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Abstract 1 

Well-structured soils are generally considered to have bimodal pore 2 

structure, including textural pores between soil particles and structural 3 

pores between soil aggregates. Bimodal pore structure has previously been 4 

inferred indirectly from the soil water retention curve (SWRC) but our 5 

understanding of the precise 3-D pore geometry that regulates this curve is 6 

limited. The objective of this study was to investigate the bimodal pore 7 

structure of a paddy soil under different fertilization regimes using both 8 

SWRC and X-ray micro-Computed Tomography (micro-CT), an imaging 9 

approach with the aim of comparing the two methods. Undisturbed soil 10 

aggregates and soil cores were collected from the surface layer of a 11 

long-term unfertilized control (CK), inorganically fertilized (NPK), and 12 

organically and inorganically fertilized (NPKOM) paddy soils. The aggregates 13 

and cores were scanned using micro-CT and pore structure analyzed. The 14 

SWRCs were measured on the same CT-scanned soil cores. Three widely 15 

used unimodal models, three bimodal models, and one trimodal model were 16 

evaluated for their fit to the SWRC and to derive soil pore size distribution 17 

(PSD). Results showed the SWRC of the paddy soil were best fitted with the 18 

bimodal lognormal (BLN) and double-exponential (DE) models, with the 19 

derived PSD showing distinct bimodality. The micro-CT images revealed the 20 

hierarchy structure of the paddy soil and a distinct bimodal pattern in the 21 

PSDs. The structural porosities from BLN, DE models and from CT imaging 22 

are consistent, and all correlated with the natural logarithm of saturated 23 
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hydraulic conductivity. Long-term application of NPKOM increased structural 24 

porosity though no changes were recorded in the textural porosity 25 

compared with NPK and CK treatment, while the latter two showed a near 26 

identical pore structure. The results of this study showed the consistence of 27 

the SWRC and imaging method in studying soil pore structure and 28 

supported the use of bimodal SWRC models to investigate the pore 29 

structure of the well-structured paddy soil.  30 
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Soil water retention curve; Pore size distribution; Micro-CT; Paddy soil; 32 

Bimodal porosity 33 

Abbreviations: BC model, Brooks and Corey (1964) model; ME, mean 34 

error; PSD, pore size distribution; SWRC, soil water retention curve; VG 35 

model, van Genuchten (1980) model; LN model, lognormal model (Kosugi, 36 

1994); 37 
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Introduction 39 

The pore geometry of a soil influences the soil water dynamics, aeration, 40 

microbial activities, and root elongation and therefore is widely used as an 41 

important indicator of soil quality (Pagliai and Vignozzi, 2002). Pores in 42 

well-structured soils are generally considered to have a hierarchical 43 

organization, with textural pores defined as the pores between soil particles 44 

and structural pores considered as those between soil aggregates (Dexter et 45 

al., 2008; Dexter et al., 2009). Quantification of the pore system, including 46 

different soil pore domains, are increasingly necessary to understand soil 47 

processes and functions with respect to their impact on soil quality.  48 

The measurement of soil pore structure, however, is not straightforward 49 

because of the opacity of soil (Hajnos et al., 2006). Several different 50 

methods have been used to investigate pore structure, some methods 51 

based on directly two-dimensional (2D) (Pagliai et al., 2004) or 52 

three-dimensional (3D) imaging (Mooney et al., 2008; Munkholm et al., 53 

2012; Naveed et al., 2014; Peth et al., 2008), while others are based on 54 

indirect calculation according to the assumed relationship between pore 55 

structure and specific soil properties (e.g. water retention, gas transport) 56 

(Hajnos et al., 2006; Pires et al., 2008).  57 

The soil water retention curve (SWRC) has been frequently used to 58 

reveal information concerning the arrangement of soil pore system (Pires et 59 

al., 2008). SWRC illustrated the amount of soil water content (θ) under 60 

equilibrium as a function of soil water suction (h). The measurement of 61 
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SWRC is normally conducted at limited water suctions and a model is used 62 

