
World Productivity Growth: A Model Averaging Approach∗

Meryem Duygun
Nottingham University Business School

Nottingham, UK
Meryem.Duygun@nottingham.ac.uk

Anders Isaksson
United Nations Industrial Development Organization

Vienna, Austria
A.Isaksson@unido.org

Jiaqi Hao
Credit Scorecard and Portfolio Management/ATB Financial

Edmonton, Alberta
jhao@atb.com

Robin C. Sickles
Rice University/Economics

Houston, Texas
rsickles@rice.edu

This version June 8, 2017

Abstract

Policy makers and the economic researchers who provide them estimates of economic activity
need to have an informative and scientifically-based method to develop a consensus estimate
for the most basic of the productivity measures, total factor productivity (TFP) growth. We
discuss methods to combine the various estimates based on different empirical specifications that
model and estimate productivity growth. We also discuss the various econometric approaches
used in the profession to estimate productivity growth. Our focus is on world TFP growth.
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1 Introduction

The measure of nations’ productivity is of great importance for both academics and policymakers in
assessing performance and planning future economic roadmaps. Strategic decisions require robust
indicators that receive broad consensus from various parties involved in the decision-making process.
The importance of such consensus is further amplified when monitoring bodies, and lenders such as
international organizations or financial and development institutions (e.g., IMF, World Bank, UN
and Regional Development Banks), are involved. This underscores the long debated and largely
unanswered question in the literature: on which approach do we rely?

A common measure of productivity is the Total Factor Productivity (TFP ) Index. However, the
existence of numerous methods and models involved in TFP measurement make it a cumbersome
and puzzling process for policy makers. This paper proposes a practical yet robust approach that
provides an appealing solution to academics and policy makers alike in their pursuit for a “consensus”
productivity indicator. We propose that instead of relying on a single approach, one should gather
information from a set of measurement methods and construct a single productivity indicator that
is backed by robust methodological techniques.

To demonstrate our approach, we apply it to a unique data set that covers a large set of countries
across the globe, namely the World Productivity Database (WPD) developed by the United Nations
Industrial Development Organization (UNIDO). One of the purposes of WPD is to speak to the
many approaches to TFP measurement and provide productivity analysts across the globe with
TFP estimates based on numerous methods, production function specifications, functional forms,
different capital stock and labor input measures, and much more. The arsenal of approaches available
to the researcher today, many of which are reflected in WPD, is manifold and technically advanced
and invites researchers to provide comparisons of results obtained from applying several methods.
Unfortunately, this approach is seldom the case, as analysts tend to resort to one method only.

The advantage of having a rich toolkit is, of course, a potential increase in accuracy with which
we are able to measure productivity performance. However, it also constitutes an acknowledgement
of uncertainties involved in modeling the productivity measure. A notable disadvantage is that these
different measurement methods yield a range of estimates with sometimes very wide dispersion or,
in the worst case, conflicting results. Furthermore, all models may be subject to misspecification
of unknown form, e.g., researchers might have different information sets. Moreover, models may be
affected differently by structural breaks caused by institutional change or technological development,
to name but a few possible reasons leading to variation in TFP measurement.

However commendable the work of WPD may be, it is still silent on the issue of what the
”correct” productivity estimate is. Importantly, the question is how policy makers are going to be
able to make the “right” choice from available alternative approaches. The approach presented in
this paper is a step towards resolving this conundrum.

To demonstrate the strength of our approach, the analysis presented, inter alia, includes results
at the aggregate world level, compares the performance of six country groups at different stages
of development, and decomposes TFP growth into change in technical efficiency and innovation.
Such decomposition provides policy makers with a richer and more detailed basis for policy making.
Importantly, the analysis introduces a comparison of our consensus estimates with those provided
by common approaches such as growth accounting, pooled and panel regression analysis, and data
envelopment analysis. Our consensus estimates fare well in comparison and we conclude that it may
be advisable to combine estimates in order to make the best conclusion based on all the available
information.

The paper provides a brief discussion of panel data and productivity analysis in applied economic
modeling. We discuss a variety of modeling scenarios and justifications for them based on classical
economic theory and on more recent advances in production modeling that formulate methods to
decompose productivity growth based on a Solow-type residual (Solow, 1957) into innovation and
catch-up, the latter referred to as technical efficiency change in the stochastic and non-parametric
frontier literature. We point to a number of innovations contributed to the panel data literature by
those working in the stochastic frontier productivity discipline. In that literature the focus has been
on the interpretation of relative temporal heterogeneity between production units (firms, countries,
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etc.) as a measure of relative technical efficiency in the use of the frontier technology. Our paper has
an aggregate productivity perspective, focusing on country level productivity, as it better motivates
and displays the strong intellectual parallels between the efficiency literature, the economic growth
and development literature, and the literature on panel data econometrics.

The paper is organized in the following way. We first discuss how productivity growth typically
has been measured in classical productivity studies. We then briefly discuss how innovation and
catch-up can be distinguished empirically. We discuss the econometric methods that accomplish
this. In the Appendix we also provide a set of Monte Carlo simulations that assess the performance
of the model averaging estimators we employ in our empirical work. We detail the motivation for
and the methods used in developing a consensus estimate from the competing model estimates. We
apply these methods to develop consensus estimates for world TFP growth from 1970 to 2000 and
then conclude.

2 Measuring Productivity and its Growth

2.1 Solow residual-based methods

In order to account for changing input (Xi) mix, modern index number analyses utilize a measure
of total factor productivity (TFP ) for a single output (Y ) technology that in its simplest form is a
ratio of output to a weighted sum of inputs. A useful construct for a single output technology is
thus :

TFP =
Y∑
aiXi

. (1)

Detailed discussion of the properties and formulation of productivity measures for single and multiple
output technologies are plentiful in the productivity literature. One relatively early and informative
discussion was undertaken by productivity pioneers Jorgenson and Griliches (1972). Many others
have preceded and followed their work. The literature is deep and extensive and we do not attempt
to list the relevant references in this paper.

Solow’s residual-based measure is based on the Cobb-Douglas production function with constant
returns to scale, Y = AXα

LX
1−α
K and given by:

TFP =
Y

Xα
LX

1−α
K

. (2)

Cost-minimization allows one to describe the TFP growth index in terms of expenditure shares:

T ḞP =
dY

Y
−
[
α
dXL

XL
+ (1− α)

dXK

XK

]
where the non-negative parameter α is the input expenditure share for labor. When multiple
outputs exist, TFP can also be described as a ratio of an index number describing aggregate output
levels(Yj) divided by an index number describing aggregate input levels(Xi). As is well-known,
since TFP is a function of index numbers, it derives its properties from the aggregator functions on
which it is based (see, e.g., Good, Nadiri, and Sickles, 1997).

3 Sources of Economic Growth, the Neoclassical and New
Growth Theory Models

Debates among researchers on the primary sources of economic growth and development centered
on two basic explanations that are rooted in the decomposition of economic growth sources: factor-
accumulation and productivity-growth components. According to Kim and Lau (1994), Young
(1992, 1995) and Krugman (1994), rapid economic growth in such emerging areas as East Asia was
largely explained by the mobilization of resources. Alternative explanations to the neoclassical
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growth model explain economic growth not only in terms of intensive and extensive utilization of
input factors but also due to factors that impact the degree to which countries can appropriate
the productivity potential of world technical innovations. Again, factors such as governmental
industrial policies, trade liberalization policies, and political, religious, and cultural institutions are
often viewed as central to the ability of countries to catch-up with a shifting world production
possibilities frontier (Grosskopf and Self, 2006)

Stiroh (2001) provides a coherent treatment of neoclassical theory that frames the problem of
measuring sources of TFP growth in the context of the neoclassical production Y = f(K,L, T )
where variables are indexed by a time subscript. In the typical neoclassical model of production,
the production function exhibits constant returns to scale, positive and diminishing returns to each
input, with marginal products approaching zero (infinity) as each input goes to infinity (zero). As
noted by Stiroh (and many others), long run per capita output growth is exogenously determined
by technical change. The neoclassical growth model is not a model that explains long-run growth
since technical change, which is the sole determinant of productivity growth, is determined outside
the system.

