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REVIEW

Hyperspectral image analysis techniques 
for the detection and classification of the early 
onset of plant disease and stress
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Abstract 

This review explores how imaging techniques are being developed with a focus on deployment for crop monitoring 
methods. Imaging applications are discussed in relation to both field and glasshouse-based plants, and techniques 
are sectioned into ‘healthy and diseased plant classification’ with an emphasis on classification accuracy, early detec-
tion of stress, and disease severity. A central focus of the review is the use of hyperspectral imaging and how this is 
being utilised to find additional information about plant health, and the ability to predict onset of disease. A summary 
of techniques used to detect biotic and abiotic stress in plants is presented, including the level of accuracy associated 
with each method.
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Background
The reliable detection and identification of plant dis-
ease and plant stress are a current challenge in agricul-
ture [4, 5]. Standard existing methods of detection often 
rely on crop agronomists manually checking the crop 
for indicator signs that are already visible. Depending on 
the type of crop and the size of the crop area–which for 
many commercial crops is often very large–this method 
of monitoring plant health is both time consuming and 
demanding. Manual detection also relies on the dis-
ease or stress exhibiting clearly visible symptoms, which 
frequently manifest at middle to late stages of infec-
tion. Identification of the causal agent is through either 
manual detection or diagnostic tests [6]. Diseases usu-
ally start in a small region on the foliage (e.g. Septoria 
tritici blotch (STB) of wheat caused by the fungal patho-
gen, Mycosphaerella graminicola; Apple scab caused by 
Venturia inaequalis), which can be difficult to detect by 
visual inspection if the crop is large; however, the ability 

to identify the disease at this early stage would provide 
an opportunity for early intervention to control, pre-
vent spread of infection, or change crop management 
practices before the whole crop is infected or damaged. 
Identifying crop areas affected by disease could also 
lead to targeted application of chemicals. Such precision 
approaches would result in the reduction of pesticide and 
herbicide usage, with subsequent beneficial impact for 
the environment, ecosystem services, grower finances 
and the end consumer. Hence, there is a keen interest in 
the agricultural and horticultural sector to replace this 
largely manual process with more automated, objec-
tive, and sensitive approaches. Mahlein has discussed 
the literature on plant disease detection by imaging sen-
sors. This includes RGB, Multi spectral, Hyperspectral, 
thermal, Chlorophyll Fluorescence and 3D sensors. One 
conclusion is that RGB and hyperspectral imaging are 
preferable for identifying specific diseases [7].

To improve crop management and plant health, sev-
eral avenues of research are focussing on the identifica-
tion of the onset of adverse stresses, ideally before visible 
signs are present. Image analysis techniques show much 
potential here as they represent non-invasive and poten-
tially autonomous approaches to detect biotic and abiotic 
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stress in plants. This is illustrated in a recent review by 
Singh et  al. [8] which examines machine learning for 
stress phenotyping, exploring literature on high through-
put phenotyping for stress identification, classification, 
quantification and prediction using different sensors.

Image analysis as a research field represents a host of 
computational techniques which are able to extract infor-
mation from digital images. From a practical point of 
view, this means automatic processing of carefully cap-
tured images to produce a dataset of desired measure-
ments from the images. The images themselves can come 
from a variety of sources, from colour digital cameras or 
smartphones, to more specialist cameras designed to cap-
ture a variety of different information in the images. One 
such technological advance here is hyperspectral imag-
ing, where cameras capture more than the usual three 
bands of coloured light found in traditional digital imag-
ing. This review will specifically focus on the subsequent 
analysis approach known as hyperspectral image analy-
sis. This approach has recently become financially acces-
sible to a wide variety of users, due to falling technology 
costs. Analysis approaches are being developed which 
are enabling the Hyperspectral imaging technologies to 
be utilised for wider ranging applications. Hyperspectral 
imaging uses high-fidelity colour reflectance information 
over a large range of the light spectrum (beyond that of 
human vision), and thus has potential for identifying sub-
tle changes in plant growth and development.

In this review, we provide an overview of hyperspec-
tral imaging, and how it can be utilised in laboratory and 
field applications for the categorisation and recognition 
of early stages of plant foliar disease and stress. Starting 
with the background theory and an overview of Hyper-
spectral imaging technology, we then consider some 
areas of application of the approach to plant and crop sci-
ences. Finally, we discuss some practical concerns with 
these approaches; an important aspect, as such cameras 
are not yet typically provided as a turnkey solution for 
crop monitoring, so care must be taken to collect satis-
factory data and provide meaningful analysis and inter-
pretation before deployment of these technologies can be 
implemented in a commercial setting.

Colour digital imaging
In order to understand the hyperspectral technology 
itself, it will be helpful to first consider what a stand-
ard, non-hyperspectral colour digital image comprises. 
Wavelengths of light correspond to colour, with blue light 
having a central wavelength of approximately 475  nm, 
green light 520  nm, and red light 650  nm. A colour 
image represents a composition of three broad wave-
length bands, red, green and blue. Our eyes contain three 
types of cones, sensitive to blue, green and red parts of 

the spectrum, the cones each have a colour range and 
they are stimulated either strongly or weakly depending 
on the light wavelengths emitted. Combining the infor-
mation from the three different kinds of cones we recre-
ate a colour image in our brain. A digital image tries to 
emulate the sensitivity of the cones, and a pixel stores the 
integrated intensity of either the blue, green, or red part 
of the light spectrum, dependant on the filter type placed 
in front of the pixel.

