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Abstract 1—In a micro-grid, due to potential reverse output 

profiles of the Renewable Energy Source (RES) and the load, 

energy storage devices are employed to achieve high self-

consumption of RES and to minimize power surplus flowing 

back into the main grid. This paper proposes a variable 

charging/discharging threshold method to manage energy 

storage system. And an Adaptive Intelligence Technique (AIT) 

is put forward to raise the power management efficiency. A 

battery-ultra-capacitor hybrid energy storage system (HESS) 

with merits of high energy and power density is used to evaluate 

the proposed method with onsite measured RES output data. 

Compared with the PSO algorithm based on the precise 

predicted data of the load and the RES, the results show that the 

proposed method can achieve better load smoothing and 

maximum self-consumption of the RES without the requirement 

of precise load and RES forecasting.  

 

Index Terms—adaptive intelligent technique (AIT), energy 

management, hybrid energy storage system (HESS), variable 

threshold 
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I. INTRODUCTION 

EVELOPMENT of distributed renewable energy 

generators has been one of the main focuses of research 

and industry to reduce pollution and the consumption of 

fossil energy. The usage of the RES and the energy storage 

system in a micro-grid can guarantee the security, reliability, 

and efficiency of the energy distribution [1-3].  

The potential benefits of energy storage system for the grid 

have been investigated as a mechanism to increase grid 

resilience since it can supply backup power and grid 

stabilization services. The low cost of power electronics 

promotes the storage technologies usage in the form of EV 

(Electrical Vehicle) [4] and other kinds of batteries for 

ancillary services such as frequency and voltage regulation 

and load demand optimization [5-8].  
Plug-in EVs have been investigated for distribution and 

residential networks with charging stations, for peak shaving 

and loss reduction [9-10]. However, the load and power flow 

profile have to be well-known for this method to work well 

and the utilization of EVs as energy storage units will 

increase degradation rates in the batteries: this might not be 

acceptable for EV owners. A demand tracking based model is 

proposed in [11]. This model aims at load smoothing but has 

charging efficiency problems during each of the charging 

windows. It requires accurate predicted data of the load 

demand and RES output for effective energy dispatching [12]. 

Economic factors are considered in [13] and the optimized 

strategy is achieved using genetic algorithms that might not 

be very practical for real time industry application. A 

predictive control solution using neural networks for forecast 

the load and PV output forecasting is introduced in [14-15]. 

The energy management results are affected by the marginal 

errors between the real data and the forecasting. A Linear 

Programming (LP) routine is adopted to design dispatch 

schedules of the storage system using PV output and load 

forecasts [16-18]. This method considers the reasonable 

efficiency factors of the converters and battery. An improved 

method is proposed in [19-20]. It uses the generic algorithm 

Δt, d, T                              the sample interval(1s in this paper), 

the day number and the total count of 

sample time for a day (86400 in this 

paper) 

prc the tariff 

Kx the ultra-capacitor index  

Ta the average moving time 
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to design the hourly dispatch schedule and is added a 

feedback controller to supervise the state of charge of the 

battery. A PSO-based algorithm is proposed in [21] which 

variably dispatches the energy in order to minimize the cost 

of generated electricity. But this method is easy to get a local 

optimal result. In [22], a dynamic demand scheduling scheme 

using the theory of optimal portfolio selection strategy is 

proposed. But appliances in this paper may not be true in 

real-life scenarios and the reliability of energy supply is 

needed to be reconsidered. In [23-25], the stochastic 

optimization and robust optimization methods using 

historical wind data and wind forecasts are proposed to 

derive storage schedules respectively. Those methods reduce 

the forecast errors and guarantee a smoothed output of the 

wind power. 

Previous models or algorithms are investigated using 

mostly predicted data and designs are made on the 

assumption of accurate predictions. However, the accurate 

forecasts are almost impossible in reality. Thus, this paper 

proposes a management method which does not depend on 

accurate forecasting. The innovations of the proposed method 

are: 1) It can reduce the deviation of the load shaving caused 

by the forecast errors via calculating the variable dispatch 

threshold power. 2) It can achieve maximum utilization of 

the stored energy to smooth the load demand as much as 

possible since the dispatch power of the energy storage 

system can track the load demand and the RES output 

variation. 

