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Abstract 

 
Innovative Additive Manufacturing (AM) technologies like Selective Laser Melting (SLM) could 

prove to be efficient for the processing of brittle silicon steel (Fe-Si) with high silicon content. This 

research elucidates the effects of heat-treatment on the microstructure of SLM-built high silicon 

steel, with particular emphasis on the formation of ordered phases, which are known to cause 

undesired material embrittlement. 

Silicon steel with 6.9 wt. % Si is produced by SLM and investigated performing Differential 

Scanning Calorimetry (DSC), microstructure analysis and hardness measurements. As-built Fe-Si 

parts are found to consist primarily of disordered A2 phase as the high cooling rates typical of SLM 

suppress the ordering phase transformations. It is shown how heat treatments can be applied to 

modify the state of ordering and morphology of the rapidly solidified microstructure. By shedding 

light on the phase-ordering mechanisms and the effect of heat treatments on microstructure of 

high-Si steel built by SLM, the present study paves the way towards the optimisation of the 

mechanical and magnetic properties of this alloy. 

 

Keywords: Selective Laser Melting (SLM), Differential Scanning Calorimetry (DSC), microstructure, 

silicon steel, heat-treatment, ordering phase transformations 

 

Introduction 

 
Silicon steels are one of the most important classes of materials for magnetic applications as they 

are widely used in transformer cores, electric motors and generators. Fe-Si alloys, based on no 

other alloying element than Si, are not easy to process: they exhibit a low workability and they 

become increasingly brittle as Si is progressively added [1]. On the other hand, a high amount of Si 

is favourable for soft magnetic applications as this guarantees low magnetostriction, suppresses 

magnetocrystalline anisotropy and increases the electrical resistivity of the alloy [2]. Because of its 

limited workability, commercial Fe-Si for industrial applications is commonly fabricated at Si 

contents not exceeding 3 wt. %, although it has been proposed that the best composition for 
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magnetic properties lies around 6.5 wt. % [2, 3]. Producing silicon steel at such elevated Si content 

has been reported using rapid quenching for the production of thin ribbons [4], chemical vapour 

deposition [5] and spray forming [6].  

High silicon Fe-Si is bcc-structured over the whole solid temperature range. The structure of fully 

annealed specimens is indicated in the Fe-Si binary phase diagram shown in Figure 1 [7].   

 

Figure 1 Region of interest of the Fe-Si phase diagram (as designed by Swann et al.) and atomic structures 

of the ordered phases B2 and D03 [7]  

Cooling from the melt, the material undergoes two ordering phase transitions, i.e. transformations 

that involve the re-arrangement of Si in the Fe lattice. The first disorder-order transformation is 

located at around 820°C. Disordered ferritic solid solution, commonly referred to as A2, 

transforms into a short range ordered B2 phase, with the previously randomly distributed Si atoms 

now occupying the centre position of the bcc cells, with Fe atoms located at the cell corners [8]. 

The B2 phase has a stoichiometry of 1:1 Fe to Si atoms, consequentially Fe-Si at 6.9 wt. % Si can 

only be partially B2 ordered. Cooling further, the material exhibits a magnetic transition around 

680°C. At this temperature the randomized magnetic spins align spontaneously and the material 

becomes ferromagnetic [9]. A further ordering transformation takes place at a temperature below 

650°C. The B2 phase and some of the residual A2 transform into B2+D03. The stoichiometry of D03 

is 1:2, with the centre position of every second bcc cell occupied by a Si atom. This ordering can 

attain much further extension in this phase region in comparison to the B2 [8]. The ordering 

arrangement of the solute affects several physical properties of the high silicon steels and has 

negative implications. While it is not established how the ordered domains affect the 

electrical/magnetic properties of the alloy, it is well known that ordering increases the 

hardness and hence the brittleness of the material, reducing drastically its workability [10, 11]. 