The range of light captured in a hyperspectral system 
can also vary. The colour visible to the human eye is a 
small range on the electromagnetic spectrum, ranging 
from 400 to 700 nm (Fig. 1). The section of the spectrum 
that is typically used for hyperspectral imaging of plants 
ranges from ultraviolet (UV) (starting at ~ 250 nm) up to 
short-wave infrared (SWIR, ~ 2500 nm). Cameras usually 
capture a certain sub-range, such as the visible and near 
infrared range (VIS–NIR, 400–1300  nm) or the SWIR 
(1300–2500  nm) or UV (250–400  nm) with the ranges 
being combined in some sensors to increase the coverage 
of the spectrum.

A colour image, then, is an example of a 3-band multi-
spectral image, where each band records one of the three 
colours, red, green and blue. It is common to have more 
bands in a true multispectral image, perhaps sampling 
light in the infrared region of the spectrum too—that 
is, light with a wavelength over 700  nm. Hyperspectral 
images on the other hand typically contain hundreds of 
contiguous narrow wavelength bands over a spectral 
range. The approach produces a dense, information-rich 
colour dataset, with enough spatial resolution to have 
many hundreds of data points (pixels) per leaf.

For plants and vegetation the most useful wavelength 
ranges to analyse are the visible range combined with 
near infrared range. This wavelength range can capture 
changes in the leaf pigmentation (400–700  nm) and 
mesophyll cell structure (700–1300 nm) however to see 
changes in the water content of a plant, extended ranges 
are needed (1300–2500 nm) [9]. Severe dehydration, for 
example, can affect the leaf mesophyll structure which 
relates to changes in the near infrared reflectance; how-
ever, minor drought stress does not usually have enough 
of an effect to be detected [10].

Hyperspectral imaging technology
There are various hardware approaches behind hyper-
spectral imaging spectrometers, which means there are 
different ways that the image is captured. Examples of 
operation include push broom, filter wheel, liquid crystal 
tunable filters amongst others [11]. In one example using 
push broom, the incoming light passes through a convex 
grating (or a prism) which separates the light into narrow 
wavelengths. This separation is then recorded on a light 
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sensitive chip (similar to a standard digital camera). A 
push broom device, has three components; the camera, a 
spectrometer and a lens. This system simultaneously cap-
tures a single spatial line of the image, and the whole col-
our spectrum range. Then the camera or object is moved 
and the next line is captured (the broom is ‘pushed’ for-
wards, hence the name), effectively making the camera a 
line scanner, with the final image being built up after the 
full scan is complete. An alternative to push broom is a 
snapshot approach, where the entire image is captured 
at once. To date, push broom technology has seen the 
most use, but recent advances in snapshot technology are 
increasing the uptake and possibilities related to pheno-
typing and analysis.

In the rest of this review, we consider applications of 
the hyperspectral imaging technology and analysis, and 
have categorised the review into the following four sec-
tions: (1) existing vegetation and disease indices; (2) 
applications for the detection and classification of healthy 
and diseased plants with disease classification; (3) quan-
tifying severity of disease; and (4) early stage detection of 
stress symptoms.

Within these sections, we will consider both labora-
tory-based imaging approaches, and field-based remote 
sensing. As well as the obvious biological differences, it 
is worth considering the impact of these environments 
on the hyperspectral image data itself. Laboratory-
based imaging occurs in a controlled environment which 
includes artificial light. Outdoor remote sensing data 
is often dependant on ambient illumination, although 
there are examples of systems using controlled lighting 

for outdoor hyperspectral imaging [12]. Using natural 
illumination, namely the sun, means recognising that 
there are atmospheric effects such as the absorption and 
scattering of light. Other environmental factors that can 
contribute to a change in the spectral signatures are the 
interaction between cloud shadows and the object’s sur-
face, time of day, specular reflections and the presence 
of other objects that can reflect secondary illumination 
onto the area of interest. As many of these effects are 
time dependant, successful use of a calibration reference 
means updating the referencing whenever ambient illu-
mination changes—this could be minute to minute in a 
natural illumination scenario. With controlled lighting 
there are still problems; light intensity challenges exist: 
the inverse square law states that illumination drops off 
inversely according to distance from the light source [13]. 
This means that uneven illumination can occur and the 
type of light source chosen needs careful consideration; 
it should not have high intensity peaks throughout the 
spectrum or across the image plane.

Another potential difference between laboratory and 
field imaging is resolution. For aerial remote sensing data, 
the spatial resolution is typically in the range of meters 
per pixel, which means the pixels will usually contain 
signatures from more than one material [14, 15]. A first 
step in analysing this data is to consider this multi-mate-
rial problem, whereby pixels must be considered to con-
tain mixed materials (called ‘mixed pixels’) [16, 17], and 
a spectral unmixing process must be applied. In other 
words, a single pixel may contain plant and soil, and algo-
rithms must be used to determine the appropriate mix. 

Fig. 1 Electromagnetic spectrum with the lower bar displaying visible and infra-red light



Page 4 of 12Lowe et al. Plant Methods  (2017) 13:80 

In the laboratory, images can typically be taken within 
centimetres of the plant, and there may be many pixels 
representing even a single leaf or region of disease. In 
these cases, unmixing is generally not necessary.

Further consideration of these location-based chal-
lenges will be fully explored later in this review, but 
before we continue let us consider why we wish to cap-
ture such hyperspectral information in the first place.

Applications for the detection and classification 
of healthy and diseased plants
In this section, we will discuss a variety of techniques 
used specifically for the detection of biotic stress in 
plants. Classification techniques, that is, techniques that 
separate the data into healthy and diseased categories 
for example, can be divided into two types: those that 
focus on a number of key wavelengths in the spectrum 
and those that use the entire spectrum response. Further-
more, disease classification is discussed with regards to 
the identification of multiple diseases and detection of a 
specific disease.

