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Abstract 

We report terahertz optical conductivity measurements of the highly mismatched alloy, 

GaNBi. We find that in these amorphous GaNBi epilayers grown using plasma assisted 

molecular beam epitaxy, the optical conductivity is enhanced in the samples grown at 

higher gallium beam equivalent pressure (BEP). The optical conductivity spectra in 

these pseudo-amorphous epilayers follow a Drude-Smith behaviour due to charge 

confinement effects. The DC conductivity in the epilayers grown at the highest Ga BEP 

(3.1 x 10-7 Torr) show an increase of three orders of magnitude compared to the one 

grown at the lowest Ga BEP (2.0 x 10-7 Torr). Our measurements suggests a percolative 

transition from an insulating nature in the GaNBi epilayers grown at low Ga BEP to a 

highly conducting phase in the epilayers grown at high Ga BEP.   
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1. Introduction 

The wide band gap semiconductor, Gallium Nitride (GaN) is of great scientific as well as technological 

interest, due to its distinct optoelectronic properties. The material finds its applications in the 

manufacturing of LEDs [1, 2], Laser diodes [3], UV detectors [4], Solar cells [5], High electron mobility 

transistors [6] etc. GaN in its amorphous phase has potential optoelectronic applications [7, 8]. It has 

advantages of being less expensive and being able to be deposited on various substrates with minimal 

concern for lattice matching.  

 

Semiconductors are often subjected to alloying in order to mould their properties for different 

applications. The process usually involves the introduction of isoelectronic elements into a 

semiconductor system, which have similar characteristics like atomic size, ionicity, and 

electronegativity [9]. Contrarily, one could often create alloy systems that contain isoelectronic species 

with properties very different from the host, and are usually referred to as highly mismatched alloys 

(HMAs) [10, 11]. The optoelectronic properties of such systems often show drastic deviation from the 

host semiconductor due to the strong perturbation of the band structure [11–13]. Further, the solubility 

limits for HMAs can be extended by growing them in the amorphous phase.  

 

The ternary compound GaNBi is an example of a HMA, because of the very large disparity in the 

properties of the two isoelectronic anion species in the system namely, nitrogen and bismuth. The alloy, 

GaNBi differs greatly from its parent compound GaN in optoelectronic and structural characteristics. 

The strong shift in the optical absorption, enhancement in the conductivity and the loss of crystallinity 

observed in amorphous GaNBi with sort range ordering are some of the prominent differences [14–17]. 
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Terahertz radiation can act as a contact free, all-optical ‘local’ probe for electrical characterization of 

materials [18]. Terahertz time domain spectroscopy (THz-TDS) enables us to calculate the complex 

valued optical conductivity of materials in the far infrared frequency region without the need of 

Kramers-Kronig analysis. The technique also yields transport parameters of materials which are in good 

agreement with those obtained from Hall and Van der Pauw measurements [19]. Furthermore, this 

technique has great potential in the characterization of materials for which proper electrical (ohmic) 

contacts are difficult to make, which renders direct current (DC) measurements on these materials rather 

difficult and inaccurate [20].  We have used THz-TDS in this study to characterize the THz optical 

conductivity of highly amorphous GaN1-xBix thin films. Using this technique, we were able see carrier 

localization effects and percolative transition effects in the GaNBi alloy. 

 

2. The Samples 

The amorphous GaNBi samples were grown by plasma-assisted molecular beam epitaxy (PA-MBE) on 

(0001) c-plane sapphire substrates. The growth technique is described in detail elsewhere [14, 15]. We 

have investigated 5 samples, grown at varying gallium beam equivalent pressure (BEP) with all other 

MBE growth parameters kept constant. This process results in the variation of the III:V ratio (
𝐺𝑎

𝑁+𝐵𝑖
) 

between  0.7 to  1.3 in the amorphous GaNBi layers [15]. Here the atomic concentration of Ga divided 

by the sum of the atomic concentration of Bi and N, was measured in GaNBi layers by Rutherford 

backscattering spectrometry (RBS). Samples are numbered 1 to 5 in order of increasing Ga BEP, with 

sample #1 being the one grown at lowest Ga BEP of 2.0 x 10-7 Torr and sample #5 the one grown at the 

highest Ga BEP of 3.1 x 10-7 Torr. All the samples have similar Bismuth content of around ~6.5 at. % 