to fit the unmeasured points. Numerous SWRC models, both numerical and 63 

theoretical, have been developed due to its importance in modeling soil 64 

water dynamics and solute transport. For example, the widely used van 65 

Genuchten (1980) (VG) model uses a closed form equation with several 66 

adjustable parameters to empirically fit the SWRC. Whilst the lognormal (LN) 67 

model by Kosugi (1994) is derived theoretically from a lognormal pore-size 68 

distribution (PSD). Despite the form of the SWRC model, a soil PSD can be 69 

derived from SWRC based on the assumption that soil water drains 70 

progressively from decreasing sized pores along with progressive decreases 71 

in soil matrix potential.  72 

The available SWRC models can be broadly classified as unimodal, 73 

bimodal and multimodal models according to the shape of the derived soil 74 

PSD. The VG and LN models, as well as the widely used Brooks and Corey 75 

(1964) (BC) model are unimodal. Durner (1994) firstly reported a bimodal 76 

van Genuchten (BVG) model by superimposing two van Genuchten 77 

equations. Two modals of the PSD, corresponding to the inter-particle pores 78 

and inter-aggregate pores respectively, could be identified for the 79 

aggregated soils with the BVG model (Durner, 1994). Similar to Durner 80 

(1994), Kutílek et al. (2006) developed a bimodal lognormal (BLN) model 81 

through superimposing two LN equations. The BLN model can segregate the 82 

pore system to structural and textural domains assuming each domain 83 

showing a lognormal distribution (Romano et al., 2011). Here the structural 84 
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and textural pores have similar meanings as the inter-aggregate and 85 

inter-particle pores (Durner, 1994), respectively and we will stick with the 86 

former names in this study. More recently, Dexter et al. (2008) proposed a 87 

five-parameter bimodal model in the form of a double-exponential (DE) 88 

equation with each exponential term representing textural and structural 89 

pore spaces, respectively. By extending the DE equation to a 90 

triple-exponential (TE) equation, the macropores can be characterized by 91 

the third exponential term (Dexter and Richard, 2009). It needs to be 92 

pointed out that the BVG and BLN models can also be extended to 93 

multi-modals models in theory, but the number of parameters could be 94 

close to or larger than the usually measured SWRC points which could cause 95 

inaccuracy in the parameter estimation. The development of bimodal and 96 

multimodal models from unimodal models has greatly improved the 97 

understanding soil pore structure (Dexter and Richard, 2009) as well as 98 

assisting with prediction of soil hydraulic properties (Durner, 1994). 99 

The bimodal or multimodal SWRC models were theoretically founded on 100 

the assumption of bimodal or multimodal soil PSD. However to date these 101 

models have not been validated using the true soil PSD data. The reason lies 102 

in the difficulty to obtain a soil’s PSD that ranges over several orders of scale. 103 

In recent years the application of X-ray Micro-CT and associated image 104 

analysis methods provide means to quantify three-dimensional (3-D) soil 105 

structure from pore scale to core scale (Wildenschild et al., 2002; 106 

Wildenschild and Sheppard, 2013; Helliwell et al. 2013). Recently, Zhou et 107 
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al. (2013) employed synchrotron, industrial and medical CT systems to 108 

reveal micro- to macro- scale soil structure. The PSD data obtained from 109 

different scales can be combined using a scale fusion methods proposed by 110 

Schlüter (2011). A broader PSD can therefore be obtained from micron to 111 

centimeter scales. Although this scale ranges only broadly corresponds to 112 

the wet range of the SWRC (from saturation to -100 kPa) and is not well 113 

suited to the finer pores that usually exist between particles (textural pores) 114 

but more appropriate for structural pores, which are more liable to change 115 

under environmental or anthropogenic impacts (Dexter and Richard, 2009).  116 

Paddy soils are normally rich in clay and have complex pore systems at 117 

both aggregate and core scales (Lennartz et al., 2009; Zhou et al., 2016), 118 

hence we hypothesize that the PSD’s are bimodal or multimodal. In this 119 

study, we measured SWRC of the paddy soil under different fertilization 120 

regimes and scanned two scales of undisturbed soil samples (aggregate and 121 

core scales). The specific objectives were to: (1) compare the performance 122 

of unimodal, bimodal, and trimodal SWRC models on paddy soil, (2) 123 

compare the pore structure obtained from the SWRC models and from CT 124 

scanning, and (3) investigate the effect of different fertilization regimes on 125 