The method proposed in this paper aims at achieving 

energy management of a hybrid energy storage system which 

consists of a battery and an ultra-capacitor to shave the load 

demand. The management is divided into two steps for each 

sample point. The first step is to reasonably distribute the 

load shaving task between those two devices generally 

according to the load fluctuant condition. The second step is 

to manage the energy of the ultra-capacitor to regulate the 

surplus load demand as much as possible by the real-time 

controllable AIT. The onsite measured RES output data are 

used to test the proposed method in this paper. The results 

show that this method can achieve load shaving and 

maximum self-consumption of RES without the requirement 

for precise predicted load and RES data. Compared with the 

standard method using the PSO algorithm, the proposed 

method provides a variable power regulation and the 

simulation results verify its improvement.  

The details will be clarified in the later sections. Section II 

discusses the model of the hybrid energy storage system and 

gives out the dispatch principle of the battery. Section III 

proposes the dispatch principle of the ultra-capacitor. Section 

IV investigates the AIT which is the essence of the proposed 

method. Section V is the testing result which shows the 

advantages of the AIT by comparison. The last Section VI is 

the conclusion of the whole paper. 

 

 

 

II.THE MODEL OF HYBRID ENERGY STORAGE SYSTEM 

The system structure of a micro-grid consists of the RES, 

load demand, the storage system and other variable factors 

for the grid as shown in the Fig.1. A hybrid energy storage 

system (HESS) is used to verify the proposed energy 

management algorithm.  
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Fig. 1.  Structure of Energy Management System 

 
The HESS consists of the Li-ion-battery and the ultra-

capacitor in order to integrate the merits of these two energy 

storage devices to achieve higher energy utilization 

efficiency. The dispatch principles of two storage devices in 

load shaving are different according to their own 

characteristics since it is beneficial to assure the full potential 

use of two devices to shave load. 

The Li-ion-battery is characterized by high energy density 

and short cycle span. The ultra-capacitor has high power 

density, quick response and fast charge/discharge speed. 

Thus, the HESS is a system with high energy and power 

density and long life cycle span. In addition, the life span of 

the battery is influenced by the depth of discharge (DOD) 

largely while that of the ultra-capacitor will not be impacted. 

Therefore, the Li-ion battery is used to smooth the flat part of 

the load demand and the ultra-capacitor can be used to shave 

the large-amplitude part of the load demand. This section will 

discuss the general energy dispatch principle between the 

battery and the ultra-capacitor. 

The total dispatch power (PHESS) including the capacitors 

(PCAP) and the batteries (PBESS) is calculated as shown in the 

(1). For these variables, the positive value means the storage 

devices are in the discharging mode and the negative value 

means in the charging mode. 

 
( ) ( ) ( )BESS CAP HESSP i P i P i 

                 
(1) 

During operation, the calculation of dispatch power should 

obey some constraints. The values of PBESS and PCAP cannot 

exceed their limitations (PBESS.lim and PCAP.lim). These 

limitations should be constrained to match the surplus power 

of the HESS and the maximum values of dispatchable power 

of the ultra-capacitor and the battery. 

When charging: 
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Where, Δt is the time interval between two sample points and 

the EBESS/CAP is the energy reserved state of the battery and the 

ultra-capacitor. The equation (2) is used to make sure the 

charging power and energy within the battery and capacitor 

maximum limitation. The lower option quantifies the 

maximum energy limitation in the charging window (The 

energy is summation of power over a period of time). 

When discharging, the similar regulation is required and 

the minimum energy reversed in the HESS is used in the 

lower option of the equation (3): 
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The equation (3) is used to make sure the discharging 

power and energy within the battery and capacitor minimum 

limitation. 

It is assumed that the dispatch power during each sample 

period (1s) is constant. The numeric conversion between P 

(kW) and E (kWh) in 1s is shown in the equation (4). 

( ) 1 ( ) 3600P i E i                        
(4) 

After confirming the constraint conditions, the next step is 

to distribute the dispatch power between the battery and the 

ultra-capacitor. 

