets (FSs). This transformation can be
implemented as singleton (SFLSs) or non-singleton
(NSFLSs). Due to simplicity and lower computa-
tional cost of SFLSs, it is the most commonly used
design in literature; however, studies show that NS-
FLSs have the potential to provide better results than
SFLSs for the same number of rules (Balazinski et al.,
1993; Hayashi et al., 1993; Larsen, 1980; Pedrycz,

1992; Sahab and Hagras, 2010).

In inferencing, the firing strength of the rule is
defined based on the interaction between input FSs
and antecedent FSs. As the most used standard
composition-based technique, the maximum member-
ship degree grade of the intersection between the in-
put FS and antecedent FS is determined as the firing
strength. However, recent work, including Pourab-
dollah et al. (2015) and Wagner et al. (2016) showed
that adopting the maximum point of the intersection
to determine the firing strength risks substantial in-
formation loss in terms of the interaction of the input
and antecedent FSs. To address this issue, they intro-
duced alternatives which employ the centroid of the
intersection (cen-NS) and similarity measures (sim-
NS), between input and antecedent FSs, respectively.
While Wagner et al. proposed a generic application of
any similarity measure (e.g., Jaccard, Dice), they fo-
cused on the Jaccard measure (1908). Yet the Jaccard
similarity measure is not highly sensitive to the width
of FSs or the size of the intersection when one interval
is a subset of another (Kabir et al., 2017). Therefore,
employing a new similarity measure may have the po-



tential to be a more stable approach in determining
firing levels in the inference step of FLSs.

More recently, Kabir et al. (2017) introduced
a novel similarity measure intended to enable more
comprehensive capture of the similarity between sets,
while also being bounded by the Dice and Jaccard
similarity measures. However, to date, this new sim-
ilarity measure has not been applied in the context of
NSFLSs. This paper therefore focuses on exploring
the potential of this new similarity measure in combi-
nation with the sim-NS approach. To enable a system-
atic comparison to alternative previously introduced
NSFLS approaches, the paper follows the experimen-
tal strategy of Pourabdollah et al. (2015) and Wagner
et al. (2016), showing the performance for all dif-
ferent NSFLSs for a series of time-series prediction
experiments.

The structure of this paper is as follows. Sec-
tion II provides background information on the stan-
dard (singleton) composition method, cen-NS, sim-
NS using Jaccard, and the novel similarity measure.
Also, Mackey-Glass time series generation with noise
adding process are introduced. In Section III, experi-
mental environment and the results are discussed. In
Section IV, conclusion of the experiments and possi-
ble future work directions are provided.

2 BACKGROUND

In this section, the background material for sin-
gleton and non-singleton FLSs, and the various tech-
niques for determining firing strength (standard com-
position, cen-NS and sim-NS) will be introduced.
Lastly, Mackey-Glass time series generating and
noise adding procedures will be presented.

2.1 Singleton and Non-singleton Fuzzy
Logic Systems

In standard singleton fuzzification, a given crisp input
x is transformed into an input fuzzy set I, represented
by a membership function µI(x) that takes values in
the interval [0,1], formulated as;

I = {x,(µI(x)) | ∀x ∈ X} (1)

While singleton sets are characterised by a single
point in A having the value 1, non-singleton sets are
characterised depending on the design choice. A pic-
torial demonstration of singleton and non-singleton
Gaussian input can be seen in Fig 1. (Note that in
practice, singleton fuzzification is often done implic-
itly, immediately determining the firing strength by
simply calculating µA(x) for the given value of x.)

Figure 1: Singleton and non-singleton Gaussian FSs

Figure 2: An illustration of the standard approach. The
max degree membership of the intersection between A (an-
tecedent) and I (input) FSs is determined as firing strength

2.2 Non-Singleton Fuzzy Logic Systems
with Standard Composition-based
Inference

In Mamdani NSFLSs, the firing levels are defined
according to the interaction of non-singleton input
and antecedent sets (Mamdani and Assilian, 1975;
Mendel, 2001). In the standard composition based in-
ference approach, the maximum membership degree
of the intersection (between the input and antecedent
sets) is determined as the firing level. An illustration
of this firing level determining approach (between a
triangular antecedent and a Gaussian non-singleton
input FS) can be seen in Fig. 2.

