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Abstract

This paper examines the relationship between voting weights and ex-

pected equilibrium payoffs in legislative bargaining and provides a nec-

essary and sufficient condition for payoffs to be proportional to weights.

This condition has a natural interpretation in terms of the supply and

demand for coalition partners. An implication of this condition is that

Snyder et al.’s (2005) result, that payoffs are proportional to weights in

large replicated games, does not necessarily extend to the smaller games

that arise in applications. Departures from proportionality may be sub-

stantial and may arise even in well-behaved (homogeneous) games.
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Many important collective bodies make decisions by weighted majority vot-

ing. Examples are the Electoral College in the United States, the International

Monetary Fund, the European Union Council of Ministers and any legislature

with disciplined political parties. An important question in this setting is how

the distribution of votes affects payoffs. Power indices such as the Shapley-

Shubik index coincide with voting weights only rarely. In contrast, Snyder,

Ting and Ansolabehere (2005, p. 982) argue that

Elementary microeconomic theory teaches that in competitive

situations perfect substitutes have the same price. In a political

setting in which votes might be traded or transferred in the for-

mation of coalitions, one might expect the same logic to apply. If

a player has k votes, then that player should command a price for

those votes equal to the total price of k players that each have one

vote.

Snyder et al. (2005) use a noncooperative bargaining game based on the

Baron-Ferejohn (1989) model to show that a voter’s expected payoff is pro-

portional to its voting weight. They mention two difficulties in proving this

result: corner solutions created by equal recognition probabilities, and nonho-

mogeneity of the game. Equal recognition probabilities may lead to low-weight

voters having disproportionately high payoffs due to proposing power, whereas

nonhomogeneous games create a difficulty in that players may be substitutes

in some minimal winning coalitions but not in others, and it is not imme-

diately obvious what the competitive price for their votes should be. They

address these difficulties by making recognition probabilities proportional to

voting weights and by replicating the game a finite (though potentially large)

number of times (see Proposition 2 in Snyder et al. (2005)).
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Given that the proof in Snyder et al. (2005) only covers replicated games,

how far this result extends to the legislatures with only a few parties that arise

in applications is an open question. The present paper provides a necessary

and sufficient condition for proportional equilibrium payoffs. This necessary

and sufficient condition is relevant for any weighted voting game; the only

assumption needed is that recognition probabilities are proportional to the

voting weights. This condition can be interpreted in economic terms: there

is no excess supply or demand of any player type. An implication of this

condition is that, even in the intuitively most favorable case (i.e. uniquely de-

fined homogeneous weights and recognition probabilities proportional to those

weights) the equilibrium of the game is not necessarily competitive. It may

be possible for larger players to get a disproportionate payoff even if cheaper

perfect substitutes appear to be available.

In order to get a rough idea of how often proportional payoffs are predicted

in applications, the condition is used to calculate the frequency with which

the model actually predicts proportional payoffs in Snyder et al.’s dataset

of coalition governments in 14 countries from 1946 to 2001. Proportional

payoffs are predicted for about 69% of the legislatures; this proportion varies

between countries and can be as high as 100% (for Australia and Austria) or

as low as 28% (for Italy). The difference between equilibrium and proportional

payoffs may be substantial, both quantitatively and qualitatively, and this is

illustrated with some examples from the dataset. Perhaps the most important

qualitative deviation is that it is possible for asymmetric parties to have the

same equilibrium expected payoff, even though one of the parties is a more

desirable coalition partner and has a greater probability of being proposer.

Also, minimal winning coalitions are not necessarily proposed in equilibrium

(surplus coalitions in which the proposer is the only nonpivotal player are also
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possible).

Preliminaries

Weighted voting games

N = {1, ..., n} is the set of players, S ⊆ N represents a generic coalition

and X is the set of alternatives. In the legislative bargaining model under

consideration, there is a budget of size 1 to be divided and X = {x|xi ≥ 0

for all i and
∑

i∈N xi ≤ 1} is the set of all possible allocations. Player i’s

preferences are described by the utility function ui(x) = xi.

The voting game is described by a set of winning coalitions W , where

a winning coalition is a coalition that can enforce any alternative in X. A

voting game is proper if a coalition S and its complement N\S cannot both

be winning. A voting game is strong if ties are not possible, i.e., S and N\S
cannot both be losing. I assume henceforth that the voting game is proper, but

not necessarily strong. A minimal winning coalition (MWC) S is a coalition

that is just large enough to win, that is, S is winning but no T  S is winning.

The voting game is weighted if it is possible to assign a number of votes

(weight) wi ≥ 0 to each player and to set a threshold q such that S is winning

if and only if
∑

i∈S wi ≥ q. The combination [q;w1, ..., wn] is a representation

of the voting game. Many representations [q;w1, ..., wn] are equivalent in that

they produce the same set of winning coalitions. A representation [q;w1, ..., wn]

is called homogeneous if all minimal winning coalitions have the same total

weight. For example, [5; 4, 3, 2] is not homogeneous because coalition {1, 2}
has a weight of 7, whereas coalition {2, 3} has a weight of 5. A homogeneous

representation of the same game is [2; 1, 1, 1]. Homogeneous representations are

4



preferred because they give a more transparent description of the situation:

[2; 1, 1, 1] reflects the fact that all three players are in a symmetric position

(i.e., they are perfect substitutes) since any two of them can form a winning

coalition. A game that admits a homogeneous representation is a homogeneous

game.

Homogeneous voting weights are not necessarily unique. For example,

[5; 3, 2, 2, 1] and [7; 4, 3, 3, 1] are homogeneous representations of the same game.

A possible approach to deal with this indeterminacy is to use minimal inte-

ger weights (MIWs); this approach has been taken in the empirical literature1

(Ansolabehere et al. (2003), Snyder et al. (2005), Cutler et al. (2014)). A

representation has minimal integer weights if all wi’s are integer numbers and

there is no representation with smaller weights (see Ostmann (1987), Freixas

and Molinero (2009)).

The noncooperative model

The noncooperative model is the Baron-Ferejohn (1989) model with weighted

voting. Given a set of players N and an associated set of winning coalitions

W , bargaining proceeds as follows. Nature randomly selects one of the play-

ers to be the proposer, according to a vector θ := (θ1, ..., θn) of recognition

probabilities, where θi ≥ 0 for all i ∈ N and
∑n

i=1 θi = 1. The proposer then

proposes a distribution (x1, ..., xn) of a budget, with xj ≥ 0 for all j = 1, ..., n

1A large body of empirical literature is devoted to testing Gamson’s law, which states that

ministerial portfolios are allocated proportionally to the seat shares of parties in government

irrespective of the voting weights (see Warwick and Druckman (2006)). Cutler et al. (2014)

incorporate both seat shares and MIWs in their statistical model, and find that MIWs have a

bearing on which parties get into government, whereas portfolio allocation follows Gamson’s

law.
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and
∑n

j=1 xj ≤ 1. This proposal is then voted upon.2 If the set of voters in

favor of the proposal is a winning coalition, the proposal is implemented and

the game ends; otherwise the game proceeds to the next round in which the

process is repeated. Players share a discount factor δ ∈ (0, 1].

A (pure) strategy for player i is a sequence σi = (σti)
∞
t=1, where σti , the t-th

round strategy of player i, prescribes:

1. A proposal, denoted by x.

2. A response function assigning ”yes” or ”no” to all possible proposals by

the other players.

Players may condition their actions on the history of play; however the

literature focuses on equilibria in which they do not condition on any elements

of history other than the current proposal, if any. These equilibria are called

stationary subgame perfect equilibria (SSPE).3 Stationarity requires that play-

ers follow the same strategy at every round t regardless of past offers and

responses to past offers. An SSPE always exists (Banks and Duggan, 2000).

For a fixed δ < 1, all SSPE involve immediate agreement (Okada, 1996) and

lead to the same expected payoffs (Eraslan and McLennan, 2013). Expected

equilibrium payoffs are usually unique even if δ = 1; when they are not, it

is possible to obtain a unique prediction by taking the limit when δ → 1.

Calculations for particular numerical examples assume δ → 1.