Firstly, a fixed average moving time parameter Ta (in 

seconds) is used to calculate the dispatch power of the 

battery. In order to make the battery in the low-discharging 

mode and used to smooth the relatively flat part of the load 

demand, the dispatch power of the battery is the average 

power during this average moving time as shown in the 

equation (5). This computing method is referred to the [26]. is 

(in seconds) is a local variable to mark the sample points’ 

serial time number and is numbered consecutively during one 

day. That means is is labeled from 1 to 86400 (There are 

86400 sample time every day since the sample interval is 1 

second in this paper.) each day. When is is less than Ta, the 

battery does not work since there are not enough sample 

points to calculate an average value. Otherwise, the 

calculated dispatch reference of the battery is the average 

power of the HESS during the past Ta period. Also, the 

practical dispatch power of the battery will be subjected to 

some other constraint conditions.  

When is ≤Ta 
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In addition, the electrical-power conversion losses should 

be considered. The conversion efficiency of converters in 

both the DC/AC(DC/AC) and AC/DC(AC/DC) side and the battery 

are about 95% and 85% respectively. Thus, the final 

efficiency of the storage-generation system is: 

/ /
0.95 0.85 0.95 0.77

AC DC battery DC AC
           (6) 

After determining the calculation of the required dispatch 

energy, the control process will be described for three 

conditions. Considering the battery power dispatching 

regulations described above, the HESS power dispatching 

process can be classified into three conditions: 

Condition 1 when is ≤Ta 

In this condition, the dispatch power of the battery is zero 

as shown in the equation (5) and only the ultra-capacitor 

works. And the specific dispatch power calculation process 

of the ultra-capacitor will be clarified in the section III and 

IV (The following two conditions are the same.). 
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SoCCAP is the ultra-capacitor’s state of charge. This 

condition means that the current operating mode of the 

battery does not change comparing with the last operating 

mode (the former condition) or it changes but the ultra-

capacitor cannot supply the required grid power alone (the 

latter condition). It balances the battery and ultra-capacitor’s 

working power: the battery and ultra-capacitor work together 

as shown in the equations (1)-(5). 

Condition 3 when is > Ta and meets the condition of 
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This condition means that the operating pattern of battery 

changes and the ultra-capacitor can work alone. In order to 

reduce the charge and discharge times of the battery, it 

should maintain its previous state with a constant power Pcon. 

As for the ultra-capacitor, it has enough reserved energy in 

this situation and is controlled to dispatch power.  

If previous second state is discharging 

( )BESS conP i P  

If previous second state is charging, 

( )BESS conP i P                                
(8) 

These three conditions described above can make sure that 

the battery will be used to shave the flat part of the load 

demand whereas the ultra-capacitor will reduce the large-

amplitude part of the load demand especially when the EV 

load occurs. Section III and IV will describe the specific 

energy management method of the ultra-capacitor.  



III.ALGORITHM  FOR ENERGY DISPATCH FOR  THE      

ULTRA-CAPACITOR 

This section will introduce the specific dispatch power 

calculation process of the ultra-capacitor. Independent of the 

precise forecast data, the calculation process focuses on the 

real-time correction step. Under this circumstance, the ultra-

capacitor can achieve the maximum energy utilization 

especially when large fluctuations (forecast errors) occur. 

The calculation process is based on the data of the day 

before which acts as the references for the initial calculation. 

These references will be compared with the practical data to 

calculate the real-time discharging threshold at each sample 

time and manage the energy of the ultra-capacitor precisely. 

This senction will mainly give out some calculation criterias 

and the essence of the algorithm will be clarified in the 

section IV.  

The first step of the algorithm is to determine the operating 

mode (charging or discharging) of the ultra-capacitor from 

the surplus power for the ultra-capacitor (P’sp) related to tariff 

(prc). Then the limitation of dispatch power and the 

efficiency of energy conversion should be calculated. If the 

ultra-capacitor operates in discharge mode, the most 

important part is calculating the discharge threshold. 

The whole system’s surplus power (Psp) in any sample 

interval equals to the load demand minus the summation of 

power available from the HESS. During the low-tariff period, 

the energy storage units are regarded as the load and the 

main gird is compelled to charge for the energy storage 

units (PG). During the high-tariff, the main gird does not 

extra charge for the energy storage units. Since the grid 

power (PG) changes with tariff, the calculation of the surplus 

power falls into two cases as shown in the equation (9). 