As recently demonstrated, Selective Laser Melting (SLM) is a promising additive manufacturing 

technique that may extend the manufacturing envelope of high silicon steels with arbitrary 

shapes, high integrity and controllable grain orientation [12]. In addition, it has been shown 

through preliminary XRD studies that the high cooling rates involved in the scan process could 

hinder the described ordering transformations and thus, in principle, improve the mechanical 

properties. Building on the findings in [12], the aim of the present contribution is to shed light on 

the effects of heat-treatment on the microstructures of SLM-built Fe-Si, with particular regards to 

the state of ordering. Differential Scanning Calorimetry (DSC) combined with SEM and Vickers 
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hardness is used to gain insights into the phase transformations in this material. Although ordering 

has been investigated in the literature by TEM [13, 14], XRD [6, 13], Mössbauer spectroscopy [15] 

and neutron diffraction [16], characterizing ordering transitions remains challenging as these 

techniques require high expertise and give only partial insight about ordering state and quantity of 

ordered phases in the material. The accessibility and the abundance of information extractable 

from DSC measurements could make this method a powerful complementary tool for the 

characterisation of the structure of materials undergoing ordering transformations [9, 17].  

 

Methods and material 
 

Gas atomized, pre-alloyed Fe-Si powders with a neat size distribution within 10 and 60 µm were 

supplied by LPW Technology Ltd. The silicon steel contains 6.9 wt. % Si with a few traces of C, Mn, 

P and O which were limited during production to an amount that is not considered to affect the 

mechanical and magnetic properties of final parts. The chemical composition is presented in Table 

1. 

Table 1 Composition of Fe-Si powders  

A Realizer SLM-50 system operating with a protective Ar atmosphere and an oxygen level below 

0.4% and equipped with a 100 W yttrium fibre laser which scans continuous tracks was used to 

produce Fe-Si cubes of 5 × 5 × 5 mm dimension. The build platform was preheated to 200°C to 

reduce thermal gradients during processing. A bidirectional scanning strategy whereby the scan 

direction was rotated by 90° on each layer was used to perform three builds of nine cubes, each 

supported by 3 mm secondary support structures that could be easily removed at the end of 

the process. Parameters were selected based on a preliminary optimisation to minimise 

cracking and porosity. The relative density of cubes was measured to be above 98% [12]. Table 

2 reports the applied laser parameters. 

Table 2 Selected build parameters for processing of Fe-Si cubic specimens 

The calorimetric study was carried out on the feedstock powders, as-built specimens and 

specimens exposed to various heat treatments in order to modify microstructure according to 

the Fe-Si phase diagram shown in Figure 1. Heat treatments were chosen in regions of the 

phase diagram that are of interest for analytical purposes, i.e. for microstructure, stress relief 

and grain growth analysis. A heat treatment at 400°C was selected with two different dwell 
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times to investigate the ordering behaviour at low temperatures where diffusion is low and the 

ordering reaction may proceed slowly. Heat treatments at 620°C, 700°C and 900°C were 

performed to induce B2+D03, B2 and A2 phase transitions, respectively. The first treatment was 

also performed with 5 hours dwell time in order to validate whether after one hour the 

maximum amount of ordering is induced, the latter two treatments with subsequent water 

quenching were in order to prevent further microstructural transformations upon cooling. A 

high temperature treatment at 1150° was selected to normalize the microstructure and 

investigate the effect of grain growth [17, 18]. The investigated heat treatments are reported in 

Table 3, together with the predicted phase regions.  

Table 3 Overview of the investigated Fe-Si samples. The cooling method, annealing temperature, dwell 

time and the region of the phase diagram covered by the heat treatment are presented in the Table. 

To simplify the discussion, the following nomenclature will be used. As-received gas atomized Fe-Si 

powders are indicated as sample ‘P’. The parts printed by SLM in the as-built condition are 

referred to as ‘AsB’. The printed samples that were annealed at different temperatures but fixed 

dwell time of 1 h followed by furnace cooling are denoted by ‘A’ and a number representing the 

annealing temperature. Samples which deviate from these heat cycles, either because they 

underwent extended annealing times or quenching are denoted with ‘Ex’ and ‘Q’, respectively. 

A precision cutting tool “Brilliant 220” by ATM was used to cut samples. Cubes were sectioned 

along the centre x-y and x-z planes to produce four samples of equal size which were then heat 

treated.  The as-built and heat treated samples for microstructural analysis were subsequently 

prepared using standard metallurgical methods.  Mechanical grinding and polishing were 

performed using abrasive paper and diamond paste down to 1 µm. The samples were then 

polished for a further 20 minutes with colloidal Silica and etched with Nital 2% to reveal the ferritic 

grain structure and the SLM scan track features. The x-y plane was selected for the microstructure 

investigations as the Fe-Si samples showed a significant anisotropy in the build direction, with a 

strong dependence on the laser parameters [12]. Microstructural images were taken with a 