The neoclassical growth model can be modified to address this shortcoming by allowing for
technical change to be determined within the model, that is to be endogenously determined. This
leads to the ”new” growth theory of Romer (1986). In the Romer model, non-diminishing returns
to capital were due to external research and development effects. These were treated as spillovers,
affecting the stock of knowledge for all firms. In the simple Romer model firms face constant returns
to scale to all private inputs. The level of technology A can vary depending on the stock of some
privately provided input R (such as knowledge) and the production function is formulated as

Y = A(R)f(K,L,R)

The sources of the spillover differentiate many contributions to this literature. In the Arrow
(1962) model the source of the spillover was learning-by-doing, in the Lucas (1988) model it was the
stock of human capital, in the Coe and Helpman (1995) it was trade spillovers. Diao et al. (2005)
examined the impacts of both a protectionist alternative and shock liberalization and concluded that
reduced openness had a negative impact on the overall growth rate due to reduced learning from
the foreign spillover. Blazer and Sickles (2009) pursued the spatial effects of learning spillovers in
their analysis of the determinants of rapid gains in the productivity of constructing ”liberty ships”
during World War II.

As pointed out by Abramovitz (1986), Dowrick and Nguyen (1989), and Nelson and Wright
(1992), among many others, sources of productivity differences in post WWII industrialized countries
can be explained by neoclassical growth models that incorporate knowledge spillovers, technological
diffusion, and convergence to a best practice production process (Smolny, 2000). The ”new growth
theory” implicitly recognizes the role of efficiency in production. There are of course many other
explanations for possible technology spillovers. In the productivity and efficiency literature these
lead to an asymmetric error term that contains both the classical Solow residual and an additional
component reflecting the inability of a firm or country to take advantage of the existing technology.
This is simply viewed as a constraint on the unimpeded utilization of the available technology
spillovers and thus the asymmetry is due to the firm or country’s inability to fully utilize the
”frontier” technology (Sickles and Cigerli, 2009). One set of papers that provides an explicit
efficiency interpretation for this growth process is Hultberg, Nadiri and Sickles (1999, 2004) and
Ahn, Good, and Sickles (2000), which introduce inefficiency into the growth process. Of course,
the standard neoclassical model without explicit treatment of efficiency has been used by many
authors in examining growth and convergence. An implication of the endogenous growth model is
that if a time trend is added to the standard neoclassical production function then the trend must
be stochastic. This clearly has implications for stationarity (Reikard, 2005; Bai, Kao, and Ng,
2009). Kneip, Sickles, and Song (2012) have addressed the estimation issues that are associated
with specifying endogenous technical change in the presence of arbitrary forms of cross-sectional and
time-varyng efficiency change.
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3.1 Alternatives to the Neoclassical Growth Model

A more formal rationale for the nonsymmetry in the Solow residual and its interpretation as a
measure in the inability to take full advantage of an existing technology is found in the stochastic
frontier production literature introduced by Aigner, Lovell, and Schmidt (1977) and Meeusen and
van Den Broeck (1977). The original econometric specifications to address the nonsymmetry of the
Solow residual were cross-sectional approaches. These did not lend themselves to a study of country
dynamics as it was not possible with these cross-sectional models to identify efficiency differences in
different countries and temporal changes in those measures, or catch-up. Panel data extensions to
address these shortcomings were introduced by Pitt and Lee (1981) and Schmidt and Sickles (1984),
based on random and fixed effect panel models. Time-varying heterogeneity that allowed country
effects to vary over time was introduced into these models by Cornwell, Schmidt, and Sickles (1990),
Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993).

The regression-based approaches to estimating sources of time varying and country specific total
factor productivity growth utilize panel data methods in specifying time varying technical inefficiency
captured by normalized (possibly time-varying) intercepts or fixed effects. Technical inefficiency
can also be identified through normalized ”within” residuals from error components models with
the technical inefficiency effects. Moreover, parametric distributions can be assumed for such
panel random effect models and maximum likelihood can be used. For example, a truncated
normal distribution with time varying means can be specified as the one-sided error process for
technical efficiency (Battese and Coelli, 1992). Cuesta (2000) generalized Battese and Coelli (1992)
by allowing each country to have its own time path of technical inefficiency. The assumption of
independence between inputs and technical efficiency is problematic as is the incidental parameters
problem of MLE when fixed effects are assumed since the number of parameters increases with the
sample size.

One can also utilize reduced-form two stage approaches to estimate correlations between ineffi-
ciency and measured determinants, such as a country’s institutions (Hultberg et al., 1999, 2004).
Hultberg et al. examined second stage regressions of efficiency on a set of institutional factors and
found that variations in these factors explained almost two-thirds of the total variation in country
efficiency.

4 Decomposition of Economic Growth-Innovation and Effi-
ciency Change Identified by Regression-based Methods

The focus of this paper is on the econometric, or regression-based, estimation of TFP growth that
allows one to separately identify and calculate technological change and efficiency change, and is
quite standard. We limit ourselves to standard linear parametric functions in our model averaging
analysis as the computational burden is already rather extreme without considering nonparametric
and nonlinear specifications of the production function. The general model we consider is:

yit = xitβ + ηi(t) + vit (3)

where ηi(t) represents the country specific fixed effect that may be time varying, xit is a vector of
regressors, some of which may be endogenous and correlated with the error vit or the effects ηi(t).

Assuming that technical change is appropriable by all countries and that the relative magni-
tudes of country-specific effects are due to relative inefficiencies between them, TFP growth can be
decomposed econometrically into technical change and efficiency change when countries operate at
constant-returns-to-scale. When they do not one can also construct a decomposition of TFP growth
that also controls for scale effects. We focus on decompositions that obtain for constant-returns-to-
scale technologies, a very popular and theoretically defensible assumption in country growth studies.
We use a simple time trend to model technical change but it should be noted that it can be directly
proxied if one has country-specific observations on such factors as R&D expenditures, patent activity,
etc., or if one uses the time dummy index approach of Baltagi and Griffin (1988).
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The methods we consider in our empirical illustration of model averaging world productivity
growth utilize both time invariant and time varying effects models to estimate innovation and effi-
ciency change. There are many contributions to the efficiency and productivity literature that offer
different ways to estimate this canonical panel model and to decompose TFP growth into a catch-up
and innovation component. These include models introduced by Cornwell, Schmidt, and Sickles
(1990), Kumbhakar (1990), Battese and Coelli (1992), Lee and Schmidt (1993), Park, Sickles, and
Simar (1998, 2003, 2007), Greene (2005a,b), and Kneip, Sickles, and Song (2012). Space limits
the possibility of dealing with the many other approaches that have been proposed to estimate the
panel stochastic frontier and provide a decomposition of TFP growth into innovative and catch-up,
or technical efficiency. Bayesian estimators of panel stochastic frontiers have been developed by Liu,
Sickles, and Tsionas (2017), which builds on earlier work by Van den Broeck, Koop, Osiewalski, and
Steel (1994) and Tsionas (2006). The Bounded Inefficiency Model of Almanidis, Qian, and Sickles
(2014) and related models of Lee (1996), Lee and Lee (2012), and Orea and Steinbuks (2012), and
the ”True” Fixed Effects Model of Greene (2005a,b) are also possible estimators to consider.