Existing vegetation and disease indices
Before hyperspectral imaging devices were readily avail-
able, researchers wishing to quantify effects based on 
colour information have used multispectral imaging, or 
hyperspectral, point-source devices (such as spectroradi-
ometers which do not produce a spatial image) to acquire 
colour data. Hyperspectral devices do not in general 
provide a point-and-click measurement. Instead, much 
onus is on the user to develop the capture process. Once 
acquired, the resulting large numerical datasets must be 
analysed in order to provide useful information. A sen-
sible and simple way into such large datasets is to con-
sider only a small number of positions in the wavelength 
range, looking at changes across conditions at predeter-
mined key points in the spectrum. Using this approach, 
we can also counter the effects of relative light changes by 
considering ratios of data values. This involves the com-
bination of two or more wavelengths, commonly known 
as ‘indices’.

To interpret the data, a number of such indices have 
been developed, through either pre-considered biologi-
cal reasoning (e.g. knowing that a particular wavelength 
relates to properties in a particular cell structure), or 
due to limitations in the particular wavelengths avail-
able from the capture equipment (e.g. indices which are 
derived from satellite multispectral remote sensing data 
may only have had a limited number of wavelengths avail-
able). When applied to plant material, these indices are 
known as ‘vegetation indices’. Many different vegetation 
indices exist and each uses a different set of wavelength 
measurements for describing physiological attributes 

of vegetation, looking at either general properties of the 
plant, or at specific parameters of its growth.

One of the most popular and widespread metrics is the 
normalised difference vegetation index (NDVI), which 
is used for measuring the general health status of crops 
[18, 19]. It is calculated via a simple ratio of near-IR and 
visible light (see Table 1). NDVI has been used for many 
different purposes, for example, to detect stress caused 
by the Sunn pest/cereal pest, Eurygaster integriceps Put. 
(Hemiptera: Scutelleridae), in wheat [20]. Most of the 
indices are very specific and only work well with the 
datasets that they were designed for [21]. There are dis-
ease-centric studies focused on creating disease indices 
for detecting and quantifying specific diseases [22], for 
example, one study used leaf rust disease severity index 
(LRDSI) with a 87–91% accuracy in detecting the leaf 
rust (Puccinia triticina) in Wheat [23], however, to our 
knowledge, it has not been widely tested. 

Another commonly-used approach is to detect changes 
in the sudden increase in reflectance at the red/near-
infrared border. This ‘red edge’ position is a narrow sec-
tion in the electromagnetic spectrum (690–740  nm) 
where the visible spectrum ends and the near infrared 
starts (Fig.  2). This section has a large change in spec-
tral response (derivative),for green plant material, since 
chlorophyll strongly absorbs wavelengths up to around 
700  nm, and hence the material has low reflectance in 
this range, but it is strongly reflecting the infrared (from 
about 720 nm). Cho [24] describes a number of different 
algorithms that extract or detect the red edge. A disease 
index based on the red edge position has been used to 
detect powdery mildew in wheat (Blumeria graminis f. 
sp. Tritici), however it was not as accurate as Partial Least 
Squares Regression (PLSR), a technique that uses a statis-
tical approach [25]. We will consider some of these statis-
tical approaches further in this review.

Classification using a subset of selected wavelengths
In this section we consider classification approaches that 
rely on sub sampling at particular wavelengths from the 
full spectrum. One difference with true multispectral 
data is that specific wavelengths can be manually or auto-
matically chosen from anywhere in the captured range, 
where as multispectral data is limited by the technology.

Analysis from “Background” section typically used 
indices to calculate representative values using dis-
crete wavelengths at various positions in the spectrum. 
One such study involving a wheat field experiment 
used normalised difference vegetation index (NDVI) 
response to eliminate everything except the leaves from 
the dataset, followed by a statistical approach called an 
ANCOVA (which measures statistical covariance) to 
identify selected wavelength bands, and then quadratic 



Page 5 of 12Lowe et al. Plant Methods  (2017) 13:80 

discriminant analysis (QDA) to classify the spectra 
between healthy and diseased leaves (yellow rust) [26]. 
This is representative of a typical workflow in hyperspec-
tral analysis: isolate (or segment) the parts of the image 
of interest, then use a mathematical technique to identify 
regions of the spectra likely to have predictive power, and 
finally use those spatial and spectral regions to learn a 
classification approach. Using QDA, the overall accuracy 
reached 92% with 4 wavebands [26].

An example of multi layer perceptrons (MLP) is 
described in Moshou [27], who aimed to detect yellow 
rust in field-grown wheat using a spectrograph with the 
range 460–900 nm and a 20 nm spectral resolution. The 

spectrograph captured the images in the field using a 
handheld system. Then four significant wavelengths were 
selected. The first two wavelengths were selected using 
‘variable selection’ which involved comparing the wave-
lengths using stepwise discriminant analysis and using 
the F-test. The second pair of wavelengths uses the NDVI 
wavelengths. The neural network used by Moshou is a 
simple architecture with four inputs, one hidden layer 
consisting of ten neurons and two outputs (healthy and 
diseased). The architecture is determined by the number 
of inputs, a selected amount of hidden neurons and the 
amount of outputs required. Trial and error can be used 
to determine a suitable architecture. Moshou tried differ-
ent quantities of neurons and selected the most efficient. 
The classification accuracy reached using this approach 
was 98.9% for the healthy plants and 99.4% for the dis-
eased plants.