bimodal pore structure. 126 

SWRC models and equivalent PSD 127 

Three unimodal models (BC, LN, and VG model), three bimodal models 128 

(DVG, BLN, and DE models), and a trimodal (TE) model were examined in 129 

this study. The equations and estimated parameters are listed in Table 1. 130 
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The θs and θr represent the saturated water content and residue water 131 

content, respectively. The BC model incorporated the air entry value (hb) in 132 

the model and λ is the shape factor. The LN model was developed assuming 133 

a lognormal PSD with hm and σ representing the mode and variance of the 134 

PSD, respectively. The erfc is the complementary error function. The VG 135 

model has five parameters, i.e. θs, θr, α, n, m. Previous studies showed n 136 

and m are not independent and the Mualem (1976) constraint (m=1−1/n) is 137 

usually used. In this study we follow the constraint and therefore four 138 

parameters were estimated.  139 

The BLN model is developed by superimposing two LN models, with 140 

each term representing the matrix and structural domain, respectively. The 141 

w1 is a weighting factor corresponds to the matrix pores, and 1- w1 142 

corresponds to the structural pores; hmi and σi represent the modes and 143 

variance of the PSD of the matrix domain (i = 1) and structural domain (i = 144 

2), respectively. Similar to BLN model, the DVG model is developed by 145 

superimposing two VG models, with each term representing the matrix and 146 

structural domain, respectively. The αi and ni are shape factors of the textual 147 

domain (i = 1) and structural domain (i = 2), respectively. The DE and TE 148 

model include two and three exponential terms, respectively. C is the 149 

residual water content. A1, A2, and A3 are the water content at saturation of 150 

the textural, structural, and macro-pore space, respectively. And h1, h2, and 151 

h3 are suctions to empty soil water in the textural, structural, and 152 

macro-pores, respectively. The difference between DE and TE model is the 153 
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macro-pore term, which corresponds to big cracks or bio-pores that are too 154 

large to hold water at field conditions (Dexter and Richard, 2009).  155 

The equivalent PSD function 𝑓(𝑟) can be obtained from SWRC models 156 

using the differential equation:  157 

𝑓(𝑟) = 𝑑𝜃/𝑑𝑟                 (1) 158 

where r is the pore radius, which is assumed to be related to h for a 159 

given saturation by the capillary pressure function: 160 

ℎ =  
2𝛾 cos 𝛽

𝜌𝑤𝑔𝑟
                   (2) 161 

where 𝛾 is the surface tension between the water and air (=7.29 × 10-2 162 

Nm-1), 𝛽 is the contact angle, which was taken as zero in this study, 𝜌 is 163 

the density of water (=1 Mg m−3), and 𝑔 is the acceleration of gravity (= 164 

9.8 m s-2).  165 

Materials and Methods 166 

Sampling and measurement 167 

Soil samples were collected from a long-term field experiment of Jiangxi 168 

Institute of Red Soil, Jinxian County, Jiangxi Province, China (116°10′ E, 169 

28°21′ N). The field experiment was started in 1982 to test the effects of 170 

different fertilization strategies on soil quality. Three fertilization treatments 171 

were examined: (a) a control without fertilization, CK; (b) an inorganic 172 

fertilization with 90 kg N ha−1, 20 kg P ha−1, and 62 kg K ha−1 for each 173 

growth season, NPK; and (c) a combination of organic manure (22.5 t ha−1) 174 

and same amount of inorganic fertilizers as NPK, NPKOM. The experiment 175 
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followed a completely random block design with three replicated blocks. 176 

There were a total of nine plots, with each plots having an area of 46.67 m2.  177 

A bulk soil sample and two undisturbed soil cores (diameter 5.0 cm, 178 

height 5.1 cm) were collected from the surface layer (0 – 10 cm) in each plot. 179 

The bulk samples were air-dried and three aggregates (~ 3 mm in diameter) 180 

were randomly selected for CT scanning. The cores were subjected to CT 181 

scanning at field moisture content before measurement of saturated 182 

hydraulic conductivity (Ks) and SWRC. The Ks was measured using the 183 

constant water head method. The SWRC was determined with a sandbox at 184 

the wet range (0, 5, 10, 30, 60, and 100 hPa), and using a pressure plate 185 

method at large suction (150, 330, 1000, 3000, 5000, 10000, and 15000 186 

hPa). The cores were then dried in an oven at 105 °C for 24 h to determine 187 

bulk density. Total porosity (TP) was calculated assuming soil density of 2.65 188 