If prc(i)=1 

( ) ( ) [ ( ) ( ) ( )]sp l pv G wdP i P i P i P i P i     

If prc(i)=2 

( ) ( ) [ ( ) ( )]sp l pv wdP i P i P i P i  
                            

(9) 

Where, Pl is the load demand, PG is the grid power, Ppv is the 

photovoltaic output, Pwd is the wind power. These variables 

are non-negative. “1” represents the low-tariff and “2” 

represents the high-tariff. PSP is the surplus power. Its 

negative value means the energy supply is less than the 

demand and the positive value means the energy supply is 

larger than the demand. 
The power (P’sp) required from the ultra-capacitor shown 

in the equation (10) is the surplus power after subtracting the 

dispatch power by the battery according to the equations (5)-

(8). 
' ( ) ( ) ( )sp sp BESSP i P i P i                        

(10) 

After confirming the operation mode, it is easy to calculate 

the discharge power for the ultra-capacitor (PCAP). This value 

is modified according to the electrical-power conversion 

losses. The discharge power is related to the threshold power 

PCDthr for the discharging of the ultra-capacitor shown in the 

equation (11). 

' ( ) ( ) ( )sp CDthr CAPP i P i P i 
              

 (11) 

The conversion efficiency of converters is 95%. Different 

with the battery, losses due to ultra-capacitor internal 

resistance can be ignored for the comparable small values. 

Thus, the final efficiency of the storage-generation is: 

/ /
0.95 0.95 0.90

AC DC DC AC
    

          
 (12) 

The proposed method regulates the ultra-capacitor dispatch 

power intelligently based on the data of the day before. In 

this case, the proposed method cannot be used in the first day 

(the fixed-threshold method is used for the first day). 

For the first day (d=1), the value of the PCDthr is fixed 

comparing the surplus power and the limit of discharge 

power and checking the rest power of the ultra-capacitor. For 

the following days, the PCDthr for each current sample is 

related to the previous day’s data and the discharge threshold 

will be calculated using the method below. 

The total available energy of the micro-grid is the 

summation of the measured PV output (Epv), wind turbine 

output (Ewd) and grid energy (EG) at low tariff. Then 

considering the losses and the energy dispatched by the 

battery, the energy that can be used by the ultra-capacitor is 

shown below. 

 ( )
1 1 1

( . ( )) .
1 1

( , ) ( , ) ( , )

( , ) ( , )
r

T T T

BPG d pv wd G
i i i

T T

conv loses P loss HESS BESS
i i

E E i d E i d E i d

E i d E i d

  


 

     

 

    
(13)

 

In order to change the real-time threshold power in day 

(d+1), the total energy dispatched by the ultra-capacitor in 

day d (ΔECAP) should be calculated first. It is the difference 

between the adjustable energy and the final reserved energy 

of the ultra-capacitor in day d. 

( ) ( ( 1)) ( ) ( )CAP CAP BPG CAPE d E T d E d E T d           
(14) 

Where, ECAP is the reserved energy of the ultra-capacitor and 

EBPG is available energy for the ultra-capacitor. 
For calculating the next day’s PCDthr (d>1), it is assumed 

that the total dispatch energy and the available energy for day 

(d+1) and day d are equal as shown in the equation (15). 

Under this initial assumption, the final state of charge of the 

ultra-capacitor (E’CAP) in day (d+1) can be calculated by the 

equation (16) which represents the energy available for re-

dispatch at end of day (d+1). These are just the initial 

reference values and will be corrected comparing the current 

practical surplus power and the SoC of the ultra-capacitor 

with the previous day’s data at the same time which will be 

clarified in the Section IV. 
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' ( 1) ( 1) ( ) ( )CAP BPG CAP CAPE d E d E T d E d         
(16) 

Analyzing and processing the available energy are the 

fundamental basis of the variable-threshold method for this 



study. Section IV will introduce an Adaptive Intelligence 

Technique (AIT) to regulate the threshold power to dispatch 

those available excess energies. 