In order to keep the level of analysis workable but also to display the feasibility of utilizing a
number of different methods and data specifications in our model averaging exercise, we limit our
model to a workable set of 10 different models. These different estimators differ on the basis of what
is assumed or not assumed about the form and structure of ηi(t), of the idiosyncratic error vit and in
various independence assumptions on the possible correlations of ηi(t) with the regressors xit. The
different estimators we used to construct innovation and efficiency change from the basic equation
above for the basic Cornwell et al. (1990) efficient instrumental variables estimator (EIV) and
time varying random effects estimator (CSSG), the Battese and Coelli (1992) time varying random
effects estimator (BC), the Park, Sickles, and Simar (1996) semi-nonparametric efficient estimators
(PSS1), the Park, Sickles, and Simar (1999) semi-nonparametric efficient estimator with serially
correlated errors (PSS2W) and (PSS2G), standard fixed effects with no temporal variability in the
effects (FIX1), standard random effects with no temporal variability in the effects (RND1), and fixed
effects and random effects estimators with a quadratic and linear time trend for productivity growth
(FIX2) and (RND2). Various assumptions on and specifications ηi(t), vit, the regressors xit, and
the correlation patterns among them are what differentiate these ten estimators. For example, the
Cornwell et al. EIV estimator specifies ηi(t) as a quadratic function of time for each cross-section
and allows correlation between a subset of regressors and the time-varying effects ηi(t). It is from
estimates of the ηi(t) that efficiency levels (renormalized and identified as technical efficiency) and
changes in them over time (indicating efficiency growth) are constructed in the stochastic frontier
literature. Technical change is estimated by including a time trend for all countries, which is
analogous to constructing a Solow-type residual and relating it to a time trend. The EIV estimator
is a Hausman and Taylor (1981) type estimator that utilizes orthogonality conditions (in this case
between labor inputs and the time trend) and efficiency effects. The various semi-nonparametric
panel estimators of Park, Simar, and Sickles are based on methods from the statistics literature
that are used to develop estimators that are the most efficient within a class of estimators that
are consistent with the parametric assumptions. These estimators utilize kernel smoothers to
nonparametrically model correlation patterns and joint distributions for the effects and the possibly
correlated regressors. The BC estimator assumes a parametric distribution for the effects and the
error term and allows for time-varying effects that have the same patterns but can shift among the
various countries. Testing for each of these specifications using standard specification metrics and
then picking the winner introduces pre-test bias as well as assumes that there is one correct model.
We argue below that such an approach is not warranted and that a consensus estimator based on
weighting all of these models is.

We first detail the different models and then use them and the method of model averaging
to evaluate world productivity trends from 1970 to 2000. In the Appendix A we also provide
results from a limited Monte Carlo experiment to examine the finite sample properties of the model
averaging methodology we employ in our empirical analyses.
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5 Descriptions of Panel Data Stochastic Frontier Models

The generic production function that is estimated by all of the productivity estimators and then
model averaged is the panel data stochastic frontier considered in Pitt and Lee (1981) and Schmidt
and Sickles (1984), extended to address time-varying inefficiency by Cornwell, et al. (1990), which
we introduced in the previous section. We first consider a special case of the general model above
and write it as:

yit = α+X ′itβ + εit, i = 1, ...N, t = 1, ...T. (4)

where
εit = vit − uit.

Here i indexes firms and t indexes time periods. yit is the (log) output observation of firm i at
tth period. X ′it is a vector of K (log) input observations of firm i at tth period. β are unknown
parameters. vit is distributed as i.i.d N(0, σ2

v), uit is a one-sided non-negative error and represents
technical inefficiency. We next briefly explain each estimator we use in our model averaging analysis
of world productivity growth.

5.1 Fixed Effects Estimator

The fixed effects estimator (FIX) is the fixed effect panel data model with time-invariant efficiency
introduced by Schmidt and Sickles (1984). Here we assume uit = ui. Let αi = α − ui. Then the
model becomes: yit = αi+X ′itβ+εit. The model then can be estimated following standard fix effect
estimation.

The main advantage of this estimator is that the consistency of parameter estimates does not
depend on the uncorrelatedness of the regressors and the individual effects. This is needed in the
random effects specification considered by Pitt and Lee (1981). The slope estimator is consistent
for either large N or T. However, consistency of the intercept αi requires large T. An advantage of
the fixed effects estimator is that consistency does not depend on the distribution of the effect as in
Pitt and Lee (1981). Efficiency of the ith cross-section (country) is estimated as ûi = α̂− α̂i where
α̂ = max(α̂i).

There is of course the issue of how we distinguish unobserved heterogeneity from inefficiency in
the panel stochastic frontier model, a point raised by Greene (2005a,b) and explored by many in
the last decade. In the panel stochastic frontier production function, output (or its log) for firm i
at time t is a function of measures of inputs and observable variables to control for the production
environment. Recall that the (log) linear production function (or distance function, recognizing
that in the latter case x will contain right-hand-side endogenous multiple outputs) that we consider
in this paper is yit = X ′itβ+ ηi(t) + vit. In order to make the point about what are or are not ”true”
fixed effects (of course this is just a semantic term of art as ’truth’ in the context of unobserved
heterogeneity is a misnomer) first decompose ηi(t) into two terms, call them ai and bi. Differences
across firms in the value of bi reflect differences in the technical efficiency of production, and as in
Schmidt and Sickles (1984) a conceptual measure of inefficiency can be expressed as

RIEi = max bi − bi ≥ 0. (5)

Differences in the value of ai, however, reflect differences in the production environment that are
beyond the control of the firm (or in our case, the country) and which we do not wish to include
in our efficiency measures. Amsler and Schmidt (2016) use the following argument to make the
point about how the interpretation of the ”effects” as well as the modeling scenario are essential in
decomposing and giving meaning to the ai and bi measures. Suppose that the firms are farms, in
which case a natural interpretation of bi would be a measure of the skill of the farmer. On the
other hand, ai would represent relevant but unobserved features of the production environment like
soil quality or microclimate. It is clear that without additional assumptions, typically in the form
of some type of orthogonality assumption, ai and bi cannot be separately point identified. The
identification strategy of Amsler and Schmidt (2016) is to assume that there are some observable
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variables that are correlated with ai but not bi and some other variables that are correlated with
bi but not ai. Staying with their agricultural example, assume that the education of the farmer is
correlated with her ability farmer but not with soil quality or microclimate. Define an indicator
variable for the physical location of the farm that is correlated with soil quality or microclimate
but not with the ability of the farmer. Then such a variables can be used as an instrument for bi.
Orthogonality conditions such as these, stated in terms of both of simple and partial correlations,
are used by Amsler and Schmidt (2016) to develop identification conditions for the inefficiency and
heterogeneity effects. For example, their first model assumes that the ability of the farmer is
uncorrelated with physical location of the farm, whereas the second model assumes that, conditional
on education of the farmer, ability of the farmer is uncorrelated with physical location of the farm.
Using these assumptions various point identification results follow. There are of course many other
considerations to explore in regard to decomposing the effects and imposing orthogonality conditions
to identify them. As this paper is concerned largely with developing a methodology to construct
a consensus estimate of TFP growth for policy makers based on model averaging methods we do
not explore in this paper other potential sources of endogeneity not addressed by the various types
of ”within” estimators we utilize. Moreover, as we are not interested in the levels of efficiency or
productivity but rather their changes, ”fixed effects” per se are differenced away in our construction
of productivity growth measures.

5.2 Random Effect Estimator

The random effects panel stochastic frontier estimator (RND) is a renormalized random effects
estimator and was introduced by Pitt and Lee (1981). Their MLE estimator for such a model
assumes that the time-invariant effect ui is uncorrelated with the regressors and distributed as
i.i.d (µ, σ2

u). The GLS estimator for the error components random effects stochastic frontier was
considered by Schmidt and Sickles (1984). If one lets α∗ = α − µ, u∗i = ui− µ, then a simple
reparameterization of the model yields

yit = α∗ +X ′itβ + (vit − u∗i ), (6)

where the composed error has the standard form for the random components and feasible GLS can
be employed. Given estimates of β̂, we can estimate u∗i by 1

T

∑
t

(yit− α̂∗−X ′itβ̂) and then estimate

efficiency via ûi = max
i
{û∗i } − û∗i .

5.3 Cornwell-Schmidt-Sickles Estimator

Cornwell el al. (1990) (CSS) introduced a new panel data model with heterogeneity in both slopes
and intercepts. The model allows them to estimate time-varying efficiency levels without imposing
strong distributional assumptions for technical inefficiency or random noise.

The model is written as:

yit = X
′

itβ + Z ′iγ +W ′itδi + εit, i = 1, ..., N, t = 1, ...T, (7)

δi = δ0 + ui

We can rewrite the model as

yit = X
′

itβ + Z ′iγ +W ′itδ0 + vit, (8)

vit = W ′itui + εit

Here the ui is distributed as i.i.d (0,∆), εit is distributed as i.i.d (0, σ2), and is uncorrelated with
regressors and ui.

In matrix form the model is:

y = Xβ + Zγ +Wδ0 + v, (9)

v = Qu+ ε
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where Q = diag(Wi).
CSS within (hereinafter CSSW) does not assume that Qu is uncorrelated with the regressors.