LV100ND optical microscope and a TM3030 SEM operating in back-scatter mode. Microstructural 

planes are referred to according to the conventions in ISO ASTM 52 921: 2013 [19], where x-y is 

the transversal plane (plane scanned by the laser) and x-z/y-z are the lateral planes of the built Fe-

Si cubes (z-direction is parallel to the build direction). Grain size was measured using the linear 

intercept method along at least three arbitrary straight lines for each condition.  
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Alumina pans were used as sample holders and as a reference crucible to record DSC heating 

curves using samples with weights in the range of 50 and 150 mg on a SDT Q600 DSC device by TA 

instruments, working in an Ar atmosphere. Sample pans were cleaned in an ultra-sonic bath for 3 

min before calorimetric measurements. The heating and cooling rate was set to 30°C/min. DSC 

curves were plotted subtracting the recorded baselines. In order to guarantee reproducibility, DSC 

heating curves were recorded for four samples in the AsB condition.  A Buehler Micro Vickers 

indenter was used to measure hardness, recording 5 values each on the x-z and x-y planes in the 

centre of the cut sample cubes. 

Results and discussion 
 

Microstructural features in the as-built specimens 

The microstructure of Si-Fe as-built by SLM is shown in Figure 2. 

Figure 2 Representative SEM micrographs of Fe-Si as-built by SLM: a) x-y plane, low magnification, b) x-y 

plane, high magnification, c) x-z plane, low magnification, d) x-z plane and high magnification. In low 

magnification images red arrows mark the scanning direction. The scanning direction parallel to the y-

axis is indicated by red crosses.  

Ferritic grains can be identified by regions of equal brightness in the SEM images as the grain – 

electron beam relative orientation affects the apparent density and causes different contrast.   

The microstructure is characterised by continuous melt pools which span a width of approximately 

90 - 100 µm and superpose the ferritic grains. It is possible to observe the effect of the 

bidirectional scanning strategy especially in the low magnification images, where scan tracks of 

every second layer run parallel (red markings on the SEM micrographs of Figure 2a and c).  Higher 

magnification images (Figure 2b and 2d) reveal the cellular structure which appears larger close to 

the melt pool boundaries.  Micrographs are presented here to facilitate the following discussion, a 

detailed research work on the microstructure of SLM high silicon Fe-Si has been recently published 

in a related work [12]. 

Microstructural evolution during heat treatments at increasing temperatures 

 

Samples were studied by optical microscopy before etching in order to evaluate the grain size 

without the superposition by the SLM melt-pool features on the ferrite grain structure. The 

evolution of grain size following the various heat treatments is illustrated in Figure 3.  
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Figure 3 Optical micrographs of selected unetched heat treated samples: a) AsB, b) A700, c) A900, and d) 

A1150. Some of the defects are marked by red arrows 

Some pores were observed in the micrographs, principally caused by insufficient melting. The 

variation in number of defects shown in the micrographs of Figure 3 are not expected to be 

representative for the total amount of defects as samples density produced with selected 

parameters did not differ significantly [12]. The average grain size of the as-built samples, AsB, 

(Figure 3a) was below 100 µm. No grain growth occurred up to heat treatments in the B2 region of 

the phase diagram as observed by the comparison of the as-built samples and those annealed for 

1 h at 700°C, Figure 3b. Neither did the grains show any significant growth during the annealing at 

900°C (Figure 3c) for 1 h. Similar research conducted on microcrystalline Fe-Si ribbons reported a 

low amount of grain growth at 900°C, however this reference data was reported for heat 

treatments lasting 24 h [18]. Annealing conducted at 1150°C for 1 h, caused instead a marked 

grain growth, with grains increasing by up to around 100 µm in dimension as shown in Figure 3d. 

The evolution of the microstructure following heat treatments in the B2+D03, B2 and A2 regions is 

shown in Figure 4. 