Even though the standard composition based tech-
nique has been extensively studied, the most impor-
tant limitation lies in the fact that different input FSs
(e.g. with different standard deviations) may intersect
antecedent at the same membership grade, resulting in
the same firing level, despite the fact that those input
FSs are clearly different (see Fig 3).

2.3 Centroid Based Approach

The centroid-based inferencing approach, known as
cen-NS, focuses on the area of intersection between
input and antecedent FSs (Pourabdollah et al., 2015).
Firstly, the centroid of intersection between input FS
(I) and antecedent FS (A) is calculated;

xcen(I∩A) =
∑

n
i xiµ(xi)

∑
n
i µ(xi)

(2)



Figure 3: An illustration of two distinct fuzzy sets having
the same intersection level with A

Figure 4: An illustration of the centroid-based firing
strength technique (cen-NS). The centroid of intersection
is calculated and the corresponding membership degree at
the position of the centroid is defined as the firing strength.

where n is the number of dicretisation levels in the in-
tersection between the input FS (I) and the antecedent
FS (A)

Then, the corresponding membership degree of
the centroid (xcen(I ∩ A)) is defined to be the firing
strength;

µI∩A(xcen(I∩A)) (3)

An illustration of the cen-NS technique can be
seen in Fig. 4. The centroid of intersection for two
distinct input FSs (I1 and I2) and the antecedent (A)
are calculated respectively. Then the calculated cen-
troids are projected to the intersection (A∩ I) to pro-
duce firing strengths.

In the experiment of Pourabdollah et al. (2015),
two different time series datasets (Mackey-Glass and
Lorenz) were used and two different noise levels
(10dB and 5dB) were added to those time series. The
Wang-Mendel (1992) method was utilised to create
rules from either noise-free or noisy time series in
the training of the FLS. The MSE results obtained
showed that the cen-NS technique outperforms the
standard composition method by between 7% and
17%.

Wagner et al. (2016) suggested that, whilst an
interesting development, one possible issue with the
cen-NS technique is that similar input and antecedent
FSs generate high firing levels simply because their

intersection may have high membership grades at
their centroids, rather than because the input FS ac-
tually strongly matching the antecedent FS.

2.4 Similarity Based Approach

A similarity measure on fuzzy sets is a function that
determines to what degree (in the interval of [0,1])
two fuzzy sets contain the same values with the
same degree of membership (McCulloch and Wagner,
2016).

Wagner et al. (2016) have proposed that similar-
ity ratios, between input and antecedent FSs, can be
utilised to determine firing levels. As a sample of this
approach, the Jaccard similarity ratio (1908) was fo-
cused to determine firing strengths in their study.

2.4.1 The Jaccard Similarity Measure

The Jaccard similarity ratio (Jaccard, 1908), which is
in the interval [0,1], is determined for discrete FLSs
as follow;

S(I,A) =
∑

t
i min(µA(xi),µI(xi))

∑
t
i
max(µA(xi),µI(xi))

(4)

where t is the discretisation levels over the both input
FS (I) and the antecedent FS (A).

Wagner et al. (2016) utilised the same experimen-
tal procedures as the Pourabdollah et al. (2015) study,
and the experimental results showed that the Jaccard
ratio based inference system can improve MSE values
by between 23% and 31%.

Yet the Jaccard ratio is not highly sensitive to
changes in the widths of FSs, such as in the case that
one interval is a subset of another (Kabir et al., 2017).
For instance, when an antecedent and input sets have
their centres at the same location (see Fig. 5), the fir-
ing level of that intersection is presumed to be one,
normally. However, the Jaccard ratio produces non-
intuitive firing strength results, in that as the inner set
shown in Fig. 5 is narrowed, a lower Jaccard ratio
would be generated and, as that narrowing is contin-
ued, the Jaccard ratio would get closer to zero. How-
ever, when the inner FS continues to narrow to even-
tually be a singleton FS, the Jaccard ratio would spike
to one. Because of this inconsistent behaviour of the
Jaccard ratio, it may not produce the most appropriate
firing levels in such situations. Hence, the Jaccard ra-
tio may not the best option to be used in the inference
step of NSFLSs.