The logic of the Baron-Ferejohn model is simple. Take any stationary strat-

egy combination. Because of stationarity, player i’s expected payoff computed

2Voters are assumed to vote on the proposal sequentially. This assumption can be re-

placed by simultaneous voting plus the additional equilibrium refinement that voters always

vote as if their vote makes a difference (see Baron and Kalai (1993)).
3Baron and Ferejohn (1989) find a severe multiplicity of SPE in their model, and make

a case for the stationarity refinement on the grounds of simplicity of the strategies (Baron

and Kalai (1993) make this argument more formally).
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at the start of any round is the same in all rounds irrespective of history;

denote this expected payoff by vi. Player i’s expected payoff after a proposal

has (just) been rejected (i’s continuation value) is then equal to δvi. These

continuation values act as prices. It is optimal for player i to accept any pro-

posal that guarantees him at least δvi as a responder and to reject all other

proposals.4 Given that responders follow these cutoff strategies, it is optimal

for player i as a proposer to find the cheapest group of players whose votes are

enough to form a winning coalition and to offer each of them exactly δvj. We

say that player i proposes coalition S if i ∈ S and the proposed payoff vector

x has xj = δvj for j ∈ S\{i}, xi = 1 −
∑

j∈S\{i} δvj and xj = 0 for j ∈ N\S.

Let pi(S) be the probability that i proposes S. Any SSPE involves a vector of

players’ acceptance thresholds (δvi)i∈N and a vector of proposal probabilities

(pi(S))S3i,i∈N satisfying two conditions (see Okada (1996), theorem 2):

(1) Proposers propose only the cheapest coalitions available given respon-

ders’ acceptance thresholds, that is, any coalition with pi(S) > 0 must mini-

mize
∑

j∈T\{i} δvj (or, equivalently,
∑

j∈T vj) subject to the constraint that T

is a winning coalition with T 3 i.
(2) Responders’ acceptance thresholds coincide with their continuation val-

ues, or equivalently,

vi = θi
∑
S:S3i

pi(S)

1−
∑

j∈S\{i}

δvj

+

 ∑
j∈N\{i}

θj
∑

S⊇{i,j}

pj(S)

 δvi.
Intuitively, this bargaining model is competitive because a player with a

disproportionately high vi would be overpriced and get few proposals if any,

which would make it difficult for the player to have a high vi in the first place.

4There is little loss of generality in assuming that ties are always solved in favor of

acceptance (see Yan (2002), proposition 2; Eraslan and McLennan (2013), Appendix A).
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Replicated games

Given the original weighted majority game [q;w1, ..., wn], the game with r

replications has rn players and a quota rq. The weight vector is found by

replacing each player i with r copies with weight wi.

Snyder et al. (2005) make no claims on how large r needs to be in order to

obtain proportional payoffs. Anecdotal evidence suggests that r is often sur-

prisingly small. However, as Laver et al. (2011) point out, the link between a

replicated game and the original game may be tenuous. For example, [5; 4, 3, 2]

is a symmetric game with three interchangeable players but its replicated game

with r = 2, [10; 4, 4, 3, 3, 2, 2], has three non-interchangeable types of players.

Likewise, [3; 2, 1, 1] is a game in which player 1 belongs to all winning coalitions

and therefore has veto power, whereas the corresponding game with r = 2,

[6; 2, 2, 1, 1, 1, 1], has no veto players. Since the properties of replicated games

are not always a good guide to the properties of the original game, equilibria of

replicated games may be very different as well. The propositions in Snyder et

al. (2005) apply to larger, replicated games rather than to the original game.

Hence, the predictions they test are not necessarily equilibrium predictions.

Some simple examples of nonproportionality

In this section I discuss why equilibrium payoffs may deviate from proportion-

ality, using some simple examples.

The simplest examples of deviation from proportionality are games with

a veto player, such as [3; 2, 1, 1]. The veto player gets everything if δ → 1

(Winter, 1996) even though it has only half of the total weight. It is clear

that the substitution argument does not bite in this case, since the veto player

must be in all coalitions and cannot be replaced by other players.
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Games with veto players are special since the veto player cannot be replaced

at all, hence we would not expect proportionality to hold.5 However, lack of

substitutability is not confined to games with veto players, as the following

example illustrates.

Consider the weighted voting game [5; 3, 2, 2, 1], discussed in Montero (2000).

This is a homogeneous game (without a unique homogeneous representation),

and the weights reported are MIWs. There are two types of MWCs: the large

party together with one of the medium-size parties, and the three smaller par-

ties together. Let v[3], v[2] and v[1] denote the expected equilibrium payoffs for

a player with 3, 2 and 1 votes respectively. Since each medium-size party can

form a coalition with either the large party or the two smaller parties, one

would expect v[3] = v[2] + v[1]. However, there is no particular reason to expect

v[2] = 2v[1]. A player with 2 votes need not command a price equal to that of

two players with 1 vote each, since no two players with 1 vote are available to

replace the player with 2 votes.6

Example 1 Consider the weighted voting game [5; 3, 2, 2, 1]. Let θ =
(
3
8
, 2
8
, 2
8
, 1
8

)
.

It is easy to see that v 6=
(
3
8
, 2
8
, 2
8
, 1
8

)
. All SSPE have v[3] = 5

14
, v[2] = 4

14
and

v[1] = 1
14

.

Proof. See Online Appendix.

Note that equilibrium payoffs are quite different from the MIWs we started

from. In particular, the ratios v[3]/v[1] and v[2]/v[1] are 5 and 4 respectively

instead of 3 and 2. Intuitively, there is an excess demand for the medium-

size players. There is competition for the medium-size players, since they are

5Indeed, Snyder et al. (2005) exclude games with veto players from their analysis.
6Situations where one player cannot be replaced by smaller players in a MWC are known

as games with steps (see Ostmann (1987)).
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needed by both the large and the small player, and there is no competition

at all for the small player. As a result, the medium-size players receive too

many proposals and the other two players do not receive enough proposals to

sustain payoffs proportional to θ.

The ambiguity of the perfect substitutes argument (or, equivalently, the

lack of uniqueness of the homogeneous representation) is not the only reason

why equilibrium payoffs may differ from the MIWs. The following example

illustrates the lack of proportionality of equilibrium payoffs in a particularly

surprising setting, where this issue does not arise.

Example 2 Consider the game [20; 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1]. There are

two types of MWC in this game: four of the large players, or three of the large

players together with five of the small players. The game is clearly homo-

geneous; furthermore, it has a unique homogeneous representation (up to a

multiplicative constant). The substitutability argument points in a very clear

direction: a large player can be replaced by five small players, and should get

five times as much. Suppose players are recognized with probabilities propor-

tional to their voting weight, i.e., a large player is recognized with probability

5
34

and a small player is recognized with probability 1
34

. It turns out that the

equilibrium is such that v[5] = 50
331

and v[1] = 9
331

. Hence, the large players are

getting a disproportionately high payoff since v[5] > 5v[1].

Proof. In order to show that this is an equilibrium, we need to find strate-

gies that lead to the expected payoffs and are optimal given the expected pay-

offs. The strategies are as follows: all players propose a coalition of three large

players and five small players, and the proposer offers the coalition partners

either 50
331

(for large players) or 9
331

(for small players). As a responder, a large

player votes in favor of any proposal that gives him at least 50
331

, and a small
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player votes in favor of any proposal that gives him at least 9
331

. Proposers

are acting optimally given the responders’ prices: no other winning coalition

would be cheaper. Responders are acting optimally provided that expected

payoffs are indeed those, so it only remains to check that expected payoffs are

as assumed given the strategies:

v[5] =
5

34

[
1− 2× 50

331
− 5× 9

331

]
+

20

34

2

4

50

331
+

9

34

3

5

50

331
=

50

331

v[1] =
1

34

[
1− 3× 50

331
− 4× 9

331

]
+

25

34

5

9

9

331
+

8

34

4

8

9

331
=

9

331
.

It is tempting to conclude that the trouble with the previous example is

that there are not enough smaller players to replace the large players. All

coalitions that form in equilibrium are of type [55511111]. Proposers would

rather replace one of the coalition partners of type [5] with five players of type

[1], but this is not possible because there are only nine of those and five are

already in the coalition. Indeed, adding another small player would lead to

proportional payoffs. Interestingly, this is not the whole story: removing one

of the small players would also lead to proportional payoffs (more on this in

the next section).

A necessary and sufficient condition for propor-

tionality

Balanced collections of coalitions

Given a weighted voting game [q;w1, ..., wn], let W ∗ denote the collection of

winning coalitions with minimum total weight, i.e., W ∗ = arg minS∈W
∑

i∈S wi.
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If the prices players charge for their cooperation are proportional to the weights,

W ∗ is the set of coalitions that are likely to form since they are the cheapest.

