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I. COUPLING TO THE MULTIMODE RADIATION FIELD

The atomic system is coupled to the quantized multimode radiation field. Within the dipole approximation, the
Hamiltonian that describes the dynamics of the atomic ensemble and the radiation field reads

Haf =

N∑
j=1

~ωab
†
j · bj +

∑
qλ

~ωqa
†
qλaqλ + i~

N∑
j=1

∑
qλ

gqλ ·
(
a†qλsje

−iq·rj − sjaqλe
iq·rj

)
. (S1)

The first term represents the atomic energy, with ~ωa = 2π~c/λ being the energy difference between the ground (|g〉)
and the three degenerate J = 1 manifold states (|−〉, |0〉 and |+〉 for mJ = −1, 0 and +1, respectively) and the vector

transition operator for the j-th atom (located at rj) being defined as bj =
(
|g〉j〈+| , |g〉j〈−| , |g〉j〈0|

)T
. The second

term of the Hamiltonian represents the radiation field, and here ~ωq is the energy of a photon with momentum q

and polarization λ and aqλ is the annihilation operator of such a photon ([aqλ, a
†
q′λ′ ] = δqq′δλλ′). The last term

represents the coupling between the two systems, with sj = b†j + bj and the coupling coefficient being given by

gqλ = d
√

ωq

2ε0~V êqλ, where V is the quantization volume, d the modulus of the transition dipole moment between the

ground and the three degenerate excited states, and êqλ the unit polarization vector of the photon (q · êqλ = 0).
Within the dipole and Born-Markov approximations, and tracing out the environment, one obtains the quantum

master equation for the atomic density matrix ρ,

ρ̇ = − i
~

[H, ρ] +D(ρ), (S2)

which describes the dynamics of the atomic degrees of freedom [1–3]. The many-body Hamiltonian that describes the
coherent evolution of the system reads

H = ~
∑
j 6=l

b†j ·W jl · bl, (S3)

characterized by the coefficient matrix (assuming all atoms localized on the xy-plane)

W jl =

 Ajl Bjle
−2iφjl 0

Bjle
2iφjl Ajl 0

0 0 Cjl

 (S4)

with Ajl and Bjl being defined in the main text [Eqs. (6) and (7), respectively] and

Cjl =
3Γ

4

[
−cosκjl

κjl
+

sinκjl
κ2jl

+
cosκjl
κ3jl

]
(S5)

for j 6= l. The dissipator D(ρ) reads

D(ρ) =
∑
jl

bj · Γjl · ρb†l −
1

2

{
b†j · Γjl · bl, ρ

}
, (S6)

where

Γjl =

 A′jl B′jle
−2iφjl 0

B′jle
2iφjl A′jl 0

0 0 C ′jl

 , (S7)

with A′jl and B′jl being defined in the main text [Eqs. (8) and (9), respectively] and

C ′jl =
3Γ

2

[
sinκjl
κjl

+
cosκjl
κ2jl

− sinκjl
κ3jl

]
(S8)

It is clear from the form of Eqs. (S4) and (S7) that the dynamics of the internal level mJ = 0 is disconnected from
the other two. We will consider thus only the dynamics on the subspace formed by the states mJ = ±1.
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II. EWALD SUMMATION

A. General notions

We briefly review the Ewald summation technique [4, 5] introduced originally to cope with the evaluation of the
electrostatic potential energy of a gas of electrons interacting through the Coulomb force. Here we wish to evaluate
the discrete sum in Eq. (12) of the main text. Considering two-dimensional lattices with unit cell defined by two
lattice vectors (a1,a2), a vector r connecting two atoms α and β can be written as

r = ττταβ + T, (S9)

where T = (ma1, na2), m, n ∈ Z is the lattice translation vector, ττταβ = τττβ − τττα and τττα denotes the position of the
α-th atom in the unit cell. We also define the reciprocal lattice vectors in the usual way as G = (mb1, nb2), m, n ∈ Z,
where bj , j = 1, 2 are the primitive reciprocal lattice vectors.