Defining the projection matrices PQ = Q(Q′Q)−1Q′ and MQ = I − PQ, we obtain CSSW as

β̂CSSW = (X ′MQX)−1X ′MQy. (10)

CSS generalized least squares (hereinafter CSSG) assumes (X,Z,W ) are uncorrelated with Qu,
and can be written as

(β̂, γ̂, δ̂0)CSSG = [(X,Z,W )′Ω−1(X,Z,W )]−1(X,Z,W )′Ω−1y (11)

where Ω = cov(v) = σ2INT + Q(IN ⊗ ∆)Q′. In order to relax the restriction of time-invariant
efficiency, CSS assume that the intercept, time and time2 are regressors whose coefficients exhibit
cross-sectional heterogeneity and this leads to a simple quadratic in time specification for the effects
that takes the form: αit = θi1 + θi2t + θi3t

2. Thus in the above model we have W ′it = [1, t, t2],
δ′i = [θi1, θi2, θi3]. Time-specific efficiencies can then be estimated as ûit = α̂t − α̂it where α̂t =
max
j

(α̂jt). CSS also provide an efficient instrumental variables estimator (hereinafter EIV), which is

an extension of the Hausman and Taylor (1981) estimator. The full set of instruments are contained
in

A = Ω1/2(MQX2,X1, Z1,W1) (12)

where X1, Z1,W1 are variables in X, Z, W that are uncorrelated with the effects, and X2 are
variables that are correlated with the effect. MQ is orthogonal projection matrix of Q. The EIV
estimator is given by

(β̂, γ̂, δ̂0)EIV = [(X,Z,W )′PAΩ−1(X,Z,W )]−1(X,Z,W )′PAΩ−1y. (13)

Details on how one can consistently estimate Ω−1 can be found in Cornwell et al. (1990).

5.4 Battese-Coelli Estimator

Battese and Coelli (1992) (BC) introduced a fully parameterized maximum likelihood estimator.
They define the technical efficiency for a given firm as an exponential function of time. Their model
is specified as

Yit = f(Xit;β) exp(vit − uit) (14)

and uit = ηitui = {exp[−η(t− T )]}ui

where vit is an i.i.d. N(0, σ2
v) and uit is an i.i.d. non-negative truncated N(µ, σ2). Notice that

individual firm effect uit can decrease, remain constant or increase as t increases, where η > 0,
η = 0 or η < 0, respectively. η = 0 is the case where firm efficiency is time-invariant. Technical
efficiency TEit = exp(−uit) is based on conditional mean. Details are provided by Battese and
Coelli (1992). The mean technical efficiency of firms at the tth period TEt = E[exp(−ηtui)], where
ηt = exp[−η(t− T )].

5.5 Semi-parametric Efficient Estimators

A class of estimators that achieve the semi-parametric efficiency bound (SPE) were introduced
in a series of papers by Park and Simar (1994) and Park et al. (1998, 2003, and 2006). The
estimators vary on how the basic model assumptions are modified to accommodate a particular issue
of misspecification with the underlying efficiency model. We consider a number of SPE estimators
that differ on the basis of assumed orthogonality of effects and regressors, temporal variation in the
efficiency effects, and correlation structure of the population disturbance. The notion of efficient
bounds in semi-parametric models has been well established in econometrics and statistics literature.
The basic idea is to project the scores with respect to the slope parameters onto the nuisance
parameter tangent space: π(lθ|[lη]). Then we obtain efficient scores which are orthogonal to the
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scores of nuisance parameters: l∗ = lθ − π(lθ|[lη]). Thus we can obtain Fisher information bound
E(l∗l∗−1). For details, see Newey (1990).

Park et al. (1998) explore the semi-parametric efficient estimation of stochastic frontier models
in which the effects and the regressors have certain dependency structures. They discuss three time
invariant models. The first model assumes no particular structure of dependence between the effects
and the regressors, which is analogous to the fixed effect estimator. The second model assumes
dependency between the effects and a subset of regressors, which is analogous to the Hausman and
Taylor estimator. The third model (PSS1) allows for dependency between the effects and long run
movements in a subset of regressors. They derive semi-parametric efficiency bound for each model,
and methods to estimate parameters and effects.

Park et al. (2003) focus on the semi-parametric efficient estimation of random effect panel models
containing AR(1) disturbances:

Yit = X ′itβ + αi + εit, i = 1, ..., N, t = 1, ..., T, (15)

εit = ρεi,t−1 + uit, |ρ| < 1

and uits are distributed as i.i.d. N(0, σ2). Denoting Xi = (X ′i1, ..., X
′
iT )′, (αi, Xi) are independent

of εi and are i.i.d. random variables having unknown density q(., .) on R1+dT . They consider two
structures describing the relationship between X and α: Model 1 (PSS2G) assumes the independence
between Xi and αi; Model 2 (PSS2W) allows dependence between Xi and αi. They then provide
semi-parametric efficiency bound for each model, and methods to estimate parameters and effects.

Park et al. (2007) extend the semi-parametric efficient estimation to dynamic panel data models
(PSS3). Their model can be written as:

Yit = γYi,t−1 +X ′itβ + αi + εit, i = 1, ..., N, t = 1, ..., T, (16)

where εits are distributed as i.i.d. N(0, σ2). Based on assumptions regarding conditional inde-
pendence, their models use non-parametric estimators for the random effects, and use parametric
assumptions on the distribution of the within errors.

A summary of the estimators we consider in our model averaging analysis is presented in Table
1 below.

Table 1
Estimator Reference
FIX Schmidt and Sickles (1984)
RND Schmidt and Sickles (1984)
CSSG, EIV Cornwell, Schmidt and Sickles (1990)
BC Battese and Coelli (1992)
PSS1 Park, Sickles and Simar (1998)
PSS2W, PSS2G Park, Sickles and Simar (2003)
PSS3 Sickles (2005), Park, Sickles and Simar (2007)

6 Discussion on Combining Estimates

Before we move to our evaluation of the model averaging results we want to focus a bit of attention
on why such approaches are both statistically reasonable and intuitive. We first note that combining
estimates from different models provides a solution to modeling uncertainty. Sickles (2005) pursued
this strategy in his examination of semiparametric and nonparametric panel frontier estimators.
The literature on the topic of model averaging is deep and interest in it as has accelerated as ”big
data” and issues related to its uses have become mainstream topics in academic research and private
sector decision-making. Hjorth (1994), Burnham and Anderson (2002), and Leeb and Potscher
(2005) all made important early contributions. A theme that links all of these early and subsequent
contributions is that procedures to approximate all possible data generating processes be considered.
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This is a natural implication to George Box’s famous quote that, ”essentially, all models are wrong,
but some are useful” (Box and Draper, 1987, p. 424).

There is also a variety of justifications for considering such alternative explanations that come
from theoretical perspectives in economics. Work from the social choice literature suggests that the
majority voting outcome will be the median candidate (Moulin, 1980). If voter preferences are sym-
metric then the median is equal to the mean. The mean is a particular aggregator function. Social
choice theory also speaks to decision rules wherein expected outcomes are based on an aggregator
function with weights based on the R2 associated with the estimates of each expected outcome.
This is the Tullock (1980) contest function.

Insights from statistics come from model averaging and methods of combining forecasts. In order
to implement model averaging one must assign weights to each possible set of model estimates
and this leads to weights based on the Akaike Information Criterion (Akaike, 1973), hereinafter
AIC), Mallows’ CP (Mallows, 1973), and the Bayesian Information Criterion (Schwarz, 1978) (BIC).
Buckland, et al. (1997) used two of these information criteria, the Akaike and Schwarz, as weights in
their model averaging exercise. Hansen (2007) showed that the Mallows’ Model Average estimator
is asymptotically optimal in some cases and more favorable compared to AIC and BIC. Carroll,
Midthune, Freedman, and Kipnis (2006) conducted a nutritional epidemiologic study and showed
AIC achieved an efficiency gain, whereas BIC had serious issues and was not recommended. Burnham
and Anderson (2002) and Claeskens and Hjort (2008) have more detailed discussions of the literature.
Hansen and Racine (2012) considered situations in which candidate models are non-nested proposed
a jackknife model averaging estimator, which they showed is asymptotically optimal in the sense
that it approaches the lowest possible expected squared errors. Simulated comparisons of criteria
have also been studied in different disciplines. Parmeter, Wan, and Zhang (2015) have begun to
assess the finite sample properties of this estimator via Monte Carlo simulations.