But are those prices competitive? Suppose a player i belongs to all coalitions

in W ∗, and another player j does not belong to any of them. Clearly, player

i is underpriced relative to j. More generally, even if all players belong to at

least one coalition in W ∗, no player should be systematically overrepresented

or underrepresented in the list of cheapest coalitions. This idea is formalized

by requiring that W ∗ is a weakly balanced collection of coalitions (the defini-

tion of a balanced collection of coalitions goes back to Bondareva (1963); see

also Shapley (1967)).

Definition 3 Let W ∗ be the set of winning coalitions with minimum total

weight. For each S ∈ W ∗, let λS ≥ 0 be a weight assigned to S. The set W ∗ is

weakly balanced if there is a set of weights (λS)S∈W ∗ such that for every voter

i ∈ N it is the case that
∑

S3i λS = 1.

The property of weak7 balancedness can be interpreted as follows. If W ∗ is

weakly balanced, we can construct a probability distribution over the coalitions

in W ∗ such that all players are equally likely to be in the coalition that forms.

This probability distribution is found by renormalizing the weights so that

they add up to 1, i.e. p(S) = λS∑
T∈W∗ λT

for each S ∈ W ∗.

The collection of coalitions W ∗ is weakly balanced if and only if the fol-

lowing system of equations has a solution. Find (λS)S∈W ∗ such that∑
S3i

λS = 1 for all i ∈ N (1)

λS ≥ 0 for all S ∈ W ∗

I now illustrate the definition with some examples.

7The word ”weak” refers to the fact that λS ≥ 0 is required rather than λS > 0.
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Example 4 Consider the game [3; 2, 1, 1, 1]. All MWCs have the same to-

tal weight, hence W ∗ = Wm = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. The relevant

system of equations is

λ{1,2} + λ{1,3} + λ{1,4} = 1

λ{1,2} + λ{2,3,4} = 1

λ{1,3} + λ{2,3,4} = 1

λ{1,4} + λ{2,3,4} = 1

λ{1,2}, λ{1,3}, λ{1,4}, λ{2,3,4} ≥ 0

The (unique) solution to this system is λ{1,2} = λ{1,3} = λ{1,4} = 1
3
,

λ{2,3,4} = 2
3
. If we renormalize these values such that they add up to 1, they

can be interpreted as probabilities of the respective coalitions: p({1, 2}) =

p({1, 3}) = p({1, 4}) = 1
5

and p({2, 3, 4}) = 2
5
. Given these probabilities, each

of the players is included in the final coalition with probability 3
5
. Player 1 is

in more MWCs than other players, but this difference can be compensated by

making coalition {2, 3, 4} more likely.

Example 1 on the other hand is a clear case of violation of this condition.

Since the game is homogeneous, all MWCs have the same total weight and

W ∗ = Wm = {{1, 2}, {1, 3}, {2, 3, 4})}. The system is then

λ{1,2} + λ{1,3} = 1

λ{1,2} + λ{2,3,4} = 1

λ{1,3} + λ{2,3,4} = 1

λ{2,3,4} = 1

λ{1,2}, λ{1,3}, λ{2,3,4} ≥ 0

The fourth equation requires λ{2,3,4} = 1. Substituting this value into the

second and third equations gives λ{1,2} = λ{1,3} = 0, which then contradicts
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the first equation. The system has no solution, hence the set W ∗ is not weakly

balanced. Player 4 is an inferior player (Napel and Widgrén, 2001) in that it

can only be in a MWC when players 2 and 3 are also present; since player 1

also needs either player 2 or player 3, it is impossible for all players to be in

the final coalition with equal probability.

Example 2 is a more subtle instance of the same problem. There are two

types8 of MWC, [5555] and [55511111]. Even in the most favorable case for the

small players, which is when the only coalition type that forms is [55511111], it

is still the case that a type [5] player ends up in the coalition with probability

3
5
, whereas a type [1] player only ends up in the coalition with probability

5
9
< 3

5
.

Either adding or removing a player of type [1] to example 2 would make the

balancedness property hold. Adding a player would introduce a new type of

MWC that favors the small players, [551111111111]. Removing a player leaves

the two types of MWC unchanged, but it gives individual type [1] players a

greater chance of being part of coalition type [55511111].

The result

The main result of this paper is that weak balancedness of the set W ∗ is

a necessary and sufficient condition for the existence of an equilibrium with

proportional payoffs.

Proposition 5 Let [q;w1, ..., wn] be an arbitrary weighted majority game, nor-

malized so that
∑

i∈N wi = 1, and let θ = w. There exists an SSPE with v = w

8Note that it is sufficient to search for solutions of system (1) such that λS = λS′ if S

and S′ are of the same type. If a solution to the system exists, a symmetric solution must

also exist (given an asymmetric solution, we can construct a symmetric one by setting each

λS equal to the average weight of coalitions of that type).
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if and only if W ∗ is weakly balanced.

Proof. See next section.

Note that the value of the discount factor δ ∈ (0, 1] does not affect the

necessary and sufficient condition. If the condition is satisfied, an equilibrium

with proportional payoffs exists irrespective of δ, and the only effect of impa-

tience is that all continuation values shrink proportionally and the proposer

advantage increases. If the condition is not satisfied, expected equilibrium

payoffs cannot be proportional for any δ > 0, and their actual value does in

general depend on δ.

There are no requirements on [q;w] in order for the condition to apply.

Note however that the condition has almost no chance to hold if w is the

vector of seat shares, since in general not all parties belong to a coalition

with the minimum number of seats.9 MIWs on the other hand ensure that all

players belong to a winning coalition of minimum total weight, though even

in this case the condition does not necessarily hold as we have seen.10

In order to check whether the condition holds, one needs to solve a system

of n (the number of players) linear equations with m (the number of winning

9For example, assuming simple majority voting, the German Bundestag as of September

2014 would be associated with the weighted majority game [316; 311, 192, 64, 63]. There

are four minimal winning coalitions: {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}. The coalition with the

minimum total number of seats is {2, 3, 4}, with 319 seats. Party 1 does not belong to any

coalition with 319 seats, hence the corresponding W ∗ would not be balanced.
10Even though there are no requirements on [q;w] in order for the condition to apply,

there is an important requirement on the game form: recognition probabilities must be

proportional to w. As Kalandrakis (2006) has shown, recognition probabilities have a strong

influence on equilibrium payoffs. Diermeier and Merlo (2004) found some empirical support

for the hypothesis of formateur selection being proportional to seat shares. To the best of my

knowledge there has been no empirical testing of selection proportional to voting weights.
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coalitions of minimum weight) unknowns, withm additional constraints requir-

ing the value of each of the unknowns to be nonnegative. Just writing down

the equations can be a lengthy process. For example, one of the games in the

database is [314; 116, 108, 108, 98, 39, 33, 29, 18, 14, 13, 11, 10, 6, 6, 5, 4, 3, 2, 1, 1, 1],

which has 10,790 MWCs, of which 8,616 are in W ∗!11 As to solving the system,

note that (1) looks like a linear programming problem (each equality can be

transformed into two inequalities) except that there is no objective function;

hence the matter at stake is whether the program is feasible. One can use

linear programming methods to answer this question (see Vanderbei, 2008,

chapter 2).12

Proposition 5 strengthens an earlier result of Montero (2006). Montero

(2006) shows that, if θ coincides with the nucleolus (Schmeidler (1969)), v co-

incides with the nucleolus as well. A sufficient condition automatically follows

from that earlier result: if the weights happen to be proportional to the nucleo-

lus, expected payoffs are proportional to the weights. Peleg (1968) shows that

MIWs are proportional to the nucleolus for all strong homogeneous games,

hence the game being in this class is a sufficient condition for the proportion-

ality of expected payoffs. The condition in Montero (2006) is sufficient but not

necessary.13 The condition in proposition 5 is both necessary and sufficient,

11I am grateful to Jean Derks for providing MATLAB code that automatically generates

the equations taking (q, w) as an input.
12A more roundabout way of checking the condition involves solving a related linear

programming problem and comparing the optimal value of the objective function with 1−
minS∈W

∑
i∈S wi. This method is based on Peleg and Rosenmüller (1992) and Derks and

Kuipers (1997), and is discussed in the online appendix.
13For example, the nucleolus of the game [10; 3, 3, 3, 2, 2, 2] is ( 2

9 ,
2
9 ,

2
9 ,

1
9 ,

1
9 ,

1
9 ), which is not

a system of weights at all, and nevertheless expected payoffs are proportional to the MIWs.