The MLP approach uses a simple architecture con-
sisting of an input, hidden layer(s) and the output. In 
machine learning a new, more sophisticated approach 
called deep learning is becoming popular. Deep learn-
ing refers to artificial neural networks with a structure 
that contains a lot of layers, and during each layer neu-
rons are able to implicitly represent features from the 
data and by doing this, more complex information can be 
obtained in later layers, and image features are automati-
cally determined by the network. One specific example 
of a deep learning approach is convolutional neural net-
works (CNN). Whilst artificial neural networks (ANN) 

Table 1 A selection of vegetation indices

VI Formula References Information

Normalised difference vegetation index (NDVI) (RNIR − RRED)/(RNIR + RRED)
RRED ~ 680, RNIR ~ 800

[50] Range: − 1 to 1
Common range: 0.2–0.8
Broadband

Red edge NDVI (R750 − R705)/(R750 + R705) [50] Range: − 1 to 1
Typical healthy range: 0.2 to 0.9
Narrowband (hyperspectral data)

Simple ratio index (SRI) RNIR/RRED
RRED ~ 680, RNIR ~ 800

[20] Range: 0 to > 30
Typical healthy range: ~ 2–8
Broadband

Photochemical reflectance index (PRI) (R531 − R570)/(R531 + R570) [50]
[51]

Range: − 1 to 1
Typical healthy range: − 0.2 to 0.2
Vegetation health prior to senescence

Plant senescence reflectance index (PSRI) (Red–Green)/NIR [50] Range: − 1 to 1
Typical healthy range: − 0.1 to 0.2
>PSRI ~ canopy stress, onset of senescence, fruit 

ripening

Normalised phaeophytinization index (NPQI) (R415 − R435)/(R415 + R435) [52] Chlorophyll degradation
0.56–1.41
Unacidified and acidified solutions [53]

Structure Independent Pigment Index (SIPI) (R800 − R445)/(R800 + R680) [50]
[51]
[54]

Range: 0–2
Typical healthy range: 0.8–1.8
Good with canopy variety

Leaf rust disease severity index (LRDSI) 6.9 × (R605/R455) − 1.2 [23] Accuracy of 89% in study may vary with other data.

Fig. 2 A typical healthy vegetation spectra (400–1000 nm) with the 
red edge section highlighted in red (690–740 nm)
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use neuron activation networks as their analogous model, 
CNNs are based on retinal fields in the vision system. 
Whatever the approach, deep learning takes longer to 
train and the architecture is more complex, however, 
with the added complexity, very impressive classification 
and recognition rates are achievable.

Deep learning has been applied to the problem of plant 
disease detection. Mohanty [28] used CNN’s to detect 
26 diseases over 14 crop species. A dataset consisting 
of 54,306 colour images were used, 80% for training and 
20% for testing on AlexNet and GoogLeNet (two popular 
versions of pretrained CNN’s). The accuracy was 97.82% 
for AlexNet and 98.36% for GoogLeNet using colour 
images with training from scratch (for transfer learning 
the values are higher, 99.27 and 99.34% respectively). 
They selected individual leaves with a homogenous back-
ground. If the network is tested on images under different 
conditions from the trained images the accuracy is 31.4% 
[28]. Sladojevic also used CNN’s to detect 13 diseases 
across various crop plants, including Apple (powdery 
mildew, rust), pear (leaf spot), grapevine (wilt, mites, 
powdery mildew, downey mildew) using 30,000 images 
with an accuracy of 96.3% using CaffeNet [29].

There are currently very few complete studies apply-
ing deep learning to hyperspectral data, though this is 
an active research area. There are several challenges that 
need to be addressed in order to use hyperspectral data 
for deep learning. The size of the hyperspectral data 
including the amount of wavelengths would require a lot 
of processing time and power it would ideally require a 
graphics processing unit. The amount of hyperspec-
tral wavelengths would most likely include noise from 
specific wavelengths. Also there needs to be a sufficient 
amount of data for the training/testing process along 
with labelled data. There is also the possibility that the 
error will be higher than alternative approaches.

Other non-deep learning approaches include Yuan [30], 
using Fishers Linear Discriminant Analysis with remote 
sensing data to detect yellow rust and powdery mildew 
for a wheat crop with an overall accuracy of 93% with 
selected wavelength ranges (531, 570–654, 685–717 nm) 
that are significant for detecting differences between 
powdery mildew and yellow rust diseases in these spec-
tral reflectance ranges, resulting from an independent t 
test.

Sometimes data analysis approaches are combined 
with simple image processing steps in order to add fea-
ture discrimination. A family of image processing tech-
niques called morphological operators can be used to 
clean up binary (black and white) images. One such 
technique is called erosion, whereby the foreground of 
an object is shrunk by turning boundary pixels into back-
ground pixels. The opposite technique is called ‘dilation’ 

and has the effect of enlarging the foreground object’s 
boundary. They can be used together to fill in holes, or 
remove speckle noise (depending on the order used) in 
binary labelled data. One approach using this method is 
a study on cucumber leaf data, in this example, this tech-
nique has been used to analyse a different type of mildew; 
downy mildew (Pseudoperonospora cubensis). first prin-
ciple component analysis (PCA) is applied to reduce the 
size of the data and a binary image is produced, and then 
erosion and dilation are used in a second step to enhance 
the disease features. The accuracy is 90% however only 20 
samples were used (10 healthy and 10 infected) [31]. This 
method is unlikely to work as well on other hyperspectral 
images to detect diseases unless the leaf data is similar 
and even then the results are uncertain.

Hyperspectral imaging can also be combined with 
microscopy to capture images at a higher resolution. 
Barley with different genotypes has been studied at the 
microscopic level to see if spectral differences could be 
identified between the genotypes. Barley leaves were also 
analysed from both healthy and diseased plants, which 
had been inoculated with Powdery Mildew (B. graminis). 
Results showed there was a difference over time between 
the healthy and inoculated leaves, except for those vari-
eties containing the mildew locus o (mlo) gene, which 
provides plant resistance to B. graminis. In this study, 
the spectral range was reduced to 420–830  nm due to 
the noise, then normalised and smoothed with Savitzky-
Golay filter, and then SiVM is used to find the extreme 
spectra followed by Dirichlet aggregation regression for 
the leaf trace [32].