Bi [15]. Also all the samples were amorphous, revealing no characteristic peaks in the XRD data. The 

epilayers have thicknesses in the range of 0.66 to 1.00 microns. The samples grown at lower Ga BEP 

were seen to have unintentional oxygen incorporation as measured by RBS, which was not observed in 

samples grown at higher Ga BEP [15]. 
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3. The Experiment 

We have used a conventional THz-TDS system for our studies. THz radiation was generated from a 

biased interdigitated photoconductive antenna (iPCA) optically excited using ~100 fs, NIR (~ 800 nm) 

pulses from a Ti-Sapphire laser. THz radiation was detected using another photoconductive antenna 

(PCA) with the aid of a lock-in technique. The system offers spectroscopic capabilities in the frequency 

range of 0.2 to 2.25 THz.  The generated THz radiation was steered to the detector PCA using two pairs 

of off-axis parabolic mirrors. The samples were kept at the focus of the THz radiation created by the 

second parabolic mirror. The THz radiation transmitted through the sample-free area of the substrate 

was used as the reference. The system was purged with dry nitrogen to minimize absorption of THz 

radiation by water vapour. All measurements were done at room temperature. 

 

4. The Results and Discussion 

The frequency dependent complex valued THz refractive index and optical conductivity of all the 

samples were calculated from the measured THz transmittance. The THz transmittance is given by [21], 

𝑇̃(𝜔) =  
1+𝑖 (𝑛̃(𝜔)−1)

𝜔𝑑

𝑐

1−𝑖[
(𝑛̃(𝜔)−1)(𝑛̃(𝜔)−𝑛𝑠)

(𝑛𝑠+1)
]

𝜔𝑑

𝑐

   [1] 

where, 𝑛̃(𝜔) = 𝑛 + 𝑖 𝑘 is the complex refractive index and d is the thickness of the GaNBi epilayer, c 

is the speed of light and 𝑛𝑠 is the refractive index of sapphire [22]. 𝑛̃(𝜔) is obtained from the measured 

transmittance using eqn 1. From this the dielectric function, 𝜀̃(𝜔) and optical conductivity, 𝜎̃(𝜔) =  𝜎1 +

𝑖𝜎2  can be readily calculated using, 

𝜀̃(𝜔) = 𝑛̃(𝜔)2 = 𝜀𝐺𝑎𝑁𝐵𝑖 + 𝑖
𝜎̃(𝜔)

𝜔𝜀𝑜
                                          [2]                                                     

The eqn 2 represents the frequency dependent complex dielectric function written as a sum of bound 

(first term) and free charge contributions (second term). 𝜀𝑜 is the permittivity of free space and 𝜀𝐺𝑎𝑁𝐵𝑖 
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is the dielectric constant of GaNBi (bound charge contribution). Since the exact value of 𝜀𝐺𝑎𝑁𝐵𝑖 is not 

known, we have used the dielectric constant of GaN ( 9.4 ) [23]. 

The experimentally obtained THz optical conductivity for all the samples is shown in figure 1.  It can 

be seen that the optical conductivity increases with increase in Ga BEP. The THz optical conductivity 

does not follow a simple Drude behaviour. As an example we have shown the expected Drude spectra 

for sample #3 in figure 1. Instead, the THz conductivity spectra of our GaNBi samples fit well with the 

Drude-Smith (DS) model [24].  The DS model  have been used successfully to account for THz 

conductivity resulting from strong carrier backscattering/localization in a wide variety of materials 

ranging from conducting polymers [25, 26] through inorganic semiconductors [27, 28] to metallic 

thinfilms [29, 30]. Deviation from simple Drude model have already been observed in N and Bi 

containing III-V alloy systems [31]. The observation of Drude-Smith nature in conductivity is a direct 

indication of charge confinement effects in the GaNBi alloy, which is not observed in uniform thin 

films or freestanding samples of GaN [20], [23], [32–34]. We will discuss the origin of the charge 

confinement later in this section.  

The first order DS model is given by. 

𝜎̃𝐷𝑆(𝜔) =  
𝜀𝑜𝜔𝑝

2  𝜏𝑠

(1−𝑖𝜔𝜏𝑠)
 ×  [ 1 +  

𝐶1

(1−𝑖𝜔𝜏𝑠)
 ]                              [4] 

where 𝜈𝑝 = 𝜔𝑝 2𝜋⁄  , is the plasma frequency, 𝜏𝑠 is the scattering time constant and 𝐶1 is the localization 

parameter. All the DS parameters (plasma frequency, scattering time constant and localization 

parameter) were obtained by fitting the optical conductivity data.  