I’m grateful to Peter Sudhölter for pointing out this example, which appears in Kopelowitz

(1967).
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as shown in the next section.

It is worth noting that the condition does not have a straightforward con-

nection with other properties such as the homogeneity of the game. The

condition always holds for strong homogeneous games, but may hold for other

games as well. For example, it holds for the game [30; 14, 14, 12, 4, 4, 4, 4, 1, 1],

which is neither homogeneous nor strong.14

Relation to repeated bargaining

A very substantial literature analyzes repeated bargaining with dynamic link-

ages between different bargaining games. The most common assumption in

this literature is that the agreement reached in one stage game becomes the

status quo for the next stage game (see Kalandrakis (2004)). Even though

the motivation of the present paper is very different, proposition 5 has some

implications for repeated bargaining where the dynamic linkage works through

the recognition probabilities. Specifically, suppose players play the bargaining

game repeatedly, with the status quo remaining at 0 and the voting weights

and quota remaining constant, but with an endogenous recognition rule such

that each player’s recognition probability equals its expected equilibrium pay-

off (rather than its realized payoff as in Jeon (2015)) from the previous game.

Suppose furthermore that players are farsighted within a game but do not take

into account that an agreement reached in the current game affects the recog-

nition probabilities in the next one. Under these assumptions, proposition 5

can be modified to obtain a characterization of the set of interior fixed points

14Putting Proposition 5 together with Proposition 2 in Snyder et al. (2005), it follows

that the condition must be satisfied for sufficiently large replica games. Kurz et al. (2014)

show a stronger result: weights of large replica games coincide with the nucleolus.
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of this process.15 The price to pay for the adaptation of proposition 5 to an

arbitrary payoff vector is that a) the characterization only applies to payoff

vectors x with xi > 0 for all i, while the result on weights allows wi = 0,

which is an important case since parties with a positive number of seats may

nevertheless have a 0 voting weight in a minimal integer representation; and

b) the proof is slightly more lengthy. To state the result formally, denote the

set of winning coalitions with minimum
∑

i∈S xi asW∗(x). This set generalizes

the set W ∗, which would be W∗(w) in this notation.

Corollary 6 Let [q;w1, ..., wn] be an arbitrary weighted majority game, and

x be a payoff vector (not necessarily a set of weights for the game) such that

xi > 0 for all i ∈ N and
∑

i∈N xi = 1. Let θ = x. There exists an SSPE with

v = x if and only if W∗(x) is weakly balanced.

Proof. See Online Appendix.

Proof of proposition 5

Because there are no restrictions on [q;w1, ..., wn], it is possible that no coali-

tion has exactly q votes. Let minS∈W
∑

i∈S wi := q.16

1. Necessity. Suppose we have an SSPE with v = w. Expected payoffs are

given by

vi = θi
∑
S:S3i

pi(S)

1−
∑

j∈S\{i}

δvj

+ riδvi

where vi is i’s expected payoff, θi is the probability that i is selected to be

proposer, pi(S) is the probability that i proposes S conditional on i being

15I’m grateful to an anonymous referee for pointing this out.
16For example, if w =

(
5
13 ,

4
13 ,

4
13

)
and q = 7

13 , there is no coalition with exactly 7
13 votes

and q = 8
13 .
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the proposer, and ri is the probability that i receives a proposal from another

player.

Consider first the case in which wi > 0 for all i and each player belongs

to at least one coalition in W ∗. Then, if expected payoffs coincide with w,

the optimal coalitions for the proposer are the coalitions in W ∗ to which it

belongs. Since these coalitions have a total weight of q,
∑

j∈S\{i} vj = q−wi for

all the proposed coalitions, and
∑

S:S3i pi(S)
[
1−

∑
j∈S\{i} δvj

]
can be written

as 1− δ(q − wi). Since both vi and θi coincide with wi for all i, we can write

the equation for expected payoffs as

wi = wi [1− δ(q − wi)] + riδwi.

Dividing by wi (which by assumption is positive) and re-arranging terms,

we find δ(q − wi) = δri, which implies q = ri + wi since δ > 0. Given that

wi is also the probability of being proposer, we see that the total probabil-

ity of being part of the final coalition (the probability of being proposer, wi,

plus the probability of being responder, ri) must be the same for all players.

This implies that, if p(S) is the equilibrium probability of coalition S form-

ing,
∑

S3i p(S) = q for all i. Notice also that only coalitions with q votes

form in equilibrium (other coalitions are too expensive), so we may write∑
S:S∈W ∗,S3i p(S) = q for all i. If we divide both sides of the equation by q and

define λS := p(S)/q, we obtain
∑

S:S∈W ∗,S3i λS = 1 for all i. In other words,

the set of minimal winning coalitions with q votes must be weakly balanced.

If there is a player with wi > 0 who does not belong to any of the coalitions

with exactly q votes, this player needs to buy more than q −wi votes, and its

payoff as a proposer is less than 1− δ(q − wi). We may then write

vi < θi [1− δ(q − wi)] + riδvi.
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If we replace vi and θi by wi and divide everything by wi, collecting terms

we find ri + wi > q. Since q > 1
2

we find that ri + wi >
1
2
, i.e., player i’s

probability of being in the final coalition is above 1
2
. Let S be one of the

coalitions with q votes. Players in S never include i in their proposal. But

this then implies that player i is in the final coalition with a probability of at

most 1− q, which is less than 1
2
. Hence, there cannot be an equilibrium with

v = w in which a player does not belong to any coalition in W ∗.

If v = w and wi = 0 for some i, we can still show that the set W ∗ must be

weakly balanced. Note that players with wi = 0 trivially belong to at least one

coalition in W ∗. If wi = 0, the coalition that forms can be viewed as including

i (since i receives δvi) or excluding i (since i receives 0). Choose a player k

with wk > 0 and adopt the arbitrary accounting convention that players with

wi = 0 are considered part of the coalition if and only if player k is part of the

coalition17. It follows from the analysis above that
∑

S∈W ∗,S3i λS = 1 for all j.

2. Sufficiency. Suppose W ∗ is weakly balanced. As in Montero (2006),

we can use the weights λS to construct a mixed strategy equilibrium in which

v = w. As a proposer, player i proposes one of the coalitions in W ∗ to which

it belongs according to the probability distribution pi(S) = λS for all S such

that S ∈ W ∗, S 3 i; pi(S) = 0 for all other S. Proposing S means that player

i sets xj = δwj for all j ∈ S\{i}, xi = 1 −
∑

j∈S\{i} δwj and xj = 0 for all

j ∈ N\S. Since by assumption
∑

S3i λS = 1 for all i, the strategy is well

defined. As a responder, player i accepts proposals if and only if xi ≥ δwi.

I now show that this strategy combination leads to vi = wi for all i. This

17The assumption that w is a weight vector for the game rather than an arbitrary payoff

vector plays an important role here. It is because wi is both i’s payoff and i’s weight that

we can add or remove player i at will from coalitions in W ∗ and still get a coalition in W ∗.

If w is not a vector of weights, removing i from a coalition may produce a losing coalition,

i.e., a coalition outside W ∗.
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is trivially the case if wi = 0, since by assumption this player has no chance

of being proposer and no other player offers i a positive payoff as a responder.