Classification using full spectrum data
Classification approaches aim to divide the data into a 
number of distinct classes. They originate from a fam-
ily of statistical or machine learning techniques. One 
such approach is quadratic discriminant analysis (QDA), 
which classifies by using a covariance matrix, which com-
pares classes. The QDA method was used in a study with 
Avocado plants, to examine the fungal disease Laurel wilt 
(Raffaelea lauricola), using plants located both in the 
field and glasshouse. The QDA classification accuracy 
was 94% [33]. It is possible of course to use alternative 
methods at each stage of the analysis pipeline. For exam-
ple, rather than use QDA, a decision tree approach (a 
machine learning technique) has been used and reached 
95% accuracy [33]. Choosing the correct approach for the 
data, as well as ensuring sufficient dataset size and qual-
ity, is key. Such machine learning approaches represent 
an increasingly-common set of classification and predic-
tion algorithms. Machine learning approaches train algo-
rithms using a training dataset, with the aim of analysing 
and predicting results from new, unseen data. Multilayer 
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perceptron’s (MLP) are an example of such a technique. 
MLP’s are simple networks (called artificial neural net-
works) that maps input data to an output. This process 
is based on biological understanding of neuron activation 
networks where messages are fired between neurons. The 
input node connects to the output and it is updated using 
an activation function and weights that can be optimised 
to produce the correct output (using training data). This 
algorithm requires prior knowledge (training data) there-
fore if the ‘disease spectra’ is unknown then this tech-
nique will be unsuitable.

A third classification approach is to look at the spec-
tral signatures by using derivatives; this is when the 
underlying pattern or change in data is analysed. Second 
order (and above) derivatives are usually insensitive to 
changes in the illumination [15]; however they are sen-
sitive to noise which hyperspectral data typically suffers 
from, therefore ‘smoothing’ needs to be applied before 
using derivatives. Smoothing is a process that reduces 
the difference between individual pixel intensities and 
neighbouring pixels using forms of averaging to create a 
smoother signal. Two smoothing examples are Savitsky-
Golay and Gaussian filtering. Savitszky-Golay proposed 
a method for smoothing noisy data by fitting local poly-
nomials to a sub set of the input data then evaluating the 
polynomial at a single point to smooth the signal [34]. 
Gaussian filtering reduces noise by averaging the spec-
tral data with a focus on the central information using a 
Gaussian-weighted kernel.

Huang [35] tries to detect Sclerotinia rot disease in Cel-
ery crops by using partial least squares regression (PLSR) 
with derivatives of first and second order. Partial least 
squares regression selects a small set of components. This 
technique is useful when the predictors are collinear/
highly correlated, and it will reduce the risk of overfit-
ting the data. The classification accuracy for Partial least 
squares regression with the raw spectra is 88.92%, PLSR 
with Savitzky-Golay first derivative is 88.18% and PLRS 
with second order derivative is 86.38%. The accuracies 
are similar, with the second order derivative perform-
ing slightly worse. Yuan [36] uses PLSR on Fisher’s linear 
discriminant analysis (FLDA) to detect pest and disease 
in wheat. It produced a 60% accuracy for aphid damage 
and a 92% accuracy for Yellow rust disease. In another 
study, Zhang [37] used FLDA to detect powdery mildew 
in wheat (using a heavily damaged leaf ) with over 90% 
accuracy.

Disease identification
As well as detecting the presence of disease, another ave-
nue of research is to distinguish between different dis-
eases to identify specific pathogens. One such approach 
is spectral information divergence classification. This 

method compares the divergence between the observed 
spectra and a reference spectra (a library of spectra, or 
average spectra of interest from the data), where the 
smaller the divergence value then the more similar the 
spectra are, and if they are larger than a set threshold 
then they are not classified as the reference spectra [3]. 
Spectral information divergence was used to detect can-
ker legions on citrus fruit (grapefruits) where the spec-
tral range of the data was 450–930 nm with 92 bands and 
5.2  nm spectral resolution. Before analysing the data, a 
pre-processing step is applied by combining neighbour-
ing pixels to reduce the size by half. Cankerous grape-
fruits were compared with normal grapefruit and also 
with grapefruit showing other disease or damage symp-
toms including: greasy spot, insect damage, melanose, 
scab and wind scar; this method resulted in 95.2% clas-
sification accuracy [38].

Quantifying severity of disease
Along with detecting and classifying disease, we may 
wish to record the effective amount of disease, or its 
severity. This approach does run into some particular 
challenges. The amount of leaf damage and coverage 
from the disease can affect the accuracy of the leaves 
being classified as healthy or diseased. Extreme disease 
damage can affect the appearance of leaves so detrimen-
tally that they may not be counted as plant material at all. 
Still, there are a number of methods for estimating sever-
ity, and we present a selection of approaches below.

Spectral angle mapper (SAM) approaches match the 
pixel spectra to reference spectra to classify the pix-
els by calculating the angle between the spectra which 
are treated as n-dimensional vectors in space [2]. This 
technique has been widely used with moderate success 
to classify hyperspectral data, including plant diseases. 
Yuhas studied the severity of Fusarium head blight dis-
ease for wheat before harvesting. The hyperspectral data 
was in the range 400–1000 nm with a spectral resolution 
of 2.5 nm. SAM was used to detect the amount of disease 
with a classification accuracy of 87%. Two experiments 
with wheat plants were carried out, one in a glasshouse 
and one in field. The plants were imaged over their devel-
opmental stages from inoculated to established infection. 
Yuhas determined that just after infection, the healthy 
and infected plants were not distinguishable because the 
infection had not yet established. However, when the 
hyperspectral data were examined during the ripening 
stage, the wheat pigment composition changes, and the 
healthy plants then appear as diseased plants [39].