As shown in figure 2(a) the scattering time constant (𝜏𝑠) shows a decrease with increasing Ga BEP. 

The 𝜏𝑠 varies from   30.8 fs in sample #1to  19.3 fs in the sample #5.  It can be seen from figure 2(b) that 

𝜈𝑝 consistently increases with increasing Ga BEP. The observed increase in plasma frequency with 

increasing Ga BEP is an indicator of increasing carrier density in the material. The carrier density can 

be obtained using the relation, 𝜔𝑝 =  [𝑛𝑐𝑒2 𝜀𝑜𝑚∗⁄ ]1/2, where 𝑛𝑐 and 𝑚∗ are number density and 

effective mass of carriers in the medium respectively. As shown in figure 2 (d), the 𝑛𝑐 values vary 
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between  2.4 × 1018cm−3 in sample #1 to  2.6 × 1019cm−3 in sample #5. The effective hole mass of 

Gallium Nitride (𝑚∗ = 0.8𝑚𝑒) was used for these calculations [35].  

 

In order to explain the increase in the carrier density we need to consider the following aspects: i) The 

extent of substitutional incorporation of Bi and, ii) The effect on the transport properties due to Bismuth 

incorporation. The variation of Ga BEP results in the variation of the III:V ratio in the resulting alloy. 

N rich growth conditions impede the substitutional (anionic) incorporation of Bi into the alloy phase.  

Hence a homogeneous GaNBi alloy is not formed when grown at lower Ga BEP [36, 37]  A larger shift 

in optical absorption in the higher III:V ratio samples (grown at higher Ga BEP) have been reported. 

[15, 16] This is an indicator of higher extent of substitutional Bi incorporation in these samples. It has 

to be mentioned that though Bi elemental composition is similar in all the epilayers, the concentration 

of substitutional Bi is higher in epilayers grown at higher Ga BEP [16] 

 

Generally, GaN has an unintentional n-doping due to nitrogen vacancies or oxygen impurities.  Bismuth 

incorporation is shown to result in an upward shift of the valence band edge in the resulting GaNBi 

alloy (Valence band anticrossing model [22]). Such shifts facilitate the formation of acceptor-like native 

defects resulting in a p-type nature for the material [15]. Hence a higher bismuth incorporation is 

expected to result in a higher p-doping density. Using the ‘hot-probe’ method we have confirmed the 

p-type nature of our samples and we verified qualitatively that the carrier concentration increases as the 

Ga BEP increases. Bismuth induced acceptor states have already been observed in the HMA system, 

GaAsBi and also in  GaSbBi using optical as well as transport measurements [38–41]. From the above 

facts, it can be argued that the samples grown at higher Ga BEP, have higher and more homogeneous 

Bismuth substitution and hence better p-doping. This fact directly translates to an increase in the carrier 

density and also the conductivity of such samples as discussed below.  
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As shown in figure 2(c) the absolute value of localization parameter (|C1|) becomes lower in samples 

grown at higher Ga BEP, indicating lower carrier localization in these samples. The DC mobility (𝜇𝐷𝐶) 

can also be estimated from the THz conductivity data. DC mobility can be estimated from DS fitting 

by 𝜇𝐷𝐶 =  [𝑒𝜏𝑠 𝑚∗⁄ ] × [1 + 𝐶1]. The 𝜇𝐷𝐶 of all samples are heavily compromised due to significant 

(and negative) values of  𝐶1. Sample #1 with its strongest carrier localization has a  𝜇𝐷𝐶 of 0.19 cm2 Vs⁄ , 

while the sample #5 with lowest localization has a 𝜇𝐷𝐶 of 12.7 cm2 Vs⁄ . The extrapolated DC 

conductivity (𝜎(𝜔 = 0)), varies by 3 orders of magnitude, from   0.057 𝑆𝑐𝑚−1 in sample #1 to   

65 𝑆 𝑐𝑚−1 in sample #5, which is shown in figure 3.  