The statistical literature involving combining time-series forecast models also provides us with
justifications for the approaches we take to develop consensus TFP estimates. Important contribu-
tions to this literature include Bates and Granger (1969), Lahiri, Teigland, and Zaporowski, (1988),
Zarnowitz and Lambros (1992), Davies and Lahiri (1995), Diebold and Lopez (1996), Newbold and
Harvey (2002), Lahiri and Sheng (2010), and Lahiri, Peng and Zhao (2017).

The weights we use in our model averaging exercise are based on those discussed in Buckland et
al. (1997), which proposes a frequentist model averaging methodology motivated by Bayesian Model
Averaging, which is itself based on Bayesian model selection criteria. They propose assigning weights
according to the information criteria

Im = −s log(Lm) + l, (17)

where Lm is the maximized likelihood function of the m-th model, and l is some penalty function.
Buckland et al. (1997) note that if one assumes that the penalty for the different models is com-
parable and the set of models under consideration constitute the finite set of possible models then,
based on the Schwarz (1978) approximation of the Bayes factor, a plausible choice for the weight is:

wI =
exp( 1

2Im)∑
m∈M exp( 1

2Im)
(18)

in which M is the set of all competing models. This weighting algorithm nests all of the various
methods we utilize in our analyses. For example, if l = 2k, where k is the number of parameters in
the model, then the information criterion Im is just the AIC score. If l = k · log(NT ),where NT
is the number of panel observations, Im becomes the BIC score. When we use regression-based
approaches in our analysis we utilize the standard measures of the AIC and BIC (also refereed to
as the Schwarz criterion or SC) model selection criteria in terms of the regression residuals based
on the following equalities

AIC = ln(
SSE

NT
) +

2k

NT
(19)

BIC (SC) = ln(
SSE

NT
) +

k ln(NT )

NT
. (20)
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Weights based on the other measures of model fit that we utilize, the residual sum of squares
(RSS), the (adjusted) R2 and simple arithmetic averages, use various reparameterizations of these
expressions.1

7 Modeling World Economic Growth with the UNIDO Data

In order to better understand existing patterns of world income levels, growth in per/capita income,
political stability, and international trade flows, and to reasonably anticipate future trends in these
important economic indicators, it is important to correctly measure countries’ productivity growth.
In addition, when gauging crucial economic indicators such as these it is important to use methods
which are robust to misspecification error. The following section deals with productivity growth
measurement’s robustness using a number of economic methodologies, and estimators consistent
with them, to elucidate productivity growth. Our model averaging productivity procedures use the
United Nations Industrial Development Organization (UNIDO) data over the period between 1970
and 2000. The issue of country heterogeneity is addressed in part by separately analyzing countries
grouped by their development features and by using different panel data methods to address cross-
section and time-specific unobserved effects.

7.1 UNIDO Data Description

Information on measures of the level and growth of TFP based on 12 different empirical approaches
across 112 countries over the period 1960− 2000 are provided by The World Productivity Database
(WPD). The Penn World Tables version 6.1 (PWT, Heston, Summers and Aten, 2002) is the primary
source of data. The Penn World Tables version 6.1 was used to obtain (chain weighted) GDP and
investment in power purchasing parity 1996 US dollars. Data on employment and hours worked were
taken from the Groningen Growth and Development Centre (GGDC, 2005) and Asian Development
Bank (ADB, various issues). The International Labor Organization (ILO) Yearbook 2003 was the
source of unemployment figures, schooling data was taken from the ILO’s Key Indicators of the
Labour Market and ADB (various issues), Barro and Lee (2000) and the health indicators -life
expectancy and adult mortality rates- were obtained from the World Development Indicators (World
Bank, 2004). These are documented in the technical appendix to the WPD (Isaksson, 2007)

Capital input measurement is the most complicated. It can be argued that Capital (K) is the
hardest feature to measure, which is why the WPD has made 4 different approaches available based
on various computations for the initial capital stock, depreciation rates, depreciation schedules, and
the lifetime of the asset. The various capital measures are labelled K06, K13, and Keff. K06 and
K13 are built on the assumption that ten years of investment act as a sufficient proxy for the initial
capital stock K0. The two capital stocks only differ in terms of their assumed constant rates of
depreciation, which are 6.0 and 13.3 percent, respectively (hence, K06 and K13). Another method
of gauging capital examines the profile of capital productivity and uses a time-varying depreciation
rate. The productive efficiency of the asset falls as the asset ages which results in Keff. Detailes of
its computation can be found in Isaksson (2007).

Two types of labor utilization rates for which labor force can be adjusted are involved in Labor
input measurement: differences in employee numbers and working hours. Employment (EMP) is the
first measure for labor force (LF) and is a direct measure of employment. The second is achieved by
using unemployment rates on LF data, resulting in derived employment (DEMP). Unfortunately
missing observations for many countries for many of the years of our analyses forced us to utilize
only LF as the labor input in our model averaging exercise.

1Clearly these last two measures of model fit do not penalize the weights for over-parameterization but as NT
is rather large in our analyses such penalty terms are not as influential as they might otherwise be in studies with
relatively smaller degrees of freedom. Such a conclusion is borne out by the similarity in the model averaged estimates
based on different weights.
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7.2 Empirical Findings

We adopted the approach taken by Hulten and Isaksson (2007) who divided all 112 countries in the
WPD into six mutually exclusive groups, in accordance with the World Bank classification by income
per capital. The group of Low Income countries (hereinafter LOW) is comprised of 40 countries, 22
countries in the group of Lower-Middle Income countries (hereinafter LOW-MID), 17 countries in the
Upper-Middle Income countries (hereinafter UPPER-MID), 24 High-Income countries (hereinafter
HIGH), 4 Old Tigers (the original Asian Four Tigers) and 5 New Tigers. The countries are:

Low Income Countries: Angola, Bangladesh, Benin, Bolivia, Burkina Faso, Burundi, Cameroon,
Central African Republic, Chad, Comoros, Congo, Cote d’Ivoire, Democratic Republic of the Congo,
Ethiopia, Gambia, Ghana, Guinea, Guinea Bissau, Haiti, Honduras, Kenya, Lesotho, Madagascar,
Malawi, Mali, Mauritania, Mozambique, Nepal, Nicaragua, Niger, Nigeria, Papua New Guinea,
Rwanda, Senegal, Sierra Leone, Tanzania, Togo, Uganda, Zambia, and Zimbabwe.

Lower-Middle Countries: Algeria, Cape Verde, Colombia, Costa Rica, Dominican Republic,
Ecuador, Egypt, El Salvador, Equatorial Guinea, Fiji, Guatemala, Guyana, Iran, Jamaica, Jordan,
Morocco, Namibia, Pakistan, Paraguay, Peru, Philippines, and Sri Lanka.

Upper-Middle Countries: Argentina, Barbados, Botswana, Brazil, Chile, Gabon, Mauritius,
Mexico, Panama, Seychelles, South Africa, Syria, Trinidad and Tobago, Tunisia, Turkey, Uruguay,
and Venezuela.

High-Income Countries: Australia, Austria, Belgium, Canada, Cyprus, Denmark, Finland,
France, Greece, Iceland, Ireland, Israel, Italy, Japan, Luxembourg, Netherlands, New Zealand, Nor-
way, Portugal, Spain, Sweden, Switzerland, UK, and USA.

Old Tigers: Hong Kong (SAR of China), Republic of Korea, Singapore, and Taiwan (Province
of China).

New Tigers: China, India, Indonesia, Malaysia, and Thailand.
As we mention above, as a result of limitations in the availability of data, we used LF as the

labor input. K06, K13, and Keff are the different capital input measures. Thus, every country group
contains 3 input combinations. Ten different estimating models were used: EIV, CSSG, BC, PSS1,
PSS2W, PSS2G, FIX1, RND1, FIX2 and RND2. The first six estimators use the methods discussed
in Section 5 to estimate efficiency growth and innovation change, with the latter identified by a time
trend that identifies a common technical change shared by each country group. The last four are
simply fixed and random effects pooled estimates using a time trend or a time trend and a quadratic
time trend to estimated average growth rates of TFP within the country group. This results in 30
different models to consider in our model averaging exercise. The period of observation is 1970 to
2000.