If wi > 0, player i’s expected payoff given this strategy combination equals

vi = θi
∑
S:S3i

pi(S)

1−
∑

j∈S\{i}

δwj

+

 ∑
j∈N\{i}

θj
∑

S⊇{i,j}

pj(S)

 δwi.
By assumption, θi = wi. Player i’s payoff as a proposer can be written as

1−δ(q−wi) since player i only proposes coalitions inW ∗ and by definition these

coalitions have a total weight of q. The probability of receiving a proposal,∑
j∈N\{i} θj

∑
S⊇{i,j} pj(S), can be rewritten as

∑
S3i
∑

j∈S\{i} θjpj(S). Hence,

vi = wi[1− δ(q − wi)] +

∑
S3i

∑
j∈S\{i}

θjpj(S)

 δwi.
Since by construction only coalitions in W ∗ are proposed and those have

pj(S) = λS, we can write

vi = wi[1− δ(q − wi)] +

 ∑
S:S3i,S∈W ∗

∑
j∈S\{i}

θjλS

 δwi =

= wi[1− δ(q − wi)] +

 ∑
S:S3i,S∈W ∗

λS
∑

j∈S\{i}

θj

 δwi.
Furthermore, since θj = wj and

∑
j∈S\{i}wj = q − wi for all S ∈ W ∗ we

have
∑

j∈S\{i} θj = q − wi. We can then write

vi = wi[1− δ(q − wi)] +

[ ∑
S:S3i,S∈W ∗

λS(q − wi)

]
δwi =

= wi[1− δ(q − wi)] +

[
(q − wi)

∑
S:S3i,S∈W ∗

λS

]
δwi = wi

where the last equality follows from
∑

S:S3i,S∈W ∗ λS = 1.
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Because vi = wi for all i, players are behaving optimally both as proposers

and as responders. Proposers propose only the cheapest coalitions available

given the responders’ acceptance thresholds (i.e., coalitions in W ∗) and re-

sponders accept proposals if and only if xi ≥ δvi. Hence, we have an SSPE.

Predicted deviations from proportionality in ap-

plications

Predicted frequency of the deviations

Because the condition in Proposition 5 is necessary and sufficient we have a

characterization, and are able to answer the question of whether equilibrium

payoffs are proportional to the voting weights in any particular case. Table

1 shows the frequency of the proportional equilibrium payoffs prediction for

the weight distributions in Snyder et al. (2005)’s dataset.18 This frequency

provides some guidance as to how likely the condition is to hold in applica-

tions.19 As a byproduct, it also indicates the proportion of cases in which the

predictions tested by Snyder et al. are supported by the equilibrium of their

18These calculations use the MIWs provided by Snyder et al. in their supplementary

material. All frequencies are computed as a fraction of the total number of observations in

the dataset, where each government is an observation.
19Another potential application is the EU Council of Ministers. The condition fails to

hold for most of the historical weight distributions (see Le Breton et al. (2012)).
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theoretical model.

Table 1. Frequency of proportional equilibrium prediction

Observations Proportional Frequency

Australia 26 26 1

Austria 23 23 1

Belgium 36 25 0.69

Denmark 32 25 0.78

Finland 44 19 0.43

Iceland 22 18 0.82

Ireland 22 12 0.55

Italy 46 13 0.28

Luxembourg 17 11 0.65

Netherlands 23 10 0.43

Norway 27 26 0.96

Portugal 15 11 0.73

Sweden 25 24 0.96

(West) Germany 20 19 0.95

All countries 378 262 0.69

Some of these observations correspond to trivial cases in which either one

party has the overall majority or all parties are de facto symmetric. If trivial

cases (defined as cases in which all minimal integer weights are 0 or 1) are ex-

cluded, the overall frequency of the proportional equilibrium prediction drops

to about 59%.
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Predicted size of the deviations

The necessary and sufficient condition in Proposition 5 provides a yes/no an-

swer on proportionality: if it fails, expected equilibrium payoffs cannot be

proportional. But how far are they from being proportional? The online ap-

pendix compares equilibrium payoffs and weights for all games in the dataset

with at most 7 players that fail to satisfy the condition (excluding games with

a veto player, of which there are two in the database). In this section, I look at

the difference between proportional and equilibrium payoffs in two examples

from the database, [9; 5, 4, 4, 1, 1, 1] and [17; 9, 8, 5, 4, 4, 1, 1].

Figure 1 shows the weights wi (the MIWs, normalized so that they add

up to 1) and expected equilibrium payoffs vi for these two games. Each bar

represents one player. Most players get an expected payoff that is not too far

from their voting weight; for example, player 1 in game [17; 9, 8, 5, 4, 4, 1, 1]

has an expected payoff of 0.278 (this is also player 1’s predicted payoff as a

coalition partner) and a normalized voting weight of 0.281. However, there are

also players whose expected payoffs are substantially different from their weight

shares, and this is often true for the smallest player type, as the online appendix

illustrates. In game [17; 9, 8, 5, 4, 4, 1, 1], player 7 has a weight share of 0.031

but an expected payoff of only 0.014. Taking weights rather than expected

payoffs as the theoretical prediction for realized allocations matters more or

less depending on which players are the coalition partners; in particular, if

player 2 is the proposer and player 1 is the coalition partner, the difference is

almost imperceptible.

Figure 2 shows vi
wi

, the ratio of payoffs to weights, for the same two ex-

amples. This ratio measures how much of a player’s weight is translated into

expected equilibrium payoffs; if expected equilibrium payoffs were proportional

to weights it would always be 1. Even though most player types have ratios
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Figure 1: Equilibrium versus proportional payoffs in two examples
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Figure 2: Ratio of payoffs to weights in two examples

close to 1, the smallest player types get only about 44% of their weight share

in these two examples. The picture can also be interpreted as a comparison of

payoffs per vote for different players. The smallest players get a much lower

payoff per vote.

A third measure of deviation from proportionality is the relative payoffs

vi/vn, i.e. the exchange rate between players according to equilibrium predic-

tions. If expected equilibrium payoffs were proportional, this exchange rate

would always be equal to wi/wn (in particular, if wn = 1, this ratio would

replicate the MIWs). Because player n often gets very little, the ratios be-

tween a player’s payoff and the payoff of the smallest player are very different
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Figure 3: Relative weights versus relative payoffs in two examples

from wi/wn. In the game [9; 5, 4, 4, 1, 1, 1], a player with 5 votes does not get

5 times as much as a player with 1 vote, but about 12 times as much. In the

game [17; 9, 8, 5, 4, 4, 1, 1], a player with 9 votes does not get 9 times as much

as a player with 1 vote, but about 20 times as much. Figure 3 illustrates how

relative payoffs deviate very substantially from relative weights.

These examples and the ones in the online appendix show a similar pattern.

On the one hand, many of the larger players have an expected payoff close to

wi, such that their predicted payoff as coalition partners is similar to their

weights. On the other hand, the implied exchange rates between players may

deviate substantially from the relative weights, and this is often the case when

the smallest player type is involved.

Qualitative equilibrium phenomena

An alternative way of looking at the importance of deviations is to focus not on

their size, but on the presence of equilibrium phenomena that would be ruled

out if payoffs were proportional to the MIWs. I discuss three such phenomena:

players that are not interchangeable may have the same expected equilibrium

payoffs, some players may be too expensive to receive any proposals, and
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surplus coalitions may form. All three phenomena can be illustrated using one

of the weighted majority games in the dataset, [13; 7, 6, 4, 3, 3, 1], corresponding

to Belgium in 1972.

Example 7 Consider the weighted majority game [13; 7, 6, 4, 3, 3, 1]. Note

that types [7] and [6] are genuinely asymmetric: coalition [733] is winning but

coalition [633] is losing. Likewise, types [4] and [3] are genuinely asymmetric

because [643] is winning but [633] is losing. Let θ =
(

7
24
, 6
24
, 4
24
, 3
24
, 3
24
, 1
24

)
. All

SSPE have v[7] = v[6] = 46
164

, v[4] = v[3] = 23
164

and v[1] = 3
164

.

Proof. See Online Appendix.

Asymmetric players may have the same payoff

Example 7 shows that it is possible for two players to have the same equilibrium

expected payoffs, even though one of the players is more valuable as a coalition

partner and has the additional advantage of a higher recognition probability.

Some intuition for this result can be obtained by inspecting the list of

MWCs. There are seven MWCs of five types: [76], [743], [733], [643], [6331].

All MWCs have exactly 13 votes except for the two coalitions of type [743].

If v[7] > v[6] and v[4] > v[3], coalition [743] would be too expensive to be

proposed by any player type, because the alternative coalitions [643] and [733]

would be cheaper. This leaves four coalition types that could potentially be

proposed, [76], [733], [643] and [6331]. Given this list, player [1] would need

the cooperation of player [6] and both players of type [3], whereas player [4]

would need player [6] and one of the players of type [3]. Likewise, player [7]

would need either player [6] or both players of type [3]. Types [6] and [3]

would be more in demand than types [7] and [4], and it would not be possible
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to have v[7] > v[6] and v[4] > v[3]. It turns out that, in equilibrium, v[7] = v[6]

and v[4] = v[3].