Figure 4 SEM micrographs representing microstructural evolution of samples after annealing for 1 h at: a) 

620°C, b) 700°C, c) 900°C, d) 900°C with subsequent quenching. The 400°C annealed condition is not 

presented here as by SEM analysis the microstructure seemed identical to as-built 

No distinct microstructural differences are noted after annealing in the B2+D03 region (treatment 

A400 and A620). Considering the phase diagram, A620 should lead to the formation of a significant 

amount of ordering compared to the predominately disordered as-built specimens, but the 

microstructure at the microscale seems unaltered (Figure 4a). Figure 4b presents the 

microstructure after an annealing in the B2 region at 700°C for 1 h. The typical microstructural 

features induced by SLM, such as melt pool boundaries and cells, are partly dissolved and appear 

discontinuous. It is believed, that at this temperature the diffusion rate is just sufficient to bring Si 

segregations into solid solution. After heat treating the samples in the A2 region at 900°C for 1 h, 

the SLM induced structure dissolved completely, i.e. the cells and melt pool segregations entered 

into solid solution.  Upon slow furnace cooling, the silicon segregated again, resulting in a fine 

structure overlaying the ferritic grains (Figure 4c). This is confirmed by the microstructure of Q900 

(Figure 4d), as quenching after heat treating at 900°C, allows Si to be kept in solid solution and the 

resulting microstructure is homogenous. Annealing at elevated temperatures in the A2 region, 

followed by furnace cooling, led to a complete dissolution of segregations and homogenisation of 

microstructure, as shown in Figure 5. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

Figure 5 Representative SEM micrographs of sample heat treated at 1150°C for 1 h with increasing  

magnifications from a - d 

Grains grew in size above 100 µm and diffusion preceded so fast, that no segregations occurred 

even after slow furnace cooling (Figure 5a). In higher magnifications micrographs (Figure 5b and 

5c) thin cementite layers of submicron thickness are detected (Figure 5c). The very small layers 

(about 1 µm in thickness) of a microscopically distinguishable phase at grain boundaries is 

expected to be cementite from morphology comparison, bright SEM BSE contrast, as it is rich in Fe 

and poor in Si and it is known that quantities as low as 0.002 wt. % in iron-alloys may cause its 

formation [21]. Albeit the presence of cementite in such low quantities has a negligible effect on 

the processability and the magnetic properties of the material, its occurrence has to be considered 

to leave traces in DSC experiments.  At higher magnifications (Figure 5d) it is possible to observe 

ordering domain structures inside the grains similarly to those described in relevant literature of 

high 6.5 wt. % silicon steel processed by other manufacturing techniques [22, 23]. Depending on 

whether the centre position of the ordered bcc cell is occupied by Fe atoms and the corner 

position of Si atoms or the contrary (cp. Figure 1), antiphase domain boundaries exist where two 

such regions with different stacking order are in contact. The polarization in two adjacent regions 

with opposite stacking order is also opposed, leading to an increased etching activity at the 

domain walls that as a consequence are well visible [22].  As ordered domains grow with 

increasing annealing temperature they become large enough for SEM observation after dwelling 

at high temperatures such as during A1150 treatment [18]. 

 

Calorimetric study 

A qualitative overview of occurring signals in heating DSC curves of Fe-Si samples built by SLM is 

shown by a representative curve in Figure 6. 

Figure 6 Observed peaks in DSC heating curves from Fe-Si SLM samples in the as-built condition AsB: the 

red brackets indicate distinct peaks, the area marked in blue reports fluctuations assigned to the 

dissolution of Si segregations and cementite, and to SLM process inherent effects 

The DSC curve shows four characteristic features, namely, the order transformation of the 

disordered A2 to the ordered phases B2 +D03, the magnetic transition, the order-disorder 

transformation reversing the first ordering transformation, and finally an irregular trend-line, 

whose features are attributed to a number of normalising diffusion-based mechanisms [24].   
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It is expected that the as-built samples (AsB) are predominantly disordered in the initial state as 

the high cooling rates typical of SLM suppress ordering. By heating the material up to the B2+D03 

phase region, an exothermic reaction takes place at 420-580°C. The observed peak in the DSC 

curve at this temperature can be attributed to the transformation of A2 into B2+D03 phases, and 

the associated decrease in entropy as atoms arrange in periodic order. It is also possible that 

transformation of residual D03 into B2 occurs in this region, as the latter becomes more stable at 

higher temperature, superposing the principal order transformation and affecting the peak height 

shown in the DSC traces.  

The magnetic transition, where the atomic spins lose their alignment and the material becomes 

paramagnetic, occurs at around 680°C [17]. The reversion of the ordering transformation then 

takes place above 800°C, appearing as a small endothermic second order transition. The peak is 

shallow as the reaction occurs over a large temperature range. 

Turbulences which are located in the region marked by a blue box in Figure 6 are expected to arise 

from various effects, such as the migration of defects at the cell boundaries, the dissolution of 

laser segregations, which were observed in Figure 4b and 4c and, at even higher temperatures, 

cementite dissolution.  This leads to a normalizing of a microstructure as noted previously for an 

austenitic steel built by SLM [24]. 

