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Abstract. We report on the structural and optical properties of Ga1−xMnxAs–AlAs quantum wells (QWs) with x = 0.1%
grown by molecular beam epitaxy (MBE) on semi-insulating GaAs substrates with orientations (100), (110), (311)B and
(411)B. Atomic force microscopy (AFM), X-ray diffraction (XRD) and photoluminescence (PL) techniques were used to
investigate these QWs. AFM results have evidenced the formation of Mn-induced islands, which are randomly distributed
on the surface. These islands tend to segregate for samples grown on (110) and (411)B planes, while no clear segregation
was observed for samples grown on (100) and (311)B orientations. Results show that the PL line width increases with Mn
segregation. XRD measurements were used to determine 2θ, d and cell parameters.
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1. Introduction

Diluted magnetic GaMnAs semiconductors have been
considered as promising materials for applications in spin-
based electronics, spintronics, ferromagnetic,microelectronic
and optoelectronic devices [1,2].
Recently, the demonstration of large tunneling magnetore-

sistance induced by resonant tunneling in GaMnAs-based
heterostructures made such structures to be in spin-dependent
resonant tunneling diodes [3]. Experimental techniques such
as magnetization, magneto-transport and ferromagnetic res-
onance measurements were used to explain magnetic prop-
erties of GaMnAs structures grown on different substrate
planes. It was reported that the Hall resistance exhibited
asymmetry with respect to magnetic field in GaMnAs struc-
tures grown in various orientations. It was explained that
magnetization (M) is confined to preferred crystal planes,
which could provide magnetic anisotropy in spintronic
devices [4].

The achievement of high Curie temperature (Tc = 110K)
has accelerated the research on this material system, how-
ever, there are still growth challenges to obtain high-quality
epitaxial layers which are required for these applications [5].
Some of the growth difficulties include the larger size and low
vapour pressure of Mn as compared with Ga and As and low
solubility of Mn in GaAs, and therefore low substrate growth

temperature is required to grow high-quality GaMnAs [6].
However, generation of defects, such as As antisites and Mn
interstitials, cannot be neglected as they can deteriorate the
crystallinity of the material [7,8].

The incorporation of Mn in III–V semiconductors can be
substitutional (occupies Ga or As sites) [9,10] and/or inter-
stitial [11]. When Mn atoms occupy Ga sites, they act as
acceptors (provide hole charges) and create natural magnetic
moments [12]. For spintronic applications, high structural and
electronic qualities are of paramount importance as well as
high Curie temperature [13]. Spintronic devices, which are
composed of multilayer heterostructures, are especially sus-
ceptible to the quality of the interfaces [14].
In this study, structural properties of Ga0.999Mn0.001As–

AlAs quantum wells (QWs) grown by molecular beam
epitaxy (MBE) on GaAs substrate in various orientations at
relatively higher temperatures (450◦C) are determined. The
Mn content is kept low in order to avoid high density of
defects. In fact, it was reported that for this low Mn com-
position the As defects are reduced and the substitutional
incorporation of Mn into Ga sites is enhanced, which enabled
the observation of optical emission [15]. The crystal quality
of our QWswas determined byX-ray diffraction (XRD)mea-
surements. The morphology and the surface roughness of the
Ga0.999Mn0.001As–AlAs ternary alloys were determined by
atomic forcemicroscopy (AFM) technique. In addition, AFM
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Figure 1. (a) AFM image of GaMnAs–AlAs QW grown on (100) plane and (b) PL spectrum of the same structure.

and XRD results are further supported by photoluminescence
(PL) measurements.

2. Experimental

The samples were grown on (100), (110), (311)B and (411)B
semi-insulating GaAs substrate planes in a Veeco Modular
Gen IIMBE reactor equippedwith a real-timewafer tempera-
ture sensor, which allows accurate monitoring of the substrate
temperature during growth. The structures were grown using
As4 species on In-free sample holders and consist of a GaAs
buffer layer and an AlAs−GaAs−Ga0.999Mn0.001As QW.
During theGaMnAsQWgrowth, theAs4/(Ga+Mn) ratio was
kept close to 1. TheQWwas surrounded by 50-nm thickAlAs
barriers. The total QW thickness is 6 nm, which comprises
two 1 nm layers of GaAs adjacent to the AlAs interfaces and a
4-nm thick GaMnAs layer. The structures were capped with a
10-nmGaAs layer. This configurationwas usedwith the intent
to reduce the effect of interface segregation of Mn, which
might degrade the optical properties of the QW. The GaAs
buffer layer and the rest of the structure were grown at 450◦C.
Structural properties were determined by Park System AFM
and Rigaku smart Lab XRD, while PL measurements were
performed using a Bruker VERTEX 80V Fourier transform
infrared spectrometer equipped with PL module. A 532-
nm continuous wave laser was used as an excitation source
together with a Si-avalanche photodiode detector. All the PL
measurements were taken at a temperature of 15K. The sam-
ples are coded as C129-I, C129-II, C129-III and C129-IV for
Mn-containingAlAs–GaMnAsQWstructure grownon (100),
(110), (311)B and (411)B GaAs substrates, respectively.