g cm-3. One sample was spoiled during the measurement and therefore 189 

there were 17 SWRCs in total.  190 

SWRC fitting, and PSD calculation 191 

All the SWRC models were fitted by the nonlinear least-square 192 

curve-fitting method with Matlab (R2014a; The Mathworks, Inc.). The initial 193 

values, lower and upper boundaries of the fitting parameters were provided 194 

for each fitting. The PSD was derived from SWRC models using equation (1) 195 

and (2). 196 

CT scanning 197 
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Soil cores were scanned using an industrial Phoenix Nanotom X-ray 198 

micro-CT (GE, Sensing and Inspection Technologies, GmbH, Wunstorf, 199 

Germany). Detailed scanning information can be found in Zhou et al. (2016). 200 

Briefly, the samples were scanned at a voltage and current of 100 kV and 201 

100 µA, respectively. The filtered back-projection algorithm, which was 202 

implemented in the Datos|x 2.0 software, was used to reconstruct the 203 

image slices. The generated 2000 slices had a size of 2000 × 2000 voxels, 204 

with each voxel representing a volume of 30 x 30 x 30 µm3. The slices were 205 

stored in 8-bit format and each voxel had a grayscale value between 0 and 206 

255 representing the attenuation coefficient of the corresponding material. 207 

The scanning of aggregates from the bulk samples was conducted with a 208 

synchrotron-based micro-CT at beam line BL13W1 of the Shanghai 209 

Synchrotron Radiation facility (SSRF). Details of scanning and image 210 

reconstruction can be found in Zhou et al. (2012). The image stack for each 211 

aggregate included 1200 slices with a size of 2000× 2000 voxels. The slices 212 

were stored in 8-bit format and had a resolution of 3.7×3.7×3.7 μm3. 213 

Image analysis 214 

Image preprocessing, segmentation, and quantification have previously 215 

been detailed in Zhou et al. (2016) and are only briefly described here. For 216 

the core-scale samples, a region of interest (ROI), 1000 × 1000× 1000 217 

voxel3, was selected from the central part to avoid artifacts at the boundary. 218 

For the aggregate-scale samples, a ROI of 500×500×500 voxel3 was 219 
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selected from the central part. The final size of the cubic ROI of soil cores 220 

and aggregates were 30 and 1.85 mm, respectively (Fig. 1). A 3D median 221 

filter was used to reduce noises before segmentation. Images were 222 

segmented by a bi-level method (Vogel and Kretzschmar, 1996). 223 

Porosity was determined as the percentage of pore volume to the total 224 

volume of the ROI. The PSD was obtained by morphological “opening” 225 

operations, which firstly “erode” the pores with a spherical structural mask 226 

and then “dilate” the eroded pores with the same structural mask. This 227 

process removes pores smaller than the size of the structural mask. By 228 

progressively increasing the size of the structuring element and determining 229 

porosity after each “opening” operation the PSD was determined. The PSD 230 

of soil cores and aggregates ranged from 30 - 2878 µm and 3.7 - 115 µm, 231 

respectively. The PSD of the two scales could be combined to have a broader 232 

range. As the PSD of the two scales overlapped at the range 30 – 115 µm, 233 

only the higher value was used in the combined PSD. A more detailed 234 

introduction of this procedure can be found in Schlüter et al. (2011). There 235 

are two issues to be addressed in the procedure. The first one is that the 236 

averaged PSD of the aggregates from each plot was used to combine the 237 

PSD of soil cores from the same plot. The second one is that the 238 

heterogeneity of soil structure was not fully considered and the PSD of 239 

aggregates was hypothesized to be able to represent aggregate-scale PSD 240 

of the corresponding soil cores.  241 

Image processing was performed with the open-source software 242 
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ImageJ ver. 1.47 (Rasband, 1997-2011) except for the segmentation which 243 

was conducted with the software Quantim 244 

(http://www.ufz.de/index.php?en=16562, verified at 2016-02-20). Image 245 

quantification was performed using a script running in Matlab (R2014a; The 246 

Mathworks, Inc.).  247 

Statistical analysis 248 

The coefficient of determination (R2), root mean square error (RMSE), 249 

and the Akaike Information Criterion (AIC) were used to compare the 250 

overall performance of SWRC models calculated within Matlab (R2014a; The 251 

Mathworks, Inc.). The R2 was calculated as 252 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
                   (3) 253 

where SSE is the residual sum of squares, SST is the total sum of 254 

squares. 255 

The RMSE was calculated as 256 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝜃𝑚𝑒𝑎𝑛 − 𝜃𝑓𝑖𝑡𝑡𝑒𝑑)