Heat treatments affect the volume fraction of the ordered phases in samples and therefore 

influence the morphology and the temperature range at which the ordering peaks observed in the 

DSC traces occur. This is shown in Figure 7 where the DSC traces of several specimens, including 

powder feedstock, as-built and heat treated samples are compared. Similarly Table 4 summaries 

the temperatures of the peak onset and position caused by the annealing treatments in the 

B2+DO3 region.   

Figure 7 DSC curves in the region around the disorder-order peak of gas atomized Fe-Si powder, as-built 

sample and various annealed conditions are plotted 

 

Table 4 Heat treatment and SLM effect on ordering peak 

The DSC curve of gas atomized powder (P) shows a broad exothermic peak at 476 ± 4.8°C, 

corresponding to the transformation from disordered A2 to a more ordered B2 + D03 structure. As 

typical for the process, gas atomized powder is assumed to be stress-free, so no superposition 

between stress effects and no ordering is expected in this specimen. Gas atomized powders 
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solidify quickly directly from the melt, hence, the maximum possible volume fraction of disordered 

structure can be attained [25]. The samples in the SLM as-built condition and after partial 

annealing at 400°C (A400) show an ordering peak with a different morphology compared to that of 

powder. The ordering peak in these samples has shifted to higher temperatures, 528.7 ± 3.8°C and 

534.9 ± 2.4°C respectively, and decreased in size. These shifts demonstrate that the samples in the 

AsB or A400 conditions have a structure less disordered than that of the powder feedstock.  A 

partial ordering in the as-built parts could arise from the repeated exposure to the laser during the 

layer-to-layer process, causing heat introduction from adjacent built layers and reheating. 

Similarly, annealing treatments in the low portion of the B2+D03 region, such as A400, might 

induce some structural ordering, as indicated by a smaller peak, and retardation in the ordering 

reaction (Figure 7).  

The onset temperature for ordering is not definitively established in the literature as ordering 

depends on diffusion and hence, on both temperature and time.  It is believed that at 400°C 

diffusion is slow [20, 26] and ordering might only occur partially, in specific regions of the material, 

for example close to defects where diffusion is accelerated or in correspondence of the 

transformation of the metastable B2 into B2+DO3. By prolonging the dwell time at 400°C (Ex400) 

different ratios of B2 to D03 might form but still the heat treatment did not lead to a complete 

ordering as indicated by the fact that the ordering peak diminishes in size and occurs at even 

higher temperatures (576.6 ± 7.7°C). 

The ordering peak vanishes entirely in the DSC traces of the samples treated in the high portion of 

the B2+D03 region or above. This indicates that the disordered phases A2, and any excess B2 

present in the as-built condition, transform fully into equilibrium structures when annealing in 

these conditions. No significant differences in the peak are observed for A620 and A1150, 

demonstrating that after annealing for 1 h at 620°C the ordering reactions have completed. The 

DSC traces of all samples annealed and furnace cooled above 620°C present a shallow 

endothermic peak. It is expected that this might derive the partial conversion of DO3 into B2 as 

temperature increases as B2 is more stable at higher temperatures. 

It is noteworthy that no antiphase domains were found in the SEM analysis except in the sample 

treated in the high portion of the A2 region (A1150). This is possibly because the ordered domains 

created at lower temperatures are too small to be detected at least by the microscopy techniques 

used in this research. 
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Figure 8 also shows detail of the DSC traces of samples that were treated in the B2 (Q700) and A2 

(Q900) and then water quenched. 

Figure 8 DSC heating curves of as-built, water quenched and furnace cooled at the same temperatures 

conditions 

Quenching from the B2 or A2 phase region leads to a partially disordered state as both curves 

show distinct peaks. No significant difference in peak magnitude can be observed in these 

conditions (Q700 and Q900, which should “freeze” the B2 and A2, structures according to the 

phase diagram [7]. Similar to the cases of the as-built and low temperature annealed samples, it is 

believed that the ordering peak for the samples in these conditions is showing mainly the 

conversion of the A2 and/or B2 phase into B2+D03 phases. The fact that these exothermic peaks 

are smaller than that observed for the as-built condition suggests that SLM can hinder ordering 

more effectively than water quenching, perhaps due to the fact that solidification occurs at even 

higher cooling rates.  