3. Results and discussion

Structural properties of GaMnAs QWs grown at higher tem-
peratures and on different plane orientationswere investigated

by AFM and XRD techniques. The effect of the incorporation
of Mn in GaMnAs QWs was studied and probed by PL mea-
surements. Figures 1–4 show AFM and PL results for these
GaMnAsQWs. It is well known that there is a tendency ofMn
atoms to segregate to the surface, and this could be explained
by the larger size and low vapour pressure ofMn as compared
with Ga and As species. The segregation may occur during
GaMnAs growth as seen in figures 2a and 4a. Hernandez et
al [16] reported that uniform distribution of Mn into GaAs
or GaMnAs multilayers with various Mn contents strongly
depends on V–III flux ratio and substrate temperature. In the
report, secondary ion mass spectrometry (SIMS) depth pro-
file showed that Mn concentration near the sample surface is
decreased from 7.2×1020 to 5.8×1020 atoms cm−3 at growth
temperatureT = 250 and350K, respectively [16]. Itwas con-
cluded that the reduction inMn concentration near the surface
with increasing growth temperature is due to the absence of
manganese segregation on the surface. Their results were fur-
ther supported by AFM. No segregation was reported in the
sample grown at T = 350K. It was suggested thatmanganese
distribution into GaAs along the growth direction is strongly
dependent on the growth temperature [16]. Poggio et al [17]
reported Mn concentration profile of GaMnAs–AlGaAs QW
structure with various Mn contents using SIMS. The high-
est manganese concentration measured was in the range of
1018−1020 atoms cm−3 at the centre of QW and decreased
towards the sample surface down to 1017−1019 atoms cm−3.
The Mn content on the sample surface, which is 100 nm
above the QW region, was attributed to residual Mn con-
centration incorporated into the structure even if Mn shutter
was shut during the surface epilayer growth. Furthermore, the
presence of Mn impurities in the investigated samples was
substitutionally incorporated [17]. In our investigation, Mn
content (0.1%) and growth temperature (450◦C) were kept
constant while the GaAs substrate orientation was varied. Our
AFM results have shown that there is no Mn segregation on
the surface and the surface is nearly homogenous for (100)
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Figure 2. (a) AFM image of GaMnAs–AlAs QW grown on (110) plane and (b) PL spectrum of the same structure.

Figure 3. (a) AFM image of GaMnAs–AlAs QW grown on (311)B plane and (b) PL spectrum of the same structure.

Figure 4. (a) AFM image of GaMnAs–AlAs QW grown on (411)B plane and (b) PL spectrum of the same structure.
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plane while there is Mn segregation on the (110) surface. At
high-index planes such as (311)B, Mn segregation on the sur-
face was not observed. However, for (411)B plane the Mn
segregation on the surface as determined by AFM is very
high. This might be attributed to residual concentration of
Mn (residual impurity), which incorporates into the structure
even after theMn shutter is closed, inducing non-homogenous
surface. Gunes et al [15] and Rodrigues et al [18] recently
reported PL results of (100) GaAs–AlAs QW structure with
andwithoutMncontent. The temperature-dependent PL spec-
trum inMn-freeGaAs–AlAsQWsample had a shallowdonor,
which was assigned to interstitial Mni. As a result, strong
surface Mn segregation might be explained in terms of high
residualMncontamination during the growth. The differences
inmorphology, symmetry and surface reconstruction between
the crystalline orientations of the substratemay be responsible
for the dissimilar Mn segregations in the conventional (100)
and non-(100) GaAs surfaces.
Manganese segregation on the surface of (411)B sample

showed anomalous behaviour, having different concentra-
tions at different parts of sample surface (see figure 4a). This
might be attributed to Mn-rich and lower segregation. Fur-
thermore, XRD measurements also confirmed the structural
disorder, resulting in low crystal quality as seen in figure 5.