Mahlein [40] uses the same technique to analyse sugar 
beet diseases specifically Cerospora leaf spot, pow-
dery mildew and leaf rust. The range is 400–1000  nm 
with 2.8  nm spectral resolution and 0.19  mm spatial 
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resolution. The plants were analysed over a time period 
(>  20  days) to monitor the different stages of each dis-
ease, and the leaves were classified as healthy or dis-
eased. Cerospora leaf spot classification accuracy varied 
depending on the severity of the disease (89.01–98.90%), 
powdery mildew accuracy varied between 90.18 and 
97.23%, and sugar beet rust reached 61.70%, with no clas-
sification before day 20 using SAM.

Rumpf et al. [41] used the same dataset as Mahlein but 
with different analysis approaches; decision trees (DT), 
artificial neural networks (ANN) and support vector 
machine (SVM). All approaches require prior knowledge, 
however once trained have proven to be efficient. For 
example, with Cerospora leaf spot the accuracy for SVM 
is 97% (compared to DT 95% and ANN 96%); for Sugar 
beet rust the accuracy is 93% (DT 92%, ANN 95%); and 
for Powdery mildew the accuracy is 93% (DT 86%, ANN 

91%). Measuring the severity with leaf area coverage after 
the disease has covered 1–2% of the leaf the accuracy is 
62–68% and for more than 10% leaf coverage the accu-
racy is almost 100%. This demonstrates that it is possi-
ble to use a variety of analysis methods on the same set 
of hyperspectral data to elucidate different insights and 
achieve different levels of accuracy—choice of technique 
is important. A list of common techniques used to iden-
tify specific diseases and the accuracy associated with 
each is presented in Table 2.

Detection of early stage stress symptoms
The ultimate goal of such detection systems is to identify 
the disease with a minimum of physical changes to the 
plant. Identifying diseases or abiotic problems as early 
as possible has obvious benefits. By using hyperspectral 
technology in combination with appropriate analysis 

Table 2 Summary of techniques successfully used to detect drought and diseases in plants

H healthy, S stressed, D diseased

Technique Plant (stress) References Accuracy

Quadratic discriminant analysis (QDA) Wheat (yellow rust)
Avacado (laurel wilt)

[26]
[33]

92%
94%

Decision tree (DT) Avacado (laurel wilt)
Sugarbeet (cerospora leaf spot)
Sugarbeet (powdery mildew)
Sugarbeet (leaf rust)

[33]
[41]

95%
95%
86%
92%

Multilayer perceptron (MLP) Wheat (yellow rust) [27] 98.9/99.4%
H/D

Partial least square regression (PLSR)
 Raw
 Savitsky-Golay 1st derivative
 Savitsky-Golay 2nd derviative

Celery (sclerotinia rot) [35] 88.92%
88.18%
86.38%

Partial least square regression (PLSR)
 Fishers linear determinant analysis

Wheat (yellow rust)
Wheat (aphid)
Wheat (powdery mildew)
Wheat (powdery mildew)

[36]
[37]

92%
60%
90%

Fishers linear determinant analysis (FLDA) Wheat (yellow rust)
Wheat (powdery mildew)

[30] 93%

Erosion and dilation Cucumber (downey mildew) [31] 90%

Spectral angle mapper (SAM) Sugarbeet (cerospora leaf spot)
Sugarbeet (powdery mildew)
Sugarbeet (leaf rust)
Wheat (head blight)

[40]
[39]

89.01–98.90%
90.18–97.23%
61.7%
87%

Artificial neural network (ANN) Sugarbeet (cerospora leaf spot)
Sugarbeet (powdery mildew)
Sugarbeet (leaf rust)

[41] 96%
91%
95%

Support vector machine (SVM) Sugarbeet (cerospora leaf spot)
Sugarbeet (powdery mildew)
Sugarbeet (leaf rust)
Barley (drought)

[41]
[45]

97%
93%
93%
10 days before visible signs

Spectral information divergence (SID) Grapefruit (cankerous, normal, greasy spot. Insect damage, 
melanose, scab, wind scar)

[38] 95.2%

Simplex volume maximisation
SiVM with DAR

Barley (drought)
Barley (drought)

[44]
[47]

4 days before Vegetation Indices
1.5wk Before  visible signs

LSSVM Wheat (drought) [46] 86.6%(H)/76.3%(S)
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methods, we can realistically hope to identify stress 
symptoms before a human observer.

Drought can be a significant problem for many crops 
[42], particularly as some plant species or varieties do 
not visibly indicate this stress for a period of time, and 
by this time, the potential yield or quality of the crop may 
have decreased because normal plant developmental 
processes have been affected through the stress response. 
The definition of ‘drought’ can also vary from a little 
water deprivation to complete deprivation. Studies dis-
cussed in this section have detected the onset of drought 
before Vegetation Indices’ detected the drought and also 
days before visible signs appeared.

One technique in particular which has become popu-
lar for early detection of drought stress is simplex vol-
ume maximisation (SiVM), which is a data clustering 
technique [43]. This technique selects spectral signatures 
that are samples of healthy and stressed plants, and then 
clusters the data using these classes. When the signatures 
become similar to a pre-learned sample signature then it 
is classified as such.