Some players may be too expensive to receive proposals

The equalities v[7] = v[6] and v[4] = v[3] have two implications. On the one hand,

coalition type [743] becomes relevant, because it is just as expensive as [643]

and [733] despite having one more vote. On the other hand, coalition type

[6331] becomes too expensive for anybody other than player [1] even though it

only has 13 votes. Players [6] and [3] would rather propose [643] than [6331],

since its total cost is v[6] + v[4] + v[3] = v[6] + 2v[3] < v[6] + 2v[3] + v[1].

Note that the substitutability logic applies to this example, but in a some-

what perverse way. Instead of applying to the MWCs with 13 votes (coalition

types [76], [733], [643], and [6331]), it applies to coalition types [76], [733],

[643] and [743].

Looking at the SSPE payoffs, player [1] appears underpriced since it only

expects about 0.02 even though its weight share is about 0.04. Types [6]

and [3] are getting a disproportionately high payoff compared to their weight

share but this does not result in their exclusion; instead, it is type [1] that is

excluded. Indeed, given that v[7] = v[6] and v[4] = v[3], player type [1] would be

perceived as too expensive for any positive value of v[1].

Surplus coalitions may form

The original Baron-Ferejohn model with symmetric players always leads to

minimal winning coalitions, since the proposer could otherwise drop one of

the responders and still have a winning coalition. With asymmetric players,

it is still true that all coalition partners must be pivotal, but the proposer is

not necessarily pivotal. In the previous example, type [1] finds it optimal to
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propose surplus coalitions such as [7331] or [7431], since they are as expensive

as the minimal winning coalition [6331] given that v[7] = v[6] and v[4] = v[3].

Hence, surplus coalitions are not ruled out in equilibrium under weighted vot-

ing, though the only type of surplus coalition that may form is one in which

the proposer is the only member of the coalition who is not pivotal.

Concluding remarks

This paper provides a necessary and sufficient condition for equilibrium payoffs

to be proportional in the Baron-Ferejohn model with weighted voting. When

the condition is satisfied, the set of available coalitions is sufficiently rich so

that none of the parties appears systematically too often (excess demand) or

too seldom (excess supply) in the final coalition. The condition is relatively

easy to check in applications since all equations involved are linear. Using

the condition, it is found that the frequency of legislatures in the field with

proportional equilibrium payoffs is about 69%, though there is a lot of variation

across countries. This frequency may be viewed as sufficiently high to support

empirical work, specially in the countries where it is highest.

Most counterexamples are not a result of the competitive bargaining logic

failing, but rather of its working in unexpected ways. However, in these cases

the deviations from proportionality may be substantial, both quantitatively

and qualitatively, as the examples provided illustrate.
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Online Appendix to ”Proportional payoffs in

legislative bargaining with weighted voting: a

characterization”

Maria Montero

Calculations for [5;3,2,2,1]

By contradiction, suppose v =
(
3
8
, 2
8
, 2
8
, 1
8

)
. What would be the optimal pro-

poser behavior given v? The player with 3 votes needs to buy 2 votes, hence

it always offers v[2] to one of the players with 2 votes (the player with 1 vote

is of no use to this player, regardless of the value of v[1]). The player with 1

vote needs to buy 4 votes, and buys them from the two players that control

2 votes each. A player with 2 votes needs to buy 3 votes, and is indifferent

between buying them from the large player or from the other two players since

v[3] = v[2] + v[1]. Let p be the probability that a player with 2 votes proposes

to the player with 3 votes (conditional on a player with 2 votes being selected

as proposer). Expected payoffs for types [3] and [1] must satisfy the following

equations:
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From the second equation we find p = 0. This means that in order to

sustain a payoff of 1
8

for type [1], type [2] must always propose a coalition

of type [221]. However, p = 0 does not solve the first equation: in order to

sustain a payoff of 3
8

for type [3], p must be 1
2
.

Interestingly, the equilibrium is still competitive in the sense that v[3] =

v[2] + v[1]. Below we construct an equilibrium strategy profile. Let player [3]

propose to each of the two players of type [2] with probability 1
2
, and let each of

the players of type [2] propose to player [3] with probability p. The equilibrium

values of v[3], v[2], v[1] and p can be found from the following system:

v[3] =
3

8

[
1− v[2]

]
+

4

8
pv[3]

v[2] =
2

8

[
p(1− v[3]) + (1− p)(1− v[2] − v[1])

]
+

3

8

1

2
v[2] +

2

8
(1− p)v[2] +

1

8
v[2]

v[1] =
1

8
[1− 2v[2]] +

4

8
(1− p)v[1]

v[3] = v[2] + v[1]

The solution to this system is v[3] = 5
14

, v[2] = 4
14

, v[1] = 1
14

and p = 1
2
.

This is an equilibrium since players are behaving optimally both as proposers

and as responders. Because of the uniqueness result of Eraslan and McLennan

(2013), all SSPE must have the same payoff vector.

Calculations for [13;7,6,4,3,3,1]

There are seven MWCs of five types: [76], [743], [733], [643], [6331]. If ex-

pected equilibrium payoffs were proportional, only types [76], [733], [643] and

[6331] could be proposed in equilibrium. It can be checked that the necessary

and sufficient condition for proportionality does not hold: for any probability

distribution over those coalitions, type [6] and/or type [3] would appear in the

final coalition disproportionately often.
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It turns out that, even though there are five player types, SSPE payoffs

divide the players in only three groups, which we denote as L, M and S. We

now construct an equilibrium with v[7] = v[6] := vL, v[4] = v[3] := vM , v[1] := vS

and vL = 2vM . In this situation, player [7] is indifferent between proposing to

the other large player and paying vL, and proposing to two medium players,

paying vM to each (vL in total). Type [6] is also indifferent between buying

votes from the large player or from two medium players (except that, when

buying votes from a medium player, one of the two medium players has to be

of type [4] because otherwise the coalition would be losing). Coalition [6331]

would be too expensive, since on top of 2vM one needs to pay vS > 0. Type

[4] may propose [743] or [643]; in both cases it needs to pay vL+vM . Likewise,

type [3] has three coalition types that are equally optimal: [743], [733] and

[643]; coalition [6331] is too expensive. Player [1] has [6331] as its only MWC;

given the prices, it could replace [6] with [7] or/and [3] with [4] at no extra

cost, hence the surplus coalitions [7331] and [7431] would also be optimal for

type [1] (we return to this point below).

We now construct a profile of SSPE strategies. The following table intro-

duces a notation for the strategies. The rows in the table are player types and

the columns are coalition types. Each entry in the table represents the prob-

ability that the player type in the corresponding row proposes the coalition

type in the corresponding column. It is assumed that all players of the same

type follow the same strategy and each coalition of the same type is proposed
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with equal probability.

[76] [743] [733] [643] [6331]

[7] α β 1− α− β − −
[6] γ − − 1− γ 0

[4] − µ − 1− µ −
[3] − π ρ 1− π − ρ 0

[1] − − − − 1

Equilibrium strategies and payoffs solve the following system of equations1

vL =
7

24
[1− vL] +

[
6

24
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4
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µ+

6

24
(π + ρ)
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6
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3
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7
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(
β

2
+ 1− α− β) +

6

24

1− γ
2

+
4

24

1

2
+

3

24
ρ+

1

24

]
vM

vS =
1

24
[1− vL − 2vM ]

vL = 2vM

There are many solutions to this system, all with vL = 46
164

, vM = 23
164

and

vS = 3
164

. The mixed strategies are not uniquely determined. A possible solu-

tion is α = µ = π = 0, β = 5
23

, γ = 14
23

, ρ = 55
138
. These strategies constitute an

SSPE since players are behaving optimally both as proposers and as respon-

ders: only optimal coalitions are proposed given the acceptance thresholds

1Note that we are simplifying the first five equations by using the sixth one (i.e., all

coalitions proposed with positive probability in equilibrium must give the same payoff to

the proposer). For example, player [6]’s proposer payoff is written as 1 − vL rather than

γ[1− vL] + (1− γ)[1− 2vM ].
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(vL, vM and vS), and the acceptance thresholds equal the continuation values

given the strategies. Due to the uniqueness result of Eraslan and McLennan

(2013), all SSPE must have the same v-values.

There are also equilibria in which surplus coalitions are proposed with

positive probability. For example, if type [1] proposes [6331] with probability

1
2

and [7431] with probability 1
2
, the system of equations can be amended

accordingly and a new solution for the equilibrium strategies is α = µ = π = 0,

β = 12
161

, γ = 14
23

, ρ = 29
92

(the v-values are of course unaffected).