2
             (4) 257 

where N is the number of data points, 𝜃𝑚𝑒𝑎𝑛  is the mean value of 258 

measured water content, and 𝜃𝑓𝑖𝑡𝑡𝑒𝑑 is the fitted water content. 259 

The AIC was calculated as: 260 

𝐴𝐼𝐶 = 2𝐾 + 𝑁ln (
𝑆𝑆𝐸

𝑁
)              (5) 261 

where K is the number of parameters to be estimated in the model. As N 262 

is small the corrected AIC, AICc was used. 263 

http://www.ufz.de/index.php?en=16562
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𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝐾(𝐾+1)

𝑁−𝐾+1
              (6) 264 

The mean error, ME, was used here to compare model performance at 265 

different data points. ME was calculated for each measured data point 266 

separately: 267 

𝑀𝐸 =
1

𝑛
∑|𝜃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜃𝑓𝑖𝑡𝑡𝑒𝑑|            (7) 268 

where n is the number of fitted curves, 𝜃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the measured water 269 

content at certain suction.  270 

The below statistical analysis was performed with the SAS software 271 

program (SAS institute, 2011). We used ANOVA to compare the differences 272 

in soil porosities among different treatments. Mean values were tested 273 

using the Fisher's least significant difference (LSD) at the P = 0.05 level. 274 

Pearson correlation coefficients were conducted to evaluate the linear 275 

relationship between soil porosities and the natural logarithm of Ks.  276 

Results 277 

SWRC fitting 278 

All the tested SWRC models showed good overall performance with the 279 

lowest mean R2 of 0.95 for the BC model (Table 2). An example of the fitting 280 

of SWRC of the studied paddy soil with different models is shown in Fig. 1. 281 

The bimodal and trimodal models showed superior performance than any of 282 

the tested unimodal modals (Fig. 1). Best fitting was found with the BLN, TE, 283 

and DE models, with R2 close to 1 and lowest RMSE and AICc values (Table 284 

2). Figure 2 shows the mean ME at different suctions. The ME increased 285 
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considerably from low to high suctions for the unimodal models, while ME 286 

was constantly low over the whole range for the multimodal models except 287 

BVG model.  288 

Pore structure from SWRC models 289 

The derivative of SWRC can be easily transformed to PSD by converting 290 

suction to equivalent diameter using Equation (10) and an example of the 291 

derivative was shown in Fig. 3. It is not surprising that all the unimodal 292 

models failed to capture the second modal of the PSD. Considerable 293 

differences were found for the shape of PSD among the unimodal models, 294 

with the peak of the modal shifted rightward from BC to VG and LN model. 295 

Distinct bimodality was found for the derivatives of all the samples with BLN 296 

and DE models. The DVG model was able to capture the bimodality for 11 of 297 

the 17 samples but failed for the other 6 samples. The TE model showed 298 

tri-modality with the two peaks in the left region very close. The estimated 299 

suctions where the PSD peaked overlapped at the textural domain for BLN, 300 

DE, and TE models (Fig. 3). For the structural domain, the suctions at the 301 

peaks of BVG, BLN and DE model overlapped located between the peaks of 302 

structural and macro-pore domain of the TE model (Fig. 3).  303 

A segregation of pore space into textural and structural domains was 304 

possible with the bimodal and multimodal models. The DVG model was not 305 

further considered partially because it failed to capture the bimodality of 6 306 

out the 17 samples and partially because its performance in fitting SWRC 307 

was not as good as BLN and DE models. The TE model can segregate 308 
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macropore space besides textural and structural pore spaces. However, in 309 

this study the macropores were ascribed to structural pores. In this case the 310 

difference between DE model and TE model were negligible and only the DE 311 

model was further considered. The structural and textural porosity 312 

calculated from BLN and DE models are shown in Fig. 4. The structural 313 

porosity derived from DE model (PstrDE) was lower than those from the BLN 314 

model (PstrBLN), while the textural porosity showed an opposite trend. Both 315 

the structural and textural porosities derived from BLN and DE models were 316 

significantly positively correlated (P < 0.001), respectively. 317 

Application of NPKOM significantly increased structural porosity relative 318 

to CK and NPK treatments (P < 0.5), while the latter two treatments showed 319 

no significant difference (P > 0.05) (Table 3). No significant difference in 320 

textural porosity was found among the different fertilization treatments (P > 321 