Let us consider an algebraically decaying function of the atomic separation v(r) and say we want to evaluate the
sum

V (k) =
∑
r 6=0

eikrv(r). (S10)

Ewald’s trick consists of separating the contributions of v to the sum to the short (S) and long (L) ranged part by
introducing a regulating function ξ through the identity

1 = Sξ(r) + Lξ(r), (S11)

so that

V (k) = SV (k) + LV (k)− selfV (k), (S12)

where

SV (k) =
∑
r 6=0

eikrSξ(r)v(r) (S13a)

LV (k) =
∑
r

eikrLξ(r)v(r) (S13b)

selfV (k) = lim
r→0

eikrLξ(r)v(r). (S13c)

The function ξ is chosen such that Sξ(r)v(r) decays exponentially fast as r →∞ and (S13c) is finite. Due to the fast
decay of Sξ, the short-range part can be readily obtained by evaluating the sum in (S13a) in real space. We are thus
left with the evaluation of (S13b).

We proceed as follows. Using (S9), (S13b) becomes

LV (k) =
∑

α,β∈unit cell

∑
T

eik(ττταβ+T)Lξ(|ττταβ + T|)v(ττταβ + T)

=
∑

α,β∈unit cell

eikττταβ
∫

d2r
∑
T

δ2(r−T)eikrLξ(|ττταβ + r|)v(ττταβ + r)

=
∑
G

∑
α,β∈unit cell

eikττταβ
∫

d2reik+GrLξ(|ττταβ + r|)v(ττταβ + r)

=
∑
G

∑
α,β∈unit cell

e−iGττταβ
∫

d2reiG̃rLξ(r)v(r), (S14)

where we in the third line we have used the identity (normalizing the volume of the unit cell to 1)∑
T

δ2(r−T) =
∑
G

eiGr (S15)

and in the last line we made a substitution of variables r = ττταβ + r and defined G̃ = k + G.



4

Next, due to the form of Eqs. (4), (6), and (7) in the main text, we consider the following functions v

1,nv(r) =
cosκr

κr
einφ(r) (S16a)

2,nv(r) =
sinκr

(κr)2
einφ(r) (S16b)

3,nv(r) =
cosκr

(κr)3
einφ(r), (S16c)

where n = 0, 2 and κ = 2π/λ.

B. Analytical approach to the 1/r term: the divergence

We start with the evaluation of the integral in (S14) with the function 1,nv(r)

1,nV ≡
∫

d2reiG̃rLξ(r)1,nv(r)

= κ−1
∫ ∞
0

dr
(
1− e−γr

)
cos(κr)

∫ 2π

0

dϕei(G̃r cos (ϕ−η)+nφ(r))

= κ−1
∫ ∞
0

dr
(
1− e−γr

)
cos(κr)Jn(G̃r), (S17)

where we have chosen Lξ(r) = 1− e−γr, γ > 0 is an arbitrary control parameter, η is the polar angle of G̃ and Jn is
the n-th Bessel function of the first kind. Next, we split the integration as

1,nV = 1,nV
c
0 + 1,nV

∞
c , (S18)

where

1,nV
b
a = κ−1

∫ b

a

dr
(
1− e−γr

)
cos(κr)Jn(G̃r). (S19)

Finally, we substitute the asymptotic expression for the Bessel function (for large G̃r)

Jn(G̃r) ≈
√

2

πG̃

1√
r

cos
(
G̃r − φn

)
, (S20)

where φn = π
4 (2n+ 1), to 1,nV

∞
c so that

1,nV
∞
c ≈ I∞0 − Ic0 , (S21)

where

Iba =
1

κ

√
2

πG̃

∫ d

c

dr
1− e−γr√

r
cos(κr) cos(G̃r − φn). (S22)

Importantly, we note, that only the term I∞0 can give rise a the divergence in (S12), which we now analyze in detail.
Substituting the identity

1√
r

=
1√
π

∫ ∞
0

dtt−
1
2 e−tr (S23)

and using

cos a cos b =
1

2
[cos(a+ b) + cos(a− b)] (S24)

we get

κπ

√
G̃

2
I∞0 =

∫ ∞
0

dtt−
1
2

∫ ∞
0

dr
(
1− e−γr

)
e−tr

[
cos((G̃+ κ)r − φn) + cos((G̃− κ)r − φn)

]
. (S25)
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This amounts to evaluation of the integral

II =

∫ ∞
0

dtt−
1
2

∫ ∞
0

dr
(
1− e−γr

)
e−tr cos(Gr − φn)

=
e−iφn

2

∫ ∞
0

dt
1√
t

∫ ∞
0

dr
[
e−tr − e−(t+γ)r

]
eiGr + c.c.