2.5 The Novel Similarity Measure

Kabir’s similarity measure (Kabir et al., 2017) focuses
on the features;



Figure 5: An Input FS (I) excessively covers an antecedent
FS (A)

• Sensitivity to changes in the width of intervals

• Sensitivity to the size of the intersection when one
interval is a subset of another

The proposed similarity measure focuses on the over-
lapping ratios which is bounded [0,1] and is formu-
lated as follow;

SOR(I,A) = min

(
∑

p
i

min(µA(xi),µI(xi))

∑
p
i

µA(xi)
,

∑
k
i

min(µA(xi),µI(xi))

∑
k
i

µI(xi)

) (5)

where p is the discretisation levels in the input FS (I)
and k is discretisation levels in the antecedent FS (A).

2.6 The Time Series

Since adding noise to Mackey-Glass (MG) time se-
ries is an easily manageable procedure, it is com-
monly chosen to be studied. The generating proce-
dures of MG is performed by using the following for-
mula (Mackey et al., 1977; Mouzouris and Mendel,
1997);

dx(t)
dx)

=
ax(t− τ)

1+ x10(t− τ)
−bx(t) (6)

The noise in the MG time series is measured by
the signal-to-noise-ratio (SNR) and the noise adding
operation is performed as follows.

Firstly σnoise value is calculated by using σ of the
noise free set;

σnoise =
σnoise f ree dataset

10(
SNR
20 )

(7)

Noise values are found by using a uniform random
variable with zero mean in the interval of [−δ,δ],
where [δ =

√
3σnoise], and then the noise values deter-

mined (δ) are added to the noise free dataset to obtain
noisy sets.

3 EXPERIMENTS AND RESULTS

In this section, all implemented procedures in the
presented study experiments will be explained, and
the results obtained are presented.

3.1 Time Series

The Mackey Glass time series is chosen to be used in
our experiment and the generation was performed by
using (6). In order to provide a chaotic behaviour in
MG, τ is set to 30, while a = 0.2 and b = 0.1. x(t)
is calculated for 2000 time points (t = [−999 : 1000])
and due to the fluctuation tendency in the initial part
of the time series, the last 1000 points are taken to be
used in our experiment. While the initial 700 points
(t = 1 to t = 700) of the generated time series are used
to train the FLS, the remaining 300 points are used
in the testing process of the FLS. Six different noise
levels (0,2,3,5,10 and 20 dB) were added to the time
series to be used in different variations of the experi-
ment.

3.2 Training and Testing

The rule creation in the training phase was performed
using the Wang-Mendel (1992) one-pass method, as
follows.

• Seven equally distributed triangular FSs (see Fig.
6) are created as antecedents, where each an-
tecedent interval was defined as follows:

– Firstly, the min (xmin) and max (xmax) point
of the training time series is obtained and the
mean point of each triangular antecedent is cal-
culated;

µi = amin +
(i−1)(xmax− xmin)

t−1
(8)

where i is the current number of antecedents
and t is the total number of antecedents (seven
in our experiments).

– After calculating µi value of each antecedent,
the interval (left and right points of each trian-
gular set) were determined;

le f t = µi−
(xmax− xmin)

t−1
(9)

right = µi +
(xmax− xmin)

t−1
(10)

Where t is 7.

• Nine past points were used as inputs and projected
to the corresponding triangular antecedents.



Figure 6: An illustration of the used 7 triangular antecedent
FSs in the Wang-Mendel (Wang and Mendel, 1992) rule
creation procedures

• The following (10th) point was designated as the
output and the window sliding procedure applied
until reaching the end of training set.

x1 = [x1,x2...x9] output = x10

x2 = [x2,x3...x10] output = x11

.

.

x691 = [x691,x692...x699] output = x700

(11)

We carried out two main experiments:

• Experiment 1: The standard deviations of input
FSs were adjusted according to the known noise
level in the testing data.

• Experiment 2: The noise levels are assumed to
be unknown, and the standard deviation of in-
put FSs were fixed for each of the six noise lev-
els (not adjusted according to corresponding noise
levels in testing one at a time). Two different fixed
standard deviations were used (Experiment 2a and
2b).

As a first phase of the each experiment, training
of the FLS was done by using the first 700 points of
the noise-free time series and the testing was imple-
mented by using six different noisy time series in turn
(noise free training). After noise free training and
testing was completed, as a second phase of each ex-
periment, training was done by using the 700 points
from noisy times series and the testing was imple-
mented on the remained 300 points from the corre-
sponding noisy sets (noisy training). The two pro-
cedures above (noise-free training and noisy training)
were repeated for each variation of experiments.