0.05) (Table 3).  322 

Pore structure from CT imaging 323 

The structure of the paddy soil differed at both the aggregate and core 324 

scale (Fig. 5). A hierarchical structure was observed for the core scale 325 

samples, which were composed of aggregates that were separated by pores 326 

in the form of cracks, planes or channels. The aggregates had a dense 327 

structure with most inter-aggregate pores disconnected. The cumulative 328 

porosities of aggregates (with pore diameter 3.7 - 114.7 µm) and cores 329 

(with pore diameter 30 - 2878 µm) were combined to include a wider range 330 

(3.7 – 2878 µm) and the PSD derived (Fig. 6). The PSD showed distinct 331 
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bimodality, with two peaks observed for all the samples as seen in Fig. 6. 332 

The two peaks located in the intra-aggregate and inter-aggregates domains 333 

respectively, which were separated by the minimum of the PSD between the 334 

two peaks. The intra- and inter- aggregate porosities, corresponded to the 335 

structural and textural porosities, respectively, were determined based on 336 

the separation of two domains. Application of NPKOM significantly increased 337 

the CT imaging-based structural porosity (PstrCT) and textural porosity 338 

(PtexCT) relative to the CK and NPK treatments (P < 0.05), while the latter 339 

two treatments showed no significant difference (P > 0.05) (Table 3). 340 

Bimodal porosities derived from SWRC models and from CT imaging, 341 

and their relationship with Ks 342 

The PstrCT was lower than the structural porosities from the SWRC 343 

models (PstrBLN and PstrDE), but they were positively correlated (P < 0.01) 344 

(Fig. 7). CT imaging can only reveal pores larger than the pixel size, which 345 

is 3.7 µm in this study, and therefore cannot provide complete information 346 

of textural porosity as per the definition. The PtexCT was therefore much 347 

lower than textural porosities estimated from SWRC (PtexDNL and PtexDE) 348 

and no significant correlation was found between them (P > 0.1). 349 

The relationship between the natural logarithm of Ks (ln(Ks)) and 350 

structural porosities (Pstr) and total porosity (TP) is shown in Fig. 8. The TP, 351 

PstrDE, PstrBLN, and PstrCT were all lineally correlated with ln(Ks) with p 352 

values < 0.05. The PstrDE and PstrBLN did not improve the correlation as 353 

compared with TP. A stronger Pearson correlation coefficient was found 354 
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between PstrCT and ln(Ks) (R2 = 0.57, p < 0.001), indicating PstrCT is more 355 

related to the saturated hydraulic conductivity.  356 

Discussion 357 

Bimodality of pore space in paddy soil 358 

The well-structured soils are believed to have hierarchical structures, 359 

and their pore space can be segregated to textural pores between soil 360 

particles and structural pores between aggregates (Dexter et al., 2008). 361 

Quantification of the structural and textural porosity has been conducted 362 

with SWRC models (Bruand & Cousin, 1995; Pires et al., 2008). However, 363 

we could see from Fig. 3 that the modality of the PSD depends heavily on the 364 

selected SWRC models. In this study, we first compared seven widely used 365 

SWRC models, including three unimodal models (BC, LN, and VG model), 366 

three bimodal models (DVG, BLN, and DE models), and a trimodal (TE) 367 

model. The fitting of the SWRC using all the seven models was generally 368 

good and with R2 > 0.95. However, the goodness of fit, as shown in Fig. 2 369 

and Table 2, indicated that bimodal models (BLN and DE model) best fitted 370 

the SWRC data and indicated the existence of a bimodal PSD (Fig. 3). The 371 

fitting results convinced us the use of bimodal models to investigate the 372 

hierarchical pore structure in the paddy soil. The PSD derived from both the 373 

BLN and DE models showed evident bimodal structure and that the 374 

structural and textural porosities inferred from both models were linearly 375 

correlated (Fig. 4). 376 
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The CT imaging revealed hierarchical structure of the paddy soil as 377 