IV.ADAPTIVE INTELLIGENT TECHNIQUE  

This section will discuss an Adaptive Intelligence 

Technique (AIT) which is the essential step to calculate the 

variable discharge threshold power of the ultra-capacitor to 

control its energy dispatch. This technique can make the 

discharge power of the ultra-capacitor track the load demand 

variety to maximize the utilization efficiency of the ultra-

capacitor. In addition, the load demand with large fluctuation 

can be shaved as much as possible. 

Firstly, in order to judge the ultra-capacitor’s discharge 

state, an ultra-capacitor index Kx is applied.  
'
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CAP CAP e
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Where, ECAP.e is the rated capacity of the ultra-capacitor. 

This index is the ratio of the final state of charge of the 

ultra-capacitor under the assumption equation (15) and the 

minimum state of charge allowed for the ultra-capacitor. The 

minimum SoC is set to guarantee the stable operation of the 

ultra-capacitor for a long time. It is to measure whether the 

ultra-capacitor storage energy is above the minimum or not. 

It is also a boundary of energy level at where a decision is 

made to either draw in more energy or dispatch more energy. 

If Kx>1, it means that the ultra-capacitor can discharge more 

energy; otherwise, the ultra-capacitor should discharge less 

energy to ensure it does not go below the lower limit. 

Since the real-time dispatch result depends largely on the 

previous day’s data, this paper establishes an optimal trend 

target that the difference between the load gradient r1 and the 

discharge rate r2 is better to be small to fully track the load 

deviation. For current point i, r1 and r2 of the same time of the 

day before are calculated firstly as shown in the equation (18). 

Then, the objective target is established to make the current 

and future regulation results tend to be optimum as shown in 

the equation (19).  
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1 2minot r r                         (19) 

For every sample point (i) two conditions are classified. 

Condition 1 If Kx>1  

Check the condition: whether the ultra-capacitor reserved 

energy in the previous sample is larger than the required 

minimum reserved energy and whether the current surplus 

power is larger than the amount in the previous day at the 

same sample period (ECAP(i-Δt)>SoCCAP.min×ECAP.e, 

P’sp(i)>P’sp(i-T)). 

If the condition is true, the threshold PCDthr is reduced. 

During this process, the optimal condition r1=r2 is setting and 

the value of r2 (equal to r1) is used to calculate the new 

threshold to make the result tend to be the optimum.  
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With a lower threshold, the ultra-capacitor can discharges 

more energy at time i (applying with the equation (11)) 

which leads to a decrease in E’CAP(d+1). Thus, E’CAP(d+1) 

and Kx should be recalibrated: 
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Condition 2 If Kx<1 

Check the condition: ECAP(i-Δt)>SoCCAP.min×ECAP.e, 

P’sp(i)<P’sp(i-T) and if the condition is true the threshold 

PCDthr is increased as: 
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With a higher threshold, the ultra-capacitor discharges less 

energy at time i to increase E’CAP(d+1).Thus, E’CAP(d+1) and 

Kx should be recalibrated(the Kx is recalibrated with the  

equation (22)) 
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(24) 

Based on the analysis and functions above, the flow chart 

for implementation is presented in Fig.2. 

The AIT works when provided with real time information 

of load demand, distributed generation, supply from main 

grid, converter rating and system efficiencies. The system 

reads measured load demand and distributed generation data 

first. Initially, values for threshold power are manually fixed 

after being subject through techno-economic conditions 

mentioned above. The threshold power gauges the amount of 

energy that should be dispatched at every point i for day d. 

After error checking of total energy dispatched plus ultra-

capacitor state at end of day d using (25), the algorithm 

moves to the next process flow where it modifies the current 

threshold power based on the power which is calculated 

using the previous day’s information. The AIT process helps 

determine the actual threshold power for day (d+1). 



start

calculate P sp(i): 
equations(10)-(11)

 read data: Pl, Ppv, Pwd, PG, prc, PCAP.e, 
SoCCAP, ECAP.e, n, T,Δt,etc.

fixed threshold method:

PCDthr[i,d]i=1,2, ,86400;d=1

compare the value:

ECAP(i-Δt) and 

SoCCAP.min×ECAP.e; 

P sp(i) and P sp(i-T)

guage threshold:
equations (19) 

and (22)

i 86400×d

P sp(i) 0

Y

charge the 

ultra-capacitor

prc=2

discharge the 

ultra-capacitor

PCAP(i)=

P sp(i)-PG(i)

Y

i=i+1

Y

d=d+1

d  2

i=1;d=1

Y

d  n
Y

end

N

N

N

N

N

 
Fig. 2.  Algorithm for ultra-capacitor Management System 
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V.RESULTS 

This paper utilizes the on-site measured data as the input 

data for the proposed method to test the operation efficiency. 