3.3 Design of the Fuzzy Logic System

Four different FLSs were created: a standard NS-
FLS, which employs standard technique (between

non-singleton inputs and antecedents) to generate fir-
ing strengths, cen-NS, sim-NS using Jaccard, and sim-
NS using the novel similarity measure (termed Kab-
NS). As practised in (Pourabdollah et al., 2015) and
(Wagner et al., 2016), Mamdani inference with cen-
troid defuzzification was used with the min and max
operators for the t-norm and t-conorm respectively.
The discretisation level (100 steps) is used for all
fuzzy sets in FLSs. The input sets in NSFLSs are de-
signed as Gaussian distributions which was centred
on the crisp input. In Experiment 1, the standard-
deviation of input sets was determined by means of
(7) and all training-testing procedures were repeated
under six different SNR values (0,2,3,5,10 and 20 dB).
In Experiment 2, the standard deviation of input sets
was fixed to be 5 dB noise (0.1613) (7) and 0 dB noise
(0.2869) respectively and a FLS was implemented
for both noise-free training and noisy training proce-
dures, each using six different noisy time series.

The MSE over the 300 testing points was utilised
to measure the overall error of each FLS. In order to
mitigate the effect of randomness in the noise addition
process, each experiment was repeated 30 times for
all case scenarios and the average of generated MSEs
were calculated.

3.4 Results

3.4.1 Experiment 1: The Corresponding
Standard Deviations of Gaussian Input
Fuzzy Sets

Firstly, the noise-free data set (t = 1 to t = 700) was
used in training of the FLS , which resulted in 184
rules. After rule creation was completed, the previ-
ously generated six different noisy time series (be-
tween t = 700 to t = 1000) were used to test the FLS
in turn. As mentioned in the previous section, the
standard deviations of the Gaussian input sets were
adjusted according to the noise levels as used in the
noisy time series. In comparison with the standard
approach, Kab-NS (similarity based input using the
novel similarity measure) reduced MSE results by
31%, 21%, 15%, 11%, 10% and 7% under 20dB,
10dB, 5dB, 3db, 2dB and 0 dB, respectively for noise-
free training scenarios (left side of the Fig. 7).

After noise-free training procedures were com-
pleted, training was repeated by using noisy time se-
ries (t = 1 to t = 700), and the remaining 300 points
from the same noisy sets were used in testing. As be-
fore, the standard deviation of the Gaussian input FSs
was adjusted to the level used in the corresponding
noise level each time. When the noisy training and
noisy testing (right side of the Fig.7) cases are scru-



tinised for Kab-NS technique, a similar tendency of
improvement (24%,16%,13%,10%,11% and 7%) can
be recognised compared to the standard composition
method.

3.4.2 Experiment 2: The Non-Corresponding
Standard Deviations of Gaussian Input
Fuzzy Sets

These experiments were then modified to examine the
behaviour of the all approaches under unknown noise
levels. In these versions of the experiment, the same
procedures from Experiment 1 (‘noise-free training,
noisy testing’ and ‘noisy training, noisy testing’) were
repeated. However, it was assumed that the noise lev-
els in time series are unknown and hence the standard
deviation of Gaussian input sets was not adjusted un-
der each different noise level. Rather the noise in the
input sets was fixed to two different levels.

Experiment 2a: The standard deviation was fixed
to be 5dB noise (0.161) and all procedures from Ex-
periment 1 were implemented without adjusting input
FSs. All the noise-free and noisy training procedures
results can be seen in Fig.8.

Experiment 2b: This time the standard deviation
was fixed to be 0dB noise (0.286) and again all oper-
ations were repeated without adjusting standard devi-
ations of input FSs. The experimental result can be
seen in Fig. 9.

3.5 Discussion

When the noise free training of Experiment 1 (left
hand side of the Fig. 7) is analysed, it can be seen that
the novel similarity measure (Kab-NS) outperforms
both the standard and centroid (cen-NS) techniques
significantly under low noise levels. Under very noisy
conditions (as the MSE values get closer for all ap-
proaches), the cen-NS technique shows slightly bet-
ter performance. Comparing the MSE results from
sim-NS and Kab-NS, we can see that the results for
both techniques are the same under almost all con-
ditions. In summary, for noise-free training Kab-NS
outperforms standard technique significantly for all
six different conditions. Also, Kab-NS shows either
the same or better results than cen-NS in five cases
out of six, and also it has the same MSE results with
sim-NS for five out of six cases. When the noisy train-
ing of the Experiment 1 (right hand side of the Fig. 7)
is analysed, Kab-NS outperforms both standard and
cen-NS techniques significantly under all conditions
(all six cases) and again it shows the same MSE re-
sults as sim-NS in five cases out of six.