It is noteworthy that the heat treatments conducted in the B2 (Q700) and A2 (Q900) phase regions 

neither modify the magnetic transformation nor have an impact on the reversion of the ordering 

transformation that occurs above 800°C as all samples whether initially ordered or not, the 

specimens become ordered at these temperatures. 

Hardness results 

According to a related research on hardness variation of quenched silicon ribbons subjected to 

various heat treatments [17], the volume fraction of the ordered phase influences hardness 

significantly. For this reason, the hardness of the samples in the different conditions presented in 

this study was also compared. The results of hardness measurements for specimen of all 

conditions are presented in Figure 9.  

Figure 9 Vickers Hardness of samples: black squares represent samples in 1 h annealed conditions AsB 

and A400-A1150, red dots represent samples with either extended dwell time or quenched conditions 

Ex400, Ex620, Q700 and Q900. Error bars are also shown in the image. 

Figure 9 shows that the hardness of samples as-built (AsB) is about 373.46 ± 11.91 HV. It was 

observed that the sample hardness does not change when the as-built specimens are heat treated 

in the low portion of the B2+DO3 region. As indicated by the analysis of the corresponding DSC 

traces and now reinforced by the found hardness values, heat treating at low temperature 

appears to cause a conversion of the metastable B2 into DO3 phase and is only responsible for a 
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negligible ordering transformation of the disordered phase. The comparison of the hardness of the 

samples in the as-built condition and A400 and Ex400 also indicates that residual stresses, which 

should have been partially released during the heat treatment, do not affect the hardness 

significantly.  

The hardness of the material changes markedly when heat treated in the high portion of the 

B2+DO3 and B2 phase regions. Indeed, the samples subjected to the A620 and A700 heat 

treatments exhibit hardness above 420 HV and up to 430 HV, respectively. This increase in 

hardness is likely to be related to the formation of ordered domains at these high temperatures. In 

confirmation, the sample heated to 620°C for 5 h (Ex620) shows a similar hardness to that treated 

at the same temperature or above for 1 h (A620 and A700), suggesting that after 1 h at 620°C the 

ordering transformation is complete, as expected from the DSC curves.  

Figure 9 also shows that the hardness values of the samples obtained from annealing in the B2 

region and then cooled by furnace cooling or quenching are similar. This is a surprising result, as 

the samples in these conditions have a similar volume fraction of disordered phase but different 

ratio of B2 and DO3 ordered phases and according to the literature should possess different 

hardness. This difference could be related to the morphology of the ordered phases, as it has been 

shown in previous work that, based on processing and thermal history, the morphology of ordered 

phases can differ and may contribute to a variation in hardness [13,14] .  

In contrast, a marked difference between the hardness of samples obtained from annealing in the 

A2 region and then cooled in the furnace or quenched is observed. The quenched specimens 

annealed in the A2 region have a hardness similar to that of the as-built samples, whereas the 

samples that are furnace cooled have a high hardness similar to that obtained upon slow cooling 

the material from the high portion of the B2+D03 or B2 phase regions. This confirms indeed that 

hardness is mainly affected by the volume fraction of the ordered phases at room temperature 

and that after quenching the samples from the A2 region, a certain amount of metastable ordered 

phase is retained at room temperature.  

Finally, annealing the samples at 1150°C (high portion of the A2 region) followed by furnace 

cooling  leads to intermediate hardness values between those found for the as-built and A700 and 

A620 conditions. It is likely that this decrease in hardness derives from the significant 

microstructural evolution of the samples that showed dissolution of the SLM typical fine cellular 

structures and grain growth. 
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The combination of DSC analysis and hardness testing cannot provide an absolute quantitative 

measure of the amount of ordering, but as shown in this study, provides useful insights to 

understand the ordering reactions in high silicon steel. In this research work it was shown that 

SLM can be used to produce Fe-Si components with mainly disordered microstructures thanks to 

the fact the material is shaped point by point in small amounts at the time, surmounting the 

manufacturing problems associated to ordering and material embrittlement.  

The additive manufactured high silicon steel components are printed in their net-shape and 

therefore do not require thermo-mechanical post-processing. However, in this work it was shown 

how it is possible to manipulate the microstructure of the as-printed parts by heat treatments that 

can modify the grain size and cancel the undesired inhomogeneities induced by the laser 

processing. Although it is recognised that ordering leads to material embrittlement, its effect on 

the magnetic properties is not well understood. As part of future works the relationship between 

the microstructure of the printed (and heat treated) parts and the magnetic properties will be 

investigated to assess whether SLM can be used as an effective manufacturing route for the 

production of high silicon steel for advanced applications.  