The RES data are generated from a 3kW wind turbine and a 

3kW PV panel. The load demand data is from a load 

simulation model--the CREST Domestic Electricity Demand 

Model [27]. The electricity price is referred to the Economy 7 

tariff policy. The storage system consists of a 65kWh/5kW 

Li-ion battery and a 35kWh/50kW ultra-capacitor. The Wind 

turbine, PV, storage system and three households are formed 

as a community micro-grid. 

The Fig.3 shows the RES output and the load demand 

during 3 days. The PV output reaches its peak in the middays 

and the wind turbine output reaches the peak in the late 

nights and early mornings. The output distribution of RES is 

a reverse profile with the load demand.  

The Fig.4 shows the surplus power calculated by the 

equation (9). The negative value indicates that the output of 

the RES is larger than the load and is better to be stored in 

order to be effectively discharged during the load peak period. 

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
0

2000
4000
6000
8000

lo
ad

  
  

  
  
  

d
em

an
d

 (
W

)

time (hour)

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
0

500
1000
1500
2000
2500
3000

P
V

 

o
u
tp

u
t 

(W
)

24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96
0

1000

2000

3000

w
in

d
 

o
u
tp

u
t 

(W
)

 

Fig. 3.   RES output and Load demand 
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Fig. 4.  Surplus power curve 
 

A.Particle Swarm Optimization Algorithm 

The particle swarm optimization (PSO) algorithm [28] is 

based on the precise forecast data.  

Fig.5 shows the dispatch power of the HESS and the new 

load demand after being regulated by the HESS management 

using the PSO algorithm. Compared with the surplus power 

in the Fig.4, PSO algorithm shows the load shaving ability. 

However, this load shaving effect of the PSO is not obvious 

since the operation result is associated with the number of 

particles, the dimensionality of the particle swarm and other 

parameters. Also, the value of those parameters influences 

the algorithm operation speed. Therefore, the PSO algorithm 

has the shortage of long operation time and unstable results. 

2428 32 36 4044 48 52 5660 64 68 72 76 80 84 88 92 96
-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

P
H

E
S

S
  

  (
W

)

24 2832 36 40 44 48 52 5660 64 6872 76 80 84 8892 96
0

2000

4000

6000

8000

10000

time (hour)

N
e
w

 L
o
a
d
 D

e
m

a
n
d

 (
W

)

 

Fig. 5.  The dispatch power and New Load Demand with PSO 



 

In addition, if a sudden fluctuation ΔPerror appears during 

the practical condition, the load shaving result may be 

affected seriously since the instability characteristics of the 

PSO algorithm.  

Fig.6 shows the New Load Demand (NLD) with and 

without ΔPl.error (this fluctuation appears during the 44th to 

45th hours and it is used to simulate the demand of the 

Electric Vehicle with 2000W). The blue dashed line is the 

result under the circumstance that the forecast data is very 

precise and the green line is the result under the circumstance 

that a sudden load fluctuation appears. The result shows that 

the PSO algorithm based on forecast data cannot deal with 

the condition of sudden fluctuation very well. 
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Fig. 6.  New Load Demand (NLD) with or without ΔPl.error (PSO) 
 

According to the testing results, the PSO algorithm based 

on forecast data requires a precise load consumption and RES 

output forecast to calculate the dispatch power of the HESS 

at the beginning of each day. However, it’s not always the 

case that consumer load demand and RES are accurately 

forecasted in reality. Therefore, the whole system might 

dispatch inefficiently most times by the PSO algorithm. 

B.AIT Algorithm. 