As mentioned before, in Experiment 2a the stan-
dard deviations were fixed at the 5 dB noise level.

The noise-free training of this experiment (left hand
side of Fig. 8) shows that Kab-NS has better results
than standard technique in five cases out of six, and it
shows the same result under the 0 dB noisy testing. In
comparison to cen-NS, the new approach shows lower
MSE result in three out of six cases and it has the
same result with cen-NS for the remained three cases
(under 3, 2 and 0 dBs). When we compare sim-NS
and Kab-NS, the two approaches shows quite simi-
lar MSE results (Kab-NS is better for two cases and
sim-NS is better for another two cases, while the re-
maining two cases have similar results). In the noisy
training of Experiment 2a (right hand side of the Fig.
8), Kab-NS again outperforms standard and cen-NS
approaches in five cases out of six, whereas the stan-
dard technique shows the best result under 0 dB noise
conditions. When we compare MSE results of sim-
NS and Kab-NS, it can be seen that Kab-NS has bet-
ter results under almost all conditions except the case
of 5 db noise in testing.

When the standard deviations were fixed as 0 dB
noise, in the Experiment 2b, in all the noise-free and
noisy training instances (both sides of Fig. 9), Kab-
NS outperformed the standard technique and sim-
NS under all 12 scenarios (both noise-free and noisy
training). However it should be mentioned that the
cen-NS has the lowest MSE results among all four
variants in 7 cases out of 12.

To recapitulate, when all the 36 cases are exam-
ined, Kab-NS outperforms standard techniques sig-
nificantly in 35 cases and also it outperforms cen-NS
in 26 cases out of 36. However, the majority of those
in which worse performance is observed (10 cases)
occurs when the standard deviation was fixed at 0 dB
noise, which corresponds to the highest noise con-
dition. Therefore further research should be investi-
gated under very noisy conditions. Both sim-NS and
Kab-NS have generally similar or the same average
MSE results. It is worthwhile noting that the goal of
this work is not specifically to achieve the best perfor-
mance in applications which use different approaches
for generating firing levels but to study and compare
the various approaches to try to discover the most re-
liable approach to be used under different conditions.

This is particularly relevant in situations in which
the noise level cannot easily be known in advance,
which is often the case in the real-world. Situations
might include when the FLS must be designed and
fixed in advance of implementation in the real world,
or in situations where the noise level itself is varying
in an unpredictable manner.



Figure 7: The NSFLS Prediction performance comparison produced by different inference based approaches. Each standard
deviation of input FSs is set to the corresponding noise level

Figure 8: The NSFLS Prediction performance comparison. Each standard deviation of input FSs is set to 5 dB σnoise

Figure 9: The NSFLS Prediction performance comparison. Each standard deviation of input FSs is set to 0 dB σnoise



4 CONCLUSION and FUTURE
WORK

We have implemented and compared different in-
ference based approaches (Standard, cen-NS, sim-NS
using the Jaccard similarity ratio, and Kab-NS using
the novel similarity measure). Because of the limita-
tions and issues observed in current approaches, this
paper has focused on exploring the potential of a new
novel similarity measure in combination with the sim-
NS approach. Kabir’s similarity measure (Kabir et al.,
2017) is sensitive both to changes in the width of FSs
and to the case in which one FS is a subset of another.
Considering these features, it has now been used for
the first time to define firing levels in FLSs. The evi-
dence from this study points towards the idea that sim-
NS with the Kabir’s similarity measure could indeed
be a suitable approach to be used in FLSs, especially
under unknown noise conditions of real world cases.
However, this is a tentative finding, and more work
needs to be carried out on different data sets under a
wider range of conditions to further evaluate this.

Future work will concentrate on different interest-
ing aspects. The sim-NS will be implemented by us-
ing different similarity measures (e.g. Dice similarity)
between antecedents and input FSs. Alternative time
series datasets (for example, the Lorenz time series)
will be used in FLS. Different design types for an-
tecedent and input FSs will be implemented and the
results will be examined. Lastly, due to the increased
modelling capabilities of type-2 fuzzy logic in han-
dling uncertainty, different type-2 designs will be ex-
plored.
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