Romer [44] studied drought stress in a barley experi-
ment contained in a rainout shelter and a corn experi-
ment grown in field. The technique used to detect the 
stress was simplex volume maximisation, which is 
an unsupervised technique. The spectrum range was 
400–900 nm, with 4 nm spectral resolution. During pre-
processing some wavelengths are removed due to noise 
(< 470 and > 750 nm). This is a common occurrence with 
hyperspectral data due to insufficient light at the end of 
the spectrum range, and is especially common with lab-
based light sources which may not generate much light in 
these regions of the spectrum. To reduce the size of the 
data and to remove the background, a k-means cluster-
ing method was used to separate the data into a selected 
number of groups using mean colour. SiVM is then com-
pared to four well known vegetation indices’—NDVI, 
photochemical reflectance index (PRI), red edge inflec-
tion point (REIP) and carotenoid reflectance index (CRI). 
For the Barley data, reduced partial water stress was 
detected four days earlier with SiVM (day 9) than Vegeta-
tion Indices’ (day 13). For the plants with no water/com-
plete drought conditions the Vegetation Indices’ detected 
the stress on day 8, one day faster than SiVM, but they 
failed to detect the stress for days 9 and 10; however 
SiVM did reliably detect the stressed plants from day 9.

Behmann also analysed drought stress in barley using 
support vector machine (SVM). This algorithm is super-
vised and requires labelled training data, which in this 
case is labelled as drought or healthy. The data is pre-
processed with k-means to reduce the size of the data-
set before analysis with SVM. The spectral range was 
430–890  nm with a spectral resolution of 4  nm. Using 

this approach, Behmann detected drought stress on day 
6, with NDVI detecting a difference on day 16 [45].

Drought stress in wheat has been analysed by two com-
bined techniques to try and improve detection rates. 
Moshou [46] uses least squares support vector machine 
(LSSVM) to try and detect drought stress. Wheat plants 
were studied in a glasshouse, and both spectral reflec-
tance and fluorescence were analysed. Fluorescence 
involves using high intensity light to excite a plant tis-
sue causing it to emit a different wavelength light, which 
can be used to gain additional biological insight. LSSVM 
needed to be trained, and 846 data samples were used for 
this training, whilst 302 data samples were used for the 
testing stage. For some techniques the size of the data-
set and/or number of wavelengths will determine the 
time taken to analyse the data due to computation time. 
Therefore, Moshou used six wavelengths—503, 545, 566, 
608, 860 and 881 nm. The LSSVM attained 76.3% accu-
racy for stress leaves and 86.6% accuracy for healthy 
leaves. However, the study stated that by using a fusion 
LSSVM model combining spectral and florescence fea-
tures, the overall accuracy was greater than 99%. Fluo-
rescence is the measure of chlorophyll fluorescence in the 
leaf to determine physiological changes.

According to Kersting [47] many of these techniques 
are difficult to use for non-machine learning or data min-
ing experts because the hyperspectral data needs pre-
processing or adapting (i.e. finding the leaves or using 
select wavelengths). In addition, the other techniques 
apart from [44] do not analyse lots of plants over several 
days. This is an important factor to consider for plant 
phenotyping when there is a lot of data to analyse. Ker-
sting claims to have the first Artificial Intelligence tech-
nique for drought stress prediction using hyperspectral 
data. A novel approach is developed which includes a 
predictive technique for drought that does not adapt 
the data or reduce the size. Kersting demonstrates the 
approach in a Barley drought experiment with data col-
lected over a five-week period. The technique used 
is called Dirichlet aggregation regression (DAR) and 
it is based on matrix factorisation. First Simplex Vol-
ume Maximisation is used to find 50 spectral signatures 
from the data and classify them. Then, latent Dirichlet 
aggregation values are estimated before using a Gauss-
ian process over the values to find the drought levels 
per plant and per time point. Finally, the process pre-
dicts the drought-affected plants before there are visible 
signs. Based on a five-week barley experiment, predic-
tion of drought occurred 1.5  weeks before visible signs 
appeared. A comparison of runtimes between SiVM and 
DAR was assessed and resulted in a runtime of 30 min for 
parallelized SiVM, versus only several minutes using the 
DAR model. This demonstrates that developing custom 
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analysis techniques can outperform (either in compu-
tation time, required assumptions, ease of use, or final 
accuracy) the direct application of existing approaches.

Hyperspectral data capture and software
Hyperspectral data is large in size, especially when mul-
tiple plants are imaged for several days. A scan of a sin-
gle plant could easily be around a gigabyte in size. If the 
whole spectrum range is analysed then the process will 
take considerably longer than selecting several wave-
lengths to analyse. However, there is a lot of informa-
tion contained in the data, which could be valuable. The 
researcher must make decisions about how much spec-
tral resolution to use, and how much to discard. If your 
camera collects 800 spectral bands, you must ask your-
self if you need all 800 or whether binning into 400 or 
200 etc. bands is sufficient. This is analogous to using 
something like JPEG compression for RGB images. This 
compression creates smaller file sizes, at the expense of 
destroying image information permanently (particularly 
colour information). Storing fewer spectral bands results 
in smaller file sizes, and reduces the complexity of the 
data analysis, at the expense of throwing away potentially 
important colour properties. Polder et al. [48] explore the 
calibration and characterisation of spectrographs cap-
tured using three system set ups. The experiments look at 
the different types of noise and signal-to-noise ratio. The 
experiments also determined that to an extent binning 
can occur without loss of information by calculating the 
resolution, the spectral range and the amount of pixels.