 

It has been shown earlier using transmission electron microscopy studies that these samples have a 

pseudo-amorphous structure with a high density of crystalline grains (1 - 5 nm diameter) of GaN or 

GaNBi embedded in an amorphous matrix [17]. Also, the crystalline grains were not found to be 

connected and hence the hole transport probably happens mostly through the amorphous matrix. Hence 

𝜏𝑠values represents the carrier scattering time constant in the amorphous medium. Similar 

semiconductor composite systems consisting of amorphous and crystal domains have been reported to 

show percolation transitions [28,42,43]. We see in figure 3, a dependence of DC conductivity on the Ga 

BEP which can be well fitted by the theoretical percolation behaviour, 𝜎𝐷𝐶 ∝ (𝑥 − 𝑥𝑐)𝛾 , where x is the 

Ga BEP and 𝑥𝑐 is the critical Ga BEP below which the conductivity is zero. Figure 3 shows the expected 

behaviour with the ideal value for the exponent, γ = 2. This suggests that the transport in these samples 

occur via a percolation network of amorphous GaNBi domains. 

 

A major factor that controls the localization effects is the probability of backscattering at the domain 

boundaries. This effect has to do with the height and width of the potential barrier at the boundaries. 

Carriers in conductive domain lying in the middle of a nonconductive medium have a high probability 

of backscattering and confinement. However, proximity and often interconnectedness of these 

conductive domains increases the odds of carriers cruising across the boundaries, reducing the 
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localization effects. Such effects essentially opens up channels for long range charge transport. This 

leads to a percolative transition from an insulating to conductive phase. 

 

In our GaNBi system also we see such a transition. The 𝐶1 in sample #1 is very close to -1, implying 

heavy localization, while in sample #5 it is close to -0.7. Hence, it can be safely argued that the GaNBi 

samples grown at higher Ga BEP have rather closely packed domains of p-type GaNBi, distributed 

uniformly in the insulating matrix, compared to the samples grown under lower Ga BEP which has 

sparsely distributed conducting islands with no/less capability of long range transport. As a result of 

this, the DC conductivity of the samples grown at lowest and highest Ga BEP differ by three orders of 

magnitude. 

 

5. Conclusions 

To summarise, we have used THz-TDS and Drude-Smith analysis to shed light on transport and 

structural properties of the amorphous GaNBi HMA system. We were able to the estimate carrier 

density, mobility and DC conductivity in the amorphous GaNBi alloy. Unlike DC measurement 

techniques, THz measurements helps us to study the material structure on a characteristic length scale 

which depends on the diffusion length of charge carriers within one cycle of the THz electric field. 

Hence we were able to probe the influence of nanometer-scale domains on the carrier transport in 

amorphous GaNBi. We see strong carrier localization in our samples due to small size and lack of 

connectivity of conducting domains. A combination of higher density p-doping due to effective 

substitutional incorporation of Bi in the alloy and lower confinement effects due to better proximity of 

conductive domains, results in higher THz (and DC) conductivity in GaNBi alloys grown at higher Ga 

BEP. This also accounts for the percolative transition from insulating to conductive phase observed in 

our samples. 
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Figure Captions 

Figure 1. (a) 𝜎1, the real and (b) 𝜎2 the imaginary part of the THz optical conductivity obtained 

experimentally (symbols) for all samples (1-5) fitted with Drude-Smith Model (solid lines). The 

expected Drude spectra (by setting C1 = 0 in eqn. (4)) for sample 3 is also plotted (dashed red line) to 

show the deviation of the samples from the simple Drude nature. 

Figure 2. (a) The freely fit (a) scattering time constant (𝜏𝑠), (b) plasma frequency, 𝜈𝑝 and (d) Localization 

Parameter (𝐶1) for samples grown at different Ga BEPs. We have also tried to fit the data by fixing 

𝜏𝑠values within the interval (19.3-30.8 fs) and use the other two (𝜈𝑝 and 𝐶1) as free parameters. The 

range of values obtained for 𝜈𝑝 and 𝐶1 in the above manner is indicated by the error bars in the figures. 

(d) The calculated carrier density, nc  for the different samples.  

Figure 3.  DC conductivity (𝜎𝐷𝐶) extrapolated from Drude Smith Fit for samples grown at varying Ga 

BEP. The solid line is the fit using the function 𝜎𝐷𝐶 ∝ (𝑥 − 𝑥𝑐)2  
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Figure 3. 
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