=
e−iφn

2

∫ ∞
0

dt
1√
t

(
1

t− iG
− 1

t+ γ − iG

)
+ c.c., (S26)

where G = G̃ ± κ. The final integration in (S26) can be done by methods of contour integration along the contour
depicted in Fig. S1, i.e. ∮

C

=

∫
C1

+

∫
R

+

∫
C2

+

∫
ε

. (S27)

Using the property of the branch cut, the integration along C2 becomes∫
C2

=

∫ ε

R

dz
1√
z

(
1

z − z0
− 1

z − z1

)
=

∫ ε

R

dz
1

e
1
2 (log |z|+i2π)

(
1

z − z0
− 1

z − z1

)
=

∫ ε

R

dz
1

−
√
z

(
1

z − z0
− 1

z − z1

)
=

∫ R

ε

dz
1√
z

(
1

z − z0
− 1

z − z1

)
. (S28)

FIG. S1. Integration contour

Omitting the c.c. term, we express the leftmost part of (S26) as

II− =
e−iφn

2

∫ ∞
0

dz
1√
z

(
1

z − iG
− 1

z + γ − iG

)
(S29)

=

∫ ∞
0

dzg(z) =

∫ ∞
0

dz
f(z)

z − z0
− f(z)

z − z1
. (S30)

It can be immediately seen, that
∫
R
→ 0 since g(z) → R−

3
2 in the limit of large |z|. Next, since γ > 0, assuming

G 6= 0 and substituting z = εeiϕ, we get from the estimation lemma∣∣∣∣∫
ε

∣∣∣∣ ≤ |g(z)|2πε ∝ 2π
ε√
ε

ε→0+−−−−→ 0. (S31)
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We are thus left with

II− =
1

2

∮
C

= iπ (f(z0)− f(z1)) (S32)

= iπ
e−iφn

2

[
1√
iG
− 1√
−γ + iG

]
,

where we have defined the function f and the poles

f(z) =
e−iφn

2

1√
z

z0 = iG
z1 = −γ + iG. (S33)

Plugging (S32) back to (S26) and evaluating the complex conjugated term we get

2

π
II = ie−iφn

[
1√
iG
− 1√
−γ + iG

]
+ c.c

= i cos(φn)

[
1√
iG
− 1√
−iG

+
1√

−γ − iG
− 1√
−γ + iG

]
+ sin(φn)

[
1√
iG

+
1√
−iG

− 1√
−γ − iG

+
1√

−γ + iG

]
= 2

{
cos(φn) sin[ 12arg(iG)]

|G| 12
−

cos(φn) sin[ 12arg(γ + iG)]

|γ + iG| 12
+

sin(φn) cos[ 12arg(iG)]

|G| 12
+

sin(φn) cos[ 12arg(γ + iG)]

|γ + iG| 12

}
.(S34)

Next, we note that this result can be further simplified in specific cases: for G ∈ R and n = 0, 2 respectively, we get
the following options

n = 0 : φ0 =
π

4
→ sin(

π

4
) =

1√
2

; cos(
π

4
) =

1√
2

n = 2 : φ2 =
5π

4
→ sin(

5π

4
) =

1√
2

; cos(
5π

4
) = − 1√

2

G > 0 : arg(iG) =
π

2
→ sin(

1

2
arg(iG)) =

1√
2

; cos(
1

2
arg(iG)) =

1√
2

G < 0 : arg(iG) = −π
2
→ sin(

1

2
arg(iG)) = − 1√

2
; cos(

1

2
arg(iG)) =

1√
2
. (S35)

Lets first consider the n = 0 case. Using (S35), the relation (S34) simplifies to

G > 0 :
1

π
IIn=0(G) =

1

|G| 12
− 1√

2|γ + iG| 12

(
sin(

1

2
arg(γ + iG))− cos(

1

2
arg(γ + iG))

)
G < 0 :

1

π
IIn=0(G) = − 1√

2|γ + iG| 12

(
sin(

1

2
arg(γ + iG))− cos(

1

2
arg(γ + iG))

)
. (S36)

and similar expression is obtained for n = 2. Those results can be combined to a single expression

1

π
IIn(G) =

(−1)n

|G| 12
θ(G)− 1√

2|γ + iG| 12

(
sin(

1

2
arg(γ + iG))− cos(

1

2
arg(γ + iG))

)
, (S37)

where θ is the Heaviside step function. Remarkably, the function (S37) is finite in the limit G → 0−, but diverges as
G → 0+, which constitutes the main analytic result of this section.