Hyperspectral camera set‑up
Prior to analysis, the hyperspectral data needs to be cali-
brated to ensure the images produced are adjusted due to 
the colour of lighting present; the camera software may 
have this option, but if it does not then the data can be 
calibrated after it is captured. The lighting is calibrated 
using a known white balance target, which is imaged 
by the camera system. This target will reflect a known 
percentage of light over the spectrum, for example 99% 
across the entire working spectrum of the camera. Non-
uniformity of illumination can be corrected for by divid-
ing the observed data by the captured white balance 
data [49]. Additionally, the system must be corrected for 
electrical noise present from the sensor in the absence of 
light (called dark current). This is usually carried out by 
taking an image with the camera in the absence of any 
light, and using the resultant low-level noise readings to 
adjust future measures.

An important question is how often to carry out a 
white balance calibration. In a lab setting, it may be 
appropriate to capture just one white balance target per 

experiment, assuming the lighting has reached an equi-
librium (i.e. the bulbs have fully warmed up). Outside the 
lab, however, lighting is subject to much more variation. 
Cloud cover, shadows and time of day can dramatically 
affect the colour of the incoming light when outside and 
so very regular white balance readings must be taken to 
ensure accurate calibration. Careful choice must also be 
made about the time of day images are captured on, and 
whether to capture in overcast conditions versus direct 
sun (which can cause problems with shadows and spec-
ular reflection—bright spots on the plants reflecting the 
illumination source (i.e. the sun) directly). Evenness of 
illumination should also be considered—does the sen-
sor record a uniform level of brightness across its spa-
tial range? An effect called vignetting can result in pixels 
towards the edges of the lens appearing darker than those 
in the centre.

Conclusions
There has been a significant increase in scientific litera-
ture in recent years focusing on detecting stress in plants 
using hyperspectral image analysis. Plant disease detec-
tion is a major activity in the management of crop plants 
in both agriculture and horticulture. In particular, detect-
ing early onset of stress and diseases would be beneficial 
to farmers and growers as it would enable earlier inter-
ventions to help mitigate against crop loss and reduced 
crop quality. Hyperspectral imaging is a non-invasive 
process where the plants are scanned to collect high-res-
olution data. The technology is becoming more popular 
since the falling costs of camera production have enabled 
researchers and developers greater access to this tech-
nology. There are various techniques available to ana-
lyse the data to detect biotic and abiotic stress in plants, 
examples of which have been discussed in this review, 
with a focus on the classification of healthy and diseased 
plants, the severity of disease and early detection of stress 
symptoms.

Vegetation and disease indices are increasing in 
quantity every year. Significant wavelengths combined 
together can indicate the health or disease status occur-
ring within a specific species. Indices are valuable for 
detecting specific criteria for vegetation however; the 
indices are selected with the datasets, species and con-
ditions favourable to the experiments at that time. Some 
are more general in nature; NDVI, PRI and several other 
Vegetation Indices will work to find the general health 
of the plant. But in general, it is harder to take an index 
designed for plant X and apply it to a dataset for plant Y. 
This is the motivation behind considering a larger range 
of wavelengths over the spectrum, which has the poten-
tial to yield better results.
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Abbreviations and glossary
ANN: Artificial neural network—neural networks with input vector and output 
vectors (neurons/nodes) with one or multiple hidden layers of nodes, where 
all of the layers are fully connected with weights and an activation function; 
DT: Decision tree has a tree structure form and it is has decision nodes and 
leaf nodes where the decision nodes have two or more branches and the 
leaf nodes represent the classification. This is supervised and needs training. 
The decision rules can become complex as the tree depth increases; Erosion 
and dilation: Erosion shrinks the foreground object by turning boundary 
pixels into background pixels if there are more background pixels connected 
(neighbouring pixels) than foreground pixels. Dilation is the opposite and 
enlarges the boundary pixels of the foreground object; FLDA: Fishers linear 
discriminant analysis—project the feature space (n dataset) onto a subspace, 
dimensionality reduction; MLP: Multilayer perceptron’s are feed forward 
artificial neural networks (ANN).The MLP is supervised which means it needs 
a training data set that is labelled [1]; PLSR: Partial least squares regression—
using linear regression to find the small set of variables from a large set of 
predictors by finding the latent variables (covariance of the predictors and 
variables); QDA: Quadratic discriminant analysis classifies using a covariance 
matrix where each class has a unique matrix and therefore has different class 
density probabilities; SAM: Spectral angle mapper matches the pixel spectra 
to reference spectra to classify the pixels by calculating the angle between the 
spectra which are n-dimensional vectors in space [2]; SID: Spectral information 
divergence compares the divergence between the observed spectra and the 
reference spectra where the smaller the divergence value the similar the spec-
tra are and if they are larger than a threshold then they are not classified as 
the reference spectra [3]; SiVM: Simplex volume maximisation selects spectral 
signatures that are the furthest away from each other to maximise the volume 
(for example healthy and diseased signatures). Once the signatures have been 
selected the remaining signatures are assigned to the class they are similar 
to; SVM: Support vector machine—machine learning process that takes data 
and splits it into groups/classes based on the training labelled data; LSSVM: 
Least squares support vector machine; LRDSI: Leaf rust disease severity index; 
RNIR: Reflectance at NIR (near infrared); RRED: Reflectance at red; Supervised: 
Requires the known outcomes for a training dataset, with the training data 
including inputs and the corresponding expected outputs; Unsupervised: 
Only the input data is supplied and the training involves the technique learn-
ing the underlying structure of the data, there is no correct output; Machine 
learning: Training the technique to learn rather than using explicit instructions 
and repeating the process until the objective is reached; RGB: A colour image 
in the red, green and blue colour space; Multispectral: Several wavelengths 
that are typically from the visible and/or near infra-red range; Hyperspectral: 
Hundreds of contiguous narrow bands over a spectral range; Colour binning: 
Combining wavelengths to reduce the number of wavebands and size of the 
images; NMF: Non negative matrix factorisation.
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