In our analyses, TFP growth is based on the contributions of the growth in technical efficiency
and the growth in technical innovation. Although patterns of technical efficiency changes are reveal-
ing the level of these changes is relatively small compared to the level of technical change. LOW
had substantial efficiency enhancements from 1970 to the early 1980s. LOW-MID had efficiency
change patterns similar to LOW, but efficiency growth turns slightly negative at the turn of the
1980s. UPPER-MID had slight efficiency improvements through the middle of the 1990s. HIGH
had minor growth in efficiency development through the 1980s. Efficiency growth for the Old Tigers
showed a small reduction in efficiency at the beginning of the sample period, whilst a pattern of
increasing efficiency was visible towards the end of the sample period. The efficiency trends for the
New Tigers is akin to LOW, but are smaller in magnitude. More detailed results and figures for
the efficiency results are available from the authors. We do not pursue the efficiency results in any
greater detail as they have only a marginal impact on TFP growth in our regressions. Since TFP
growth is dominated by technical change we now turn to the summary TFP results.

The Old Tigers have the highest TFP improvements, followed by New Tigers. HIGH and
UPPER-MID income nations have modest TFP annual growth rates. LOW-MID and LOW income
nations display relatively stagnant TFP growth. Projected accumulated TFP growth between 1970
and 2000 is 15.4% for LOW income nations, 10.1% for LOW-MID income nations, 27.7% for UPPER-
MID income nations, 17.2% for HIGH income nations, 199.7% for the New Tigers, and 239.4% for
the Old Tigers. We also compared our model averaged TFP results (using GDP share weights) with

13



results presented on the UNIDO WPD website. Five additional approaches were selected baselines
against which to match our findings. These are labelled as Growth Accounting, Harrod Neutral,
Pooled Regression, Panel Regression, Stochastic Frontier Model, and Data Envelopment Analysis
(DEA) and represent standard approaches to measuring TFP growth used in many national and
international agencies. They are calculated from the UNIDO website’s online software packages
found at the UNIDO website (https://www.unido.org/data1/wpd/Index.cfm) and documented in
Isaksson (2007). We selected identical nations as well as identical input groupings for comparability
to our model averaged estimates. The Growth Accounting estimate of TFP growth is based on the
standard discrete growth equation ∆ lnAt = ∆ lnYt−α∗∆ lnKt−β∗∆ lnLt,where income shares are
assumed to be constant, both in time and in space within the various country groupings. The Harrod
neutral TFP estimates allow for the production function to shift along a constant capital-output
ratio, instead of a constant capital-labor ratio and thus not only involves a shift, but also a tilt of the
production function, which changes the marginal product of capital. The growth equation is thus
modified to be ∆ lnAt = ∆ lnYt− α

β
∗(∆ lnκt−∆ lnκt−1),where κ = K/Y . The Pooled Regression

estimates are based on a simple regression for the Cobb–Douglas specification with a time trend to
account for TFP change and the pooling is over the particular country group. Panel Regression
results are based on a fixed effects specification of the country effects with a time trend. We also
use this specification as one of the competing models in constructing our model averaging estimates.
Stochastic Frontier Model estimates are based on the random-effects model of Battese and Coelli
(1992), which we also use in our model averaging estimator. Finally, the Data Envelopment Analysis
estimates are based on the standard linear programming methods outlined in Färe, et al. (1994),
Coelli, et al. (1998), and discussed in the context of the UNIDO data in Isaksson (2007).

Figures 1− 6 display TFP growth rates for nations in the various developmental classifications.
Our model averaging results of course indicate smoother patterns as a result of the averaging. For
four out of the six sets of countries in different levels of development our model averaged TFP
growth rates surpassed the ones projected from the five approaches used on the UNIDO WPD
website. These ranged from a high of about 3.6% annual TFP growth for the Old Tigers to a low
of about 0.32% annual growth for the Low-Mid income countries.

The last results we discuss are the combined estimates and their distribution within the differing
country groupings we adopted for our analysis. Again, the motivation for employing the model aver-
aging methodology is to obtain consensus results based on all the modeling and data information at
hand. The annual changes of technical efficiency, technical innovation and TFP for each individual
group based on different weighting methods are shown in Table 1. The most crucial component
the model averaging exercise is the assignment of weights to each set of estimates. The simplest
averaging is to take the arithmetic mean of all estimates, which implicitly assumes equal importance
of all models. Besides simple averaging, we use other four statistical criteria that have been devel-
oped to measure model fit and to assess model specification in order to assign weights. These are
based n the methods we detailed above and based on the model selection criteria: (adjusted) R2,
residual sum of squares (RSS), Akaike’s information criterion (AIC), Bayes Information Criteria
(BIC), and simple arithmetic averages. These different weighting approaches are used to develop
different model averaged estimates for annual changes of technical efficiency, technical innovation
and TFP by weighting criteria. For example, using the simple arithmetic averaged, the model
averaged estimates for annual changes of technical efficiency, technical innovation and TFP are
0.64%,−0.17% and 0.47% for LOW, 0.35%,−0.04% and 0.32% for MID-LOW, 0.15%, 0.64% and
0.79% for UPPER-MID, −0.06%, 0.57% and 0.51% for HIGH, 0.30%, 3.33% and 3.63% for the Old
Tigers, and −0.09%, 2.95% and 2.86% for the New Tigers. Since (adjusted) R2′s for our different
specifications are rather close to each other, the weighted results are quite similar using the other
criteria as they all are comparable when degrees of freedom are relatively large, which they are for
the relatively parsimonious Cobb-Douglas production function-based productivity estimates. The
combined estimates display a relatively stable pattern during the 31 years covered in the sample
period as Figure 7 illustrates. Old Tigers lead the world in TFP improvement due mainly to
substantial technological innovations with technical efficiency change having a small positive con-
tribution. New Tigers were next with quite respectable TFP growth to innovation change with
no economically significant contribution by technical efficiency change. LOW income countries had
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the greatest efficiency gains among all groups but their poor innovation growth leads to poor over-
all TFP performance. LOW-MID and UPPER-MID countries have essential no progress in either
technical efficiency or innovation. HIGH income countries face little growth in innovation as well as
a slight regress in their levels of technical efficiency.

Bates and Granger (1969) introduce the methodology of forecast combination. In their paper,
clearly the results they attempt to combine are correlated since the outcomes are obtained by two
different forecast methods but on the same data set. In their first weighting method, if the forecast
errors σ2

1 , σ2
2 from the two models are uncorrelated, to minimize the total error, the weights should

be assigned as σ2
2/(σ

2
1 + σ2

2) and σ2
1/(σ

2
1 + σ2

2). The weighting will be a little bit more complicated
if correlation is considered: weight for forecast 1 will be (σ2

2 − ρσ1σ2)/(σ2
1 + σ2

2 − 2ρσ1σ2). If the
weights are decided as above, the variance of the forecast error is no greater than the smaller values
of the two variances. It is obvious that the bigger error variance result will receive smaller weights.
If only two results are combined, the weights trivially are the same as one of our weighting criteria
which we assign 1/σ2

1 to estimate 1 and 1/σ2
1 to estimate 2. The method they applied to forecast

model can be used in our study since it is to minimize combined error, whether it is an out-of-sample
forecast error or in-sample error. Generally speaking, all the weight selecting methods are based on
some types of loss function which in turn rely on the differences between the realized outcome and
the forecast outcome, such as a Mean Squared Error (hereinafter MSE) or Mean Squared Percent
Error (hereinafter MSPE). If we choose the loss function as typical square of error, it would be
perfectly reasonable to use ”goodness-of-fit” criteria. The implementation will be identical to the
model averaging we discussed earlier. Developments in choosing weights by applying automatic
machine learning algorithms and methods to solve missing data problems have been discussed in
Lahiri, Peng and Zhao (2017).