Remark: The discontinuity and one-sided divergence could be seen already in (S26) by setting G = 0. This would
result in the diverging integral in the vicinity of the origin, namely the part

∫
ε
∝
∫

dt 1
t
√
t

in (S27), which, according

to the estimation lemma, scales as ∝ 1√
ε
.

C. Numerical implementation

In the previous section we have found that (S13a),(S13c) can be evaluated numerically, while (S13b) can be written
as

L
1,nV (k) =

∑
G

∑
α,β∈unit cell

e−iGττταβ [1,nV
c
0 − Ic0 + I∞0 ] . (S38)
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Here, the expressions 1,nV
c
0 and Ic0 are finite and can by obtained numerically. In principle similar decomposition

can be obtained when considering the functions (S16b),(S16c), however we found it more convenient to evaluate the
corresponding element (S10) by direct summation in real space.

The final subtlety is related to the fact, that for Lξ = 1 − e−γr the self-interaction term (S13c) is not defined for

1,n=2v as it depends on the direction in which the origin is approached (which is due to the dependence of 1,n=2v on

the polar angle of r). This problem can be circumvented by considering Lξ = 1 − e−γr
2

instead in which case the
self-interaction term vanishes. Here, it is still possible to evaluate the integral in (S22) symbolically, which we then
use in (S38).

In (S38) the tuning parameters γ, c are chosen such that the approximations used [Eq. (S20)] are well satisfied.

III. FINITE-SIZE EFFECTS AND THE BULK-BOUNDARY RELATION

A. Characterization of topological properties in finite-size systems

We investigate here the properties of edge states and the related excitation propagation in finite systems in order to
better understand the impact of the limited spatial extent of the system on the resulting topological characteristics.

In Figs. 2(a) and (b) of the main text we show the phase diagrams (the bulk Chern number C, Eq. (13), as a
function of the TRS breaking parameters) for the SL and HL geometries. These are obtained from the eigenstates
obtained by the method of Ewald summation described in Sec. II C of this Supplemental Material. We refer to the
results obtained in this way as the thermodynamic limit. Note, that the change in C is always connected to the
closing of the corresponding gap.

As mentioned in the main text, the bulk Chern number is formally well defined on differentiable manifolds and
evaluated in the thermodynamic limit. While there is a one-sided divergence in the spectrum appearing as a conse-
quence of the far-field terms of the interaction, the bulk Chern number can be still obtained by avoiding the divergence
points in the numerical calculation (see also [6] for a related discussion of the divergences in systems with long-range
potentials). The divergences get effectively regularized when considering finite-size lattices. We define the finite-size
analogue of the Chern number CN as the discretized version of Eq. (12) evaluated on a finite system with N atoms.
We implement the periodic boundary conditions in this finite system by assuming that each atom interacts through

the same potential V̄r, i.e.,
∑N
j 6=l=1 e

ik·rjlV jl =
∑

r 6=0 e
ik·rV r.

Similarly to the results obtained in the thermodynamic limit, we observe that a transition between different Chern
numbers CN results from a closing of the corresponding gap. However, for finite-size systems, the value of the TRS-
breaking parameter ∆C at which the gap closing appears varies with the system size evolving towards the result
obtained in the thermodynamic limit as the system size increases. This is demonstrated in Fig. S2(a) for an HL,
where we show ∆C/Γ as a function of N for the transition occurring at ∆/Γ = −6 in the thermodynamic limit [see
Fig. S2(b)]. Depending on the parameter regime considered, the system size can have a dramatic influence on the
system properties, namely a series of transitions between different CN as the system size is varied [see Fig. S2(c) for
∆/Γ = −5]. We note that such dependence on the system size is not observed when considering the near-field limit
resulting in the potential decaying as 1/r3, see Fig. 3 in [7].