Fig.7 shows the New Load Demand with or without 

ΔPl.error applying with the AIT (using the same data as the 

PSO algorithm). Comparing Fig.6 with Fig.7, it is obvious 

that the magnitude of the demand fluctuation with and 

without ΔPl.error of the PSO algorithm is larger than that of 

the variable threshold method. This result shows that the load 

fluctuation has less impact on the HESS’s power dispatch 

when the AIT is employed. Compared with the PSO 

algorithm, the AIT not only improves the efficiency of HESS, 

but also reduces the influence of data fluctuation on HESS’s 

power dispatch.  
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Fig. 7.  New Load Demand (NLD) with or without ΔPl.error (AIT) 

The figures below only show zoom in part of data in order 

to make clear comparison. The Fig.8 shows the actual 

charging and discharging power of the HESS with PSO 

algorithm and the AIT algorithm respectively. Compared 

with the PSO algorithm (dashed blue line), the proposed AIT 

algorithm (red line) provides more power from the HESS 

during the high-tariff period.  
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Fig. 8. Power output of HESS with PSO and with AIT 

 

The load demand seen from the grid side (the suppliers) 

has been reduced as shown in Fig.9. Compared with the PSO 

algorithm (dashed blue line), the AIT algorithm offers much 

less peak demand since it can discharge more power to shave 

the peak load as shown in the Fig.8. 

40 42 44 46 48
-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

time (hour)

N
e
w

 L
o

ad
 D

e
m

a
n
d
  

(W
)

 

 

PSO method
AIT method

 

Fig.9.  New Load Demand (NLD) before and after applied with AIT 

 

Overall improvements of the AIT for 8 weeks are 

demonstrated in the Table I. 

 
TABLE I.  

Weekly Improvement by AIT technique 

 

The Table I shows the improvement in the load smoothing 

and efficiency of the energy system when the proposed AIT 

week

New Load

Demand with PSO

(E+04, wh)

New  Load

Demand with AIT

(E+04, wh)

HESS

efficiency

with PSO

HESS

efficiency

with AIT

1 9.88 3.34 26.02% 78.56%

2 8.16 0.84 25.46% 95.03%

3 10.68 8.12 42.68% 82.70%

4 10.72 12.00 64.76% 64.14%

5 12.29 11.20 38.11% 55.48%

6 9.06 2.70 26.38% 78.12%

7 9.65 3.19 37.63% 94.19%

8 1.31 1.11 25.80% 59.00%



is applied. Comparing the results from the second row to the 

third row, it is obvious that the AIT can get much lower load 

demand than the PSO algorithm. The HESS efficiency is the 

ratio of discharge energy and the available energy in the 

HESS (from the fourth to the fifth row) indicating that the 

efficiency of HESS is raised and more stored energy is 

discharged to smooth the load applied with the AIT. 

However, there is an unconformable data. In the week 4, the 

AIT algorithm shows better result than the AIT. The reason 

of this condition is that during the week 1-3, the PSO 

algorithm does not fully utilize the stored energy which 

means it has larger accessible energy to dispatch in the week 

4. As a result, it gets better load shaving effect with larger 

HESS efficiency. Considering the unstable characteristics of 

the PSO algorithm, it is not easy to achieve this result always. 

Then the proposed program was utilized in a one year data 

and the overall energy saved from the grid is about 8.56% 

and the renewable energy local utilization had been improved 

by 20.12%. From all the results, the AIT proposed in this 

paper shows better effect in load shaving and the utilization 

efficiency of the storage unit. 

VI.CONCLUSION 

This paper proposes a variable-threshold methodology for 

control of energy storage unit within a micro-grid. With each 

stage of the decision making for energy distribution, an 

Adaptive Intelligence Technique (AIT) is used to calculate 

the current power management reference and adaptively 

update current HESS state to adjust to the fast changed 

consumer demand pattern. The AIT is tested in a micro-grid 

system used onsite measured data and simulated load demand. 

According to the results, compared with the traditional PSO 

algorithm, the AIT improves the efficiency of renewable 

energy utilization. Compared with the method which relies 

on forecasting information, the proposed AIT can regulate 

the threshold power and discharging power without precise 

forecasting. This can reduce the deviation effect of the load 

shaving result caused by the sudden fluctuation of the load 

demand and improve the accuracy of the control strategy. 

Therefore, the proposed algorithm is more practical for real 

time implementation and can bring benefit to both the local 

customers and the power suppliers by achieving maximum 

RES local utilization and load smoothing. 
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