shown in Fig. 5. By combining the PSD of soil aggregates and cores, a 378 

bimodal pore structure was also observed (Fig. 6). From SWRC modeling, 379 

morphological observation of CT images and quantitative image analysis, 380 

we can conclude paddy soil has a bimodal pore structure, which was in 381 

consistent with previous study on structured soils (Durner, 1994; Kutilek et 382 

al., 2006; Resurreccion et al., 2010).  383 

Comparison of the SWRC modeling and CT imaging methods 384 

The BLN and DE models have distinct physical meanings related to the 385 

bimodal pore space and they generated consistent pore structure 386 

information. The PstrCT was comparable to the structural porosities from 387 

SWRC models and showed linear correlation with them. Moreover, PstrCT, 388 

PstrBLN and PstrDE are all positively correlated with ln(Ks) with the PstrCT 389 

showed the highest correlation. The PtexCT, however, only included pores 390 

large than 3.7 µm due to resolution limitation and was therefore lower than 391 

textural porosities calculated from SWRC (Table 3). These results suggest 392 

the use of either SWRC or CT imaging to quantify the structural porosity is 393 

feasible, but only SWRC modeling is capable of investigating textural 394 

porosity. Compared to SWRC modeling, CT imaging is fast and can provide 395 

detailed information on the macropores that are more related with soil 396 

water transport processes (Luo et al., 2008; Rezanezhad et al., 2009). 397 

However, direct quantification of multi-scale soil pore structure is still not 398 

feasible for many soil scientists. One difficulty lies in the limited accessibility 399 
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and high price of the non-destructive CT devices despite the fast 400 

development of CT techniques in recently years. Another difficulty is that 401 

soil pores range over several orders of scale, which makes it impossible to 402 

quantify soil pores with any single technique (Wildenschild et al., 2002). 403 

SWRC has been proven to be able to provide valuable information about the 404 

pore structure as long as it is accurately modelled using suitable models. 405 

Fertilization effects on bimodal pore structure  406 

The structural porosity is more liable to change under external 407 

influences (e.g. compaction) while the textural porosity is more stable 408 

(Bruand & Cousin, 1995; Kutilek et al., 2006). Similar results were also 409 

found in this study when soil is fertilized differently for a long term. 410 

Application of NPKOM significantly increased structural porosity relative to 411 

CK and NPK treatments but did not change textural porosities (P > 0.05) 412 

(Table 3). The PtexCT was highest in NPKOM probably because only large 413 

pores in the textural pore range were included. Application of NPK in the 414 

paddy soil showed no effects in changing the soil pore structure compared 415 

with the CK treatment, which highlight the importance to further study of 416 

the mechanisms of inorganic fertilization on soil quality. 417 

Conclusions 418 

In this study we first compared seven widely used models on the fitting 419 

of SWRC data and the two bimodal (BLN and DE) models showed best 420 

performance. The CT imaging also revealed the hierarchy structure of the 421 

paddy soil. Both SWRC modeling and CT imaging methods validated the 422 
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bimodal pore structure of the paddy soil. The bimodal (BLN and DE) SWRC 423 

models generated similar textural and structural porosities, with the latter 424 

positive correlated with structural porosities from CT imaging. Long-term 425 

application of NPKOM improved structural porosity but did not change 426 

textural porosity compared with the NPK and CK treatment, while the latter 427 

two showed near identical pore structure. The results of this study 428 

supported the use of bimodal SWRC models to investigate the pore 429 

structure of the well-structured paddy soil.  430 
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Figure Captions 506 

Figure 1 Example fitting of SWRC with unimodal (left) and bimodal and 507 

multi-modal (right) models.  508 

Figure 2 Mean fitting errors of the SWRC fitted to different models.  509 

Figure 3 PSD patterns derived from SWRC with unimodal (left) and bimodal 510 

and multi-modal (right) models. 511 

Figure 4 Correlation of the structural and textural porosities respectively 512 

between BLN and DE models. 513 

Figure 5 Two-dimensional CT slices of soil aggregates and soil cores from CK, 514 

NPK, and NPKOM treatments. 515 

Figure 6 Fusion of the cumulative pore size distribution of aggregate and 516 

core scale (above) and the derivative pore size distribution (bottom).  517 

Figure 7 Correlation of the structural porosities from SWRC models and from 518 

CT imaging. 519 

Figure 8 Correlation between porosities and the natural logarithm of Ks 520 

(ln(Ks)).521 
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Table 1 Three unimodal models, three bimodal models, and a triple-modal model. 