B. Edge state profiles and the bulk-boundary relationship

In this section we investigate in some detail the mechanism underlying the apparent breaking of the bulk-boundary
relationship observed in the case of HL, namely the fact that the edge states expected to exist in the second gap are
not robust with respect to local perturbations. To this end we plot the band structure of an infinite strip with finite
extent in the y-direction with Ny = 20 atoms in Fig. S3(a). Here, if we label the eigenenergies and the corresponding
single particle eigenstates as E(kx, n) and |ψkx,n(y)〉, where n = {1, . . . , 4Ny}, then nj = {jNy, jNy + 1} are the
modes crossing the first (j = 1) and the second (j = 2) gap, respectively. The black boxes in Fig. S3(a) denote the
modes (i.e. fixing nj and kx) which have maximal weight (from all the modes lying in the gap) on either edge of the
lattice (edge 1, red datapoints or edge 2, blue datapoints). The profiles of the states |ψkx,nj (ỹ)|2 of the maximal-
weight-on-the-edge modes as a function of ỹ are plotted in Fig. S3(c) (here ỹ simply denotes the number of the site
in the y-direction rather than the real-space position). It is apparent from Fig. S3(c) that the modes from the second
gap have approximately two orders of magnitude larger weight in the bulk than the modes from the first gap. For
comparison we show in Figs. S3(b) and (d) the case Ny = 80, and observe that the situation remains qualitatively the
same. Furthermore, we note that the modes crossing the first (second) gap have |kx| > κ (|kx| < κ), with κ = 2π/λ.

The increased overlap of the modes crossing the second gap and the fact that they lie effectively inside the divergence
circle [8] have important consequences for the closed and open dynamics respectively. In the absence of dissipation,
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FIG. S2. (a): Value of ∆/Γ at which the gap between the second and third band closes, ∆C/Γ, as a function of the system
size N . (b): Chern number C of the same two bands when calculated in the thermodynamic limit. (c): Chern number CN as
a function of the system size N at ∆/Γ = −5 [red solid line in (a)], with the red dashed lines indicating a closing of the gap,
which coincides with a change in CN .

we interpret the inhibition of excitation transport due to the presence of lattice defects observed in the fourth panel
of Fig. 3(b) to be a consequence of the increased overlap of the excited mode with the bulk ones resulting in an
enhanced proliferation of the excitation into the bulk and thus inhibiting the transport along the edge. In the
presence of dissipation, it is extensively discussed in a work closely related to ours [9], that the modes with |k| < κ
are superradiant (as opposed to the subradiant ones with |k| > κ), which has again for a consequence an inhibition
of excitation propagation (we note that the separation between the sub and superradiant modes occurring at |k| = κ
is a direct consequence of the 1/r long-range part of the potential [9]).

So far we were only concerned by modes with maximum weight on the edges of the lattice. To complete our
discussion, in Figs. S3(e) and (f) we plot the spatial profiles of the kx-modes of the spectral branches indicated by
arrows in Fig. S3(a). Specifically, for the branch lying in the first gap, we plot all kx < 0 and for the branch in the
second gap kx ≥ 0. The green (grey) lines correspond to modes with |kx| > κ (|kx| < κ). The spatial profiles of the
modes with highest weight on edge 1 are highlighted in red [and indicated by arrows between Figs. S3(c) and S3(e)
and (f)]. The thick green (thick grey) line in Fig. S3(e) [Fig. S3(f)] denotes the energetically degenerate mode with
equal support on both edges corresponding to kxb/π = −1 (kxb/π = 0). In Fig. S3(e) the grey lines correspond to
the bulk modes, which is also the case for most of the green lines in Fig. S3(f). The main message of these figures is
that small (increased) overlap with the bulk modes is not a special property of the modes with maximal weight on
the edge, but a generic feature of the modes lying well within the first (second) gap.
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with the size of the circle proportional to the amplitude. The black boxes highlight the k-modes with maximal amplitude in
the first and second gaps respectively. (c) Spatial profiles of the k-modes with maximal amplitude on the boundary, where
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