For inference purpose, the variances of combined estimates can be calculated under model averag-
ing framework. Burnham and Anderson (2002) and Huang and Lai (2012), have provided discussions
on how to compute them. The difficult component to estimate is the correlations between each pair
of estimators. For example, in our case it is the estimate of TFP from each statistical model based
on a particular combination of variously defined capital and labor inputs. Bootstrap methods have
been suggested in these referenced studies. However, bootstrapping methods are difficult to imple-
ment given the various forms of unobserved heterogeneity and potential error correlations. In the
situations when correlations cannot be estimated, an upper bound on variance can still be obtained
assuming all correlations are 1. However, estimating sample correlations between each pair of esti-
mates is not difficult in our study because of our panel-data setting. In the majority of our models
TFP estimates are time-varying. Thus we can calculate sample correlations between each pair of
TFP directly because we have estimates in each period. Such estimates are not possible for models
with time-invariant TFP estimates and for those we use the upper bound on the variance of 1. The
associated variances and variance bounds for our model averaged TFP estimates are presented on
Table 1. The variances of the combined estimates can also be calculated under the model averaging
framework and thus the statistical significance of the consensus estimates can also be determined.
In this way such consensus estimates provide an advantage over the index number measures that
are usually presented simply as a point estimate.

Badunenko et al. (2013) and Henderson and Russell (2005) have utilized programming methods
and data envelopment analysis (DEA) to study efficiency growth using a somewhat different set of
country groupings. Their DEA analyses attribute all measurement error to the one-sided inefficiency
component as opposed to the stochastic frontier methods we utilize that allows for measurement
error. We can highlight similarities and differences in our study theirs based on the alternative
DEA methodology2. Between 1965 and 2000, they report total productivity (output per worker)
increases of 114.8% (annualized at 2.10%) in Asia (notice their included countries in this region
are significantly different from ours), 26.6% (annualized at 0.66%) in Latin America, and 110.2%
(annualized at 2.10%) in the OECD. Even though the two studies employ different methodologies
on different data sets, they both find that countries in Asia have the highest TFP growth, those

2In Asian countries, they have India, Indonesia, Iran, Jordan, Malaysia, Nepal, Syria and Thailand. In Latin
America, they have all the 11 countries we have in addition to 9 other countries. In OECD countries, Iceland and
Luxembourg are not included in their data set, Mexico is not included in our data set.
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that constitute the OECD have the second highest TFP growth rates, and countries in Latin (and
South) America have the lowest TFP growth rates. Another common finding is that technical
innovation contributes significantly more than the efficiency gains to TFP growth in Asia and the
OECD. That is, shifts in the production possibility frontier outweigh the catch-up effect in the
generation of TFP growth. Since TFP growth is much smaller than the growth of GDP per capita
through the sample period, other factors such as such as physical and human capital accumulation
play a relatively larger role in world economic growth.

8 Conclusion

In this paper we have focused on the role that panel data econometrics plays in formulating and esti-
mating the most important contributors to productivity growth: innovation and catch-up. We have
explained different theories on economic growth and productivity measurement and the econometric
specifications they imply. Various index number and regression-based approaches to measuring
productivity growth and its innovation and catch-up components have been discussed in detail. We
have also discussed methods that can be used to combine results from the many different perspectives
on how economic growth is modelled and estimated, focusing on methods used in model averaging
and in the combination of forecasts. We have utilized various panel data and model averaging
methods in an analysis of world productivity growth using the WPD and have analyzed as well the
changes in the US income distribution that would have resulted by relinking the growth of TFP
with the growth in wage compensation, which were connected so strongly in the post-WWII to early
1970′s era.

The motivation for employing the model averaging methodology is to arrive at a consensus
result based on all the modeling and data information at hand. To this end, we started by creating
country groups based on income levels (LOW, LOWER-MID, UPPER-MID and HIGH), however
singling out two fast-growing groups of developing countries-Old and New Tigers-producing a total
of six groups of countries. Based on results from ten estimating models and three different capital
definitions (a total of 30 different sets of estimates), we found that Old Tigers have the highest
TFP improvements thanks to the group’s relatively large level of technical progress. New Tigers
were the second best performer, despite some small deterioration in technical efficiency over the
sample period. Both HIGH and UPPER-MID display negative trends in TFP growth, but still
manage moderately positive TFP growths every year. The worst outcome is shown for LOW-MID
and LOW because of lack of technological innovation and decline in technical efficiency. When
aggregating these results to obtain a world average we found a declining trend in TFP growth rates.

In a second step, we compared our average estimate with those obtained from growth accounting
(Hicks-neutral), Pooled Regression, Panel Regression, Stochastic Frontier Model and Data Envelop-
ment Analysis. Compared to these models, our estimates display smoother trends, with four of the
ten estimating models showing higher TFP growth than the five comparators. It is reassuring that
our results are robust to different approaches to weighing each set of estimates, which is the most
crucial component for combining estimates.

While our paper is an important step in the direction of obtaining a consensus TFP result much
work remains. For example, in this paper we have used ten estimating models but why not use more
models? Secondly, in this paper we have not experimented much with other sources of TFP growth
variation such as additional production factors (e.g., human capital, health capital and land) or
functional forms (e.g., Cobb-Douglas or CES). Given that different countries are at various stages of
development, applying different properties of the production function might be an important future
step; at least it would be good to see an attempt being made in that direction. Thirdly, there may
be scope for experimenting with country groupings based on other criteria than income and level of
development alone. For example, it is likely that countries whose economies are highly leveraged on
natural resources, such as the Gulf States or countries in transition (Eastern Europe), might display
alternative performance patterns. Similarly, as more country data and longer time series become
available, opportunities for even richer and nuanced analysis may arise.
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10 Appendix A

10.1 Monte Carlo Results

In this Appendix we compare the finite sample performance of weighted estimators and individual
estimators through two Monte Carlo experiments. In the first study we generate simulated data
following Sickles (2005) . In the second study, we construct our samples based on a data generating
process that replicates the World Productivity Database from United Nation Industrial Development
Organization used in our analyses.

In the first Monte Carlo experiment the base-line productivity model is:

Yit = X ′itβ − uit + εit,where εit ∼ N(0, σ2
ε) (21)

with β = (0.5, 0.5), σ2
X = 1 and σ2

ε = 1. In each simulated sample, the regressors are generated
according to:

Xit = RXi,t−1 + ηit, where ηit ∼ N(0, σ2
XI2), R =

(
0.4 0.05

0.05 0.4

)
. (22)

We initialize the simulation by choosing Xi1 ∼ N(0, σ2
X(I2 − R2)−1), and then start iterations

from t ≥ 2. The values of regressors then are shifted around three different means µ1 = (5, 5)′,
µ2 = (7.5, 7.5)′, µ3 = (10, 10)′ to obtain 3 balanced groups of firms. We M = 1000 samples with
n = 30, t = 30; n = 51, t = 21; and n = 21, n = 51, according to two different DGP scenarios. The
first scenario is considered as the ”no problem” case: The random errors are i.i.d., the efficiency
components are generated independently from a lognormal distribution and are temporally invari-
ant, and there is no correlation between the effects and the regressors. In this scenario, samples of
different groups cannot distinguish among themselves. Estimators such as CSSG and BC which does
not assume correlations between the effects and the regressor should appear to have superior perfor-
mance. In the second scenario, we generated ηit and the efficiencies from a bivariate process with 0.5
correlation. Allowing for the possible correlation between efficiency and regressors is appealing. For
example, Sickles (2005) pointed out that technical efficiency in the airline industry may be due to the
regressors that determine the provision of airline service such as sluggish adjustment in quasi-fixed
factor such as labor in European national airlines before liberalization efforts in the late 1990s. We
face inconsistent estimation if we use estimators that do address this source of endogeneity.

We report results on bias (we report the average of absolute value of bias from the true values)
and mean square error (MSE). MSE is computed as:

MSE =

2∑
j=1

1

M

M∑
m=1

(β̂mj − 0.5)2 (23)

where β̂mj are based on 6 individual methods (CSSG, EIV, BC, PSS1, PSS2W, PSS2G) and 5 different
combining methods based on weights determined by: simple arithmetic average, residual sum-of-
squares (RSS), R-squared, Akaike Information Criteria (AIC) and Bayes Information Criteria (BIC).
We refer to this summary statistic as MSE1.