 

Conclusions 
 

In this work, a microstructural and calorimetric study of high silicon Fe-Si parts built by SLM is 

presented. It is demonstrated that the ordering state of the material depends on the thermal 

history introduced by the manufacturing process and the post-processing annealing heat 

treatments. The following conclusions can be drawn from the microstructure, DSC and hardness 

investigations: 

- It has been shown that DSC can be used as a means to study ordering in high-silicon steel 

processed by SLM. Ordering reactions can be assigned to two distinct features in DSC 

traces.  Calorimetry results have been corroborated using microscopy and micro-hardness 

measurements; 

 

- The study of the effects of different heat-treatment conditions on the microstructures of 

SLM high-silicon steel has shown that ordered phases of type B2 and D03 form inside the 

grains in proportions determined by the heat-treatment temperature, dwell time and 
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cooling rate. In particular, when cooling is sufficiently slow (i.e. furnace cooling) the 

ordering transformation takes place as predicted by the phase diagram of Fe-Si; 

 

- Various heat treatments were exploited to modify the microstructure of parts built by SLM.  

The onset temperature for micro-segregation dissolution was found to be around 700°C, 

the onset temperature for grain growth around 900°C. After annealing at 1150°C for one 

hour grains grow above 100 µm, therefore close to the saturation size [10]. Annealing in 

the high portion of the A2 leads to a marked grain growth; 

 

- In order to avoid extensive ordering, rapid cooling can be performed from temperatures in 

the A2 phase region. In this regard, SLM-processing and water-quenching are two effective 

means to supress partially the ordering transformation. Annealing of parts built by SLM 

with subsequent quenching could be a promising strategy for the production of parts with 

a more homogeneous microstructure, more suitable for magnetic applications; 

 

- By shedding light on the phase-ordering mechanisms and the effect of heat treatments on 

microstructure of high-silicon steel built by SLM, the present study paves the way towards 

the optimisation of the mechanical and magnetic properties of this alloy. 
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Table 1 Composition of Fe-Si powders  

Fe-Si Si C Mn P O Fe 

wt. % 6.9 0.01 0.05 0.009 0.0065 Bal. 

 

Table 2 Selected build parameters for processing of Fe-Si cubic specimens 

 

Power P [W] 70 

Scan speed v [mm/s] 500 

Focal position Δz [mm] 13.1 

Hatch spacing dh [µm] 60 

Layer thickness lt [µm] 25 

 

Table 3 Overview of the investigated Fe-Si samples. The cooling method, annealing temperature, 

dwell time and the region of the phase diagram covered by the heat treatment are presented in 

the Table. 

Code  Sample type Cooling T [°C] 
Heat treated in 

phase region 
Dwell time[h] 

P 
Gas atomized 

powders 
As-received - - - 

AsB 

SLMed 

5 × 5 × 5 mm 

cube 

As-built - - - 

A1150 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 1150 A2 1 

A400 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 400 B2+D03 1 

Ex400 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 400 B2+D03 24 

A700 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 700 B2 1 
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Q700 

SLMed 

5 × 5 × 5 mm 

cube 

Water quenched 700 B2 1 

A620 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 620 B2+D03 1 

Ex620 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 620 B2+D03 5 

A900 

SLMed 

5 × 5 × 5 mm 

cube 

Furnace cooled 900 A2 1 

Q900 

SLMed 

5 × 5 × 5 mm 

cube 

Water quenched 900 A2 1 

 

Table 4 Heat treatment and SLM effect on ordering peak 

Condition Peak Onset [°C] Peak Position [°C] 

P – Powder 302.7 ± 5.5 476.6 ± 4.8 

AsB - As built 383.5 ± 6.5 518.7 ± 3.8 

A400 - 400°C, 1 h 454.7 ± 2.8 534.9 ± 2.5 

Ex400 - 400°C, 24 h 496.0 ± 2.8 567.95 ± 7.7 
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Microstructural ordering in high-silicon steel processed by SLM is characterized 

Ordering in FeSi built by SLM is assigned to curve features in DSC measurements 

Heat treatments in order to tailor the microstructure of SLMed FeSi are presented 

 