Categories Model Abbr. Equation Parameters 

Unimodal Brooks and Corey (1964) BC 
𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) (

ℎ𝑏

ℎ
)

−𝜆
  for h < hb, 

𝜃(ℎ) = 𝜃𝑠 for hb ≤ h ≤ 0 

θs, θr, hb, λ 

 Lognormal pore-size 
distribution (Kosugi, 1994) 

LN 𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟)1/2𝑒𝑟𝑓𝑐[ln(ℎ /ℎ𝑚) /(√2𝜎)] θs, θr, hm, σ 

 van Genuchten (1980) VG 𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟)[1 + (𝛼ℎ)−𝑛]𝑚 θs, θr, α, n, m  

Bimodal Double van Genuchten 
model (Durnel, 1994) 

DVG 𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟) {𝑤1[1 + (𝛼1ℎ)−𝑛1]1−1/𝑛1 + (1

− 𝑤1)[1 + (𝛼2ℎ)−𝑛2]]1−1/𝑛2
} 

θs, θr, w1, α1, n1, α2, n2 

 Double lognormal model 
(Romano et al., 2011) 

DLN 𝜃(ℎ) = 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟){𝑤11/2𝑒𝑟𝑓𝑐[ln(ℎ /ℎ𝑚1) /(√2𝜎1)]

+ (1 − 𝑤1)1/2𝑒𝑟𝑓𝑐[ln(ℎ /ℎ𝑚2) /(√2𝜎2)]} 
 

θs, θr, w1, hm1, σ1, hm2, 

σ2 

 Double-Exponential 
equation (Deter et al., 2008) 

DE 𝜃(ℎ) = 𝐶 + 𝐴1exp (−ℎ/ℎ1) + 𝐴2exp (−ℎ/ℎ2) 

 

C, A1, h1, A2, h2 

Trimodal Triple-Exponential equation 
(Dexter and Richard, 2009) 

TE 𝜃(ℎ) = 𝐶 + 𝐴1exp (−ℎ/ℎ1) + 𝐴2exp (−ℎ/ℎ2)
+ 𝐴3exp (−ℎ/ℎ3) 

C, A1, h1, A2, h2, A3, h3 
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Table 2 Predictive performances of the tested models on the measured soil water retention data 
 

Model BC LN VG DVG DLN DE TE 

R2 0.95(0.89, 0.97) 0.96(0.93, 0.98) 0.96(0.90, 0.98) 0.98(0.95, 1.00) 1.00(0.99, 1.00) 0.99(0.99,1.00) 1.00(0.99,1.00) 

RMSE 
0.021(0.009, 

0.029) 
0.0177(0.0081, 

0.0255) 
0.0195(0.0089,

0.0270) 
0.0118(0.0020, 

0.0279) 
0.0045(0.0014, 

0.0072) 
0.0076(0.0020, 

0.0146) 
0.0050(0.0017, 

0.0081) 

AICc 
-90.5(-110.4, 

-81.3) 
-94.9(-114.2, 

-84.4) 
-92.4(-111.8,-82

.9) 
-95.72(-132.6, 

-64.1) 
-113.2(-141.1, 

-99.3) 
-110.8(-146.1, 

-94.3) 
-113.5(-136.7, 

-96.3) 
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Table 3 Total porosity (TP), structural porosity (Pstr), and textural porosity (Ptex) 

determined with bimodal lognormal (BLN) model, double-exponential (DE) model, and 

from CT imaging (CT) 

Porosity (cm3 

cm-3) 

BLN DE CT  

CK NPK NPKOM CK NPK NPKOM CK NPK NPKOM 

TP   0.55b 0.57b 0.62a 0.55b 0.57b 0.63a 0.07b 0.11ab 0.17a 

Pstr  0.15b 0.16 b 0.24a 0.13b 0.14b 0.21a 0.04b 0.08ab 0.12a 

Ptex 0.40a 0.41a 0.38a 0.43a 0.41a 0.42a 0.03b 0.03b 0.05a 

 