In addition to MSE 1 we can take into account correlations between different estimators in
constructing the variance of the model averaged estimator. The details of the method to calculate
variances for combined estimators are discussed above. We report the MSE’s calculated in this way
as MSE2

In Table A.1 for the no problem case, we can see that in all three simulated samples, the combined
methods have smaller finite-sample biases compared to CSSG, EIV and BC. MSE1s and MSE2
calculated using the combining methods are close to each other and all of them are smaller than
MSE1s and MSE2s obtained from individual methods. Table A.2 is for the scenario that regressors
are correlated to the effects. Except for PSS1, which is modeled to deal with this situation, in
the most cases the combined estimators have either the same or smaller magnitudes of bias than
individual estimators. On the comparison of MSE1 and MSE2, combined estimators are clearly the
best performers, except in one case where MSE2 of BIC is slightly larger for PSS2W and PSS2G.
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To test the robustness of models in real world problems, it is reasonable practice to simulate
data based on collected real data. We will construct observations of the second example following
this principle.

In the second study, we compare the performance of the averaged estimators with individual
frontier model estimators based on the simulated samples from the World Productivity Database of
UNIDO. these results are provided in Table A.3. In the second study we use data for the developed
countries (for discussions about accuracy of data, see Hulten and Isaksson (2007)). We choose K06
and EMP as capital and labor input. We generate two sets of samples utilizing a Cobb-Douglas
constant returns to scale production function with β = (0.5, 0.5) and (0.3, 0.7). The different weights
on β can reflect individual researcher’s opinions on the contribution weights of the input factors.
(0.3, 07) is most commonly used selection in the literature to simulate GDP data from a Cobb-
Douglas type production function. Notice that all the estimators are symmetric with respect to β
except EIV. As shown in the table, in the cases of β = (0.5, 0.5) and β = (0.3, 0.7), all five averaging
methods have smaller MSE1s and MSE2s than the individual methods, except, interestingly, for the
BC estimator.
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Table A.1.1
(n = 20, t = 50)
Bias MSE1 MSE2

CSSG 0.00696 0.00725 0.00726
EIV 0.00527 0.00867 0.00868
BC 0.00668 0.00565 0.00565
PSS1 0.00227 0.00700 0.00701
PSS2W 0.00042 0.00610 0.00610
PSS2G 0.00043 0.00610 0.00611
Average 0.00103 0.00308 0.00471
RSS 0.00095 0.00305 0.00478
R2 0.00123 0.00304 0.00472
AIC 0.00106 0.00312 0.00480
BIC 0.00105 0.00308 0.00472

Table A.1.2
(n = 30, t = 30)
Bias MSE1 MSE2

CSSG 0.00952 0.00883 0.00884
EIV 0.00868 0.01091 0.01092
BC 0.00420 0.00697 0.00697
PSS1 0.00146 0.00811 0.00812
PSS2W 0.00265 0.00765 0.00766
PSS2G 0.00261 0.00767 0.00768
Average 0.00299 0.00354 0.00507
RSS 0.00285 0.00346 0.00517
R2 0.00325 0.00347 0.00509
AIC 0.00306 0.00367 0.00516
BIC 0.00305 0.00355 0.00509
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Table A.1.3
(n = 50, t = 20)
Bias MSE1 MSE2

CSSG 0.00775 0.00726 0.00727
EIV 0.00726 0.00989 0.00990
BC 0.00260 0.00571 0.00572
PSS1 0.00510 0.00729 0.00730
PSS2W 0.00277 0.00545 0.00546
PSS2G 0.00275 0.00546 0.00547
Average 0.00207 0.00307 0.00441
RSS 0.00203 0.00301 0.00449
R2 0.00231 0.00303 0.00442
AIC 0.00209 0.00314 0.00449
BIC 0.00216 0.00309 0.00443
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Table A.2.1
(n = 20, t = 50)
Bias MSE1 MSE2

CSSG 0.00338 0.00152 0.00152
EIV 0.00280 0.00167 0.00167
BC 0.00410 0.00162 0.00163
PSS1 0.00166 0.00231 0.00231
PSS2W 0.00283 0.00145 0.00145
PSS2G 0.00283 0.00145 0.00145
Average 0.00293 0.00076 0.00109
RSS 0.00305 0.00076 0.00110
R2 0.00298 0.00077 0.00109
AIC 0.00279 0.00078 0.00111
BIC 0.00322 0.00086 0.00126

Table A.2.2
(n = 30, t = 30)
Bias MSE1 MSE2

CSSG 0.00497 0.00176 0.00176
EIV 0.00401 0.00199 0.00199
BC 0.00664 0.00172 0.00172
PSS1 0.00109 0.00283 0.00283
PSS2W 0.00395 0.00187 0.00188
PSS2G 0.00395 0.00187 0.00188
Average 0.00394 0.00092 0.00131
RSS 0.00394 0.00093 0.00132
R2 0.00397 0.00093 0.00132
AIC 0.00392 0.00093 0.00134
BIC 0.00509 0.00106 0.00163
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Table 2.2.3
(n = 50, t = 20)
Bias MSE1 MSE2

CSSG 0.00810 0.00160 0.00161
EIV 0.00545 0.00183 0.00183
BC 0.01038 0.00165 0.00165
PSS1 0.00033 0.00261 0.00261
PSS2W 0.00630 0.00147 0.00147
PSS2G 0.00631 0.00147 0.00147
Average 0.00603 0.00083 0.00120
RSS 0.00609 0.00084 0.00112
R2 0.00606 0.00083 0.00112
AIC 0.00597 0.00083 0.00113
BIC 0.00855 0.00114 0.00181
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Table A.3
(LnK, LnL) (0.3, 0.7) (0.5, 0.5)

Bias MSE1 MSE2 Bias MSE1 MSE2
CSSG 0.00169 0.01400 0.01401 0.00169 0.01400 0.01400
EIV 0.02369 0.06781 0.06925 0.00754 0.06781 0.06781
BC 0.00477 0.00067 0.00067 0.00479 0.00067 0.00067
PSS1 0.00226 0.02572 0.02575 0.00226 0.02572 0.02575
PSS2W 0.00068 0.01333 0.01334 0.00068 0.01333 0.01334
PSS2G 0.00100 0.01327 0.01327 0.00100 0.01326 0.01327
Average 0.00113 0.00704 0.00944 0.00114 0.00704 0.00944
RSS 0.00098 0.00539 0.00944 0.00098 0.00539 0.00836
R2 0.00114 0.00695 0.00836 0.00114 0.00695 0.00938
AIC 0.00108 0.00625 0.00938 0.00108 0.00419 0.00891
BIC 0.00118 0.00707 0.00891 0.00118 0.00707 0.00947
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Table 1: Combined Estimates Result Presentation
Arithmetic RSS R-Square AIC BIC

Low Estimate 0.0047 0.0050 0.0046 0.0047 0.0033
Variance 5.32E-05 1.63E-05 5.02E-05 3.69E-05 4.23E-05
Bound 1.74E-04 8.84E-05 1.67E-04 1.37E-04 1.38E-04

Low-Mid Estimate 0.0032 0.0012 0.0030 0.0020 0.0023
Variance 5.78E-05 5.81E-06 5.48E-05 2.77E-05 4.53E-05
Bound 2.19E-04 8.37E-05 2.12E-04 1.48E-04 1.69E-04

Upper-Mid Estimate 0.0079 0.0066 0.0079 0.0071 0.0075
Variance 1.79E-05 5.32E-06 1.77E-05 1.18E-05 1.56E-05
Bound 1.52E-04 1.10E-05 1.51E-04 1.34E-04 1.32E-04

High Estimate 0.0051 0.0040 0.0049 0.0037 0.0035
Variance 6.86E-06 4.32E-06 6.15E-06 2.71E-06 4.41E-06
Bound 7.47E-05 6.25E-05 7.33E-05 6.66E-05 3.84E-05

Old Tigers Estimate 0.0393 0.0367 0.0391 0.0392 0.0410
Variance 1.14E-04 3.15E-04 1.08E-04 1.16E-04 2.51E-04
Bound 1.30E-03 1.33E-03 1.29E-03 1.32E-03 1.45E-03

New Tigers Estimate 0.0286 0.0331 0.0287 0.0309 0.0283
Variance 5.29E-05 2.43E-04 3.35E-05 6.87E-05 6.09E-05
Bound 8.32E-04 1.09E-03 8.41E-04 9.71E-04 8.15E-04
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