Predicted size of the deviations

The following tables compare equilibrium payoffs and weights for all games in

the dataset with at most 7 players that fail to satisfy the condition (excluding

games with a veto player, of which there are two in the database). For each

game, the tables shows wi (the MIWs), vi (expected equilibrium payoffs),

and two quantitative measures of how far v is from being proportional to

w. One such measure is vi
wi/

∑
j∈N wj

, the ratio of payoffs to weights, where

weights are normalized so that they add up to 1. This ratio measures how

much of a player’s weight is translated into expected equilibrium payoffs; if

expected equilibrium payoffs were proportional to weights it would always

be 1. Another measure is the relative payoffs vi/vn, i.e. the exchange rate

between players according to equilibrium predictions. If expected equilibrium

payoffs were proportional, this exchange rate would always be equal to wi/wn

(in particular, if wn = 1, this ratio would replicate the MIWs).

Expected payoffs for individual players can be substantially different from

weight shares, and this is very often true for the smallest player type, who may

get as little as 43% of its weight share. As a result, ratios between a player’s
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payoff and the payoff of the smallest player are often very different from wi/wn.

Nevertheless, if we focus on the ratio of expected payoffs to weights, we see

that many players have a ratio close to 1.

Table A1. Homogeneous games with up to 6 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

7 5 5 2 2 1

0.323 0.226 0.226 0.097 0.097 0.032

1.014 0.993 0.993 1.067 1.067 0.699

10.16 7.10 7.10 3.05 3.05 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 4 4 1 1 1

0.324 0.297 0.297 0.027 0.027 0.027

1.038 1.190 1.190 0.430 0.430 0.430

12.06 11.06 11.06 1 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 3 3 2 1

0.376 0.208 0.208 0.168 0.040

1.053 0.970 0.970 1.178 0.556

9.47 5.24 5.24 4.24 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 2 2 2 1

0.412 0.176 0.176 0.176 0.059

0.988 1.059 1.059 1.059 0.706

7 3 3 3 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

4 3 3 1 1

0.333 0.295 0.295 0.038 0.038

1.000 1.181 1.181 0.456 0.456

8.77 7.77 7.77 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

3 2 2 1

0.357 0.286 0.286 0.071

0.952 1.143 1.143 0.571

5 4 4 1
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Table A2. Homogeneous games with 7 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 7 7 2 2 2 1

0.302 0.233 0.233 0.069 0.069 0.069 0.026

1.006 0.998 0.998 1.035 1.035 1.035 0.771

11.74 9.06 9.06 2.69 2.69 2.69 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 6 6 3 2 1 1

0.325 0.217 0.217 0.108 0.085 0.024 0.024

1.013 1.013 1.013 1.013 1.188 0.661 0.661

13.79 9.19 9.19 4.60 3.60 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 3 3 3 2 1 1

0.416 0.139 0.139 0.139 0.109 0.023 0.023

1.017 1.017 1.017 1.017 1.200 0.650 0.650

14.08 4.69 4.69 4.69 3.69 1 1

Table A3. Nonhomogeneous games with up to 6 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 5 5 3 2 2

0.364 0.182 0.182 0.091 0.091 0.091

1.051 0.945 0.945 0.788 1.182 1.182

4 2 2 1 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

8 6 5 3 3 1

0.320 0.227 0.206 0.113 0.113 0.020

1.039 0.983 1.073 0.983 0.983 0.528

15.75 11.16 10.16 5.58 5.58 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

7 6 4 3 3 1

0.280 0.280 0.140 0.140 0.140 0.018

0.962 1.122 0.841 1.122 1.122 0.439

15.33 15.33 7.67 7.67 7.67 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 4 3 2 2

0.290 0.280 0.150 0.140 0.140

0.928 1.119 0.801 1.119 1.119

2.07 2 1.07 1 1
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Table A4. Nonhomogeneous games with 7 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

13 11 9 6 5 4 2

0.261 0.218 0.174 0.130 0.088 0.087 0.043

1.003 0.989 0.968 1.082 0.877 1.082 1.082

6.03 5.03 4.03 3 2.03 2 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

13 10 9 6 6 3 1

0.264 0.198 0.198 0.132 0.132 0.066 0.010

0.975 0.951 1.056 1.056 1.056 1.056 0.472

26.86 20.14 20.14 13.43 13.43 6.71 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

12 10 7 5 4 3 1

0.288 0.237 0.170 0.119 0.102 0.068 0.017

1.009 0.996 1.017 0.997 1.070 0.947 0.704

17.20 14.16 10.12 7.08 6.08 4.04 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

11 8 7 4 4 1 1

0.320 0.222 0.209 0.111 0.111 0.014 0.014

1.046 1.000 1.073 1.000 1.000 0.491 0.491

23.43 16.28 15.28 8.14 8.14 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

10 9 7 3 3 3 1

0.269 0.269 0.179 0.090 0.090 0.090 0.013

0.969 1.077 0.923 1.077 1.077 1.077 0.462

21 21 14 7 7 7 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

10 3 3 3 2 2 1

0.426 0.120 0.120 0.120 0.093 0.093 0.027

1.023 0.961 0.961 0.961 1.117 1.117 0.649

15.76 4.44 4.44 4.44 3.44 3.44 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 8 5 4 4 1 1

0.278 0.278 0.139 0.139 0.139 0.014 0.014

0.988 1.111 0.889 1.111 1.111 0.444 0.444

20 20 10 10 10 1 1
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An alternative way of checking the condition

using linear programming

Consider the following linear programming problem

min e (1)

s.t.
∑
i∈S

xi + e ≥ 1 for all S ∈ W∑
i∈N

xi = 1

xi ≥ 0 for all i ∈ N ; e ≥ 0

Its interpretation is the following. Take any (x1, ..., xn) vector, and any

winning coalition S. Coalition S can divide the dollar by itself, but it is getting

only
∑

i∈S xi in this particular allocation. The difference 1−
∑

i∈S xi is known

as the excess of the coalition, though perhaps deficit would be a better term.

The linear program above finds allocations x that minimize the maximum

excess.2 This linear programming problem is well known in cooperative game

theory and is related to the core (in particular, if the solution has e = 0, the

core is nonempty; this is not the case in weighted majority games unless there

are veto players).

The following result is adapted from Peleg and Rosenmüller’s (1992) the-

orems 3.2 and 3.3, which concern the set Wm and homogeneous games.

Claim 1 Let [q;w1, ..., wn] be an arbitrary weighted majority game, normalized

so that
∑

i∈N wi = 1. Then W ∗ is weakly balanced if and only if x = w and

e = 1− q solve linear programming problem (1).

2Rewriting
∑

i∈S xi + e ≥ 1 as e ≥ 1−
∑

i∈S xi, we see that the inequalities impose that

excesses of the winning coalitions are at most e. This number e is then minimized.
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This result allows us to check the weak balancedness of W ∗ by solving (1)

and comparing the optimal value of e with 1− q.
To see that claim 1 is correct, construct the dual program of (1) (see, for

example, Vanderbei (2008), chapter 5), where λS is the dual variable associated

to the constraint
∑

i∈S xi + e ≥ 1 and µ is the dual variable associated to∑
i∈N xi = 1 (rewritten as

∑
i∈N xi ≤ 1, or equivalently as −

∑
i∈N xi ≥ −1).

max
∑
S∈W

λS − µ (2)

s. t.
∑

S∈W,S3i

λS − µ ≤ 0 for all i ∈ N∑
S∈W

λS ≤ 1

λS ≥ 0 for S ∈ W , µ ≥ 0.

The complementary slackness theorem (see theorem 5.3 in Vanderbei (2008))

tells us that a pair of feasible solutions for the primal (1) and for the dual (2)

are optimal for their respective problems if and only if λS(1−
∑

i∈S xi−e) = 0

for all S ∈ W , µ(1−
∑

i∈N xi) = 0, xi(
∑

S∈W,S3i λS−µ) = 0 for all i ∈ N , and

e(1−
∑

S∈W λS) = 0.

We now prove claim 1.