The surface roughness as measured by AFM is 5, 34, 16
and 38 nm for (100), (110), (311)B and (411)B, respectively
(see figures 1a–4a). Themagnitude of the roughness is related
to the manganese segregation on the surface. Since no segre-
gation is observed in (100) and (311)B, the surface roughness
is very low, while in (110) and (411)B orientations the mag-
nitude of surface roughness is higher.
AFM results are comparedwith PL spectra obtained at 15K

(figures 1–4). The PL full-widths at half-maximum (FWHM)
of the samples grown on (100), (110), (311)B and (411)B are
20, 50, 30 and 49meV, respectively. We observed that the
FWHM of the samples that display manganese surface seg-
regation are greater than samples with no segregation on the
surface. The increase of PL FWHM is associated with the
deterioration of sample quality. These results are further sup-
ported by AFM images and XRD spectra as seen in figures 4
and 5, respectively. However, Mn present in the structure is
substitutionally incorporated as a result of reducedAs defects.
Adding very low Mn content into the structure leads to a
reduction of As defects and allows the substitutional incorpo-
ration of Mn into Ga sites, enabling the observation of optical
emission from GaMnAs QW (see figures 1b–4b). Further
details can be found in reference [15].
Figure 5 shows the XRD pattern of GaMnAs QW grown

at 450◦C. Diffraction patterns were obtained with θ−2θ from
10 to 90◦. The XRD patterns of GaMnAs layers show that the
structures are crystallized in the cubic phase. It is well known
that the geometry of peaks strongly depends on the positions
of the atoms in the crystal [19]. The strongest peaks and grain
sizes can be seen for each sample in table 1.

According to the XRD spectra of (100), (110), (311)B and
(411)B crystalline planes, 2θ were observed as (31.60–65.86),

Figure 5. XRD patterns of GaMnAs QW grown on (100), (110),
(311)B and (411)B GaAs substrates.

(44.39–66.01), (44.40–53.90) and (44.38–53.44◦),
respectively. The highest intensity is obtained from the sam-
ples grown on (100) and (311)B, in which no Mn segregation
occurs on the sample surface. However, the XRD peak inten-
sity is reduced in the samples having Mn segregation on their
surface, leading to a degradation of the sample quality. In addi-
tion, FWHMof theXRDpeaks in (110) and (411)B planes are
calculated and found to be much more broader than for (100)
and (311)B planes. The FWHM of XRD peaks for (100) and
(311)B planes, which do not show anymanganese segregation
on the surface, are 0.141 and 0.144◦, respectively. However,
the FWHM of XRD peaks for the samples (110) and (411)B
planes are calculated as 0.228 and 0.340◦, which are two and
three times greater than that of (100) and (311)B, respec-
tively. As a result, the broadness and reduction of XRD peaks
intensity might originate frommanganese-related defects and
manganese segregation. The average grain size (D) was cal-
culated using the Scherrer formula [20].

D = Kλ

βcosθ
,

where K is a dimensionless shape factor (∼0.9), λ (1.5405Å)

is the X-ray wavelength, β is the angular width at the inten-
sity of FWHM and θ is the Bragg angle. The grain size of
the samples grown on various orientations showed system-
atic decrease with increasing manganese segregation on the
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Table 1. The standard and calculated X-ray diffraction parameters for Ga0.999Mn0.001As.

Observed data Standard data
Cell parameters
a = b = c (Å)

Sample 2θ (deg) d (Å) 2θ (deg) d (Å) FWHM (deg) Grain size (Å) Calculated Standard

C129-I 31.55 2.833 31.65 2.825 0.141 610 5.6537 5.6538
66.10 1.412 66.04 1.414 0.145 682 5.6537 5.6538

C129-II 45.26 2.002 45.35 1.998 0.228 393 5.6537 5.6538
C129-III 53.80 1.703 53.73 1.705 0.144 646 5.6537 5.6538
C129-IV 44.38 2.039 45.35 1.998 0.340 264 5.6537 5.6538

surface as seen in table 1. In accordance with AFM results,
the average grain size is found to be 264 and 393 Å for (411)B
and (110), respectively. This tends to increase up to 682 and
646 Å in the (100) and (311)B samples, which do not show
any segregation, respectively. One can conclude that the grain
size is decreased and the FWHM is increased in the samples
that have surface manganese segregation. The result is fur-
ther confirmed by AFM and PL experiments. This might be
attributed to manganese-related defects that degrade the sur-
face morphology, and hence the crystal quality, but do not
quench the optical emission.

4. Conclusions

We have studied the properties of Ga0.999Mn0.001As–AlAs
QWs grown on semi-insulating GaAs substrates with various
orientations. AFM measurements indicate that Mn distribu-
tion is nearly homogenous for the samples grown on (100)
and high index (311)B plane across the surface while the
(110) and (411)B planes show clear segregation on the sur-
face. XRDs show that samples grown on (100) and (311)B
present better crystalline quality than those grown on (110)
and (411)B planes. The structural disorder, which causes low
crystal quality, is evidenced by XRD results. These results are
supported by PL measurements: The samples having no seg-
regation show better optical quality in terms of high intensity
of PL signal and low FWHM of the spectra at temperature
T = 15K.
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