1. Sufficiency. Suppose W ∗ is weakly balanced. Then we can construct

feasible solutions for the primal and for the dual such that the complementary

slackness conditions are satisfied. For the primal, let x = w and e = 1 − q.
This is clearly feasible for the primal since by definition q = minS∈W wi, hence∑

i∈S wi + (1 − q) ≥ 1 for all S ∈ W . As for the dual, we can construct

λS in the same way we constructed p(S) in the proof of the main proposi-

tion. Since W ∗ is weakly balanced, there are balancing weights (λ′S)S∈W ∗ such

that
∑

S∈W ∗,S3i λ
′
S = 1 for all i ∈ N . Now construct λS in the following

way. Draw a player at random from i using w as probability vector, and,

10



given i, draw a coalition S ∈ W ∗, S 3 i at random using (λ′S)S∈W ∗,S3i. For

any S ∈ W , denote by λS the probability that S is drawn given this pro-

cedure. Clearly,
∑

S∈W λS = 1 (since the process always draws exactly one

coalition), λS > 0 implies S ∈ W ∗ (since only coalitions in W ∗ have been con-

sidered), and
∑

S3i λS = q (the probability that i appears in the final coalition

is
∑

S3i
∑

j∈S wjλ
′
S =

∑
S∈W ∗,S3i

∑
j∈S wjλ

′
S =

∑
S∈W ∗,S3i qλ

′
S = q). Take the

(λS)S∈W constructed in this way and µ = q as feasible solutions for the dual.

They are clearly feasible, and moreover
∑

S∈W,S3i λS−µ ≤ 0 for all i ∈ N and∑
S∈W λS ≤ 1 both hold with equality, which immediately implies two of the

complementary slackness conditions, xi(
∑

S∈W,S3i λS − µ) = 0 for all i ∈ N ,

and e(1 −
∑

S∈W λS) = 0. The other two conditions are also immediate: by

construction, λS > 0 implies
∑

i∈S wi = q. We have also assumed that weights

are normalized, hence 1 =
∑

i∈N wi.

2. Necessity. Suppose x = w and e = 1 − q solve the primal program, in

which case the optimal value of the primal is 1− q. By the strong duality the-

orem (see Vanderbei, 2008, theorem 5.2) the dual program also has a solution

(and the optimal value of the objective function in the dual problem is also

1−q). Since both the primal and the dual have a solution, the complementary

slackness conditions must be satisfied for x = w, e = 1− q and some suitable

values of λS and µ. According to the complementary slackness conditions, if

λS > 0, then 1−
∑

i∈S wi = 1−q, that is, only coalitions in W ∗ have a positive

value of λS. Also, wi > 0 implies
∑

S∈W,S3i λS = µ for i, which, since only

coalitions in W ∗ have a positive weight, can be written as
∑

S∈W ∗,S3i λS = µ.

If the weighted majority game is such that q = 1, we are in the trivial case

in which a winning coalition requires the presence of all players with positive

weight. Then the optimal value of the primal is 0, and the optimal value of the

dual is 0. This is a trivial case in which the set W ∗ is clearly weakly balanced
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since one can place a weight of 1 on the grand coalition and 0 on all others.

Let q < 1. Then the optimal value of the primal is positive, and the

optimal value of the dual must be positive as well. This in turn requires that

µ > 0 (if µ = 0, feasibility of the dual program would imply λS = 0 for all

S ∈ W , and the value of the objective function of the dual program would

be 0). We can then construct weights λ′S = λS
µ

. Are these weights balancing

weights? If wi > 0, complementary slackness requires that
∑

S∈W,S3i λS = µ,

or equivalently that
∑

S∈W ∗,S3i λ
′
S = 1. Once we have a collection of coalitions

that is weakly balanced when only players with wi > 0 are considered, we

can construct a collection in which the result is also true for players with

wi = 0. Take a player j with wj > 0, and add i to the coalition if and only

if j is in it. Thus, coalitions including both i and j or neither are unchanged,

coalitions including only i have i removed from them, and coalitions including

only j have i added to them; the new coalitions inherit the weight of the old

ones, and, since wi = 0, i can be freely added or removed from coalitions in

W ∗ to obtain coalitions still in W ∗. The resulting weights λ′′S are such that∑
S∈W ∗,S3i λ

′′
S = 1 for all i, hence W ∗ is weakly balanced.

The nucleolus is always a solution to (1), hence, when W ∗ is weakly bal-

anced, w has the same maximum excess as the nucleolus. This does not imply

that w coincides with the nucleolus, or even that the nucleolus is a system

of weights (see footnote 13 in the paper). Calculating the nucleolus is not a

convenient way to solve (1): to calculate the nucleolus, one has to start by

solving (1), which may have many solutions and, if this is the case, additional

calculations have to be performed to determine which of the many solutions is

the nucleolus. The upside of calculating the nucleolus is that researchers have

developed algorithms and computer programs for this very purpose. Besides

the more direct approach described in the supplementary files, all calculations
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in table 1 of the paper have been double-checked with the help of a computer

program written by Jean Derks to compute the nucleolus.

Proof of the corollary

The proof of the corollary in the paper is very similar to the proof of the main

proposition. For sufficiency, no changes need to be made since the proof does

not rely on w being a set of voting weights. The proof of necessity rests on

the following lemma.

Lemma 2 Let x be such that xi > 0 for all i ∈ N . If v = x is a vector of

equilibrium payoffs for the game with θ = x, all players must belong to at least

one of the cheapest winning coalitions in this equilibrium.

We have denoted the set of cheapest winning coalitions according to x (the

set of winning coalitions with minimum
∑

i∈S xi) as W∗(x). Denote by x :=∑
i∈S xi the total payoff of players in any such coalition (what we have denoted

by q when x is a set of weights). The proof of the analogous result in the main

text relies on q > 1
2
, which is known to hold since w is a system of weights.

The result holds more generally, but requires a longer proof.

Suppose an equilibrium exists with v = x. Consider the set C of players

that belong to at least one coalition in W∗(x). Since players only propose

a coalition if it is among the cheapest winning coalitions to which they be-

long, players in C only propose to other players in C, and they only propose

coalitions of total payoff x.

Take any coalition S that i ∈ C proposes with positive probability in equi-

librium. The total expected payoff of players in S, including i, is
∑

j∈S xj = x

(the total actual payoff if i is selected as a proposer and proposes S is of course
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1). Player i may play a mixed strategy as a proposer, but he always proposes

a coalition of total expected payoff x; hence,
∑

S:i∈S pi(S)
∑

j∈S xj = x in equi-

librium, since each S has a total expected payoff of x and
∑

S:i∈S pi(S) = 1.

We can re-arrange the expression
∑

S:i∈S pi(S)
∑

j∈S xj to highlight the

probabilities pij, where pij is the probability that i includes j in the coalition

(of course, pii = 1). We then get∑
j∈C

pijxj = x for all i ∈ C. (3)

The next step is to look at i’s expected payoff equation, where i ∈ C. We

have xi = xi(1 − δ(x − xi)) + riδxi, where we are already using θ = x, and

ri denotes the probability that i is included in the coalition as a responder.

Dividing by xi, which we have assumed to be positive, we find 1 = 1− δ(x−
xi) + riδ, which we can re-arrange to find that all players in C must be in the

final coalition with probability x.

Now suppose N\C is nonempty. We now show that this leads to a contra-

diction, hence N = C.

If N\C is nonempty, at least one player in C must receive proposals from

players in N\C since C is a winning coalition and, given that the game is

proper, this makes N\C a losing coalition. Thus, if we only consider proposals

from players in C to each other, we should find that at least one player in C

is in the coalition with a probability less than x.

Taking expression (3), we can multiply both sides by xi to find
∑

j∈C pijxjxi =

xxi, and then add all such expressions up over i to find∑
i∈C

∑
j∈C

pijxjxi = x
∑
i∈C

xi. (4)

Now let us look at the left-hand side of (4). If we re-arrange the expres-

sion taking the point of view of the players j who receive proposals, we have
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∑
j∈C
∑

i∈C pijxjxi =
∑

j∈C xj
∑

i∈C pijxi. The expression
∑

i∈C pijxi is the

probability that j is included in the final coalition when only proposers from

C are considered; we know that this number is at most x for any j and it is

strictly below x for some j. Thus,
∑

j∈C xj
∑

i∈C pijxi <
∑

j∈C xjx, but this

contradicts (4).

Given that N = C and that xi > 0 for all i, since a player i ∈ C with

xi > 0 must be in the coalition with probability x, the set W∗(x) must be

weakly balanced.
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